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New bounce solutions and vacuum tunneling in de Sitter
spacetime

Erick J. Weinberg

Department of Physics, Columbia University, New York, NY 10027, USA

Abstract. I describe a class of oscillating bounce solutions to the Euclidean field equations for gravity coupled to a scalar
field theory with multiple vacua. I discuss their implications for vacuum tunneling transitions and for elucidating thethermal
nature of de Sitter spacetime.

INTRODUCTION

The problem of vacuum tunneling in de Sitter spacetime
has recently acquired renewed relevance. In part, this is
due to developments in string theory, which suggest that
vacuum tunneling may be of relevance for understand-
ing transitions between the various potential vacua that
populate the string theory landscape. But, it is also of in-
terest for the light that it can shed on the nature of de
Sitter spacetime. In this talk I will describe some recent
work [1] with Jim Hackworth in which we explored some
aspects of the subject that have received relatively little
attention.

De Sitter spacetime is the solution to Einstein’s equa-
tions when there is a constant positive vacuum energy
densityVvac, but no other source. Globally, it can be rep-
resented as the hyperboloidx2+y2+ z2+w2−v2 = H−2

in a flat five-dimensional space with metricds2 = dx2+
dy2+ dz2+ dw2− dv2, where

H2 =
8π
3

Vvac

M2
Pl

. (1)

The surfaces of constantv are three-spheres, with the
sphere of minimum radius,H−1, occurring atv = 0.
However, the special role played by this surface is
illusory. De Sitter spacetime is homogeneous, and a
spacelike three-sphere of minimum radius can be drawn
through any point.

An important property of de Sitter spacetime is the
existence of horizons. Just as for the case of a black hole,
the existence of a horizon gives rise to thermal radiation,
characterized by a temperature

TdS= H/2π . (2)

However, there are important differences from the black
hole case. A black hole horizon has a definite loca-
tion, independent of the observer. Further, although an

observer’s motion affects how the thermal radiation is
perceived, the radiation has an unambiguous, observer-
independent consequence — after a finite time, the black
hole evaporates. By contrast, the location of the de Sit-
ter horizon varies from observer to observer. Although
comoving observers detect thermal radiation with a tem-
peratureTdS, this radiation does not in any sense cause
the de Sitter spacetime to evaporate. As we will see, tun-
neling between different de Sitter vacua provides further
insight into the thermal nature of de Sitter spacetime and
the meaning ofTdS.

Of course, the relevance of de Sitter spacetime to our
Universe comes from the fact that in the far past, during
the inflationary era, and in the far future, if the dark
energy truly corresponds to a cosmological constant, the
Universe approximates a portion of de Sitter spacetime.
The underlying assumption is that results derived in the
context of the full de Sitter spacetime are applicable to
a region that is approximately de Sitter over a spacetime
volume large compared toH−4.

Φfv Φtop Φtv
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FIGURE 1. The potential for a typical theory with a false
vacuum
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VACUUM DECAY IN FLAT SPACETIME

The prototypical example for studying vacuum decay
is a scalar field theory with a potential, such as that
shown in Fig. 1, that has both an absolute minimum
(the “true vacuum”) and a higher local minimum (the
“false vacuum”). For the purposes of this talk I will
assume thatV (φ) > 0, so that both vacua correspond to
de Sitter spacetimes. The false vacuum is a metastable
state that decays by quantum mechanical tunneling. It
must be kept in mind, however, that the tunneling is not
from a homogeneous false vacuum to a homogeneous
true vacuum, as might be suggested by the plot ofV (φ).
Rather, the decay proceeds via bubble nucleation, with
tunneling being from the homogeneous false vacuum to
a configuration containing a bubble of (approximate) true
vacuum embedded in a false vacuum background. After
nucleation, the bubble expands, a classically allowed
process.

I will begin the discussion of this process by recalling
the simplest case of quantum tunneling, that of a point
particle of massm tunneling through a one-dimensional
potential energy barrierU(q) from a initial pointqinit to
a pointqfin on the other side of the barrier. The WKB
approximation gives a tunneling rate proportional toe−B,
where

B = 2
∫ qfin

qinit

dq
√

2m[U(q)−E] . (3)

This result can be generalized to the case of a multi-
dimensional system with coordinatesq1,q2, . . . ,qN .
Given an initial pointqinit

j , one considers pathsq j(s)

that start atqinit
j and end at some pointqfin

j on the
opposite side of the barrier. Each such path defines a
one-dimensional tunneling integralB. The WKB tunnel-
ing exponent is obtained from the path that minimizes
this integral [2] As a bonus, this minimization process
also determines the optimal exit point from the barrier.

By manipulations analogous to those used in classi-
cal mechanics (but with some signs changed), this mini-
mization problem can be recast as the problem of finding
a stationary point of the Euclidean action

SE =

∫ τfin

τinit

dτ

[

m
2

(

dq j

dτ

)2

+U(q)

]

. (4)

One is thus led to solve the Euclidean equations of mo-
tion

0= m
d2q j

dτ2 +
∂U
∂q j

. (5)

The boundary conditions are thatq j(τinit) = qinit
j and

(because the kinetic energy vanishes at the point where
the particle emerges from the barrier) thatdq j/dτ = 0
at τfin. The vanishing ofdq j/dτ at the endpoint implies
that the solution can be extended back, in a “τ-reversed”

fashion, to give a solution that runs fromqinit
j to qfin

j and

back again toqinit
j . This solution is known as a “bounce”,

and the tunneling exponent is given by

B =

∫

dτ

[

m
2

(

dq j

dτ

)2

+U(q)−U(qinit)

]

= SE(bounce)− SE(false vacuum) , (6)

with the factor of 2 in Eq. (3) being absorbed by the
doubling of the path. It is essential to remember thatτ is
not in any sense a time, but merely one of many possible
parameterizations of the optimal tunneling path.

The translation of this to field theory [3] is straight-
forward: The coordinatesq j become the field variables
φ(x), and the pathq j(τ) becomes a series of three-
dimensional field configurationsφ(x,τ). The Euclidean
action is

SE =

∫

dτ d3x

[

1
2

(

∂φ
∂τ

)2

+
1
2
(∇φ)2+V(φ)

]

(7)

and so one must solve

d2φ
dτ2 +(∇φ)2 =

dV
dφ

. (8)

The boundary conditions are that the path must start
at the homogeneous false vacuum configuration, with
φ(x,τinit) = φfv , and thatdφ/dτ = 0 at τfin for all x.
(Becauseφfv is a minimum of the potential, it turns out
that τinit = −∞.) A three-dimensional slice through the
solution atτfin gives the most likely field configuration
for the nucleated true vacuum bubble. This configura-
tion, φ(x,τfin), gives the initial condition for the sub-
sequent real-time evolution of the bubble. As with the
single-particle case, aτ-reflected solution is convention-
ally added to give a full bounce.

Despite the fact that the spatial coordinatesx and the
path parameterτ have very different physical meanings,
there is a remarkable mathematical symmetry in how
they enter. This suggests looking for solutions that have
an SO(4) symmetry; i.e., solutions for whichφ is a
function of only s =

√
x2+ τ2. For such solutions, the

field equation reduces to

d2φ
ds2 +

3
s

dφ
ds

=
dV
dφ

. (9)

The boundary conditions are

dφ
ds

∣

∣

∣

∣

s=0
= 0 , φ(∞) = φfv , (10)

where the first follows from the requirement that the
solution be nonsingular at the origin, and the second



ensures both that a spatial slice atτ =−∞ corresponds to
the initial state, and that the slices at finiteτ have finite
energy relative to the initial state. Note that whileφ(0) is
required to be on the true vacuum side of the barrier, it is
not equal to (although it may be close to)φtv.

Although the tunneling exponent is readily obtained
from the WKB approach, the prefactor, including (in
principle) higher order corrections, is most easily calcu-
lated from a path integral approach [4]. The basic idea
is to view the false vacuum as a metastable state with
a complex energy, with the imaginary part of the energy
density yielding the decay rate per unit volume. The false
vacuum energy is obtained by noting that for largeT

I(T ) =

∫

[dφ ]e−SE (φ) ∼ e−EfvT , (11)

where the path integral is over configurations with
φ(x,τ =±T /2) = φfv .

This path integral can be calculated by summing the
contributions from the various stationary points, each of
which gives a factor of(detS′′)−1/2e−S. HereS′′ is the
functional second derivative of the action, evaluated at
the stationary point; i.e., the product of the frequencies
of the normal modes. The first stationary point, a homo-
geneous false vacuum configuration withφ(x,τ) = φfv
everywhere, gives a contributionAe−Sfv , where the real
prefactorA includes the (properly renormalized) deter-
minant factor andSfv =V (φfv)T V . HereV denotes the
volume of space and is understood to be taken to infinity
at the end of the calculation.

The next stationary point is the bounce solution to
Eq. (8). The calculation of the determinant factor here is
complicated by the fact thatS′′(φbounce) has one negative
and four zero eigenvalues. The former implies a factor of
i, which I will display explicitly. The latter require the
introduction of collective coordinates; integrating over
these gives a factor ofT V , corresponding to the fact
that the bounce can be centered anywhere in the four-
dimensional Euclidean space.

Finally, the approximate stationary points corre-
sponding to multibounce solutions also contribute,
with the n-bounce contribution including a factor of
(T V )n/n! from integrating over the positions ofn
identical bounces. Putting all this together gives a result
that can be written as

I(T ) = Ae−Sfv + iV T Je−Sbounce+ · · ·

= Ae−Sfv

[

1+ iV T Je−B +
1
2

(

iV T Je−B)2
+ · · ·

]

= Ae−T V V (φfv)exp
[

iV T Je−B] . (12)

HereJ includes both determinant and Jacobean factors,
with the latter arising from the introduction of the col-
lective coordinates; for present purposes, the important

point is that it is real. Extracting the energy density from
the exponent in Eq. (12) gives an imaginary part that is
proportional toV , corresponding to the fact that a bubble
can nucleate anywhere. The quantity we actually want is
the nucleation rate per unit volume,

Γ =−2ImEfv

V
= 2Je−B . (13)

The path integral approach provides the vehicle for
extending [5, 6] the calculation to finite temperatureT ,
with the path integral over configurations extending from
τ = −∞ to τ = ∞ replaced by one over over configu-
rations that are periodic inτ with periodicity 1/T . At
low temperature, where 1/T is larger than the character-
istic radius of the four-dimensional bounce, there is little
change from the zero-temperature nucleation rate. How-
ever, in the high-temperature regime where 1/T is much
smaller than this characteristic radius the path integral
is dominated by configurations that are constant inτ. A
spatial slice at fixedτ gives a configuration, with total
energyEcrit, that contains a single critical bubble. The
exponent in the nucleation rate takes the thermal form

B =
Ecrit

T
− Efv

T
. (14)

Note that, in contrast to the zero temperature case, there
is no spatial slice corresponding to the initial state. Only
through the boundary conditions at spatial infinity does
the bounce solution give an indication of the initial con-
ditions.

ADDING GRAVITY

Coleman and De Luccia [7] argued that the effects of
gravity on vacuum decay could be obtained by adding an
Einstein-Hilbert term to the Euclidean action and then
seeking bounce solutions of the resulting field equations;
as before, the tunneling exponent would be obtained
from the difference between the actions of the bounce
and the homogeneous initial state. Their treatment did
not include the calculation of the prefactor, an issue that
remains poorly understood.

If one assumes O(4) symmetry, as in the flat spacetime
case, the metric can be written as

ds2 = dξ 2+ρ(ξ )2dΩ2
3 , (15)

where dΩ2
3 is the metric on the three-sphere, and the

scalar field depends only onξ . The Euclidean action
becomes

SE = 2π2
∫

dξ
[

ρ3
(

1
2

φ̇2+V

)



+
3M2

Pl

8π
(

ρ2 ρ̈ +ρ ρ̇2−ρ
)

]

, (16)

with dots denoting derivatives with respect toξ . The
Euclidean field equations are

φ̈ +
3ρ̇
ρ

φ̇ =
dV
dφ

(17)

and

ρ̇2 = 1+
8π

3M2
Pl

ρ2
(

1
2

φ̇2−V

)

. (18)

One can show that ifV (φ) is everywhere positive, as
I am assuming here, thenρ(ξ ) has two zeros and the
Euclidean space is topologically a four-sphere. One of
the zeros ofρ can be chosen to lie atξ = 0, while
the other is located at some valueξmax. Requiring the
scalar field to be nonsingular then imposes the boundary
conditions

dφ
dξ

∣

∣

∣

∣

ξ=0
= 0,

dφ
dξ

∣

∣

∣

∣

ξmax

= 0. (19)

The symmetry of these boundary conditions should be
contrasted with the flat space boundary conditions of
Eq. (10). Note that there is no requirement that scalar
field ever achieve either of its vacuum values, although
|φ(ξmax)− φfv | is typically exponentially small in cases
where gravitational effects are small.

Somewhat surprisingly, the Euclidean solution corre-
sponding to a homogeneous false vacuum is not an infi-
nite space, but rather a four-sphere of radius

H−1
fv =

√

3M2
Pl

8πV(φfv)
. (20)

Its Euclidean action is

SE =−3
8

M4
Pl

V (φfv)
. (21)

If the parameters of the theory are such that the charac-
teristic radius of the flat space bounce is much less than
H−1

fv , then the curved space bounce will be roughly as
illustrated in Fig. 2a, with the small region nearξ = 0
corresponding to the true vacuum region of the flat space
bounce, the equatorial slice giving the optimal configu-
ration for emerging from the potential barrier, and a slice
such as that indicated by the lower dotted line roughly
corresponding to the state of the system before the tun-
neling process. A bounce solution such as this yields a
nucleation rate that only differs only slightly from the
flat space result.

On the other hand, there are choices of parameters that
give a bounce solution similar to that indicated in Fig. 2b,
with a true vacuum region that occupies a significant

fraction of the Euclidean space. In this case, there is no
slice that even roughly approximates the initial state, sug-
gesting that one should view this as more analogous to a
thermal transition in flat space than to zero-temperature
quantum mechanical tunneling.

Indeed, for a bounce such as this the true and false
vacuum regions can perhaps be viewed as being on a
similar footing, so that the bounce can describe either
the nucleation of a true vacuum bubble in a region of
false vacuum, or the nucleation of a false vacuum bubble
in a true vacuum region [8]. The rate for the former case
would be

Γfv→tv ∼ exp{−[SE(bounce)− SE(fv)]} , (22)

while for the latter,

Γtv→fv ∼ exp{−[SE(bounce)− SE(tv)]} . (23)

The ratio of these is

Γtv→fv

Γfv→tv
= exp{SE(tv)− SE(fv)}

= exp

{

3
8

M4
Pl

V (φfv)
− 3

8
M4

Pl

V (φtv)

}

. (24)

If V (φfv)−V (φtv) ≪ V (φfv), the geometry of space is
roughly the same in the two vacua, and we can sensibly
ask about the relative volumes of space occupied by the
false and true vacua. In the steady state, this will be

Vfv

Vtv
=

Γtv→fv

Γfv→tv

≈ exp

{

−4π
3

H−3[V (φfv)−V(φtv)]/TdS

}

.(25)

The last line of this equation, which gives the ratio as
the exponential of an energy difference divided by the
de Sitter temperature, is quite suggestive of a thermal
interpretation of tunneling in this regime.

It is not hard to show that the flat space Euclidean
field equations always have a bounce solution. This is no
longer true when gravity is included, as we will see more
explicitly below. However, Eqs. (17) and (18) always
have a homogeneous Hawking-Moss [9] solution that is
that is qualitatively quite different from the flat space
bounce. Hereφ is identically equal to its valueφtop at the
top of the barrier, while Euclidean space is a four-sphere

of radiusH−1
top ≡

√

3M2
Pl/8πV(φtop). From this solution

one infers a nucleation rate

Γfv ∼ exp

{

−3
8

M4
Pl

V (φfv)
+

3
8

M4
Pl

V (φtop)

}

. (26)

from the false vacuum



(a)

Final state 

"Initial state"

(b)

Final state 

FIGURE 2. Schematic illustration of a Coleman-De Luccia bounce solution in two limiting regimes. In both,φ is near its true
vacuum value in the region to the right of the dashed arc, while on the left side it is near the false vacuum. In both cases the
equatorial slice denotes a three-sphere corresponding to the spatial hypersurface on which the bubble nucleates. The lower dashed
line in (a) represents a three-sphere indicative of the initial false vacuum state; this has no analogue in the regime illustrated in (b).

OTHER TYPES OF BOUNCES?

Given the existence of the Hawking-Moss solution, it
is natural to inquire whether the inclusion of gravity
allows any other new classes of Euclidean solutions. In
particular, might there be “oscillating bounce” solutions
in which φ crosses the potential barrier not once, but
ratherk > 1 times, betweenξ = 0 andξ = ξmax?

There can indeed be such solutions [10]. In exam-
ining their properties, we focussed on the case where
V (φtop)−V (φtv) ≪ V (φtv). This simplifies the calcula-
tions considerably, but does not seem to be essential for
our final conclusions. With this assumption, the metric
is, to a first approximation, that of a four-sphere of fixed
radiusH−1, andξmax= π/H. We then only need to solve
the scalar field Eq. (17). Definingy = Hξ , we can write
this as

d2φ
dy2 +3coty

dφ
dy

=
1

H2

dV
dφ

. (27)

It is convenient to start by first examining “small am-
plitude” solutions in whichφ(0) andφ(π) are both close
to φtop. Let us assume that near the top of the barrierV
can be expanded as1

Ṽ (φ)=V (φtop)−
H2β

2
(φ −φtop)

2+
H2λ

4
(φ −φtop)

4+ · · ·
(28)

1 The omission of cubic terms here is only to simplify the algebra.
There is no difficulty, and little qualitative change, in including such
terms. The details are given in Ref. [1].

with

β =
|V ′′(φtop)|

H2 . (29)

Keeping only terms linear in(φ −φtop) in Eq. (17) gives

0=
d2φ
dy2 +3coty

dφ
dy

+β (φ −φtop) , (30)

whose general solution is

φ(y)−φtop = AC3/2
α (cosy)+BD3/2

α (cosy) , (31)

whereC3/2
α and D3/2

α are Gegenbauer functions of the
first and second kind andα(α +3) = β . The vanishing
of dφ/dy at y = 0 implies thatB = 0; the analogous
condition aty = π is satisfied only ifα is an integer, in

which caseC3/2
α is a polynomial.

While the linearized equation only has solutions for
special values ofβ , this condition is relaxed when the
nonlinear terms are included. Furthermore, the nonlinear
terms fix the amplitude of the oscillations, which is com-
pletely undetermined at the linear level. The problem can
be analyzed by an approach similar to that used to treat
the anharmonic oscillator. Any function withdφ/dy van-
ishing at bothy = 0 andy = π can be expanded as

φ(y) = φtop+
1

√

|λ |

∞

∑
M=0

AMC3/2
M (y) . (32)

Substituting this into Eq. (17) and keeping terms up to
cubic order in(φ −φtop) gives

0 =
∞

∑
M=0

C3/2
M (cosy)

[

[β −M(M+3)]AM
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FIGURE 3. Bounce solutions for a scalar potential [1] with cubic and quartic interactions andβ = 70.03.

−sgn(λ ) ∑
I,J,K

AIAJAKqIJK;M

]

, (33)

where theqIJK;M arise from expanding products of three
Gegenbauer polynomials. Requiring that the quantities

multiplying each of theC3/2
M separately vanish yields an

infinite set of coupled equations. These simplify, how-
ever, if |∆| ≡ |β −N(N + 3)| ≪ 1 for someN. In this
case, one coefficient,AN , is much greater than all the oth-
ers. TheM = N term in Eq. (33) then gives (to leading
order)

AN =±
√

∆
sgn(λ )qNNN;N

, (34)

whereqNNN;N > 0.
If λ > 0, Eq. (34) only gives a real value ofAN if β >

N(N + 3). As β is increased through this critical value,
two solutions appear. These are essentially small oscil-
lations about the Hawking-Moss solution, withφ(0) ≈
φtop± ANC3/2

N (1) and φ(π) ≈ φtop± ANC3/2
N (−1). Be-

tween these endpoints,φ crosses the top of the barrier

N times. If N is even, the two solutions are physically
distinct, with one havingφ on the true vacuum side of
the barrier at both endpoints, and the other having both
endpoint values on the false vacuum side. IfN is odd, the
two solutions are just “y-reversed” images of each other.

As β is increased further, the endpoints move down
the sides of the barrier, until eventually the small am-
plitude approximation breaks down. Nevertheless, we
would expect the solutions to persist, withφ(0) andφ(π)
each moving toward one of the vacua. Whenβ reaches
the next critical value,(N + 1)(N + 4), two new solu-
tions, withN +1 oscillations aboutφtop, will appear, but
the previous ones will remain. Thus, forN(N+1)< β <
(N +1)(N +4), we should expect to find solutions with
k = 0,1,2, . . . ,N oscillations. We have confirmed these
expectations by numerically integrating the bounce equa-
tions for various values of the parameters; the solutions
for a typical potential withβ = 70.03 are shown in Fig. 3.

The fact that the number of solutions should increase
with β is physically quite reasonable. One would expect



the minimum distance needed for an oscillation about
φtop, like the thickness of the bubble wall itself, to be
roughly|V ′′|−1/2. Hence, the number of oscillations that
can fit on a sphere of radiusH−1 should be of order
H−1/|V ′′|−1/2 =

√

β . In particular, this suggests that for
β < 4 there should not even be ak = 1 Coleman-De
Luccia bounce [11].

It is thus somewhat puzzling to note the implications
of Eq. (34) for the case whereλ is negative. Here, in-
creasingβ through a critical value causes two solutions
to merge into the Hawking-Moss solution and disappear,
suggesting that the number of solutions is a decreasing
function ofβ . The resolution to this can be found by an-
alytically and numerically examining various potentials
that are unusually flat at the top. In all the cases we have
examined, the number of solutions is governed by a pa-
rameterγ that measures an averaged value of|V ′′|/H2

over the width of the potential barrier. Whenγ is suffi-
ciently small, there are no bounce solutions (other than
the Hawking-Moss, which is always present). Asγ is in-
creased, new solutions appear at critical values. These
first appear as solutions with finite values ofφ(0)−φtop.
They then bifurcate, withφ(0) for one solution moving
toward a vacuum andφ(0) for the other moving toward
φtop, eventually reaching it and disappearing whenβ is at
a critical value. The net effect is that the number of solu-
tions generally increases withγ, although it is not strictly
monotonic.

INTERPRETING THE OSCILLATING
BOUNCES

How should these oscillating bounce solutions be in-
terpreted? For the flat space bubble, a spacelike slice
through the center of the bounce gives the initial con-
ditions for the real-time evolution of the system after nu-
cleation; these predict a bubble wall with a well-defined
trajectory and a speed that soon approaches the speed
of light. The interpretation of the Coleman-De Luccia
bounce is similar. The main new feature here is the fact
that the spacelike slice is finite. Formally, this corre-
sponds to the fact that de Sitter spacetime is a closed
universe, even though we expect the bubble nucleation
process to proceed similarly in a spacetime that only ap-
proximates de Sitter locally.

The Hawking-Moss solution can be interpreted as cor-
responding to a thermal fluctuation of all of de Sitter
space (or, more plausibly, of an entire horizon volume)
to the top of the potential barrier. Strictly speaking, clas-
sical Lorentzian evolution would leaveφ at the top of the
barrier forever. However, this is an unstable configura-
tion, and so would be expected to break up, in a stochas-
tic fashion, into regions that evolve toward one vacuum

or the other.
The oscillating bounce solutions yield a hybrid of

these two extremes. The endcap regions nearξ = 0 and
ξ = ξmax clearly evolve into vacuum regions analogous
to those from the Coleman-De Luccia bounce, while the
intermediate, “oscillating”, region is like that emerging
from a Hawking-Moss mediated transition. As with the
Hawking-Moss solution, the bounce carries no informa-
tion about the initial state, and there is not even any cor-
relation between the vacua in the endcaps and the initial
vacuum state. Thus, like Hawking-Moss, it is reminiscent
of finite temperature tunneling in the absence of gravity,
and provides evidence of the thermal nature of de Sitter
spacetime.

The relative importance of the various solutions de-
pends on the values of their Euclidean actions. Although
the details vary with the particular form of the poten-
tial, the various regimes are characterized by a parame-
ter γ measuring an averaged value of|V ′′|/H2. If γ ≫ 1,
there is a Coleman-De Luccia bounce, a Hawking-Moss
solution, and many oscillating bounces. However, the
Coleman-De Luccia bounce has a much smaller action
than the others, and so dominates. This is a regime of
quantum tunneling transitions followed by determinis-
tic classical evolution. At the other extreme is the case
whereγ <∼ 1, where the Hawking-Moss is the only solu-
tion to the bounce equations. This is a regime of thermal
transitions followed by stochastic real-time evolution. In
between is a transitional region, with thermal effects still
important. It is here that the oscillating bounces are most
likely to play a role.
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