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Abstract Site-specific and accurate prediction of daily mini-
mum air and grass temperatures, made available online several
hours before their occurrence, would be of significant benefit
to several economic sectors and for planning human activities.
Site-specific and reasonably accurate nowcasts of daily mini-
mum temperature several hours before its occurrence, using
measured sub-hourly temperatures hours earlier in the morn-
ing as model inputs, was investigated. Various temperature
models were tested for their ability to accurately nowcast daily
minimum temperatures 2 or 4 h before sunrise. Temperature
datasets used for the model nowcasts included sub-hourly
grass and grass-surface (infrared) temperatures from one loca-
tion in South Africa and air temperature from four subtropical
sites varying in altitude (USA and South Africa) and from one
site in central sub-Saharan Africa. Nowcast models used
employed either exponential or square root functions to de-
scribe the rate of nighttime temperature decrease but inverted
so as to determine the minimum temperature. The models
were also applied in near real-time using an open web-based
system to display the nowcasts. Extrapolation algorithms for
the site-specific nowcasts were also implemented in a
datalogger in an innovative and mathematically consistent
manner. Comparison of model 1 (exponential) nowcasts vs
measured daily minima air temperatures yielded root mean
square errors (RMSEs) <1 °C for the 2-h ahead nowcasts.

Model 2 (also exponential), for which a constant model coef-
ficient (b=2.2) was used, was usually slightly less accurate but
still with RMSEs <1 °C. Use of model 3 (square root) yielded
increased RMSEs for the 2-h ahead comparisons between
nowcasted and measured daily minima air temperature, in-
creasing to 1.4 °C for some sites. For all sites for all models,
the comparisons for the 4-h ahead air temperature nowcasts
generally yielded increased RMSEs, <2.1 °C. Comparisons
for all model nowcasts of the daily grass and grass-surface
minima yielded increased RMSEs compared to those for air
temperature at 2 m. The sufficiently small RMSEs using the
2-h ahead nowcasts of the air temperature minimum, for the
exponential model, demonstrate that the methodology used
may be applied operationally but with increased errors for
grass minimum temperature and the 4-h nowcasts.

Keywords Diurnal temperature modelling . Earlywarning of
minimum temperature . Frost . Sub-hourly temperatures .

Surface temperature

Introduction

While national weather services may forecast daily minimum
temperature several days in advance, the predictions are usu-
ally not sufficiently site specific and do not take vegetation
effects, for example, into account (Wu et al. 2011). Routine,
timely, reasonably accurate and site-specific nowcast of tem-
perature conditions several hours before the daily minimum
temperature, particularly on a frost morning for example, is
investigated. Technological advances over several decades
now allow sub-hourly temperature measurements, on-board
datalogger computation and data telecommunication capabil-
ity and therefore allow opportunities for nowcasting. Early
nowcasting and early warning of daily minimum air
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temperature would be of great economic and operational ben-
efit, for example, to animal and crop production, as well as to
manufacturing enterprises and the lay public for planning of
their human activities. City, district, or regional weather pre-
dictions are often not sufficiently accurate in nowcasting near-
surface daily minimum temperatures and cannot be used with
confidence for specific sites with different topography, alti-
tude, soil-surface cover, etc.

The terminology in relation to the subdivision of very
short-range weather forecasts into weather nowcasting and
nearcasting is not consistent. Glickman (2000) refers to
nowcasting as a short-term weather forecast, generally for
the next few hours, also stating that the US National Weather
Service specifies <3 h, but that up to 6 h has also been used.
Garcia et al. (2010, Fig. 7.3) state a time period of <104 s—or
just <3 h—with Das et al. (2010, Table 5.1) stating <2 h. For
the purposes of this work, the term nowcasting will imply time
periods <4 h. However, the time period for data used for
nowcasting estimations was 6 h ahead of current time. This
investigation, similar to complex event processing (CEP) used
for the observation and management of business processes
(Janiesch et al. 2012), proposes a dynamic measurement, open
web-based early nowcasting and control system based on sub-
hourly and site-specific temperature measurements several
hours before sunrise.

Research in this area of study is partly justified by the
comment of Garcia et al. (2010): “Frost damage is the leading
weather hazard, on a planetary scale, as far as agricultural and
forest economic losses are concerned”, and the work of Lee
et al. (2014) on the short-term effect of temperature on daily
emergency visits for acute myocardial infarction.

Nowcasting of the minima air, grass, or grass-surface tem-
perature is essential if the impacts of frost, for example, are to be
minimised and if active methods (Snyder and de Melo-Abreu
2005) such as the use of heaters, wind machines, or sprinkler
irrigation for combatting frost are to be effective. Air tempera-
ture measurements are normally at heights of between 1.25 and
2 m, in a Stevenson screen or in a Gill radiation shield. Grass
minimum temperature is measured using an unshielded ther-
mometer, suspended just above short grass, according to the
specifications provided by the World Meteorological Organisa-
tion (2008). An important indicator of frost occurrence at a
remote/unattended site is the air, grass, or grass-surface temper-
atures. The rate of temperature reduction during the nighttime is
influenced by, amongst other factors, wind speed, atmospheric
water vapour pressure, atmospheric stability, precipitation, sky
temperature and cloud type and amount (Savage 2012). During
nighttime stable conditions, greatest temperature decreases oc-
cur under calm, dry and cloud-free conditions.

The models proposed for site-specific nowcasting of min-
imum air, grass and grass-surface temperatures are based on
the assumption that 2–4 h is a sufficient notice period for
activemethods for combatting frost, such as sprinkler irrigation,

heaters, fans and others, to be in place or for animals to be
relocated to protected environments or for planning methods/
protocols to be implemented by manufacturing enterprises and
lay public. Various models have been used to determine the
diurnal variation in temperature (air and soil) given measured
daily maximum (Tx) and minimum (Tn) temperatures, day of
year, time of day and site information (Groen 1947). For exam-
ple, Johnson and Fitzpatrick (1977) proposed, for cloudless
days and the absence of frontal weather systems, a method for
estimating the diurnal temperatures during daylight hours based
on measurements of Tx and Tn. Based on Tx and Tn, day of
year/time of day, site information and three empirical
constants, Parton and Logan (1981) used a sine-exponential
model for estimating the diurnal variation in air and soil tem-
peratures—sinusoidal from sunrise to sunset and exponential
from sunset to the next sunrise. This model is physically plau-
sible with the daytime sinusoidal component reproducing the
temporal influence of solar irradiance and the exponential com-
ponent reproducing Newton’s law of cooling for a heated sur-
face after sunset and before sunrise the following day. Wann
et al. (1985) compared a number of models and concluded that
the sine-exponential model gave the best accuracy for estimat-
ing hourly temperatures using daily maxima and minima as
data inputs. Snyder and de Melo-Abreu (2005) described the
use of a square root model similar to that of Pelosi (1986)
applied to hourly measurements—the Reuter algorithm—to
predict the minimum air temperature using measurements from
2 h after sunset to sunrise the next morning.

Application of nighttime exponential and square root
models, inverted in near real-time, were investigated so as to
allow timely and accurate nowcasts of the minimum air tem-
perature based on sub-hourly air temperature measurements
and, therefore, the rate of temperature decrease, several hours
before sunrise. The models were also applied to grass temper-
ature and grass-surface temperature, the latter measured using
an infrared thermometer at a weather station. The relative accu-
racy of the four models tested was investigated using historic
temperature data (sub-hourly) at differing frequencies from se-
lected sites at different altitudes. Furthermore, the implementa-
tion of a web-based system for display of the nowcasted tem-
peratures in near real-time for one site is described.

In contrast to canopy climate models, such as SimSphere
(Aberystwyth University 2014) for example, the method used
depends on a strongly reduced set of input data. The data,
composed exclusively of near real-time temperature measure-
ments, makes the computation relocatable to the local scope
(Russo and Coluccelli 2006).

Theory

During stable nighttime conditions, in the absence of a frontal
weather system and with cool, calm, cloud- and mist-free
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conditions, air temperature decreases continually reaching a
minimum at around sunrise. For such conditions, Parton and
Logan (1981) used a three-parameter model assuming that the
air temperature T(t) (°C) at any time t (h) during the daytime
can be determined from measurements of the daily maximum
Tx (°C) and minimum Tn (°C) temperatures with nighttime
temperatures determined using:

T tð Þ ¼ T n þ T ss−Tnð Þ exp −b t−tssð Þ
24−D

� �
ð1Þ

for time t before midnight where Tss (°C) is the air temperature
at sunset, denoted time tss (h), b=2.2 is an empirically deter-
mined constant for air temperature measured about 1.5 m
above ground, D (h) the day length for the site for the current
day and 24−D the night length. For times t after midnight, the
period since sunset, t−tss, is replaced by t+24−tss. In Eq. (1),
for the case of air temperature, the time lag between the min-
imum air temperature and that at sunrise has been ignored.
Parton and Logan (1981) found this lag to be −0.17 h for air
temperatures at a height of 1.5 m and −0.18 h at 0.1 m—that
is, the minimum air temperatures occurred about 10 min be-
fore sunrise. Their sensitivity analysis showed that changes to
this lag time resulted in only small increases in the air temper-
ature estimation error. They further assumed that the daytime
variation in air temperature is described by a truncated sine
function:

T tð Þ ¼ T n þ Tx−Tnð Þ sin π t−tsrð Þ
Dþ 2a

� �
ð2Þ

where tsr is the sunrise time, and the time offset a (h), which
has an approximate value of 1.86 h, is an empirically deter-
mined constant. The sunset temperature Tss in Eq. (1) is esti-
mated from Tn, Tx, D and a using Eq. (2):

T ss ¼ T n þ Tx−Tnð Þ sin π D

Dþ 2a

� �
: ð3Þ

For the square root model for nighttime air temperatures 2 h
after sunset:

T tð Þ ¼ T tssþ2ð Þ−c ffiffiffiffiffiffiffiffiffiffiffiffiffi
t−tssþ2

p ð4Þ
for t before midnight where T(tss+2) is the measured air tem-
perature at tss+2, 2 h after sunset, c (°C h-0.5) is an empirically
determined constant and t−tss+2 is the duration between t and
2 h after sunset. In Eqs. (1) and (4), for times after midnight, t
−tss+2 is replaced by t+24−tss+2. By rearrangement of Eq. (4),
the constant c for the period between tss+2 and tsr may be
determined from the (predicted) nowcasted air temperature
minimum (Tpn) and the measured air temperature T(tss+2):

c ¼ Tpn−T tssþ2ð Þ� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsr þ 24−tssþ2

p
ð5Þ

where, for times tss+2 before midnight, tsr+24− tss+2 is the
period 2 h after sunset and before sunrise. The method is
restricted to the period between 2 h after sunset tss+2 and
sunrise tsr since the net irradiance is relatively constant be-
tween these two times (Snyder and de Melo-Abreu 2005).

Four nowcasting models were tested for estimating the
minimum air/grass/grass-surface temperature, 2 and 4 h be-
fore sunrise, based on sub-hourly temperature measurements
between 4 and 2 h before sunrise for the 2-h nowcast and
between 6 and 4 h before sunrise for the 4-h nowcast:

Model 1: by inverting the exponential decay function (Eq. (1))
to solve for Tn
Model 2: by application of model 1 using b=2.2
Model 3: by application of the square root function based on
temperature measurements 4 h before sunrise (Eq. 4)
Model 4: by application of model 3 based on temperature
measurements 2 h before sunrise.

These methods, applied in real-time either in a datalogger
or in near real-time using a web-based system, may allow
timely nowcasting of the minimum temperature based on
sub-hourly temperature measurements. For this purpose, the
nighttime exponential equation (Eq. (1)) was inverted and
solved for Tn so as to nowcast the minimum temperature Tpn:

Tpn ¼ T tð Þ−T ss exp
−b t−tssð Þ
24−D

� �	 
.
1−exp

−b t−tssð Þ
24−D

� �	 


ð6Þ
given, as an input, the measurement of temperature at time t,
T(t), after midnight where:

b ¼ −
24−D
t−tss

� �
ln

T tð Þ−T n

T ss−Tn

� �
: ð7Þ

For sub-hourly diurnal temperature data, which include
the minimum air temperature, regressing ln [T(t)−Tn] as a
function of (t−tss)/(24−D) was assumed to yield a straight
line with a slope of −b. For nowcasting, the empirical
constant b may be determined, during several calm and
cloud-free nights, several days preceding the calculation
of Tpn. Clouds and/or mist or rainfall and/or increased
wind speed a few hours before sunrise could reverse or
hinder the nighttime rate of air temperature decrease. A
reversal of the expected temperature decrease for some
of the time during the night could result in b<0 and
possibly an unreliable nowcast. Conversely, for the as-
sumed b value, more rapid than expected temperature de-
creases could result in Tpn greater than Tn. Changes in
atmospheric conditions from one night to another could
also result in different b values and therefore reduce the
accuracy of the method.
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In this study, the inversion of the exponential and the
square root models, applied to the expected nighttime de-
crease in temperature (Eqs. (1) and (4)), is investigated. It is
proposed that the methods be used to routinely nowcast the
minimum temperature, given real-time measurement inputs of
air/grass/grass-surface temperature 6 to 4 h (4-h nowcast) and
4 to 2 h (2-h nowcast) prior to the occurrence of the minimum
temperature.

Generalising the nighttime exponential model (Eqs. (1) and
(6)) to two measured temperatures T(t1) and T(t2) instead of
T(t) and Tss, where T(t2) is a measured temperature at a later
time t2 than temperature T(t1), with the two times several
hours apart:

Tpn ¼ T t2ð Þ−T t1ð Þ exp −b t2−t1ð Þ
tsr−t1

� �	 
.
1−exp

−b t2−t1ð Þ
tsr−t1

� �	 

ð8Þ

if times t1 and t2 are both before midnight or both after mid-
night. If t1 is before midnight and t2 after midnight, then

Tpn ¼ T t2ð Þ−T t1ð Þ exp −b t2 þ 24−t1ð Þ
tsr þ 24−t1

� �	 
.
1−exp

−b t2 þ 24−t1ð Þ
tsr þ 24−t1

� �	 

:

ð9Þ

The following four models are proposed for determining
Tpn, 2 or 4 h before sunrise, from pre-dawn sub-hourly tem-
perature measurements.

Model 1: inversion of exponential model using
regression-determined b

This proposed method yields two model nowcasts using
sub-hourly temperature measurement inputs between 6 and
4 h before sunrise for the first (4-h) nowcast and measure-
ments 4 to 2 h before sunrise for the second (2-h) to deter-
mine the assumed exponential decrease in air temperature
and hence to determine the exponential decay factor b. This
factor together with the measured temperature inputs hours
before sunrise are then used to obtain Tpn 4 and 2 h before
sunrise. Modelled on the previous theory for a nighttime
period (Eq. (8)) usually after midnight, for the 2-h-ahead
nowcast, the sub-hourly temperature inputs T(tsr−4) and
T(tsr−2) are used. At and between these times t, for which
tsr−4 ≤ t ≤ tsr−2, the decay factor (b=bsr−4to−2) was deter-
mined from the slope of the plot of ln [T(t)−min (Tsr−4to−2)+
0.01] vs t−tsr−4

tsr−2−tsr−4 where min(Tsr−4to−2) represents the minimum

of the temperatures between the two times and tsr−2−tsr−4=
2 h. The constant of 0.01 °C ensures that the argument of
the logarithm is always positive and hence defined when
T(t)=min(Tsr−4to−2). Using this model, unlike the Parton
and Logan (1981) method, a different b=bsr−4to−2 value
from b=2.2 is determined for each early-morning period.
Similar procedures were used for the 4-h ahead nowcasts
using temperatures between times tsr−6 and tsr−4 and the

decay factor b=bsr−6to−4 from the slope of the plot of
ln [T(t)−min (Tsr−6to−4)+0.01] vs

t−tsr−6
tsr−4−tsr−6.

By inversion of Eq. 1 (Eqs. (8) or (9)), and application to
the period 4 to 2 h before sunrise for a nowcast 2 h before
sunrise, Tpn was determined assuming a continued and expo-
nential decay after tsr−2, at the same exponential rate:

Tpn ¼ T tsr−2ð Þ−T tsr−4ð Þ exp −bsr−4to−2 tsr−2−tsr−4ð Þ
tsr−tsr−4

� �	 


.
1−exp

−bsr−4to−2 tsr−2−tsr−4ð Þ
tsr−tsr−4

� �	 

ð10Þ

which for this 2-h nowcast simplifies to:

Tpn ¼ T tsr−2ð Þ−T tsr−4ð Þ exp −bsr−4to−2
.
2

� �h i
.

1−exp −bsr−4to−2
.
2

� �h i
:

ð11Þ

For a nowcast 4 h before sunrise:

Tpn ¼ T tsr−4ð Þ−T tsr−6ð Þ exp −bsr−6to−4
.
3

� �h i
.

1−exp −bsr−6to−4
.
3

� �h i
:

ð12Þ

The equations and methods used for historic data or for an
on-board datalogger 2-h before sunrise nowcast are shown in
Table 1 and similarly using Eq. (12) applied for the minimum
between 6 and 4 h before sunrise for the 4-h before sunrise
nowcast. For the 2-h nowcast for times when the calculated b
value was out of its expected range, typically |b|<1, then
Eq. (11) was applied using bsr−4to−2=2.2 and T(tsr−2) replaced
by the minimum temperature between 4 and 2 h before sun-
rise. A similar procedure was followed for the 4-h nowcast
using Eq. (12) and bsr−6to−4=2.2.

Model 2 application of exponential model with b=2.2

This proposed model, instead of the value for b (=bsr−4to−2
for the 2-h nowcast and b=bsr−6to−4 for the 4-h nowcast)
determined by regression (Table 1), uses a fixed value of 2.2
(Parton and Logan 1981) in Eqs. (11) and (12), respectively. In
the case of real-time analyses, this model is simple since no
on-board datalogger real-time regression analysis is required.
Model 2 is also used as part of model 1 when |b|<1.

Model 3: application of square root model using Tsr−4

For this model, Tpn is determined for times 4 and 2 h before
sunrise based on the square root model (Eq. 4) using the rela-
tionship:

T tð Þ ¼ T ttsr−4ð Þ−csr−4to−2
ffiffiffiffiffiffiffiffiffiffiffiffi
t−tsr−4

p
: ð13Þ
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Therefore, using temperature measurements between 4 and
2 h before sunrise, a plot of T(t)−T(tsr−4) vs

ffiffiffiffiffiffiffiffiffiffiffiffi
t−tsr−4

p
yields a

slope of −csr−4to−2 from which Tpn is determined using:

Tpn ¼ T tsr−4ð Þ−csr−4to−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsr−tsr−4

p ð14Þ

which simplifies to

Tpn ¼ T tsr−4ð Þ−2 csr−4to−2 ð15Þ

where it is assumed that the same csr−4to−2 can also be used for
times 2 h before sunrise and sunrise. A modified version of
Eq. (15) was used for the 4-h before sunrise nowcasts based on
csr−6to−4 and temperature measurements between times 6 and
4 h before sunrise.

Model 4: application of modified square root model,
using Tsr−2

This model is the same as model 3 for determining Tpn for
times t between 4 and 2 h before sunrise but with T(tsr−2)
replacing T(tsr−4):

Tpn ¼ T tsr−2ð Þ−csr−4to−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsr−tsr−2

p
: ð16Þ

This simplifies to

Tpn ¼ T tsr−2ð Þ−
ffiffiffi
2

p
csr−4to−2 ð17Þ

where it is assumed that the same csr−4to−2 can be used for
times between 2 h before sunrise and sunrise. As was the case
for model 3 (square root), a modified version of Eq. (17) was
used for the 4-h before sunrise nowcasts.

The various equations and datalogger protocols used in the
datalogger for the web-based early-warning system used are
outlined in Table 1. These protocols were also used for the
spreadsheet calculations for the historic air temperature data
for all sites.

All model nowcasts, a few hours before sunrise, are com-
promised by events such as transient clouds, increased wind
speed, changes in atmospheric stability and precipitation with
consequential likely disagreement between model nowcasts
and measurements. Usually, in the case of frost, however,
these events tend to reduce the chance of freezing conditions.

Materials and methods

This work involves an agrometeorological application of a
web-based data and information system (Savage 2014;
Savage et al. 2014) and the nowcasting of daily minima tem-
peratures, for frost prediction for example, using various
models for a short-grass surface with the results displayed
and updated automatically in near real time. Methods were
applied to near real-time temperature measurements fromT
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Pietermaritzburg (South Africa) and to historic data
from three other subtropical sites and data from one site
in central sub-Saharan Africa (Table 2, column 1). Sub-
hourly temperature data, predominantly air temperature
from the five sites varying in altitude from 30 to nearly
2000 m, were used. The relevant details of the various
weather station systems, sensors, datalogging and tele-
communication equipment and data used are shown in
Table 2 (columns 2 and 3). For Pietermaritzburg, air
temperature and relative humidity at 2 m were measured
in a naturally ventilated six-plate Gill radiation shield.
For this site, which included grass-minimum and grass-
surface temperatures, data for 2011 and 2012 were used.
The data for part of 2011 were used for model
development with 2012 data used for testing goodness
of model fit. Grass temperature for this site was
measured in accordance with the World Meteorological
Organization (2008) guidelines for sensor exposure. A
25-mm length of chromel-constantan thermocouple wire
was freely exposed 25–50 mm above the soil surface so
as to be in contact with blades of grass. Grass-canopy
surface temperature was measured using an 8–14-μm
germanium lens infrared thermometer (IRT) positioned
at 45° to the horizontal, facing south and at a height

of 2.5 m, sensing a grass target diameter of 1.9 m. The
thermocouple for grass temperature was calibrated, in a
water bath, against a reference PT1000 resistance thermom-
eter (data not shown) and the IRT calibrated using a large
radiator (Savage and Heilman 2009). No corrections for the
thermocouple temperatures were applied. Corrections were
applied for surface temperatures based on the IRT voltage
output and the sensor body temperature. For these grass-
surface temperatures at a weather station, the grass fully
covered the soil. All temperature measurements were per-
formed differentially every 15 s and averaged every 2 min.
This allowed a sufficiently large sample number (60) of
data pairs for the linear regression statistics for the 2- and
4-h before sunrise nowcasts (Table 1).

The calculations for daylength and sunrise time, required
for all four models, were included in the datalogger program
using VBA functions provided by the National Oceanic and
Atmospheric Administration: http://www.srrb.noaa.gov/
highlights/sunrise/calcdetails.html

The applicability of both the nighttime exponential and
square root models was investigated, the former model
inverted so as to nowcast the minimum temperature from in-
puts of sub-hourly temperature measurements several hours
before sunrise.

Table 2 Location, datalogging, sensor and data details

Station details Field-station sensor details Data

Pietermaritzburg, mast 1, South Africa
(altitude, 684 m; latitude, 29.628° S;
longitude, 30.403° E)

CR1000a datalogger and AM32Aa multiplexer.
IRTb at 2.6 m; unshielded chromel-constantan
thermocouple (24–gauge) for grass temperature
at 25 to 50 mm above soil surface; CS500a in 6-
plate Gill shield

Datalogger-attached RF416a broad-spectrum radio,
panel antenna in line-of-sight with base station

Field station antenna connected to an arrestor, in
turn connected to radio. The datalogger was earthed.
A RF416 radio connected to an 8-m antennae and
surge-protector. Base station software included
LoggerNeta for data downloads

2-min surface, grass and air temperature
measurements, the latter at 2 m, for
21st April to 18th August 2011

Marianna, Tower 130, Jackson County, FL,
USA (altitude, 35 m; latitude, 30.850° N;
longitude, 85.165° W)

CS107a air temperature sensor in 12-plate Gill shield
at 0.6-m height; CS215a air temperature and RH
instrument in 12-plate Gill shield at 2 m

CR10Xa datalogger with attached RF401a radio
and cell modem

15-min air temperature measurements for
2004 for 0.6- and 2-m heights

Cedara, South Africa (altitude, 1076 m;
latitude, 29.5333° S; longitude, 30.2833° E)

TR1c air temperature and relative humidity sensor
EToa datalogger station

15-min air temperature measurements for
1st January 2005 to 17th April 2006
for 2-m height

Cathedral Peak, South Africa (altitude,
1935 m; latitude, 29.4833° S; longitude,
30.5° E)

Unshielded 75-μm chromel-constantan thermocouples
and 21Xa datalogger

20-min air temperature measurements for
1992 for 0.5- and 1.5-m heights

Kinsevere, DRC, central sub-Saharan Africa
(altitude, 1243 m; latitude, 11.36433° S;
longitude, 27.5646° E)

CR1000a datalogger with HMP50a in 6-plate Gill shield 1-min air temperature measurements for
2014 (10 Jan to 19 Aug inclusive) for
2-m height

a Campbell Scientific Inc., Logan, UT, USA
bApogee IRT model IRR-P (half angle of 22°): Apogee Instruments Inc., Logan, UT, USA
cAdcon Telemetry GmbH, Inkustrassse 24, A-3400 Klosterneuburg, Austria
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Table 3 Model statistics for comparisons of Tn with Tpn, the latter 2 h
before sunrise: Pietermaritzburg 2-min air (2 m), grass (25–50 mm) and
surface temperature minimum temperature determinations for the 2011
data set, (the most accurate determinations—usually for model 1—are in
italics), Marianna 15-min air (0.6 and 2 m) temperature minimum

temperature nowcasts for the 2004 data set, Cedara 15-min air (2 m)
temperature for the 2005–2006 data set (1st January 2005 to 17th April
2006), Cathedral Peak 20-min air (0.5 and 1.5 m) temperature for the
1992 data set and Kinsevere, DRC 1-min air temperature (2 m) for the
2014 data set

Measurement Model Slope Intercept (°C) R2 RMSE (°C) MBE (°C) n† b or c†† f†††

Pietermaritzburg, 2011

Air temperature (2 m) 1 1.018 0.352d 0.961 0.870 0.484 158 2.131 26

2 1.013 0.353cd 0.963 0.841 0.369 158 2.2

3 0.930ab 2.426cd 0.891 1.374 1.920 159 0.908 23

4 0.994 1.084cd 0.957 0.884 1.080 159 0.908

Grass temperature (25–50 mm) 1 1.020 0.203 0.937 1.349 0.297 160 1.470 29

2 0.998 0.440cd 0.939 1.298 0.438 160 2.2

3 0.934b 2.584cd 0.870 1.851 2.280 158 1.208 27

4 0.979 1.336cd 0.940 1.268 1.324 158 1.208

Grass-surface temperature 1 1.014 0.237 0.939 1.329 0.289 158 1.600 26

2 1.009 0.283d 0.932 1.398 0.291 158 2.2

3 0.990 2.150cd 0.859 2.056 2.111 159 1.160 29

4 1.005 1.090cd 0.937 1.337 1.093 159 1.160

Marianna, Jackson County, 2004

Air temperature (0.6 m) 1 0.991b 0.344cd 0.994 0.621 0.222 351 2.591 21

2 0.995 0.174d 0.993 0.650 0.164 361 2.2

3 1.000 −0.161 0.990 0.785 −0.158 351 0.395 19

4 0.996 0.074 0.992 0.691 0.074 360 0.395

Air temperature (2 m) 1 0.992 0.367cd 0.994 0.620 0.252 361 2.681 19

2 0.996 0.167d 0.993 0.643 0.160 361 2.2

3 1.003 −0.173d 0.990 0.773 −0.156 360 0.401 22

4 0.997 0.066 0.992 0.686 0.066 360 0.401

Cedara, 2005–2006

Air temperature (2 m) 1 0.988 0.529cd 0.973 0.710 0.388 465 2.172 38

2 0.989 0.441cd 0.970 0.753 0.432 465 2.2

3 0.989 0.317cd 0.961 0.857 0.190 464 0.432 34

4 0.987 0.501cd 0.969 0.758 0.499 464 0.432

Cathedral Peak, 2002

Air temperature (0.5 m) 1 1.008 0.293cd 0.960 0.957 0.358 351 2.318 35

2 1.019 0.107 0.959 0.987 0.038 358 2.2

3 1.014 −0.022 0.938 1.217 0.163 350 0.539 34

4 1.018 0.071 0.962 0.950 0.060 357 0.539

Air temperature (1.5 m) 1 0.998 0.388cd 0.964 0.910 0.373 358 2.316 33

2 1.010 0.191 0.962 0.950 −0.111 358 2.2

3 1.012 0.014 0.941 1.198 0.115 357 0.526 34

4 1.005 0.273cd 0.954 1.038 0.273 357 0.526

Kinsevere, Katanga province, DRC 2014

Air temperature (2 m) 1 0.966b 0.600cd 0.956 0.825 0.126 188 1.792 14

2 0.971b 0.571cd 0.962 0.770 0.167 188 2.2

3 1.001 −0.134d 0.929 1.098 −0.123 188 0.594 11

4 0.960b 0.730 0.950 0.883 0.724 188 0.594

Model 1: application of exponential model; model 2: inversion of exponential model to sunrise; model 3: application of square root model. a and/or b
denotes significant difference from a slope of 1 at 99 and 95% levels respectively; c and/or d denotes significant difference from an intercept of 0 °C at 99
and 95 % levels respectively
† n is the number of data pairs. Days for the Tn, Tpn regression comparisons
†† b (exponential model) or c (square root model) refers to an average value. Alternatively, a fixed value of b=2.2 was used
††† f is the percentage of values replaced using the conditional statements of Table 1

Int J Biometeorol (2016) 60:183–194 189



Use of hourly temperature data, for which only two tem-
peratures would be available 2 h before sunrise, would not
allow the necessary slope calculations using the exponential
and square root models and would result in a two-point model.
Hence, more frequent data collection was used. For the
nowcasts for the Pietermaritzburg site, once the temperatures
for the period 4 to 2 h before sunrise had been stored, they
were recalled from datalogger memory, reformulated as nec-
essary for the exponential and square root models for
linearisation of the model relationships and then a covariance
instruction, part of the datalogger instruction set, applied to
obtain the slope values for the 2-h nowcasts (bsr−4to−2 and
csr−4to−2 for the respective models) from covariance and pop-
ulation variance instructions (Table 1). These instructions
allowed Tpn to be determined 2 and 4 h before sunrise.

All historic datasets used contained sub-hourly air temper-
atures (Table 2). The four models (Table 1) were applied using
15-min air temperature measurements for 2004 for 0.6- and 2-
m heights for Marianna, Jackson County, FL, USA (Table 2).
For this dataset (ftp://if-fwn-prdw01.osg.ufl.edu/fawnpub/
data/15_minute_obs/), model nowcasts were made 2 h
before sunrise using air temperature measurements 4 to 2 h
before sunrise as well as nowcasts 4 h before sunrise using
measurements 6 to 4 h before sunrise. For Cedara and
Cathedral Peak, Catchment VI (South Africa), 15- and 20-
min air temperature data were used, respectively. In the case
of Cathedral Peak, air temperature measurements at 0.5- and
1.5-m heights were used (Table 2). All datasets were from
sites in the subtropics except for data from Kinsevere in cen-
tral sub-Saharan Africa (Katanga province of the Democratic
Republic of the Congo at almost 11° S) (Table 2).

In the case of model 1, in an attempt to trap events for which
the nighttime temperature increases due to clouds or other me-
teorological influences, conditions were imposed based on a
calculated slope value b or that the temperature at tsr−2 exceeds
that at tsr−4. For this model, nowcasts with a |b| value <1 result-
ed in large deviations between Tpn and Tn. For |b|<1, Tpn
for the 2-h nowcast was estimated using Eq. (11) using b=2.2
and T(tsr−2)=min(Tsr−4to−2). The latter ensured that the lowest
measured temperature for this time period was used in the
computation. If temperatures were increasing during the night
with the result that T(tsr−2)>T(tsr−4) or the computed b was
negative, Tpn was assigned the minimum temperature between
the two times, or else Eq. (11) was applied using the computed
bsr−4to−2. The conditions for trapping data for which there
were nighttime increases in temperature for model 2 for which
b=2.2 and for the 4-h nowcasts (Eq. (12)) were similar to
those for model 1 (Table 1, column 3).

In the case of Pietermaritzburg, for nowcasting the mini-
mum temperatures (air, grass and grass-surface), email alerts
were used and near real-time data displayed, Tpn in particular,
on the Internet using an open web-based data and information
system described by Savage (2014) and Savage et al. (2014).

Comparisons between the four model determinations of the
nowcasted daily minimum air temperature Tpn for the five
sites were compared against the actual daily air temperature
minimum Tn using statistical analyses and regression scatter
plots. Confidence intervals (99 and 95 %) for slopes and in-
tercepts were determined to test for significant differences
from 1 to 0 °C respectively.

Results and discussion

Pietermaritzburg 2-min measurements of air, grass
and grass-surface temperature

Judging by the increased rootmean square error (RMSE), theTpn
(nowcasted) vs Tn (measured) 2-m air temperature comparisons
for the nowcasts 2 h before sunrise were less variable than for the
grass and grass-surface (IRT) temperatures (Table 3, see
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Fig. 1 Regression plots for the experimental exponential model 1 for the
2-h-ahead nowcasted for Pietermaritzburg data: a for model-nowcasted
minimum air temperature (Tpn) vs measured minimum air temperature
(Tn), b for model-nowcasted Tpn (grass) vs Tn (grass) and c for model-
nowcasted Tpn (IRT) vs Tn (IRT). The regression line (thick black) and 1:1
lines (thinner grey) are shown
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Pietermaritzburg, 2011; Fig. 1a compared to b and c). Model 1
(exponential, Eq. (11)) 2-h nowcast comparisons (Tpn) against
measurements (Tn) yielded RMSE values of 0.870, 1.349 and
1.329 °C for air, grass and grass-surface temperatures, respec-
tively, and a mean bias error (MBE) of <0.5 °C (Table 3, see

Pietermaritzburg, 2011). For the 2- and 4-h nowcasts before sun-
rise, the differences between the air, grass and grass-surface tem-
perature regression slopes and intercepts from 1 to 0 °C respec-
tively for models 1 and 2 were small (Tables 3 (see Pietermaritz-
burg, 2011) and 4 (see Pietermaritzburg, 2011)). Model 3 and 4

Table 4 Model statistics for 4-h nowcasts: Pietermaritzburg, Marianna, Cedara, Cathedral Peak and Kinsevere, DRC. The most accurate model
determinations are italicised. Model 1 was usually most suitable in all cases, except for Kinsevere

Measurement Model Slope Intercept (°C) R2 RMSE (°C) MBE (°C) n b or c f

Pietermaritzburg, 2011

Air temperature (2 m) 1 1.014 0.630cd 0.891 1.466 0.729 165 1.908 24

2 1.062 0.701cd 0.890 1.463 0.708 165 2.2

3 1.015 0.152 0.867 1.653 0.261 157 1.024 22

4 0.978 0.880cd 0.896 1.391 0.866 157 1.024

Grass temperature (25–50 mm) 1 1.014 0.311cd 0.882 1.861 0.374 163 1.491 26

2 0.902 0.448cd 0.862 1.807 0.365 163 2.2

3 1.012 0.014 0.709 3.214 0.067 159 1.443 24

4 0.998 0.632d 0.800 2.477 0.630 159 1.443

Grass-surface temperature 1 1.038 0.168cd 0.861 1.970 0.258 145 1.610 29

2 1.033 0.205cd 0.837 2.158 0.234 145 2.2

3 1.058 −0.315 0.756 3.045 −0.101 157 1.348 26

4 1.042 0.342 0.831 2.381 0.373 157 1.348

Marianna, Jackson County, 2004

Air temperature (0. 6 m) 1 0.991 0.595cd 0.989 0.838 0.474 351 2.723 18

2 1.007 0.047 0.989 0.881 0.061 360 2.2

3 1.004 0.151 0.988 0.883 0.209 352 0.490 17

4 1.006 −0.181 0.985 0.972 −0.179 352 0.490

Air temperature (2 m) 1 0.991 0.639cd 0.988 0.842 0.543 361 2.391 17

2 1.005 0.088cd 0.988 0.878 0.091 361 2.2

3 1.004 0.132 0.989 0.796 0.196 352 0.509 17

4 0.996 0.510cd 0.989 0.819 0.509 352 0.509

Cedara, 2005–2006

Air temperature (2 m) 1 1.007 0.503cd 0.945 1.036 0.583 471 2.185 33

2 1.020 0.217cd 0.936 1.140 0.239 471 2.2

3 1.018 0.402cd 0.937 1.130 0.608 464 3 20

4 1.006 0.711cd 0.944 1.048 0.712 464 4

Cathedral Peak, 2002

Air temperature (0.5 m) 1 0.993 0.522cd 0.926 1.308 0.472 351 2.396 29

2 1.008 0.104cd 0.884 1.683 0.112 362 2.2

3 0.998 0.394d 0.887 1.657 0.378 362 0.627 30

4 0.988 0.719cd 0.911 1.433 0.716 362 0.627

Air temperature (1.5 m) 1 0.989 0.504cd 0.927 1.297 0.417 362 2.347 29

2 1.053 0.497cd 0.852 2.057 0.555 362 2.2

3 0.993 0.428d 0.894 1.600 0.370 362 0.603 30

4 0.983 0.748cd 0.917 1.388 0.774 362 0.603

Kinsevere, Katanga province, DRC 2013–2014

Air temperature (2 m) 1 0.813ab 3.651cd 0.881 1.182 1.053 188 2.182 18

2 0.842ab 3.106cd 0.879 1.239 0.913 188 2.2

3 0.852ab 2.967cd 0.861 1.354 0.328 188 0.670 20

4 0.811ab 3.837cd 0.890 1.129 3.630 188 0.670
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comparisons were generally more variable than those for models
1 and 2 (Fig. 2b and c compared to Figs. 1a and 2a) and usually
characterised by decreased coefficient of determination (R2) and
increased RMSE and MBE. Furthermore, models 3 and 4 com-
parisons against Tn measurements were usually characterised by
a larger (positive) intercept compared to those for models 1 and 2
(Table 3, see Pietermaritzburg, 2011; Figs. 1a and 2).

For model 1 (exponential) for the 2-h nowcasts, the average
b value for air temperature (b=2.131) was <2.2 and even less
for the grass (1.470) and grass-surface (1.600) temperatures
(Table 3). Only positive b values were included in the averag-
ing. A decreased b value implies a reduced rate of reduction in
the nighttime temperatures. For the 159-day period, about
25 % of all nights contained negative b values or nights for
which T(tsr−2)>T(tsr−4) (Table 3, last column).

In general, models 1 and 2 (exponential) and 4 (square
root) performed well in determining Tpn for the 2-h nowcast
with model 1 usually the best. For the 4-h air, grass, grass-
surface nowcasts, R2 decreased, particularly for the grass
and grass-surface temperatures, and RMSE increased by

between about 15 and 100 % for the different models (Ta-
ble 3 (Pietermaritzburg, 2011) cf. 4 (Pietermaritzburg,
2011)). As was the case for the 2-h nowcasts, use of model
3 (square root) yielded less accurate 4-h nowcasts with in-
creased R2 and increased RMSEs.
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Fig. 2 Regression plots for the 2-h-ahead nowcasts for Pietermaritzburg
air temperature (Tpn) vs measured minimum air temperature (Tn) for a
exponential model 2 nowcasts, b square root model 3 (using T(tsr−4)) and
c square root model 4 (using T(tsr−2))
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Fig. 3 Regression plots for the experimental exponential model 1 for
Marianna data for 0.6 m for a model-nowcasted Tpn for the 2-h-ahead
nowcasted vs measured minimum Tn and b model-nowcasted Tpn for the
4-h-ahead nowcast vs measured minimum Tn

y = 1.0084x + 0.2932

R² = 0.9604
-5

0

5

10

15

20

25

-5 5 15 25

dets
ac

w
o

N
T p

n
(

)
m

5.
0

ri
a(

o
C

)

Measured Tn (air 0.5 m) (oC)

(a)Exponential (model 1)

Cathedral Peak, 2-h nowcast

y = 0.9934x + 0.5217

R² = 0.9255
-5

0

5

10

15

20

25

-5 5 15 25

dets
ac

w
o

N
T p

n
(

)
m

5.
0

ri
a(

o
C

)

Measured Tn (air 0.5 m) (oC)

(b)Exponential (model 1)

Cathedral Peak, 4-h nowcast

Fig. 4 Regression plots for the experimental exponential model 1 for
Cathedral Peak data for 0.5 m for a model-nowcasted Tpn for the 2-h-
ahead nowcasted vs measured minimum Tn and b model-nowcasted Tpn
for the 4-h-ahead nowcast vs measured minimum Tn
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Measurements of air temperature for all other sites

For both the 2- and 4-h nowcasts of air temperature, exponential
model 1 used the b coefficient determined 2- or 4-h before
sunrise to determine Tpn. The 15- or 20-min Tpn (nowcasted)
vs Tn (measured) air temperature slopes for the 2-h nowcasts for
all heights andmodels were most often not statistically different
from a slope of 1. As was the case for the Pietermaritzburg
comparisons, model 1 (exponential) was marginally better than
the other models for all sites. Application of models 1 and 2
(exponential), for Cathedral Peak, a high-altitude site with fre-
quent mists in summer, resulted in the largest RMSE for both
the 0.5- and 1.5-m measurement heights. Model 3 (square root)
2-h nowcasts resulted in the greatest RMSE for all sites (Table 3,
see Marianna, Jackson County, 2004; Cedara, 2005–2006; and
Cathedral Peak, 2002). Cedara, in a mist-belt, for which the 2-h
nowcast comparisons were for more than 15 months, and Ca-
thedral Peak had an increased percentage of the number of days
with b or c values <0 or T(tsr−2) > T(tsr−4) (Tables 3, Cedara,
2005–2006, and 4, Cedara, 2005–2006, and 3, Cathedral Peak,
2002, and 4, Cathedral Peak, 2002, respectively).

Usually, application of model 1 for the sub-tropical sites
yielded the best statistical comparisons with Tn. The RMSEs
for both exponential models 1 and 2 were consistently <1 °C
for the 2-h nowcasts (Table 3, see Marianna, Jackson County,
2004; Cedara, 2005–2006; and Cathedral Peak, 2002).
Models 3 and 4 based on the square root model were not as
good for the 2-h nowcasts, with increased RMSE (Table 3, see
Marianna, Jackson County, 2004; Cedara, 2005–2006; and
Cathedral Peak, 2002).

For the sub-Saharan Kinsevere site, using 1-min air tem-
perature measurements, all models performed well for the 2-h
nowcasts (Table 3, see Kinsevere, Katanga province, DRC
2013–2014). Compared to the subtropical sites, the range in
daily minimum air temperature for the Kinsevere dataset was
much lower—about 5–19 °C. This resulted in larger intercepts
compared to the subtropical sites. However, for the Kinsevere
4-h nowcasts, all models resulted in larger intercepts, slopes
less than 1 and larger bias errors (Table 4, see Kinsevere,
Katanga province, DRC 2013–2014).

The 4-h model nowcast comparisons, for all sites, often
exhibited increased RMSE for all models—between about 15
and 80 % (Table 3, Marianna, Jackson County, 2004; Cedara,
2005–2006; and Cathedral Peak, 2002 compared to Table 4,
Marianna, Jackson County, 2004; Cedara, 2005–2006; and
Cathedral Peak, 2002, and Fig. 3a vs 3b and Fig 4a vs 4b).

Implementation of the minimum temperature nowcast
methodology into a near real-time web-based system

The model 1 and 2 (exponential) equations, using regression-
determined b and b=2.2, respectively, were added to the
datalogger programme for calculating the nowcasted 2- and

4-h ahead air, grass and grass-surface temperatures. The re-
sults are displayed using the system described by Savage et al.
(2014).

Conclusions

Exponential and square root models for nowcasting the daily
minimum air temperature for air, grass and grass-surface tem-
perature 2 and 4 h before sunrise were successfully applied
using sub-hourly temperature measurements from four sub-
tropical sites with very different altitudes and from one central
sub-Saharan site. Using the historical data, for both the 2- and
4-h nowcasts, model 1 (exponential) usually yielded the low-
est RMSE. The modelled (Tpn) vs measured (Tn) comparisons
for grass-surface and grass temperatures were more variable
than those for air temperature with a significant increase in
RMSE. For the nowcasts, in general, model 1 (exponential),
for which the rate of reduction in nighttime temperatures was
determined by covariance and variance instructions either in
the datalogger (near real-time nowcasts) or in a spreadsheet
using historic data, yielded the best statistical comparisons.
For the sub-Saharan site, all models performed well for the
2-h nowcast. There was however large bias for the 4-h
nowcasts. The display of near real-time data provided a con-
venient method for the display of the nowcasted minimum air,
grass and grass-surface temperatures in a web-based system.
The measurement and nowcasting system, as described, has
potential economic benefit if implemented operationally.
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