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New developments have been brought to our previously calculated energy-, spin- and parity-
dependent nuclear level densities based on the microscopic combinatorial model [1]. Like in our
previous study, a detailed calculation of the intrinsic state density and of rotational enhancement
factor is included, but this time the vibrational contributions explicitly take the phonon excitations
into account using a vibrational partition function instead of a phenomenological enhancement fac-
tor. This new model predicts the experimental s- and p-wave neutron resonance spacings with a
degree of accuracy comparable to that of the best global models available and also provides rea-
sonable description of low energies cumulative number of levels. The predictions are also in good
agreement with experimental data obtained by the oslo group [2]. Total as well as partial level densi-
ties for more than 8500 nuclei are made available in a table format for practical applications, and for
the nuclei for which experimental s-wave spacings and enough low-lying states exist, renormalization
factors are also provided to reproduce simultaneously both observables.

I. INTRODUCTION

The knowledge of nuclear level densities (NLDs) has
been a matter of interest and study for years going back
at least to 1936 with Bethe’s pioneering work [3]. Since
then, more or less sophisticated methods have been devel-
oped to reproduce the available experimental data. The
so-called partition function method is by far the most
widely used technique to calculate level densities. It cor-
responds to the zeroth order approximation of a Fermi
gas model and leads to more or less simple analytical
expressions depending on parameters which are gener-
ally adjusted to reproduce scarce experimental data [4–
7]. However, in specific applications such as nuclear as-
trophysics or accelerator-driven systems, a large number
of data needs to be obtained far away from the experi-
mentally known region. In this case, two major features
of the nuclear theory must be contemplated, namely its
reliability and accuracy. A microscopic description by
a physically sound model based on first principles en-
sures a reliable extrapolation away from experimentally
known region. For these reasons, when no experimental
data exists to constrain analytical Fermi-gas-type formu-
lae, it is imperative to use preferentially microscopic or
semi-microscopic global predictions based on sound and
reliable nuclear models which, in turn, can compete with
more phenomenological highly-parameterized models in
the reproduction of experimental data. Global micro-
scopic models of NLD have been developed for the last
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decades [8–14], but they are almost never used for prac-
tical applications, because of their lack of accuracy in re-
producing experimental data (especially when considered
globally on a large data set) or because they do not offer
the same flexibility as that of the highly parametrized
analytical expressions.

A global microscopic NLD prescription within the sta-
tistical approach based on the Hartree-Fock-BCS (HF-
BCS) ground state properties [15] has proven the capac-
ity of microscopic models to compete with phenomeno-
logical models in the reproduction of experimental data
and consequently to be adopted for practical applica-
tions. However, this statistical approach presents the
drawback of not describing the parity dependence of the
NLD, nor the discrete (i.e non-statistical) nature of the
excited spectrum at low energies. For this reason, we re-
cently improved the combinatorial approach and demon-
strated that such an approach can clearly compete with
the statistical approach in the global reproduction of ex-
perimental data [1]. One of the advantages of this ap-
proach is to provide not only the energy, spin and parity
dependence of the NLD, but also the partial particle-hole
level density that cannot be extracted in any satisfactory
way from the statistical approaches. At low energies, the
combinatorial predictions also provide the non-statistical
limit where by definition the statistical approach cannot
be applied.

II. THE COMBINATORIAL METHOD

Our method consists in using the single-particle level
schemes obtained from constrained axially symmetric
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Hartree-Fock-Bogoliubov (HFB) method to construct in-
coherent particle-hole (ph) state densities as functions of
the excitation energy, the spin projection (on the intrin-
sic symmetry axis of the nucleus) and the parity. Once
these incoherent ph state densities are determined, col-
lective effects have to be included. In [1], the choice was
made to describe the vibrational effects by multiplying
the total level densities by a phenomenological enhance-
ment factor described in [6, 7] once rotational bands had
been constructed. The resulting nuclear level densities
were found to reproduce very well the available experi-
mental data (i.e. both the cumulated low energy discrete
level histograms and the s- and p-wave resonances mean
spacings at the neutron binding energy). However, it
is clear that the phenomenological treatment of vibra-
tional effects needs to be replaced by a sounder treat-
ment. Indeed, rotational bands built on purely vibra-
tional band-heads are well established and can clearly
not be described if the vibrational enhancement occur
once the rotational bands are constructed as done in [1].
Feedback from fission cross section calculations also sug-
gested this lack of vibrational states at low energies [16].
To improve the reliability of the microscopic prediction of
NLD, the vibrational enhancement factor is now included
in the combinatorial approach explicitly by allowing for
phonon excitations using the boson partition function of
ref. [13] which includes quadrupole, octupole as well as
hexadecapole vibrational modes. Whereas single-particle
levels are theoretically obtained for any nucleus, phonon’s
energies are taken from experimental information when
available or from analytical expressions [17]. Once the
vibrational and incoherent ph state densities are com-
puted, they are folded to deduce the total state and the
level densities are then deduced exactly like in [1]. To
account for the damping of vibrational effects at increas-
ing energies, we restrict the folding to the ph configu-
rations having a total exciton number (i.e. the sum of
the number of proton and neutron particles and proton
and neutron holes) Nph ≤ 4. This restriction stems from
the fact that a vibrational state results from a coherent
excitation of particles and holes, and that this coherence
vanishes with increasing number of ph involved in the de-
scription. Therefore, if one deals with a ph configuration
having a large exciton number, one should not simulta-
neously account for vibrational states which are clearly
already included as incoherent excitations.

III. LEVEL DENSITY RESULTS

The new NLD are now compared with experimental
data. In spite of considerable experimental efforts made
to derive NLD, the lack of reliable data–especially over a
wide energy range–constitutes the main problem that the
NLD theories have to face. Nevertheless, a large number
of analyses of slow neutron resonances and of cumulative
numbers of low energy levels have greatly helped to pro-
vide experimental information on NLD. Other sources of

information have also been suggested, such as analyses of
spectra of evaporated particles and coherence widths of
cross section fluctuations. However, most of these exper-
imental data are affected by systematic errors resulting
from experimental uncertainties as well as the use of ap-
proximate theories to analyse them.

The most extensive and reliable source of experimental
information on NLD remains the s-and p-wave neutron
resonance spacings [7, 18] and the observed low-energy
excited levels [18]. We show in Fig. 1 the result of our
HFB plus combinatorial approach with respect to exper-
imental s- and p-wave spacings compiled in the RIPL-2
database [18].

FIG. 1: Ratio of HFB plus combinatorial (Dth) to the exper-
imental (Dexp) s-wave (squares) and p-wave (circles) neutron
resonance spacings compiled in [18].

The quality of a global NLD formula can be described
by the rms deviation factor defined as

frms = exp

[
1
Ne

Ne∑
i=1

ln2 Di
th

Di
exp

]1/2

, (1)

where Dth(Dexp) is the theoretical (experimental) res-
onance spacing and Ne is the number of nuclei in the
compilation. Globally, the D values are predicted within
a factor of 2 (the exact rms factor amounts to frms = 2.3
for both the s- and p-wave data). This result is to be
compared to the deviations of global analytical formula
[4] typically of the order of 1.7− 1.9 and the frms = 2.14
value obtained with our previous combinatorial result [1].
Our new approach therefore gives rather comparable pre-
dictions with respect to the other existing global models.

The HFB plus combinatorial model also gives satis-
factory extrapolations to low energies. As an example,
we compare in Fig. 2 the predicted cumulative number
of levels N(U) with the experimental data [18] for the
same 15 nuclei as the one presented in [1], including light
as well as heavy, spherical as well as deformed species.
Globally, the present model provides similar results as
those illustrated in Ref.[1].
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FIG. 2: (Color online) Comparison of the cumulative number
of observed levels (thin staircase) with the HFB plus combina-
torial predictions (thick line) as a function of the excitation
energy U for a sample of 15 nuclei. Only for 208Pb, both
curves have been shifted by 2.5 MeV, the energy range corre-
sponding consequently to [2.5-8.5] MeV instead of [0-6] MeV.

For many nuclear physics applications a renormaliza-
tion procedure of the NLD on experimental data is re-
quired, in particular for nuclear data evaluation or for an
accurate and reliable estimate of reaction cross sections.
Though the HFB plus combinatorial NLD are provided
in a table format, it is possible to renormalize them on
both the experimental level scheme at low energy and the
neutron resonance spacings at U = Sn in a way similar
to what is usually done with analytical formulae. More
specifically, the renormalized level density can be cor-
rected through the expression

ρ(U, J, P )renorm = eα
√

(U−δ) × ρ(U − δ, J, P ) (2)

where the energy shift δ is essentially extracted from the
analysis of the cumulative number of levels and α from
the experimental s-wave neutron spacing. With such a
renormalization, the experimental low-lying levels and
the Dexp values can be reproduced reasonably well as
discussed in detail in [4]. Eq.(2) has been used to fit
the 289 nuclides for which both an experimental s-wave
spacing (D0) and a discrete level sequence exist. The

corresponding δ and α values are plotted in Fig. 3. It is
important to notice that the obtained α and δ param-
eters show no systematic trend or A-dependence, and
more particularly no correlation with shell closures. Of
course, when no Dexp value is available, only the exper-
imental discrete level scheme is known, so that only the
δ shift is used to reproduce at best the low-lying levels.

FIG. 3: α and δ values plotted as a function of the atomic
mass. See text for more details.

Finally, we compare in Figs. 4 and 5, our total
NLDs with the experimental data extracted by the Oslo
group from the analysis of particle-γ coincidence in the
(3He,αγ) and (3He,3He’γ) reactions [19–27] for several
isotopes. It should be stressed that such an experimental
determination is however model-dependent. Indeed, in
order to extract the absolute value of the total level den-
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FIG. 4: (Color online) Comparison between the total NLD de-
termined by the Oslo group (grey areas) and the HFB combi-
natorial predictions (solid lines). The full triangles correspond
to the model-dependent normalization point derived from the
D0 value used by the Oslo group. See text for more details.
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FIG. 5: (Color online) Same as Fig. 4.

sity from the measured data, the so-called experimental
NLD needs to be normalized by the total level density at
the neutron binding energy. This normalization consists
in deducing the total level density from the D0 value, and
consequently both the spin and parity distributions at the
neutron binding energy are needed. If the equipartition
of the parity distribution is relatively well established at
these energies, discrepancies can stand from the adopted
spin distribution. In particular, it is clear that a non-
statistical approach such as the combinatorial method
might provide different spin distributions than the sim-
ple shell- and pairing-independent gaussian spin distri-
bution assumed within the BSFG model and adopted by
the Oslo group. Therefore, for a meaningful comparison
between our predictions and the Oslo data, it is impor-
tant to normalize our level densities to the level density
value at U = Sn considered by the Oslo group. This is
done by renormalizing our predictions using Eq. (2) for
each isotope, with an α parameter such that

ρHFB(Sn)× exp(α
√
Sn) = ρoslo(Sn) (3)

As can be observed, with such a normalization, the com-
binatorial NLD agree extremely well with the so-called
experimental NLD below Sn.

IV. APPLICATION TO REACTION CROSS
SECTION CALCULATIONS

In the present section, we use the HFB plus combina-
torial NLD to calculate reaction cross sections with the
TALYS code [28]. As an illustration, we show in Fig. 6,
the specific case of the 89Y(n,γ)90Y cross section. The
NLD predicted for 90Y is shown in Fig. 6 (left panel)
before and after the renormalization procedure. When
the renormalization is applied (in this case to all the nu-
clei involved in the nuclear reaction processes), the cross

section is seen to be better described.

FIG. 6: (Color online) Left panel : Cumulative number of
levels predicted by our NLD for 90Y with and without nor-
malisation. The experimental curve is shown for comparison.
Right panel : 89Y(n,γ)90Y cross section obtained using the
raw and normalized NLD and compared with experimental
data [29].

In order to evaluate the overall quality of the NLD, we
then compare in Fig. 7 the Maxwellian-averaged (n,γ)
rates 〈σv〉 at T = 3 × 108 K with experimental data for
some 219 nuclei heavier than 40Ca included in the com-
pilation of Bao et al. [30]. The radiative capture rates at
such a temperature essentially reflects the cross section
around a 25 keV incident neutron energy. At such ener-
gies, the radiative capture cross section is known to be
very sensitive to the NLD below the neutron threshold.
It appears that the calculations agree with experimental
data roughly within a factor of two. Note that additional
uncertainties stemming in particular from γ-ray strength
functions also affect the predictions. A strong correlation
between the deviations seen in the rates of Fig.7 and the
NLD of Fig. 1 can be observed.

If we now use the NLD renormalized on experimental
data as discussed in detail in [4] to estimate the reaction
rates, the deviations with respect to experimental rates
are clearly less dispersed than with the raw NLD (Fig.7).
The corresponding rms deviation, based on a relation
identical to Eq.(1), for the 219 nuclei is frms = 1.92 using
the raw NLD and 1.60 with the renormalized NLD.

V. CONCLUSIONS

The combinatorial method introduced in [1] has been
updated to improve the description of the collective vi-
brational levels. This has been performed using the bo-
son partition function [13]. The resulting NLD are qual-
itatively similar to those we obtained assuming a phe-
nomenological vibrational enhancement factor [1], both
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FIG. 7: (Color online) Ratio of TALYS Maxwellian-averaged
(n,γ) rates 〈σv〉th with experimental values [30] at T =
3 × 108K obtained using the raw NLD (circles) and those
normalized (squares) according to the method mentionned in
Sect. III.

for the cumulative number of discrete levels and the mean
s- and p- wave resonance spacings. Our total level densi-
ties also fairly agree with the values extracted from the
analysis of particle-γ coincidence in the (3He,αγ) and
(3He,3He’γ) reactions, at least if normalized on the same
density at the neutron binding energy. The combinato-
rial model has also been applied to estimate the NLD
on top of the fission barriers and in the isomeric well.
Finally, within the same framework, particle-hole NLD
required for pre-equilibrium reaction models have been

determined.

The final NLD (without renormalization on experi-
mental data) are made available to the scientific com-
munity at the website http://www-astro.ulb.ac.be.
The tables include the spin- and parity-dependent NLD
for more than 8500 nuclei ranging from Z=8 to Z=110
for a large energy and spin grid (U = 0 to 200 MeV
and the lowest 30 spins). No simple analytical fit to the
tabulated NLD is given to avoid losing the specific micro-
scopic characteristics of the model. It should be stressed
that the combinatorial NLD cannot be approximated by
a simple BSFG-type formula, except at very-high ener-
gies (above roughly 100 MeV), where the shell, pairing
and deformation effects disappear.

The NLD have also been implemented in
the TALYS reaction code (publicly available at
http://www.talys.eu) where the normalisation pa-
rameters entering Eq. 2 are also included. As we have
shown, when experimental cross sections are available
our normalisation procedure globally improves the
agreement with the data. Also, it is worth mentionning
that the renormalization recipe is equivalent to what
is usually done when one wants to fit cross sections by
playing slightly with the usual level density parameters.

Still, some improvements may be required. In particu-
lar, the spherical/deformed character for transitional nu-
clei is not yet under control. In addition, at increasing en-
ergies, the shape of the nucleus changes, so that building
the excitation configurations on top of the ground state
single-particle properties may not be adequate. Such ef-
fects will be studied in a near future.
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