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Abstract. We report on some efforts recently made in order to gain a better understand-
ing of some IR properties of the 3-point gluon Green’s function by exploiting results
from large-volume quenched lattice simulations. These lattice results have been obtained
by using both tree-level Symanzik and the standard Wilson action, in the aim of assess-
ing the possible impact of effects presumably resulting from a particular choice for the
discretization of the action. The main resulting feature is the existence of a negative log-
aritmic divergence at zero-momentum, which pulls the 3-gluon form factors down at low
momenta and, consequently, yields a zero-crossing at a given deep IR momentum. The
results can be correctly explained by analyzing the relevant Dyson-Schwinger equations
and appropriate truncation schemes.

1 Introduction

In the last few years, a very thorough scrutiny of the Quantum Chromodynamics (QCD) fundamen-
tal Green’s functions using large-volume lattice simulations (see, for instance [1–6], together with a
variety of continuum approaches (see, for instance [7–13]), has taken place, aiming at a better under-
standing of the infrared (IR) sector of QCD. Notwithstanding that off-shell Green’s functions are not
physical quantities, given their explicit dependence on the gauge-fixing parameter and the renormal-
ization scheme, they encode valuable information on fundamental nonperturbative phenomena such
as confinement, chiral symmetry breaking, and dynamical mass generation, and constitute the basic
building blocks of symmetry-preserving formalisms intended to provide with a faithful description of
hadron phenomenology (see, for instance [14–19]).

A few recent papers [20–22] made an effort to investigate further a key feature of the 3-point
gluon Green function, the appearence of a zero-crossing at very low IR momentum caused by a
�Speaker, e-mail: jose.rodriguez@dfaie.uhu.es
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Figure 1. (color online) Lattice results for the renormalized connected form factor TR in the symmetric (left)
and asymmetric (right) momentum configuration. For both data sets the renormalization point µ = 4.3 GeV was
chosen. The same scale is used in both plots which reveals the similar behavior of the two form factors.

negative logarithmic singularity at zero-momentum, by both exploiting up-to-date lattice data and
accomodating these results within an alternative DSE approach. We will briefly review here these few
works.

2 Connected and 1-PI 3-gluon Green’s functions

Let us first properly define the connected and the usual 1-particle irreducible (1-PI) 3-gluon Green
functions and describe then how they can be nonperturbatively obtained.

2.1 Definitions and generalities

The connected three-gluon vertex is defined as the correlation function 1 (q + r + p = 0)

Gabc
αµν(q, r, p) = 〈Aa

α(q)Ab
µ(r)Ac

ν(p)〉 = f abcGαµν(q, r, p), (1)

where the sub (super) indices represent Lorentz (color) indices and the average 〈·〉 indicates functional
integration over the gauge space. In terms of the 1-PI function, one has

Gαµν(q, r, p) = gΓα′µ′ν′ (q, r, p)∆α′α(q)∆µ′µ(r)∆ν′ν(p), (2)

with g the strong coupling constant. In the Landau gauge, the transversality of the gluon propagator,
viz.,

∆ab
µν (q) = 〈Aa

µ(q)Ab
ν(−q)〉 = δab∆(p2)Pµν(q), (3)

where Pµν(q) = δµν − qµqν/q2, implies directly that G is totally transverse: q·G = r ·G = p·G = 0.
In what follows we will consider two special momenta configurations. The first one is the so-

called symmetric configuration, in which q2 = r2 = p2 and q ·r = q · p = r · p = −q2/2; in this case,

1A term proportional to the fully symmetric tensor, dabc, can be only generally excluded in Landau gauge.
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viz.,
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µν (q) = 〈Aa

µ(q)Ab
ν(−q)〉 = δab∆(p2)Pµν(q), (3)

where Pµν(q) = δµν − qµqν/q2, implies directly that G is totally transverse: q·G = r ·G = p·G = 0.
In what follows we will consider two special momenta configurations. The first one is the so-

called symmetric configuration, in which q2 = r2 = p2 and q ·r = q · p = r · p = −q2/2; in this case,

1A term proportional to the fully symmetric tensor, dabc, can be only generally excluded in Landau gauge.

there are only two totally transverse tensors, namely

λtree
αµν(q, r, p) = Γ(0)

α′µ′ν′ (q, r, p)Pα′α(q)Pµ′µ(r)Pν′ν(p),

λS
αµν(q, r, p) = (r − p)α(p − q)µ(q − r)ν/r2, (4)

where Γ(0)
αµν is the usual tree-level vertex. Indicating with Ssym and T sym (respectively, Γsym

S and Γsym
T )

the corresponding form factors in the decomposition of G (respectively, Γ) in this momentum config-
uration, Eq. (2) implies the relation

T sym(q2) = g Γsym
T (q2)∆3(q2),

Ssym(q2) = g Γsym
S (q2)∆3(q2). (5)

In particular, the T sym form factor can be projected out through

T sym(q2) =
Wαµν(q, r, p)Gαµν(q, r, p)
Wαµν(q, r, p)Wαµν(q, r, p)

∣∣∣∣∣∣
sym
, (6)

with W = λtree + λS /2.
The second configuration we will study, which will be called ‘asymmetric’ in what follows, is

defined by taking the q → 0 limit, while imposing at the same time the condition r2 = p2 = −p·r. In
this configuration λS

αµν ∼ rαrµrν becomes totally longitudinal, and the only transverse tensor one can
construct is obtained by the q→ 0 limit of λtree (obviously omitting the q projector), i.e.,

λtree
αµν(0, r,−r) = 2rαPµν(r). (7)

Thus one is left with a single form factor, which can be projected out through

T asym(r2) =
Wαµν(q, r, p)Gαµν(q, r, p)
Wαµν(q, r, p)Wαµν(q, r, p)

∣∣∣∣∣∣
asym

= g Γ
asym
T (r2)∆(0)∆2(r2), (8)

where now W = λtree.
All the quantities defined so far are bare, and a dependence on the regularization cut-off must be

implicitly understood. Within a given renormalization procedure, the renormalized Green’s functions
are calculated in terms of the renormalized fields AR = Z−1/2

A A, so that

∆R(q2; µ2) = Z−1
A (µ2)∆(q2),

T sym
R (q2; µ2) = Z−3/2

A (µ2)T sym(q2), (9)

and similarly for the asymmetric configuration. Within the MOM scheme that we will employ, one
then requires that all the Green’s functions take their tree-level expression at the subtraction point,
namely

∆R(q2; q2) = Z−1
A (q2)∆(q2) = 1/q2,

T sym
R (q2; q2) = Z−3/2

A (q2) T sym(q2) = gsym
R (q2)/q6. (10)

The first equation yields the renormalization constant ZA as a function of the bare propagator, which
when substituted into the second equation provides a renormalization group invariant definition of the
three-gluon MOM running coupling [23, 24]:

gsym(q2) = q3 T sym(q2)
[∆(q2)]3/2 = q3 T sym

R (q2; µ2)
[∆R(q2; µ2)]3/2 . (11)
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In the asymmetric configuration the relation is slightly different, as in this case one has

T asym
R (r2; r2) = Z−3/2

A (r2) T asym(r2) = ∆R(0; q2) gasym
R (r2)/r4, (12)

implying

gasym(r2) = r3 T asym(r2)
[∆(r2)]1/2∆(0)

= r3 T asym
R (r2; µ2)

[∆R(r2; µ2)]1/2∆R(0; µ2)
. (13)

Finally, in both cases the above equations yield for the 1-PI form factors the relation

gi(µ2) Γi
T,R(�2; µ2) =

gi
R(�2)

[�2∆(�2; µ2)]3/2 , (14)

where i indicates either the symmetric or the asymmetric momentum configuration, and, correspond-
ingly, �2 = q2, r2.

This latter result is of special interest because it establishes a connection between the three-gluon
MOM running coupling, which many lattice and continuum studies have paid attention to, and the
vertex function of the amputated three-gluon Green’s function, a fundamental ingredient within the
tower of (truncated) SDEs addressing non-perturbative QCD phenomena. In fact, these quantities are
related only by the gluon propagator ∆, which, after the intensive studies of the past decade, is very
well understood and accurately known.

2.2 Lattice QCD results

The purpose of obtaining a nonperturbative estimate of the 1-PI and connected 3-gluon form factors
will be achieved by the determination of the matrix elements defined in Eqs. (1) and (3) as, respec-
tively, 2- and 3-points correlation functions of the gluon gauge fields obtained from quenched lattice
simulations. The form factors can be related to the matrix elements by Eqs. (6) and (8), as it results
from applying the appropriate projections described in the previous subsection. In the aim of con-
cluding about qualitative features for the deep IR behavior of these form factors, we have simulated
lattice volumes in physical units as large as possible but within the quenched approximation, under
the working assumption that the light dynamical quarks only affect quantitatively this behavior. In
particular, we have exploited quenched SU(3) gauge-field configurations at several large volumes and
different bare couplings β, obtained employing both the tree-level Symanzik: 420 configurations at
β = 4.2 for a hypercubic lattice of length L = 32 (corresponding to a physical volume of 4.54 fm4),
2000 configurations at β = 3.90 for L = 64 lattice (15.64 fm4) and 1050 configurations at β = 3.8 for
L = 48 (13.74 fm4); and the Wilson action: 960 configurations at β = 5.8 for L = 48 (6.724 fm4), 1920
configurations at β = 5.6 for L = 48 (11.34 fm4) and 1790 β = 5.6 for L = 52 (12.34 fm4). These last
data have been supplemented with those derived from the old configurations of [25], obtained using
the Wilson gauge action at several β (ranging from 5.6 to 6.0), lattices (from L = 24 to L = 32) and
physical volumes (from 2.44 to 5.94 fm4).

The results can be found in Fig. 1, where we plot the form factor T renormalized at µ = 4.3 GeV
for both the symmetric (left panel) and asymmetric (right panel) momentum configurations. In the
symmetric case T sym

R displays a zero crossing located in the IR region around 0.1–0.2 GeV, after which
the data seems to indicate that some sort of divergent behavior manifests itself. In the asymmetric case
the situation looks less clear as data are noisier, as it results from studying a correlation function where
one of the fields is taken at zero momentum.
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3 Analysis of results

We will now briefly describe the analysis of the results, already presented (including many more de-
tails) in ref. [20], mainly addressed to understand a striking feature taking place in the low-momentum
domain: the appearance of a zero-crossing and a negative logarithmic singularity at zero-momentum
(many independent analyses within the SDE formalism, employing a variety of techniques and trun-
cation schemes, have found the same in the 3-point [26–29] and the 4-point [30, 31] gluon sector,
and also when light quarks are included [32]), the underlying origin of this phenomenon is the mass-
lessness of the ghost propagators circulating in the nonperturbative ghost loop diagram contributing
to the SDE of n-point Green’s functions [26]. Specifically, employing a nonperturbative Ansatz for
the gluon-ghost vertex that satisfies the correct STI, the leading IR contribution from the ghost-loop,
denoted by Πc(q2), is given by [26]

Πc(q2) =
g2CA

6
q2F(q2)

∫
k

F(k2)
k2(k + q)2 , (15)

where CA is the Casimir eigenvalue in the adjoint representation, and
∫

k ≡ µ
ε/(2π)d

∫
ddk is the dimen-

sional regularization measure, with d = 4−ε and µ is the ’t Hooft mass; evidently, in the limit q2 → 0,
the above expressions behave like q2 log q2/µ2. Even though this particular term does not interfere
with the finiteness of ∆(q2), its presence induces two main effects: (i) ∆(q2) displays a mild maximum
at some relatively low value of q2, and (ii) the first derivative of ∆−1(q2) diverges logarithmically at
q2 = 0. The form of the renormalized gluon propagator that emerges from the complete SDE analysis
may be accurately parametrized in the IR by the expression

∆−1
R (q2; µ2) =

q2→0
q2
[
a + b log

q2 + m2

µ2 + c log
q2

µ2

]
+ m2, (16)

with a, b, c, and m2 suitable parameters, which captures explicitly the two aforementioned effects.
Note that ∆−1

R (0; µ2) = m2, and that the ‘protected’ logarithms stem from gluonic loops.
Any standard Green’s function can be related to the same one with background legs, within the

PT-BFM approach, by the use of the so-called “background quantum" identities [33–35]). The ones
with background legs, when projected according to Eqs. (6,8) and by virtue of the Abelian STI that
the PT-BFM propagators are constructed to obey, will be led in the IR by the derivative of the inverse
of the gluon propagator, represented by Eq. (16) [26]. Thus, the three-gluon 1-PI form factors derived
from the background Green’s functions, Γ(B), can be proven to behave in the deep IR as

Γ
i,(B)
T,R (p2; µ2) �

p2/µ2�1
FR(0; µ2)

∂

∂p2∆
−1
R (p2; µ2) + . . .

� FR(0; µ2)
(
a + b ln

m2

µ2 + c
)
+ c FR(0; µ2) ln

p2

µ2 + . . . ; (17)

where FR(0; µ2) is the renormalized ghost dressing function evaluated at zero momentum and where
the dots stand for subleading corrections that, as discussed in [36], might be collectively taken into
account by adding an extra constant term which, contrarily to the leading contribution, depends a
priori on the momenta configuration. On the other hand, the connection between the background and
the standard vertex functions, and that of Γ(B) and Γ, is controlled by the ghost-gluon dynamics and
will essentially introduce subleading corrections, as it is also done by the low-momentum expansion
of the ghost dressing function in Eq. (17), which do not modify the leading logarithmic divergence
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Figure 2. The 3-gluon 1-PI form factors, related to the connected Green’s functions through Eqs. (6) and (8),
obtained from the lattice data displayed in Fig. 1 although plotted now making use of a momentum linear scale,
for symmetric (left) and asymmetric (right) momenta configuration. The renormalization point is µ=4.3 GeV.
The red solid and dashed lines result from the best fits with Eq. (18), while the brown solid lines correspond
to fits done after dropping the subleading term driven by ai

2 . Yellow and brown bands depict the uncertainty
resulting from the the gauge two-point Green’s function in the determination of ai

ln [36] for the fits.

shown by this equation [37–39]. Thus, aiming at a reliable description of the lattice data for the vertex
1-PI form factors within the IR domain, we can eventually write

gi
R(µ2)Γi

R(p2; µ2) = ai
ln(µ2) ln

p2

µ2 + ai
0(µ2) + ai

2(µ2) p2 ln
p2

M2 + o(p2) , (18)

where ai
0, ai

2 and M will be free parameters capturing subleading contributions, while ai
ln(µ2) =

gi
R(µ2) c FR(0; µ2), is known from gluon and ghost two-point Green’s functions and from the value

of the three-gluon coupling at the renormalization point. M differs a priori from the renormalization
point since it is absorbing the O(p2)-contribution which, for the sake of consistency, is also required.
Then, Eq. (14) can be invoked to derive the estimates for the 1-PI form factors from the lattice data
displayed in Fig. 1, and Eq. (18) applied to account for their IR behavior, where the zero-crossing
feature takes place. A correct description of the IR behavior for these form factors makes thus also
possible a reliable determination of the momentum for which the zero value is taken. The lattice data
and the best fits to them with Eq. (18) (in solid red line) appear displayed in the right and left panels
of Fig. 2, respectively, for symmetric and asymmetric renormalization schemes. Although it is evi-
dent that in the symmetric case a better description of the IR data is achieved, both cases happen to
be remarkably consistent with each other and with the existence of a zero-crossing, as predicted by
employing continuum nonperturbative approaches such as DSE.

4 Conclusions

We have briefly reviewed some recent studies for the 3-gluon Green’s function, renormalized by ap-
plying two different renormalization schemes, obtained by exploiting large-volume lattice simulations
without dynamical quarks. The working hypothesis underlying the reliability of the quenched approx-
imation for our purpose is that the leading IR behavior of the 3-gluon form factor is only dominated
by the divergent ghost loops entering in the gluon vacuum polarization through its DSE, only mildly
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Figure 2. The 3-gluon 1-PI form factors, related to the connected Green’s functions through Eqs. (6) and (8),
obtained from the lattice data displayed in Fig. 1 although plotted now making use of a momentum linear scale,
for symmetric (left) and asymmetric (right) momenta configuration. The renormalization point is µ=4.3 GeV.
The red solid and dashed lines result from the best fits with Eq. (18), while the brown solid lines correspond
to fits done after dropping the subleading term driven by ai

2 . Yellow and brown bands depict the uncertainty
resulting from the the gauge two-point Green’s function in the determination of ai

ln [36] for the fits.

shown by this equation [37–39]. Thus, aiming at a reliable description of the lattice data for the vertex
1-PI form factors within the IR domain, we can eventually write

gi
R(µ2)Γi

R(p2; µ2) = ai
ln(µ2) ln

p2

µ2 + ai
0(µ2) + ai

2(µ2) p2 ln
p2

M2 + o(p2) , (18)

where ai
0, ai

2 and M will be free parameters capturing subleading contributions, while ai
ln(µ2) =

gi
R(µ2) c FR(0; µ2), is known from gluon and ghost two-point Green’s functions and from the value

of the three-gluon coupling at the renormalization point. M differs a priori from the renormalization
point since it is absorbing the O(p2)-contribution which, for the sake of consistency, is also required.
Then, Eq. (14) can be invoked to derive the estimates for the 1-PI form factors from the lattice data
displayed in Fig. 1, and Eq. (18) applied to account for their IR behavior, where the zero-crossing
feature takes place. A correct description of the IR behavior for these form factors makes thus also
possible a reliable determination of the momentum for which the zero value is taken. The lattice data
and the best fits to them with Eq. (18) (in solid red line) appear displayed in the right and left panels
of Fig. 2, respectively, for symmetric and asymmetric renormalization schemes. Although it is evi-
dent that in the symmetric case a better description of the IR data is achieved, both cases happen to
be remarkably consistent with each other and with the existence of a zero-crossing, as predicted by
employing continuum nonperturbative approaches such as DSE.

4 Conclusions

We have briefly reviewed some recent studies for the 3-gluon Green’s function, renormalized by ap-
plying two different renormalization schemes, obtained by exploiting large-volume lattice simulations
without dynamical quarks. The working hypothesis underlying the reliability of the quenched approx-
imation for our purpose is that the leading IR behavior of the 3-gluon form factor is only dominated
by the divergent ghost loops entering in the gluon vacuum polarization through its DSE, only mildly

affected at a quantitative level by the presence of light quarks. This assumption has been consistently
supported by recent DSE anlysis [40]. The most striking feature of the three-gluon Green function,
taking place in its very deep IR domain, which in particular is elusive to the semiclassical description
of ref. [36], is the existence of a negative logarithmic singularity at zero momentum which causes the
appearance of a zero-crossing, owing to the masslessness of the ghost which contributes via nonper-
turbative ghost-loops to the SDE of the gluon Green’s functions. This is an important phenomenon,
with dynamical implications [26, 39] which, notwithstanding that it takes place within the deep IR
momentum domain, can be hardly captured within the framework of a semiclassical approach.

5 Acknowledgements

This work has been partially funded by the Spanish Ministry research project FPA2014-53631-C2-2-P. SZ ac-
knowledges support by the National Science Foundation (USA) under grant PHY-1516509 and by the Jefferson
Science Associates, LLC under U.S. DOE Contract # DE-AC05- 06OR23177. SZ is also indebted to A. Sciarra
for all his help regarding the CL2QCD code. CL2QCD is a Lattice QCD application based on OpenCL, applica-
ble to CPUs and GPUs. Numerical computations have used resources of CINES and GENCI-IDRIS as well as
resources at the IN2P3 computing facility in Lyon

References

[1] A. Cucchieri, T. Mendes, PoS QCD-TNT09, 026 (2009), 1001.2584
[2] I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, Phys. Lett. B676, 69 (2009),
0901.0736

[3] O. Oliveira, P. Silva, PoS LAT2009, 226 (2009), 0910.2897
[4] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, J. Rodriguez-Quintero, Phys. Rev. D86, 074512

(2012), 1208.0795
[5] A.G. Duarte, O. Oliveira, P.J. Silva, Phys. Rev. D94, 014502 (2016), 1605.00594
[6] P. Boucaud, F. De Soto, J. Rodríguez-Quintero, S. Zafeiropoulos (2017), 1704.02053
[7] A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D78, 025010 (2008), 0802.1870
[8] P. Boucaud et al., JHEP 06, 099 (2008), 0803.2161
[9] C.S. Fischer, A. Maas, J.M. Pawlowski, Annals Phys. 324, 2408 (2009), 0810.1987

[10] D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel, H. Verschelde, Phys. Rev. D78, 065047
(2008), 0806.4348

[11] K.I. Kondo, Phys.Rev. D84, 061702 (2011), 1103.3829
[12] A.P. Szczepaniak, H.H. Matevosyan, Phys. Rev. D81, 094007 (2010), 1003.1901
[13] P. Watson, H. Reinhardt, Phys.Rev. D82, 125010 (2010), 1007.2583
[14] P. Maris, C.D. Roberts, Int.J.Mod.Phys. E12, 297 (2003), nucl-th/0301049
[15] L. Chang, C.D. Roberts, P.C. Tandy, Chin.J.Phys. 49, 955 (2011), 1107.4003
[16] S.x. Qin, L. Chang, Y.x. Liu, C.D. Roberts, D.J. Wilson, Phys. Rev. C85, 035202 (2012),

1109.3459

[17] G. Eichmann, Prog. Part. Nucl. Phys. 67, 234 (2012)
[18] I.C. Cloet, C.D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014), 1310.2651
[19] D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys.Lett. B742, 183 (2015), 1412.4782
[20] A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassiliou, J. Rodriguez-Quintero,

S. Zafeiropoulos, Phys. Lett. B761, 444 (2016), 1607.01278

7

EPJ Web of Conferences 175, 12012 (2018)	 https://doi.org/10.1051/epjconf/201817512012
Lattice 2017



[21] J. Rodríguez-Quintero, A. Athenodorou, D. Binosi, P. Boucaud, F. de Soto, J. Papavassiliou,
S. Zafeiropoulos, EPJ Web Conf. 137, 03018 (2017)

[22] P. Boucaud, F. De Soto, J. Rodríguez-Quintero, S. Zafeiropoulos, Phys. Rev. D95, 114503
(2017), 1701.07390

[23] B. Alles, D. Henty, H. Panagopoulos, C. Parrinello, C. Pittori et al., Nucl.Phys. B502, 325
(1997), hep-lat/9605033

[24] P. Boucaud, J. Leroy, J. Micheli, O. Pène, C. Roiesnel, JHEP 9810, 017 (1998),
hep-ph/9810322

[25] P. Boucaud, F. De Soto, A. Le Yaouanc, J.P. Leroy, J. Micheli, H. Moutarde, O. Pene,
J. Rodriguez-Quintero, JHEP 04, 005 (2003), hep-ph/0212192

[26] A.C. Aguilar, D. Binosi, D. Ibañez, J. Papavassiliou, Phys. Rev. D89, 085008 (2014),
1312.1212

[27] A. Blum, M.Q. Huber, M. Mitter, L. von Smekal, Phys.Rev. D89, 061703 (2014), 1401.0713
[28] G. Eichmann, R. Williams, R. Alkofer, M. Vujinovic, Phys.Rev. D89, 105014 (2014),

1402.1365

[29] A.K. Cyrol, L. Fister, M. Mitter, J.M. Pawlowski, N. Strodthoff (2016), 1605.01856
[30] D. Binosi, D. Ibañez, J. Papavassiliou, JHEP 1409, 059 (2014), 1407.3677
[31] A.K. Cyrol, M.Q. Huber, L. von Smekal, Eur. Phys. J. C75, 102 (2015), 1408.5409
[32] C.T. Figueiredo, A.C. Aguilar, Effects of divergent ghost loops in the presence of dynamical

quarks, http://sites.ifi.unicamp.br/qcd-tnt4/files/2015/08/figueiredo.pdf (2015)
[33] P.A. Grassi, T. Hurth, M. Steinhauser, Annals Phys. 288, 197 (2001), hep-ph/9907426
[34] D. Binosi, J. Papavassiliou, Phys. Rev. D66, 111901(R) (2002), hep-ph/0208189
[35] D. Binosi, J. Papavassiliou, Phys. Rept. 479, 1 (2009), 0909.2536
[36] A. Athenodorou, P. Boucaud, F. De Soto, J. Rodríguez-Quintero, S. Zafeiropoulos, Phys. Lett.

B760, 354 (2016), 1604.08887
[37] P. Boucaud, M. Gomez, J. Leroy, A. Le Yaouanc, J. Micheli et al., Phys.Rev. D82, 054007

(2010), 1004.4135
[38] J. Rodriguez-Quintero, Phys.Rev. D83, 097501 (2011), 1103.0924
[39] D. Binosi, C.D. Roberts, J. Rodriguez-Quintero (2016), 1611.03523
[40] R. Williams, C.S. Fischer, W. Heupel, Phys. Rev. D93, 034026 (2016), 1512.00455

8

EPJ Web of Conferences 175, 12012 (2018)	 https://doi.org/10.1051/epjconf/201817512012
Lattice 2017


