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Montreal, Québec, Canada H3A 2K6 (K.J.W.), and McConnell Brain Imaging Centre,

Montreal Neurological Institute, 3801 University St., Montreal, Québec, Canada H3A 2B4
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Abstract: PET images of cerebral blood flow (CBF) in an activation study are usually
smoothed to a resolution much poorer than the intrinsic resolution of the PET camera. This
is done to reduce noise and to overcome problems caused by neuroanatomic variability among
different subjects undertaking the same experimental task. In many studies the choice of this
smoothing is arbitrarily fixed at about 20mm FWHM, and the resulting statistical field or
parametric map is searched for local maxima. Poline and Mazoyer (1994ab) have proposed
a 4-D search over smoothing kernel widths as well as the usual three spatial dimensions.
If the peaks are well separated then this makes it possible to estimate the size of regions
of activation as well as their location. One of the main problems identified by Poline and
Mazoyer (1994ab) is how to assess the significance of scale space peaks. In this paper we
provide a solution. Our main result is a unified P -value for the 4-D local maxima that is
accurate for searches over regions of any shape or size. Our results apply equally well to any
Gaussian statistical field, such as those resulting from fMRI.
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1 Introduction

Many studies of brain function with positron emission tomography (PET) involve the inter-
pretation of a subtracted PET image, usually the difference between two images of cerebral
blood flow (CBF) under baseline and activation conditions. In many cognitive studies, the
activation is so slight (4-8%) that the experiment must be repeated on several subjects. The
images are then mapped into a standardised or stereotaxic coordinate space (Talairach et
al., 1988) to account for differences in brain size and orientation, and the subtracted images
averaged to improve the signal to noise ratio (Fox et al., 1985; Friston et al., 1990, 1991;
Evans et al., 1992; Worsley et al., 1992). The averaged ∆CBF image is then normalised
by dividing by an estimate of the standard deviation and the resulting statistical field or
parametric map is searched for local maxima.

In many studies the images are first smoothed to a FWHM of 20mm before the analysis is
performed (Friston et al., 1990, 1991; Worsley et al., 1992). Some of the reasons for this are:
to reduce the impact of miss-registration of PET data into stereotaxic space, to allow for
anatomical variability among subjects, and to improve the signal to noise ratio. The value
of 20mm is somewhat arbitrary and no thorough justification has been given. The matched
filter theorem (Rosenfeld and Kak, 1982) states that the optimal choice of smoothing kernel
should should match the signal to be detected, in order to best detect the signal. Thus 20mm
objects are best detected by a 20mm filter. Miss-registration and anatomical variability
increase the effective signal width when the subtracted image is averaged over subjects, so
a wider filter should be used to allow for this. Rather than try to determine the signal
width in advance, Poline and Mazoyer (1994ab) have proposed a search over a range of filter
widths to find 4-D local maxima in location and scale space. This has the added advantage
of estimating the signal width as well as its location. In Section 3 we show how to generate
these images and search them in a computationally efficient way.

One of the main problems identified by Poline and Mazoyer (1994ab) is how to set the
threshold of the 4-D local maxima in order to control the false positive rate of finding local
maxima above the threshold when in fact no signal is present in the image. They note
that the threshold must obviously be larger than that at any fixed scale because searching
over an extra dimension (scale) must increase the false positive rate. As the filter width
decreases, the field becomes ‘rougher’ and there is a greater chance of a local maximum
exceeding a fixed threshold by chance alone (Friston et al., 1991; Worsley et al., 1992). Thus
the threshold should be at least as high as that for the smallest filter width. However no
theoretical solution to this problem is given.

In Section 4 we solve this problem by presenting a unified P -value for the 4-D local
maxima. The result is based on recent theoretical work on 4-D Gaussian random fields
(Siegmund and Worsley, 1995). It builds on work in the related paper of Worsley et al.
(1995a) which gives a unified P -value for spatial (3-D) local maxima. The P -value is unified
in the sense that it combines previous 2-D results (Friston et al, 1991) and 3-D results
(Worsley et al., 1992) to give a good estimated P -value for search regions of any shape or
size. This makes it possible to restrict the search to small regions such as the cingulate
gyrus, or two dimensional regions such as a slice or the cortical surface, or even single voxels,
while at the same time searching over filter widths. Of course the additional flexibility
of searching in an extra dimension does not come without some cost. We show that the
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price paid for searching in scale space from 6.8mm FWHM (the intrinsic resolution of our
scanner) to 34mm FWHM (five times the intrinsic resolution), as opposed to searching at
20mm FWHM, is an increase in the critical threshold of about 0.8 on the Gaussian scale,
which is roughly equivalent to reducing the number of subjects by 30%. Hence about 30%
of the sample is sacrificed to permit a search in scale space.

The method is not without its drawbacks. If two peaks are separated by less than
twice their FWHM then they are optimally detected as a single wide peak rather than two
narrow ones. Thus multiple peaks in a small region tend to be blurred together rather than
separated, which adds to their detectability but not to their resolvability. We recommend
that any peak detected at a wide filter width should be re-examined at a narrower filter
width to look for multiple peaks. In Section 5 the unified P -value is validated on null PET
data then applied to activation data, followed by a discussion in Section 6.

2 The effect of smoothing on the signal to noise ratio

In this Section we shall apply elementary results from signal processing (see for example
Rosenfeld and Kak, 1982) to investigate the effect of signal width, anatomical variability
and filter width on the detectability of the signal.

In a typical CBF activation study, PET image data are collected from n subjects under
a set of m conditions or tasks. Each image is smoothed to an effective FWHM of w in each
dimension either at reconstruction (Evans et al., 1992) or using a Gaussian kernel smoother
(Friston et al., 1990). In the simplest approach, the images are normalised by dividing by
the global mean of all intracranial voxels, then the image under one condition is subtracted
from the image under another condition, and the resulting difference images are averaged
over subjects to produce a ∆CBF image. If there is no strong evidence for fluctuations in the
voxel variance, then Worsley et al. (1992) pool the subject variance over voxels to obtain an
effectively constant estimator of the standard deviation. Dividing the ∆CBF image by this
standard deviation produces a Gaussian statistical field with unit standard deviation, which
is then searched for local maxima. An alternative is to divide by the voxel standard deviation,
and then transform the resulting T statistic to a Gaussian random variable (Friston et al.,
1991), although the resulting statistical field is only approximately Gaussian provided the
degrees of freedom is high enough (see Worsley et al. (1995a) for a discussion of this issue).

2.1 Model

We shall develop a very simple approximate model for PET activation which will allow us
to get some idea of the factors that influence signal detectability. Let D be the number of
dimensions of the spatial data; D = 3 for volumetric data and D = 2 for slices. Denote the
D-dimensional Gaussian function with standard deviation σ by

φ(σ) = (2πσ2)−D/2 exp[−||x||2/(2σ2)]. (2.1)

where w = σ
√

8 loge 2 is the FWHM and x is a D-vector. The Gaussian function has the
attractive property that the convolution of two Gaussians is still Gaussian, that is,

φ(σ1) ? φ(σ2) = φ(
√

σ2
1 + σ2

2), (2.2)
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where ? denotes convolution.
We shall assume that the D-dimensional ∆CBF image can be modelled as follows (see

Figure 1 for an illustration in D = 1 dimensions); similar models were used by Friston et al.
(1991) and Worsley et al. (1992):

• the signal consists of just one peak that can be modelled as the Gaussian function

h(2πσ2
S)

D/2φ(σS) where h is the signal height and σS

√
8 loge 2 is the signal FWHM;

• the noise component is modelled as stationary white noise ε, which is added to the
signal;

• the effect of image reconstruction and additional smoothing is to convolve the signal

plus noise with a Gaussian point spread function φ(σR) with FWHM σR

√
8 loge 2 to

produce the ∆CBF image;

• anatomical variability produces registration error that perturbs the location of the
∆CBF image on each subject about a common location, which without loss of gen-
erality we shall take as the origin. Functional variability, due to differences in the
anatomical location of the activation across subjects, is also included in this term.
We shall model these perturbations as a 3-D Gaussian random variable with standard
deviation σA.

The ∆CBF image, averaged over a large number n of subjects, can then be written as

∆CBF = [signal ? anatomical variability + white noise] ? reconstruction

=
[
h(2πσ2

S)
D/2φ(σS) ? φ(σA) + ε/

√
n

]
? φ(σR). (2.3)

2.2 Signal to noise ratio

It is straightforward to check that the signal component of ∆CBF is the Gaussian function

h(2πσ2
S)

D/2φ
(√

σ2
S + σ2

A + σ2
R

)
. (2.4)

The noise component of ∆CBF has a Gaussian spatial covariance function proportional to

[φ(σR)/
√

n] ? [φ(σR)/
√

n] = φ(
√

2σR)/n. (2.5)

The signal to noise ratio at the origin, SNR, is then proportional to the ratio of (2.4) to the
square root of (2.5) evaluated at the origin:

SNR ∝ h
√

n

(
σ2

SσR

σ2
S + σ2

A + σ2
R

)D/2

. (2.6)

The constant of proportionality depends only on the amplitude of the white noise.
A few remarks are obvious: SNR increases with signal height h, number of subjects n

and signal width σS, and decreases with registration error σA. However the SNR reaches a
maximum when the filter width matches the perturbed signal width, that is when

σR =
√

σ2
S + σ2

A. (2.7)
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This is essentially the same result as the matched filter theorem (Rosenfeld and Kak, 1982)
which states that the signal is best detected by smoothing with a filter that matches the
signal. Figure 2(a) illustrates the SNR in D = 3 dimensions. If the filter is twice as wide
or half as wide as the perturbed signal then the signal to noise ratio is reduced by a factor
of 0.28, which is equivalent to the loss of almost half the subjects. Thus wider signals are
best detected with a wide filter, and narrow signals with a narrow filter. This provides some
justification for searching over filter widths.

Finally, we shall investigate the effect of anatomical variability. If we use the optimum
filter width (2.7) then the SNR is

SNR ∝ h
√

n
(σS/2)D/2

(1 + σ2
A/σ2

S)
D/4

. (2.8)

For D = 3 dimensions, a plot of this in Figure 2(b) shows that if the anatomical variability
equals the signal width then the signal to noise ratio drops by 0.41 which is equivalent to
losing 65% of the subjects. Thus reducing the registration error component of anatomical
variability by non-linear image warping (Evans et al., 1991a; Collins et al., 1992, 1994, 1995)
could substantially improve the sensitivity of signal detection in averaged PET and MRI
images.

2.3 Examples

Figure 3 gives an example of (a) D = 1 white noise with no signal plus (b) a FWHM=15mm
signal. The horizontal axis is chosen to represent a lateral line through the brain centre
of a ∆CBF image, divided into 100 1.34mm pixels. To simulate reconstruction at 6.8mm
FWHM (the intrinsic resolution of our PET camera, see Section 5) and smoothing to 15mm
and 34mm (5 times the intrinsic resolution), the white noise is smoothed with a 6.8, 15 and
34mm FWHM filter and corrected to give unit standard deviation. Note that the 15mm filter
gives the largest peak, as the theory predicts. Figures 3(c) and 3(d) present the same data in
the form of a two dimensional statistical field. As described later in Section 3.3, the FWHM
is sampled at only 13 filter pixels (or ‘fixels’) equally spaced on the log(FWHM) axis (the field
is very smooth in this direction); the bottom row is the 6.8mm FWHM reconstruction and
the top row is the 34mm FWHM smoothed data. Notice that the statistical field maximum
is very close to the location and scale of the 15mm FWHM signal.

Figure 3(e) shows the same noise component but with two signals. The first image
contains a 26mm and a 9mm FWHM signal; note that both are accurately located by the
local maxima of the statistical field. Figure 3(f) contains two 9mm FWHM signals 18mm
apart. Here the local maximum is at 34mm FWHM between the two signals, so that they
are estimated as one wide signal rather than two separate narrow signals. It can be shown
that this behaviour happens, on average, whenever the two signals are less than 2.8 signal
FWHMs apart. In practice, then, our procedure tends to blur together signals which are too
close; this increases their detectability at the expense of their resolvability. However such
‘bifurcation’ is readily apparent in the scale space images so we recommend inspection of
these slices for hidden smaller foci (see Figure 7).
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3 Efficient smoothing of the data

A major obstacle to searching in scale space is the computational effort of repeating the
smoothing and statistical analysis on all n × m images. However we shall show that this
effort can be reduced appreciably in several ways. An obvious reduction comes from the
fact that kernel smoothing is a linear operation on the data, and that the ∆CBF image is
also a linear function of the data; linear operators can be interchanged, so that the ∆CBF
for the smoothed images is equivalent to smoothing the ∆CBF image for the unsmoothed
data. Thus the statistical field of the smoothed data is proportional to the smooth of the
statistical field at the highest resolution.

The remaining task is to determine the constant of proportionality, equal to the ratio
of the standard deviations, without resorting to smoothing all the data again. We shall do
this in two ways. The first and quickest method is based on assuming that the correlation
function of the data is Gaussian. Although this assumption is accurate enough for many
purposes, we have found that it is not accurate enough to determine the standard deviation
of our PET data (see Figure 5). For this reason we have developed a second method that
works for any correlation function; it takes longer than the first method but not as long as
smoothing all the data.

3.1 Gaussian correlation function

In this subsection we derive a very simple method for correcting the standard deviation
which requires that the spatial correlation function of the highest resolution statistical field,
Z1 say, can be well approximated by a Gaussian function as in (2.5). This will be the
case if the noise component of Z1 can be modelled as stationary white noise smoothed by a
stationary Gaussian point response function with FWHM= w1 say. If Z1 is then smoothed by

a Gaussian kernel with FWHM=
√

w2 − w2
1, then by (2.2) the resulting image is a Gaussian

statistical field Z with an effective FWHM= w. Siegmund and Worsley (1995) show that
the standard deviation is reduced by a factor of c = (w1/w)D/2, so that dividing by c then
restores the standard deviation of Z to unity. The operations on the data can be summarised
as follows:

1. Reconstruct the data at the highest resolution with FWHM= w1;

2. Calculate the Gaussian statistical field, Z1, with a standard deviation of 1 at each
voxel, for the highest resolution data;

3. For a desired FWHM= w, smooth Z1 with the Gaussian kernel (2.1) with FWHM=√
w2 − w2

1;

4. Correct the standard deviation by dividing by c = (w1/w)D/2;

5. Repeat steps 3 and 4 for each desired FWHM.
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3.2 Non-Gaussian correlation function

Antoine et al. (1994) have reported that the correlation function of high resolution PET
data is non-Gaussian, with negative side-lobes in the xy plane. This was attributed to a
low apodization cutoff frequency for PET images reconstructed by filtered backprojection.
For our PET data, we have found that the Gaussian correlation function is a good first
approximation but not accurate enough to determine the standard deviation by the method
presented in the previous section. In this section we present an accurate method for correct-
ing the standard deviation that does not require the assumption of a Gaussian correlation
function; the only requirement is stationarity of the pure noise component.

The first step is to estimate the correlation function r(x) of the unsmoothed (highest
resolution) data, that is, the correlation between voxels at a separation vector of x voxels.
Fourier transform methods are the most efficient way of doing this, provided the number of
voxels on each axis is a power of 2. Residual (pure noise) images are created by subtracting all
estimated effects such as an overall mean and the effect of any regressors from the individual
scans. A mask is defined that takes the value 1 for all intercranial voxels, and 0 otherwise.
To avoid wrap-around effects, the mask should be at least one FWHM from the boundary of
the image on all sides. The masked residual image, formed by multiplying the residual by the
mask, is then passed through a D-dimensional Fourier transform, and the squared modulus
of each transform is cumulated over all images. To speed up calculation, two residuals can
be transformed simultaneously by putting one into the real part and one into the imaginary
part of the complex array to be transformed. No sorting is required afterwards; the squared
modulus of the transformed complex array is the sum of the squared moduli of the two
Fourier transformed real arrays, plus an odd function whose inverse Fourier transform is
purely imaginary. This convenient trick halves the computation time.

The sum of the squared moduli is then passed through an inverse D-dimensional Fourier
transform. The real part is the sum of cross-products C(x) of the residual images at lag
x; the imaginary part is discarded. The mask is convolved with itself in the same way, to
produce an image of counts N(x) of the number of pairs of voxels in the mask that are
separated by x. Note that C(x) and N(x) are periodic, so that values for negative indices
of x can be found by adding the size of the image to such indices. The corrected unbiased
estimate of the spatial correlation r(x) at a lag of x is:

r(x) = [C(x)/N(x)]/[C(0)/N(0)]. (3.1)

This estimate is valid only for x smaller than the gap between the mask and the boundary
of the image on each side, since larger lags will contain cross-products of the image wrapped
around on itself. However we expect r(x) to be zero for large lags so this restriction is not
important.

Once the spatial correlation function is obtained, the correction factor c̃ is easily calcu-
lated for any smoothing filter f(x):

c̃ =

√∑
x

(f ? f)(x)r(x), (3.2)

where ? is the convolution operator. If the filter is a product of one-dimensional filters in each
of the D dimensions, such as the Gaussian filter (2.1), then f ? f can be rapidly calculated
as the product of the convolution of the one-dimensional filters.



♦ Worsley et al. ♦ 8

As a check on the calculations, the standard deviation pooled over the voxels in the mask
is √

C(0)/[N(0)ν], (3.3)

where ν is the degrees of freedom of the residuals, equal to the number of images minus the
number of effects removed (ν is one less than the number of subtractions in a simple sub-
traction experiment). As a further check, the effective FWHM of the point spread function
of the smoothed image, calculated from the standard deviation of the derivative of the resid-
uals assuming a Gaussian point spread function (Friston et al., 1991; Worsley et al., 1992),
can also be calculated directly from the spatial correlation function. Let ḟj be the one-step
difference of f in dimension j, equal to f minus f lagged by one voxel in dimension j, and
let δj be the voxel size in dimension j. Then the covariance matrix Λ of the derivatives of
the smoothed standardised image has (j, k) element

λjk =
∑
x

(ḟj ? ḟk)(x)r(x)/(δjδkc̃). (3.4)

j, k = 1, . . . , D. The effective FWHM in dimension j is
√

(4 loge 2)/λjj, (3.5)

j = 1, . . . , D, and the overall effective FWHM is

w̃ =
√

(4 loge 2)/det(Λ)1/D. (3.6)

The effective FWHM for the unsmoothed data can be obtained directly from (3.6) by re-
placing f by a ‘spike’ at the origin, that is f(0) = 1 and zero elsewhere.

The operations on the data can be summarised as follows:

1. Reconstruct the data at the highest resolution with FWHM= w1;

2. Find the spatial correlation function r(x) of the highest resolution data;

3. Check that the pooled standard deviation from (3.3) is the same as that from a direct
calculation;

4. Check that the effective FWHM from (3.6) calculated for a spike function is close to
the nominal FWHM w1;

5. Calculate the Gaussian statistical field, Z1, with a standard deviation of 1 at each
voxel, for the highest resolution data;

6. For a desired FWHM= w, smooth Z1 with the Gaussian kernel (2.1) with FWHM=√
w2 − w2

1;

7. Correct the standard deviation by dividing by c̃ from (3.2);

8. Check that the effective FWHM w̃ from (3.6) is close to the desired FWHM w;

9. Repeat steps 6, 7 and 8 for each desired FWHM.
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In summary, the methods of this subsection allow us to correct the standard deviation
of a smoothed image without smoothing all the data and without assuming a Gaussian
point spread function. The computational cost is about the same as half the cost of one
smoothing of all the data. For searches in scale space, which require many smoothes, this is
a considerable saving.

3.3 Sampling scale space

Another reduction in computations arises because in practice only a small number, typically
12, of different smoothes are required. The reason is that the scale space statistical field
is very smooth in the scale dimension, so that very few ‘fixels’, or filter pixels, need to be
used to adequately sample the scale axis. Siegmund and Worsley (1995) show that the scale

space statistical field is stationary in loge w, where the effective FWHM is
√

(8/D) loge 2. For

D = 3, this gives an effective FWHM of 1.36, so that a fixel size of 1/10 of the FWHM, or
1.36/10 = 0.136, would seem appropriate to give adequate coverage (our highest resolution
data has a voxel size of approximately 1/4 to 1/6 of the FWHM). A five-fold range of
FWHM from w1 to w2 = 5w1 seems large enough to cover most signals of interest. This then
becomes a range of loge 5 = 1.61 on the log scale, which covers 1.61/0.136 = 12 equal-sized
fixel intervals. Adding one for the end point gives a total of 13 fixels, whose ‘coordinates’
are w = w15

i/12 FWHM, i = 0, 1, . . . , 12. For our data the intrinsic FWHM of the scanner is
w1 =6.8mm, so this gives fixel coordinates at w = 6.8, 7.8, 8.9, 10.2, 11.6, 13.3, 15.2, 17.4,
19.9, 22.7, 26.0, 29.7 and 34.0mm FWHM. Note that the spacing increases as the FWHM
increases, and only 12 kernel smoothing operations need to be performed.

Further reductions in both time and storage can be achieved by image compression (see
Appendix A.1).

4 The unified P -value

Throughout this Section we will be concerned with volumetric data (D = 3) and the P -
value of the maximum M of the 4-D location and scale space statistical field searched over
all voxels inside a search region V , and searched over all fixels from w1 to w2 FWHM.
Equivalent results for slice data (D = 2) and line data (D = 1) are given in Appendix A.2.
We shall assume that the correlation function is Gaussian; for the non-Gaussian case, the
results of this Section can serve as a useful approximation provided the standard deviation
is corrected as in Section 3.2.

As in the case of searching spatial statistical fields, there is no known exact result for
the P -value of M . An added complication is that the 4-D statistical field is not stationary
in both location and scale simultaneously. This is apparent from Figure 3 where the image
becomes smoother in the spatial direction as the scale increases. Thus we cannot use the
results of Worsley et al. (1995a) since they only work for stationary fields. Accordingly
special methods must be used.

We report a recent result of Siegmund and Worsley (1995), which gives exact results
for a quantity closely related to the P -value, the expected Euler characteristic (EC) of the
excursion set of a scale space statistical field. The excursion set is simply the set of voxels
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where the statistical field exceeds a fixed threshold t and the EC counts the number of
connected components of the excursion set, minus the number of ‘holes’ (see Worsley et
al., 1992). For high thresholds the holes disappear and the EC counts the number of local
maxima of the statistical field. For even higher thresholds, near the global maximum M ,
the EC counts one if M ≥ t and zero otherwise, so that the expected EC approximates the
P -value of M . The expected EC is therefore our proposed unified formula for the P -value
of the 4-D maximum M . It has exactly the same form as the unified P -value in Worsley et
al. (1995a):

P(M ≥ t) ≈
3∑

d=0

Rd(V )ρd(t). (4.1)

Rd(V ) is the d-dimensional resel count calculated for the highest resolution statistical field
with FWHM= w1; exact definitions, some examples and a method of calculating the resel
counts from voxel data are given by Worsley et al. (1995a). ρd(t) is the d-dimensional EC
density which is given by the following:

ρ0(t) =
1

(2π)1/2





√
3

4π
(− loge u)e−t2/2 +

∫ ∞

t
e−z2/2dz





ρ1(t) =
(4 loge 2)1/2

(2π)





√
3

4π
(1− u)t +

1 + u

2



 e−t2/2

ρ2(t) =
(4 loge 2)

(2π)3/2





√
3

4π

1− u2

2

(
t2 − 1

3

)
+

1 + u2

2
t



 e−t2/2

ρ3(t) =
(4 loge 2)3/2

(2π)2





√
3

4π

1− u3

3
(t3 − t) +

1 + u3

2
(t2 − 1)



 e−t2/2 (4.2)

where u = w1/w2. EC densities for smoothed lower dimensional data, such as slices or single
lines through an image, are given in Appendix A.2.

The above P -value (4.1) is unified because we shall impose essentially no restrictions on
the search region; it can be a 3-D volume of arbitrary shape, a 2-D slice, a 2-D surface (such
as the cortical surface), a 1-D line or a 0-D point; it can be connected or disconnected. Note
that if u = 1, so that the search is in location space only at the lowest FWHM, then (4.1) is
identical to the unified P -value of Worsley et al. (1995a).

For large search regions the first three terms can be neglected and just the last term
(d = 3) of (4.1) is accurate enough for the P -value. This means that we need only calculate
R3(V ), which equals the number of RESELS or resolution elements of the highest resolution
image, defined as the volume of V divided by w3

1 (Worsley et al., 1992).
The P -value (4.1) is most accurate when the search region is convex, and it appears to

be satisfactory only for high thresholds t whenever the P -value is less than 0.2. For lower
thresholds, (4.1) should be interpreted as the expected number of false positive regions of
activation above the threshold.

Figure 4 plots critical thresholds of M for a spherical search region with w1=6.8mm and
w2 = 34mm, so that u = 5. Critical values for fixed w = 6.8, 20 and 34mm FWHM are also
shown. These can be obtained from (4.1) by setting u = 1 and dividing Rd(V ) by (w/w1)

d,
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d = 1, 2, 3. It can be seen that the cost of searching over scale adds about 0.8 to the critical
thresholds at w =20mm FWHM. This is a 20% increase, which is equivalent to reducing the
number of subjects by about 30%. Hence about 30% of the sample is sacrificed to permit
a search in scale space. Compared to a fixed 6.8mm FWHM the cost is negligible; a 0.06
increase in critical value or a 2.5% reduction in sample size.

5 Validation and application

5.1 Methods

PET scans were obtained using the Scanditronix PC-2048 system which produces 15 image
slices 6.5mm apart with a transverse image resolution of 4.6-6.4mm FWHM and an axial
resolution of 5.4-7.1mm FWHM (Evans et al., 1991b). Using the bolus H15

2 O methodology
without blood sampling (Herscovitch et al., 1983; Raichle et al., 1983; Fox et al., 1984), the
relative distribution of CBF was measured in baseline and activation conditions. All subjects
also had an MRI scan containing 64 2mm-thick T1-weighted multi-slice spin-echo images
(TR = 550msec ; TE = 30msec). Using a volumetric image registration procedure described
previously (Evans et al., 1989, 1991a), the MRI volume from each subject was aligned with
the corresponding PET volume. An orthogonal coordinate frame was then established based
on the anterior commissure - posterior commissural (AC-PC) line as identified in the MRI
volume (Evans et al., 1992). These anatomical frame coordinates were used to apply a
trilinear re-sampling of each matched pair of MRI and PET datasets into a standardized
stereotactic coordinate system (Fox et al., 1985; Talairach et al., 1988). Individual images
were then sampled on a 128×128×80 lattice of voxels, separated at approximately 1.34mm,
1.72mm and 1.50mm on x, y and z axes, respectively, then PET images were normalised by
dividing each voxel by the mean value for all intra-cerebral voxels. The intra-cerebral voxels
were defined as all voxels with a value greater than 150% of the mean value of the entire
image. The ∆CBF image was obtained by averaging the subtracted images across subjects,
then converted to a Gaussian statistical field by dividing each voxel by the mean standard
deviation in normalised ∆CBF for all intra-cerebral voxels (Worsley et al., 1992). Individual
MRI images were subjected to the same averaging procedure.

5.2 Validation on null data

Coghill et al. (1994) carried out an experiment in which PET cerebral blood flow images were
obtained for n = 9 subjects while a thermistor was applied to the left forearm at both warm
(34oC) and hot (48oC) temperatures, each condition being studied twice on each subject.
The purpose of the experiment was to find regions of the brain that were activated by the
hot stimulus, compared to the warm stimulus. For validation, we analysed the difference
images of the two warm conditions as a null dataset which should have an expectation of
zero throughout.

For the null dataset, the variance of derivatives of the individual subtraction images was
used to estimate the effective FWHM in each direction (Friston et al., 1991; Worsley et al.,
1992). The effective FWHMs (3.5) were 6.2, 6.9 and 7.3mm in the x, y and z directions, and
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so 6.8mm was taken as a common value. The images were smoothed over a five fold range
from w1 = 6.8mm to w2 = 34mm FWHM at fixel coordinates 6.8, 7.8, 8.9, 10.2, 11.6, 13.3,
15.2, 17.4, 19.9, 22.7, 26.0, 29.7 and 34.0mm FWHM, equally spaced on the log(FWHM)
scale. Image compression, as advocated in Section A.1, was not used, in order to maintain
compatibility with existing software.

The correlation function was found using the methods of section 3.2 (Figure 5). The
Gaussian assumption holds well in the y and z directions but not in the x direction, where
two negative side-lobes are evident. Similar behaviour was noted in other studies. Figures
6(a) and 6(b) compare the Gaussian correction factor c with the non-Gaussian correction
factor c̃ and the correction factor found by smoothing all 9 subtraction images and pooling
the standard deviation; the latter took several hours of computation whereas c̃ took several
minutes. It can be seen that c̃ is much more accurate than c for this data. Discrepancies for
larger FWHM may be explained by a smaller number of resels and hence greater variability
in the estimator (Worsley, 1995b). Figures 6(c) and 6(d) compare the effective FWHM of
the smoothed data w̃ with the desired FWHM w; the agreement is reasonably close.

The search region V was a 1227cc whole-brain region. To apply the unified P -value, the
resel counts were taken from Table 3 of Worsley et al. (1995a), which gives values of Rd(V )
for 20mm FWHM. The resel counts at 6.8mm FWHM, obtained by multiplying Rd(V ) by
(20/6.8)d, are R3(V ) = 3903, R2(V ) = 926, R1(V ) = 60, and R0(V ) = 1. The approximate
level 0.05 critical value for M is t = 5.04, found by equating (4.1) to 0.05 and solving for
t. The 4-D maximum was M = 4.45 (P = 0.43) for the null dataset, so that no significant
signal is detected.

5.3 Application to activation data

We also analysed the difference between the average of the two hot conditions and the average
of the two warm conditions to search for activation due to the painful heat stimulus. For the
same search region as above, the 4-D maximum was M = 6.56 (P < 0.0001); the maximum
was located at 22.7mm FWHM in the anterior insula/supplementary motor area close to
where activation was reported by Coghill et al. (1994). Figure 7 shows xy, xw and yw slices
through this peak.

Table 1 gives a list of all significant 4-D peaks, together with equivalent 3-D peaks re-
ported in the original study of Coghill et al. (1994), where these can be identified. Strict
comparisons with the original study are not possible because the original data was recon-
structed at 20mm FWHM in the x and y directions with no axial smoothing. This does not
correspond to any of the images in our scale space because they are all smoothed to equal
resolutions in all dimensions. Nevertheless, all the peaks in the original study also appear in
Table 1. The peak heights are generally higher in the scale space search, and the P -values
show that the peaks are more significant. There are two exceptions: the left putamen and
the right posterior cingulate are more significant in the original analysis, presumably because
these peaks are ‘flatter’ in the z direction and are better detected by a ‘flat’ filter. There
is strong evidence for this in the case of the right posterior cingulate, where the original
analysis found a single peak mid-way between the two sharp foci detected by the scale space
search. It appears as if these two foci were merged by the 20mm xy filtering to produce one
peak in the original analysis.
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One interesting feature is that the reverse has happened to the SII/anterior insula peak,
which was reported as two separate peaks, one in SII and and one in the anterior insula,
in the original study. This merge can in fact be seen by looking at the yw slice of Figure
7, where the main peak appears to ‘bifurcate’ at lower scales, indicating two peaks about
2cm apart along the y axis, which are identifiable as the SII and anterior insula peaks of the
original study. In addition, the scale space search revealed a small focus of 6.8mm in the
caudate that did not appear in the original study, presumably because it was over smoothed.
This may also explain why the small focus in the left anterior insula had a much smaller
(M = 3.72) significance in the original study.

6 Discussion

6.1 Assumptions

All the above theoretical work does rely on certain assumptions about the distribution of
the data, which we shall discuss below. These are:

• Gaussian distribution for the averaged ∆CBF image. This is not too problem-
atic because averages approach a Gaussian distribution as the number of subjects (or
scans) increases, thanks to the Central Limit Theorem.

• Gaussian correlation function. This is required for three things:

– choosing the width of the smoothing filter to achieve a given effective FWHM.
This is not important; errors in the resulting effective FWHM will produce errors
in our estimates of signal extent, but since scale space is already very smooth then
these estimates of extent are already quite variable.

– correcting the pooled standard deviation. This is important because small errors
in the standard deviation produce large changes in the P -value. To get an accurate
estimate, we were forced to compute the correlation function (Section 3.2).

– validity of the unified P -value formula. This is not important; the P -value actually
depends not on the whole form of the correlation function but only on its curvature
(second derivative) at zero lag, which equals the variance of the derivative of the
process. Inaccuracies can occur if this curvature is not accurately estimated, and
the most important part is the curvature of the highest resolution image, not
the curvature of the lowest resolution image. This issue has been investigated by
Poline et al. (1995) who shows that it affects sensitivity but not specificity.

• Stationary noise correlation structure. This implies that the point spread func-
tion is equal at all voxels, which appears to be valid for intra-cerebral voxels. The
assumption is required for calculating the correlation function by pooling across vox-
els, and for the validity of the unified P -value.

• Equal variance across voxels. Worsley et al. (1995a) discuss the impact of this
assumption on the fixed FWHM analysis, and the same arguments apply here to scale
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space. Although this assumption is strictly incorrect, the main question is to what
extent it affects the analysis. Worsley et al. (1995a) show that specificity is not
seriously affected by fluctuations of less than 8% in the voxel standard deviation,
but the sensitivity, particularly in cortical areas near the skull, could be reduced.
This reduction must be offset against the inevitable reduction in sensitivity caused by
replacing the pooled standard deviation by a voxel standard deviation with low degrees
of freedom and higher variability.

The solution might be to accept this reduction and extend our results to images of
t-statistics, as in Worsley et al. (1995a). However there is a subtle theoretical obstacle
to such a proposal. It can be shown that the model used to justify a voxel standard
deviation at one scale cannot hold at any other scale. In other words, the t-image at
one scale may be free of an unequal voxel standard deviation (by dividing by the voxel
standard deviation) but at another scale the unequal voxel standard deviations affect
the stationarity of the t-image; in particular, the effective FWHM is non-stationary
and depends on the unequal voxel standard deviations. There seems to be no way
of avoiding this. The best course of action might be to work with the Gaussianized
t-image (à la Friston et al., 1991) at the highest resolution and check that the theory
presented here is a reasonable approximation. This is a suitable topic for future work.

6.2 fMRI data

This latter suggestion could be the best approach for fMRI data, where the voxel standard
deviation is markedly unstable. Our recommendation here is to divide the unsmoothed data
by the voxel standard deviation, then spatially smooth to the lowest reasonable FWHM, such
as 4-6mm, making sure the FWHM is sufficiently large relative to the voxel size; greater than
5 voxels seems adequate. The operation of smoothing will improve the Gaussian approxi-
mation to the t-distribution without the need to explicitly Gaussianize the t-statistics, by
the Central Limit Theorem. The smoothed images should now have equal voxel standard
deviations, and so they can be treated in exactly the same way as PET data, but allowing for
time correlations between images (Friston et al., 1994a,1995; Worsley et al. 1995c). The fact
that the fMRI voxels are almost uncorrelated suggests that the spatial correlation function
of the smoothed data might be well approximated by a Gaussian function, as in Forman et
al. (1995). In this case the pooled standard deviation can be found by the quick method of
Section 3.1 without computing the spatial correlation function.

6.3 Region size tests

Friston et al. (1994b) and Forman et al. (1995) have proposed a test for activation based
on region size above a fixed threshold, rather than peak height. It might at first seem that
this achieves the same goal as scale space searches, but in a much simpler way. This is not
strictly true. First of all, the region size is measuring the extent above a fixed threshold; the
extent estimated by scale space searches is the extent above a variable threshold set at half
the maximum height. The former will increase or decrease as the signal strength varies; the
latter remains fixed.
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Secondly, low but extensive signals might fall below a high threshold and never be de-
tected by a region size test, but a scale space search might detect such a signal at a large
FWHM. Conversely, sharp foci would give small region sizes above a low threshold and also
escape detection, whereas a scale space search might detect it at a small FWHM. In other
words, the sensitivity of the region size test depends on the level of the threshold. Friston
et al. (1994b) show more formally that the sensitivity of the region size test is best with a
low threshold for extensive signals, and with a high threshold for narrow signals. Thus the
threshold plays the same role for region size tests as the FWHM does for peak height tests.
In this paper we have proposed searching over FWHM; the analogous concept for region size
tests would be to search over thresholds. This could be a suitable topic for future work.

6.4 Conclusion

We have presented a method for scale space searches of PET data from a typical activation
study, and a rigorous method for correcting P -values to allow for this. We have demonstrated
the advantages to be gained from a scale space search: an increase in sensitivity at detecting
activation when the extent is unknown; and an estimate of the unknown extent. There is a
small price to pay for this: a loss in sensitivity when the extent is known and the FWHM
is chosen to match it; and blurring of small foci that are too close together, which can be
detected by examining scale space slices through the local maxima to look for evidence of
‘bifurcations’. These small costs seem to be offset by real gains in the practical application
to real PET data sets. For the application chosen here, a scale space search picked up the
same activations as a fixed 20mm FWHM search, but in addition it found some small foci
that were previously overlooked. In general, the benefits appear to outweigh the drawbacks.

We have also gone to some trouble to find efficient ways of smoothing the large amount
of data in a typical PET experiment. Reductions in calculations come from: smoothing only
the high resolution averaged ∆CBF image, not all the data; estimating the pooled standard
deviation from the correlation function (the most costly item to compute); only performing
a small number of smoothes on the log(FWHM) scale to give adequate, uniform coverage in
scale space; compressing the smoothes by increasing the voxel size (see Appendix A.1). This
makes scale space searches both feasible and attractive as an alternative to other methods.

A Appendix

A.1 Image compression

Although not implemented in this study due to software incompatibilities, considerable sav-
ings in time and storage space can be achieved by compressing the images as they are
smoothed. Without compression, direct kernel smoothing, as opposed to Fourier transform
methods of smoothing, takes longer as the kernel becomes wider. Fortunately the equal sam-
pling on a log(FWHM) scale combined with the convolution property (2.2) of the Gaussian
kernel can be used to actually reduce the time taken for direct kernel smoothing with wider
kernels, by compressing the data as it is smoothed.

We first note that as the FWHM increases, the voxel size can be proportionately increased
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to maintain the same FWHM per voxel. Thus the size of the image in voxels can be decreased
in proportion to 1/FWHM, while still maintaining the same resolution per voxel. The width
of the kernel, in voxels, needed to smooth from one fixel to the next is v

√
b2 − 1, where v is

the FWHM in voxels at the first fixel, and b is the ratio of FWHM’s between the two fixels.
What is noteworthy about this is that b and hence v remain constant when scale space is
sampled uniformly on the log(FWHM) scale. This implies that the FWHM of the smoothing
kernel (in voxels) also remains constant.

Thus the whole smoothing operation can be done sequentially by performing the same
operation of simultaneously smoothing and increasing the voxel size (or compressing the
image) on successive smoothes, starting with the highest resolution data. Because the images
are shrinking (in voxels) at each step the operations go faster. Moreover no matter how many
smoothes are performed, the total amount of storage is limited by the sum of a geometric
progression with ratio 1/bD. For the example in Section 5, this amounts to a maximum of
1/(1− 1/bD) ≈ 3 times as much storage as required for one image.

A.2 Smooths in 2-D and 1-D

If the whole process of smoothing and searching is restricted to 2-D slice data then the EC
densities are

ρ0(t) =
1

(2π)1/2
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Note that the above EC densities are not the same as (4.2); the reason is that for (A.1)
the smoothing filter is restricted to the slice, whereas for (4.2) the smoothing filter filters
data from outside the slice. For completeness, we give the EC densities for smoothing and
searching over 1-D data:
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Table 1: Significant peaks in the pain study

Scale space searches Fixed scale
location scale (original study)

Region x y z w M P M P
Increases:
R SII/anterior insula 35 -2 10 22.7 6.56 0.0000 5.65 0.0006
R SMA (Inferior) 4 -2 54 22.7 6.22 0.0001 5.00 0.014
R Thalamus 11 -19 -3 17.4 5.73 0.0012 5.36 0.0025
L Anterior insula -33 13 7 6.8 4.86 0.0824 3.72 1.96
R SI 24 -28 57 19.9 4.77 0.12 4.02 0.72
L Putamen -25 5 0 19.9 4.76 0.12 4.57 0.089
R Caudate -12 -2 15 6.8 4.73 0.14 - -
Decreases:
R Posterior cingulate 5 -59 25 15.2 4.86 0.082 5.14 0.0072
M Posterior cingulate 1 -42 30 11.6 4.54 0.31 - -

R = right, L = left, M = midline; stereotaxic coordinates are derived from
Tailarach and Tournoux (1988), and refer to medial-lateral position x (mm)
relative to mid-line (positive = right), anterior-posterior position y (mm) rel-
ative to the anterior commisure (positive = anterior), and superior-inferior
position z (mm) relative to the commisural line (positive = superior). w is the
FWHM (mm) of the filter. M is the peak height of local maxima, and P is its
P -value; those that are greater than 0.2 should be interpreted as the expected
number of false positive regions of activation. The last two columns are for
the equivalent peak in the original study, found at a fixed 20mm FWHM scale
in x and y, and no axial smoothing. A dash indicates that no matched peak
could be found.
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Figure 1. Model for the activation data.

Figure 1: Model for the activation data. A Gaussian signal is added to white noise, then
filtered by the point response function of the PET camera and further smoothed to improve
signal to noise ratio (here shown as one combined operation). Anatomical variability perturbs
the resulting individual images, which are then averaged over subjects to produce the final
∆CBF image.
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Figure 2. Signal to noise ratio (SNR)

Figure 2: The effect of filter width (a) and anatomical variability (b) on signal to noise ratio
(SNR).
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Figure 3e. Scale space, 26mm signal + 9mm signal
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Figure 3f. Scale space, two 9mm signals, 18mm apart
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Figure 3: (a) 1-D White noise, plus (b) a 15mm signal smoothed by a 6.8, 15 and 34mm
filter. All statistical fields are adjusted to have unit standard deviation. Note that the 15mm
filter best identifies the 15mm signal; (c) and (d) are the same as (a) and (b) but shown as
a 2-D location and scale statistical field with the centre of the 15mm signal marked; (e) the
same noise component as in (a), but with a 26mm and a 9mm signal far apart, and (f) two
9mm signals 18mm apart. Note how the two well separated signals are correctly identified,
but the two close signals are incorrectly identified as one wide signal.
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20 and 34mm FWHM.
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Figure 5. Correlation function

Figure 5: Correlation function for the null data set in the x, z, xy and y directions, re-
spectively (solid lines). Also shown are the Gaussian correlation functions chosen to have
the same effective FWHM (dotted lines). The fit appears to be reasonable in the y and z
directions but not in the x direction, where large negative side lobes are evident.
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Figure 6a. Pooled s.d.
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Figure 6b. Pooled s.d.
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Figure 6c. Effective FWHM
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Figure 6d. Effective FWHM
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Figure 6: Validation of the pooled standard deviation (a,b) and effective FWHM (c,d)
calculated by smoothing all the data (dashed line); assuming a Gaussian correlation function
(dotted line); and using the sample correlation function of Figure 5 (solid line). The Gaussian
assumption overestimates the pooled standard deviation, but the sample correlation estimate
is quite accurate. The same applies to the effective FWHM, but the Gaussian assumption
is reasonably accurate in this case.
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Figure 7. Scale space slices

Figure 7: Scale space slices of the pain data through the 4-D maximum at x = 35, y = −2,
z = 10, w = 22.7mm. Lines through the maximum are marked on each slice. Images are
masked by thresholding the average MRI image. The bifurcation in the yw slice suggests
that the peak splits into two smaller foci, separated by 2cm, at a lower scale.


