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From Tools to Theories: A Heuristic of Discovery in Cognitive Psychology
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The study of scientific discovery—where do new ideas come from?—has long been denigrated by
philosophers as irrelevant to analyzing the growth of scientific knowledge. In particular, little is
known about how cognitive theories are discovered, and neither the classical accounts of discovery
as either probabilistic induction (e.g., Reichenbach, 1938) or lucky guesses (e.g., Popper, 1959), nor
the stock anecdotes about sudden "eureka" moments deepen the insight into discovery. A heuristics
approach is taken in this review, where heuristics are understood as strategies of discovery less
general than a supposed unique logic of discovery but more general than lucky guesses. This article
deals with how scientists' tools shape theories of mind, in particular with how methods of statisti-
cal inference have turned into metaphors of mind. The tools-to-theories heuristic explains the
emergence of a broad range of cognitive theories, from the cognitive revolution of the 1960s up to
the present, and it can be used to detect both limitations and new lines of development in current
cognitive theories that investigate the mind as an "intuitive statistician."

Scientific inquiry can be viewed as "an ocean, continuous
everywhere and without a break or division" (Leibniz, 1690/
1951, p. 73). Hans Reichenbach (1938) nonetheless divided this
ocean into two great seas, the context of discovery and the
context of justification. Philosophers, logicians, and mathemat-
icians claimed justification as a part of their territory and dis-
missed the context of discovery as none of their business, or
even as "irrelevant to the logical analysis of scientific knowl-
edge" (Popper, 1959, p. 31). Their sun shines over one part of
the ocean and has been enlightening about matters of justifica-
tion, but the other part of the ocean still remains in a mystical
darkness where imagination and intuition reign, or so it is
claimed. Popper, Braithwaite, and others ceded the dark part of
the ocean to psychology and, perhaps, sociology, but few psy-
chologists have fished in these waters. Most did not dare or
care.

The discovery versus justification distinction has oversimpli-
fied the understanding of scientific inquiry. For instance, in the
recent debate over whether the context of discovery is relevant
to understanding science, both sides in the controversy have
construed the question as whether the earlier stage of discovery
should be added to the later justification stage (Nickles, 1980).
Conceiving the two-context distinction as a temporal distinc-
tion (first discovery, then justification), however, can be mis-
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leading because justification procedures (checking and testing)
and discovery processes (having new ideas) take place during all
temporal stages of inquiry. In fact, the original distinction
drawn by Reichenbach in 1938 did not include this temporal
simplification; his was not even a strict dichotomy (see Curd,
1980). I believe that the prevailing interpretation of the two
contexts as conceptually distinct events that are in one and only
one temporal sequence has misled many into trying to under-
stand discovery without taking account of justification.

In this article, I argue that discovery can be understood by
heuristics (not a logic) of discovery. I propose a heuristic of
discovery that makes use of methods of justification, thereby
attempting to bridge the artificial distinction between the two.
Furthermore, I attempt to demonstrate that this discovery
heuristic may be of interest not only for an a posteriori under-
standing of theory development, but also for understanding
limitations of present-day theories and research programs and
for the further development of alternatives and new possibili-
ties. The discovery heuristic that I call the tools-to-theories
heuristic (see Gigerenzer & Murray, 1987) postulates a close
connection between the light and the dark parts of Leibniz's
ocean: Scientists' tools for justification provide the metaphors
and concepts for their theories.

The power of tools to shape, or even to become, theoretical
concepts is an issue largely ignored in both the history and
philosophy of science. Inductivist accounts of discovery, from
Bacon to Reichenbach and the Vienna School, focus on the role
of data but do not consider how the data are generated or pro-
cessed. Nor do the numerous anecdotes about discoveries—
Newton watching an apple fall in his mother's orchard while
pondering the mystery of gravitation; Gallon taking shelter
from a rainstorm during a country outing when discovering
correlation and regression toward mediocrity; and the stories
about Fechner, Kekule, Poincare, and others, which link discov-
ery to beds, bicycles, and bathrooms. What unites these anec-
dotes is the focus on the vivid but prosaic circumstances; they
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report the setting in which a discovery occurs, rather than ana-
lyzing the process of discovery.

The question Is there a logic of discovery? and Popper's
(1959) conjecture that there is none have misled many into as-
suming that the issue is whether there exists a logic of discovery
or only idiosyncratic personal and accidental reasons that ex-
plain the "flash of insight" of a particular scientist (Nickles,
1980). I do not think that formal logic and individual personal-
ity are the only alternatives, nor do I believe that either of these
is a central issue for understanding discovery.

The process of discovery can be shown, according to my
argument, to possess more structure than thunderbolt guesses
but less definite structure than a monolithic logic of discovery,
of the sort Hanson (1958) searched for, or a general inductive
hypothesis-generation logic (e.g., Reichenbach, 1938). The pres-
ent approach lies between these two extremes; it looks for struc-
ture beyond the insight of a genius but does not claim that the
tools-to-theories heuristic is (or should be) the only account of
scientific discovery. The tools-to-theories heuristic applies nei-
ther to all theories in science nor to all cognitive theories; it
applies to a specific group of cognitive theories developed dur-
ing the last three or four decades, after the so-called cognitive
revolution.

Nevertheless, similar heuristics have promoted discovery in
physics, physiology, and other areas. For instance, it has been
argued that once the mechanical clock became the indispens-
able tool for astronomical research, the universe itself came to
be understood as a kind of mechanical clock, and God as a
divine watchmaker. Lenoir (1986) showed how Faraday's in-
struments for recording electric currents shaped the under-
standing of electrophysiological processes by promoting con-
cepts such as "muscle current" and "nerve current."

Thus, this discovery heuristic boasts some generality both
within cognitive psychology and within science, but this general-
ity is not unrestricted. Because there has been little research in
how tools of justification influence theory development, the
tools-to-theories heuristic may be more broadly applicable
than I am able to show in this article. If my view of heuristics of
discovery as a heterogeneous bundle of search strategies is
correct, however, this implies that generalizability is, in princi-
ple, bounded.

What follows has been inspired by Herbert Simon's notion of
heuristics of discovery but goes beyond his attempt to model
discovery with programs such as BACON that attempt to in-
duce scientific laws from data (discussed later). My focus is on
the role of the tools that process and produce data, not the data
themselves, in the discovery and acceptance of theories.

How Methods of Justification Shape
Theoretical Concepts

My general thesis is twofold: (a) Scientific tools (both meth-
ods and instruments) suggest new theoretical metaphors and
theoretical concepts once they are entrenched in scientific prac-
tice, (b) Familiarity with the tools within a scientific community
also lays the foundation for the general acceptance of the theo-
retical concepts and metaphors inspired by the tools.

By tools I mean both analytical and physical methods that are
used to evaluate given theories. Analytical tools can be either

empirical or nonempirical. Examples of analytical methods of
the empirical kind are tools for data processing, such as statis-
tics; examples of the nonempirical kind are normative criteria
for the evaluation of hypotheses, such as logical consistency.
Examples of physical tools of justification are measurement
instruments, such as clocks. In this article, I focus on analytical
rather than physical tools of justification, and among these, on
techniques of statistical inference and hypothesis testing. My
topic is theories of mind and how social scientists discovered
them after the emergence of new tools for data analysis, rather
than of new data.

In this context, the tools-to-theories heuristic consists in the
discovery of new theories by changing the conception of the
mind through the analogy of the statistical tool. The result can
vary in depth from opening new general perspectives, albeit
mainly metaphorical, to sharp discontinuity in specific cogni-
tive theories caused by the direct transfer of scientists' tools into
theories of mind.

A brief history follows. In American psychology, the study of
cognitive processes was suppressed in the early 20th century by
the allied forces of operationalism and behaviorism. The opera-
tionalism and the inductivism of the Vienna School, as well as
the replacement of the Wundtian experiment by experimenta-
tion with treatment groups (Danziger, 1990), paved the way for
the institutionalization of inferential statistics in American ex-
perimental psychology between 1940 and 1955 (Gigerenzer,
1987a; Toulmin & Leary, 1985). In experimental psychology,
inferential statistics became almost synonymous with scientific
method. Inferential statistics, in turn, provided a large part of
the new concepts for mental processes that have fueled the so-
called cognitive revolution since the 1960s. Theories of cogni-
tion were cleansed of terms such as restructuring and insight,
and the new mind has come to be portrayed as drawing random
samples from nervous fibers, computing probabilities, calculat-
ing analyses of variance (ANOVA), setting decision criteria, and
performing utility analyses.

After the institutionalization of inferential statistics, a broad
range of cognitive processes, conscious and unconscious, ele-
mentary and complex, were reinterpreted as involving "intu-
itive statistics." For instance, Tanner and Swets (1954) assumed
in their theory of signal detectability that the mind "decides"
whether there is a stimulus or only noise, just as a statistician of
the Neyman-Pearson school decides between two hypotheses.
In his causal attribution theory, Harold H. Kelley (1967) postu-
lated that the mind attributes a cause to an effect in the same
way as behavioral scientists have come to do, namely by per-
forming an ANOVA and testing null hypotheses. These two
influential theories show the breadth of the new conception of
the "mind as an intuitive statistician" (Gigerenzer, 1988; Giger-
enzer & Murray, 1987). They also exemplify cognitive theories
that were suggested not by new data, but by new tools of data
analysis.

In what follows, I present evidence for three points. First, the
discovery of theories based on the conception of the mind as an
intuitive statistician caused discontinuity in theory rather than
being merely a new, fashionable language: It radically changed
the kind of phenomena reported, the kind of explanations
looked for, and even the kind of data that were generated. This
first point illustrates the profound power of the tools-to-theor-
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ies heuristic to generate quite innovative theories. Second, I
provide evidence for the "blindness" or inability of researchers
to discover and accept the conception of the mind as an intu-
itive statistician before they became familiar with inferential
statistics as part of their daily routine. The discontinuity in
cognitive theory is closely linked to the preceding discontinuity
in method, that is, to the institutionalization of inferential sta-
tistics in psychology. Third, I show how the tools-to-theories
heuristic can help to define the limits and possibilities of
current cognitive theories that investigate the mind as an intu-
itive statistician.

Discontinuity in Cognitive Theory Development

What has been called the "cognitive revolution" (Gardner,
1985) is more than the overthrow of behaviorism by mentalist
concepts. These concepts have been continuously part of scien-
tific psychology since its emergence in the late 19th century,
even coexisting with American behaviorism during its heyday
(Lovie, 1983). The cognitive revolution did more than revive the
mental; it has changed what the mental means, often dra-
matically. One source of this change is the tools-to-
theories heuristic, with its new analogy of the mind as an intu-
itive statistician. To show the discontinuity within cognitive the-
ories, I briefly discuss two areas in which an entire statistical
technique, not only a few statistical concepts, became a model
of mental processes: (a) stimulus detection and discrimination
and (b) causal attribution.

What intensity must a 440-Hz tone have to be perceived?
How much heavier than a standard stimulus of 100 g must a
comparison stimulus be in order for a perceiver to notice a
difference? How can the elementary cognitive processes in-
volved in those tasks, known today as stimulus detection and
stimulus discrimination, be explained? Since Herbart (1834),
such processes have been explained by using a threshold meta-
phor: Detection occurs only if the effect an object has on the
nervous system exceeds an absolute threshold, and discrimina-
tion between two objects occurs if the excitation from one ex-
ceeds that from another by an amount greater than a differen-
tial threshold. E. H. Weber and G. T. Fechner's laws refer to the
concept of fixed thresholds; Titchener (1896) saw in differential
thresholds the long sought-after elements of mind (he counted
approximately 44,000); and classic textbooks, such as Brown
and Thomson's (1921) and Guilford's (1954), document meth-
ods and research.

Around 1955, the psychophysics of absolute and differential
thresholds was revolutionized by the new analogy between the
mind and the statistician. W P. Tanner and others proposed a
"theory of signal detectability" (TSD), which assumes that the
Neyman-Pearson technique of hypothesis testing describes the
processes involved in detection and discrimination. Recall that
in Neyman-Pearson statistics, two sampling distributions (hy-
potheses H and H,) and a decision criterion (which is a likeli-
hood ratio) are defined, and then the data observed are trans-
formed into a likelihood ratio and compared with the decision
criterion. Depending on which side of the criterion the data fall,
the decision "reject H, and accept //," or "accept /^ and reject
H" is made. In straight analogy, TSD assumes that the mind
calculates two sampling distributions for noise and signal plus

noise (in the detection situation) and sets a decision criterion
after weighing the cost of the two possible decision errors (Type
I and Type II errors in Neyman-Pearson theory, now called
false alarms and misses). The sensory input is transduced into a
form that allows the brain to calculate its likelihood ratio, and
depending on whether this ratio is smaller or larger than the
criterion, the subject says "no, there is no signal" or "yes, there is
a signal." Tanner (1965) explicitly referred to his new model of
the mind as a "Neyman-Pearson" detector, and, in unpublished
work, his flowcharts included a drawing of a homunculus statis-
tician performing the unconscious statistics in the brain (Gi-
gerenzer & Murray, 1987, pp. 49-53).

The new analogy between mind and statistician replaced the
century-old concept of a fixed threshold by the twin notions of
observer's attitudes and observer's sensitivity. Just as Neyman-
Pearson technique distinguishes between a subjective part (e.g.,
selection of a criterion dependent on cost-benefit consider-
ations) and a mathematical part, detection and discrimination
became understood as involving both subjective processes,
such as attitudes and cost-benefit considerations, and sensory
processes. Swets, Tanner, and Birdsall (1964, p. 52) considered
this link between attitudes and sensory processes to be the
main thrust of their theory. The analogy between technique
and mind made new research questions thinkable, such as How
can the mind's decision criterion be manipulated? A new kind
of data even emerged: Two types of error were generated in the
experiments, false alarms and misses, just as the statistical
theory distinguishes two types of error.

As far as I can tell, the idea of generating these two kinds of
data was not common before the institutionalization of inferen-
tial statistics. The discovery of TSD was not motivated by new
data; rather, the new theory motivated a new kind of data. In
fact, in their seminal article, Tanner and Swets (1954, p. 401)
explicitly admitted that their theory "appears to be inconsistent
with the large quantity of existing data on this subject" and
proceeded to criticize the "form of these data."

The Neyman-Pearsonian technique of hypothesis testing was
subsequently transformed into a theory of a broad range of
cognitive processes, ranging from recognition in memory (e.g.,
Murdock, 1982; Wickelgren & Norman, 1966) to eyewitness
testimony (e.g., Birnbaum, 1983) to discrimination between
random and nonrandom patterns (e.g., Lopes, 1982).

My second example concerns theories of causal reasoning. In
Europe, Albert Michotte (1946/1963), Jean Piaget (1930), the
gestalt psychologists, and others had investigated how certain
temporospatial relationships between two or more visual ob-
jects, such as moving dots, produced phenomenal causality. For
instance, the subjects were made to perceive that one dot
launches, pushes, or chases another. After the institutionaliza-
tion of inferential statistics, Harold H. Kelley (1967) proposed
in his "attribution theory" that the long sought laws of causal
reasoning are in fact the tools of the behavioral scientist: R. A.
Fisher's ANOVA. Just as the experimenter has come to infer a
causal relationship between two variables from calculating an
ANOVA and performing an F test, the person-in-the-street
infers the cause of an effect by unconsciously doing the same
calculations. By the time Kelley discovered the new metaphor
for causal inference, about 70% of all experimental articles al-
ready used ANOVA (Edgington, 1974).
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The theory was accepted quickly in social psychology; Kelley
and Michaela (1980) reported there were more than 900 refer-
ences in one decade. The vision of the Fisherian mind radically
changed the understanding of causal reasoning, the problems
posed to the subjects, and the explanations looked for. I list a
few discontinuities that reveal the "fingerprints" of the tool, (a)
ANOVA needs repetitions or numbers as data in order to esti-
mate variances and covariances. Consequently, the information
presented to the subjects in studies of causal attribution con-
sists of information about the frequency of events (e.g.,
McArthur, 1972), which played no role in either Michotte's or
Piaget's work, (b) Whereas Michotte's work still reflects the
broad Aristotelian conception of four causes (see Gavin, 1972),
and Piaget (1930) distinguished 17 kinds of causality in chil-
dren's minds, the Fisherian mind concentrates on the one kind
of causes for which ANOVA is used as a tool (similar to Aristo-
tle's "material cause"), (c) In Michotte's view, causal perception
is direct and spontaneous and needs no inference, as a conse-
quence of largely innate laws that determine the organization of
the perceptual field. ANOVA, in contrast, is used in psychology
as a technique for inductive inferences from data to hypotheses,
and the focus in Kelley's attribution theory is consequently on
the data-driven, inductive side of causal perception.

The latter point illustrates that the specific use of a tool, that
is, its practical context rather than its mathematical structure,
can also shape theoretical conceptions of mind. To elaborate on
this point, assume that Harold Kelley had lived one and a half
centuries earlier than he did. In the early 19th century, signifi-
cance tests (similar to those in ANOVA) were already being
used by astronomers (Swijtink, 1987), but they used their tests
to reject data, so-called outliers, and not to reject hypotheses. At
least provisionally, the astronomers assumed that the theory
was correct and mistrusted the data, whereas the ANOVA
mind, following the current statistical textbooks, assumes the
data to be correct and mistrusts the theories. So, to a 19th-cen-
tury Kelley, the mind's causal attribution would have seemed
expectation driven rather than data driven: The statistician ho-
munculus in the mind would have tested the data and not the
hypothesis.

As is well documented, most of causal attribution research
after Kelley took the theoretical stand that attribution is a "lay
version of experimental design and analysis" (Jones & McGillis,
1976, p. 411), and elaboration of the theory was in part con-
cerned with the kind of intuitive statistics in the brain. For
instance, Ajzen and Fishbein (1975) argued that the homuncu-
lus statistician is Bayesian rather than Fisherian.

These two areas—detection and discrimination, and causal
reasoning—may be sufficient to illustrate some of the funda-
mental innovations in the explanatory framework, in the re-
search questions posed, and in the kind of data generated. The
spectrum of theories that model cognition after statistical infer-
ence ranges from auditive and visual perception to recognition
in memory and from speech perception to thinking and rea-
soning. It reaches from the elementary, physiological end to the
global, conscious end of the continuum called cognitive. I give
one example for each end. (a) Luce (1977) viewed the central
nervous system (CNS) as a statistician who draws a random
sample from all activated fibers, estimates parameters of the
pulse rate, aggregates this estimate into a single number, and

uses a decision criterion to arrive at the final perception. This
conception has led to new and interesting questions; for in-
stance, How does the CNS aggregate numbers? and What is the
shape of the internal distributions? (b) The 18th-century mathe-
maticians Laplace and Condorcet used their "probability of
causes" to model how scientists reason (Daston, 1988). Re-
cently, Massaro (1987) proposed the same statistical formula as
an algorithm of pattern recognition, as "a general algorithm,
regardless of the modality and particular nature of the pat-
terns" (p. 16).

The degree to which cognitive theories were shaped by the
statistical tool varies from theory to theory. On the one hand,
there is largely metaphorical use of statistical inference. An
example is Gregory's (1974) hypothesis-testing view of percep-
tion, in which he reconceptualized Helmholtz's "unconscious
inferences" as Fisherian significance testing: "We may account
for the stability of perceptual forms by suggesting that there is
something akin to statistical significance which must be ex-
ceeded by the rival interpretation and the rival hypothesis be-
fore they are allowed to supersede the present perceptual hy-
pothesis" (p. 528). In his theory of how perception works, Greg-
ory also explained other perceptual phenomena, using
Bayesian and Neyman-Pearsonian statistics as analogies, thus
reflecting the actual heterogeneous practice in the social
sciences (Gigerenzer & Murray, 1987). Here, a new perspective,
but no quantitative model, is generated. On the other hand,
there are cognitive theories that propose quantitative models of
statistical inference that profoundly transform qualitative con-
cepts and research practice. Examples are the various TSDs of
cognition mentioned earlier and the recent theory of adaptive
memory as statistical optimization by Anderson and Milson
(1989).

To summarize: The tools-to-theories heuristic can account
for the discovery and acceptance of a group of cognitive the-
ories in apparently unrelated subfields of psychology, all of
them sharing the view that cognitive processes can be modeled
by statistical hypothesis testing. Among these are several highly
innovative and influential theories that have radically changed
psychologists' understanding of what cognitive means.

Before the Institutionali/ation of Inferential Statistics

There is an important test case for the present hypotheses (a)
that familiarity with the statistical tool is crucial to the discov-
ery of corresponding theories of mind and (b) that the institu-
tionalization of the tool within a scientific community is crucial
for the broad acceptance of those theories. That test case is the
era before the institutionalization of inferential statistics. The-
ories that conceive of the mind as an intuitive statistician should
have a very small likelihood of being discovered and even less
likelihood of being accepted. The two strongest tests are cases
where (a) someone proposed a similar conceptual analogy and
(b) someone proposed a similar probabilistic (formal) model.
The chances of theories of the first kind being accepted should
be small, and the chances of a probabilistic model being inter-
preted as "intuitive statistics" should be similarly small. I know
of only one case each, which I analyze after defining first what I
mean by the phrase "institutionalization of inferential statis-
tics."
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Statistical inference has been known for a long time but not
used as theories of mind. In 1710, John Arbuthnot proved the
existence of God using a kind of significance test; as mentioned
earlier, astronomers used significance tests in the 19th century;
G. T. Fechner's (1897) statistical text Kollektivmasslehre in-
cluded tests of hypotheses; W S. Gosset (using the pseudonym
Student) published the t test in 1908; and Fisher's significance
testing techniques, such as ANOYA, as well as Neyman-Pear-
sonian hypothesis-testing methods have been available since
the 1920s (see Gigerenzer et al., 1989). Hayes's theorem has been
known since 1763. Nonetheless, there was little interest in these
techniques in experimental psychology before 1940 (Rucci &
Tweney, 1980).

The statisticians' conquest of new territory in psychology
started in the 1940s. By 1942, Maurice Kendall could comment
on the statisticians' expansion: "They have already overrun
every branch of science with a rapidity of conquest rivalled only
by Attila, Mohammed, and the Colorado beetle" (p. 69). By the
early 1950s, half of the psychology departments in leading
American universities offered courses on Fisherian methods
and had made inferential statistics a graduate program require-
ment. By 1955, more than 80% of the experimental articles in
leading journals used inferential statistics to justify conclu-
sions from the data (Sterling, 1959). Editors of major journals
made significance testing a requirement for articles submitted
and used the level of significance as a yardstick for evaluating
the quality of an article (e.g., Melton, 1962).

I therefore use 1955 as a rough date for the institutionaliza-
tion of the tool in curricula, textbooks, and editorials. What
became institutionalized as the logic of statistical inference was
a mixture of ideas from two opposing camps, those of R. A.
Fisher on the one hand, and Jerzy Neyman and Egon S. Pear-
son (the son of Karl Pearson) on the other (Gigerenzer &
Murray, 1987, chap. 1).

Discovery and Rejection of the Analogy

The analogy between the mind and the statistician was first
proposed before the institutionalization of inferential statistics,
in the early 1940s, by Egon Brunswik at Berkeley (e.g., Bruns-
wik, 1943). As Leary (1987) has shown, Brunswik's probabilis-
tic functionalism was based on a very unusual blending of scien-
tific traditions, including the probabilistic world view of Hans
Reichenbach and members of the Vienna School and Karl
Pearson's correlational statistics.

The important point here is that in the late 1930s, Brunswik
changed his techniques for measuring perceptual constancies,
from calculating (nonstatistical) "Brunswik ratios" to calculat-
ing Pearson correlations, such as functional and ecological va-
lidities. In the 1940s, he also began to think of the organism as
"an intuitive statistician," but it took him several years to spell
out the analogy in a clear and consistent way (Gigerenzer,
1987b).

The analogy is this: The perceptual system infers its environ-
ment from uncertain cues by (unconsciously) calculating corre-
lation and regression statistics, just as the Brunswikian re-
searcher does when (consciously) calculating the degree of adap-
tation of a perceptual system to a given environment.
Brunswik's intuitive statistician was a statistician of the Karl

Pearson school, like the Brunswikian researcher. Brunswik's
intuitive statistician was not well adapted to the psychological
science of the time, however, and the analogy was poorly under-
stood and generally rejected (Leary, 1987).

Brunswik's analogy came too early to be understood and
accepted by his colleagues of the experimental community; it
came before the institutionalization of statistics as the indis-
pensable method of scientific inference, and it came with the
"wrong" statistical model, correlational statistics. Correlation
was an indispensable method not in experimental psychology,
but rather in its rival discipline, known as the Galton-Pearson
program, or, as Lee Cronbach (1957) put it, the "Holy Roman
Empire" of "correlational psychology" (p. 671).

The schism between the two scientific communities had
been repeatedly taken up in presidential addresses before the
American Psychological Association (Cronbach, 1957; Da-
shiell, 1939) and had deeply affected the values and the mutual
esteem of psychologists (Thorndike, 1954). Brunswik could not
persuade his colleagues from the experimental community to
consider the statistical tool of the competing community as a
model of how the mind works. Ernest Hilgard (1955), in his
rejection of Brunswik's perspective, did not mince words:
"Correlation is an instrument of the devil" (p. 228).

Brunswik, who coined the metaphor of "man as intuitive
statistician," did not survive to see the success of his analogy. It
was accepted only after statistical inference became institution-
alized in experimental psychology and with the new institution-
alized tools rather than (Karl) Pearsonian statistics serving as
models of mind. Only in the mid-1960s, however, did interest
in Brunswikian models of mind emerge (e.g., Brehmer & Joyce,
1988; Hammond, Stewart, Brehmer, & Steinmann, 1975).

The tendency to accept the statistical tools of one's own scien-
tific community (here, the experimental psychologists) rather
than those of a competing community as models of mind is not
restricted to Brunswik's case. For example, Fritz Heider (1958,
pp. 123,297), whom Harold Kelley credited for having inspired
his ANOVA theory, had repeatedly suggested factor analysis—
another indispensable tool of the correlational discipline—as a
model of causal reasoning. Heider's proposal met with the same
neglect by the American experimental community as did
Brunswik's correlational model. Kelley replaced the statistical
tool that Heider suggested by ANOVA, the tool of the experi-
mental community. It seems to be more than a mere accident
that both Brunswik and Heider came from a similar, German-
speaking tradition, where no comparable division into two com-
munities with competing methodological imperatives existed
(Leary, 1987).

Probabilistic Models Without the Intuitive Statistician

My preceding point is that the statistical tool was accepted as
a plausible analogy of cognitive processes only after its institu-
tionalization in experimental psychology. My second point is
that although some probabilistic models of cognitive processes
were advanced before the institutionalization of inferential sta-
tistics, they were not interpreted using the metaphor of the
mind as intuitive statistician. The distinction I draw is between
probabilistic models that use the metaphor and ones that do
not. The latter kind is illustrated by models that use probability
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distributions for perceptual judgment, assuming that variabil-
ity is caused by lack of experimental control, measurement
error, or other factors that can be summarized as experi-
menter's ignorance. Ideally, if the experimenter had complete
control and knowledge (such as Laplace's demon), all probabilis-
tic terms could be eliminated from the theory. This does not
hold for a probabilistic model that is based on the metaphor.
Here, the probabilistic terms model the ignorance of the mind
rather than that of the experimenter. That is, they model how
the homunculus statistician in the brain comes to terms with a
fundamental uncertain world. Even if the experimenter had
complete knowledge, the theories would remain probabilistic
because it is the mind that is ignorant and needs statistics.

The key example is represented in L. L. Thurstone, who in
1927 formulated a model for perceptual judgment that was for-
mally equivalent to the present-day TSD. But neither Thurstone
nor his followers recognized the possibility of interpreting the
formal structure of their model in terms of the intuitive statisti-
cian. Like TSD, Thurstone's model had two overlapping nor-
mal distributions, which represented the internal values of two
stimuli and which specified the corresponding likelihood ra-
tios, but it never occurred to Thurstone to include in his model
the conscious activities of a statistician, such as the weighing of
the costs of the two errors and the setting of a decision criterion.
Thus, neither Thurstone nor his followers took the—with hind-
sight—small step to develop the "law of comparative judgment"
into TSD. When Duncan Luce (1977) reviewed Thurstone's
model 50 years later, he found it hard to believe that nothing in
Thurstone's writings showed the least awareness of this small
but crucial step. Thurstone's perceptual model remained a me-
chanical, albeit probabilistic, stimulus-response theory with-
out a homunculus statistician in the brain. The small concep-
tual step was never taken, and TSD entered psychology by an
independent route.

To summarize: There are several kinds of evidence for a close
link between the institutionalization of inferential statistics in
the 1950s and the subsequent broad acceptance of the metaphor
of the mind as an intuitive statistician: (a) the general failure to
accept, and even to understand, Brunswik's intuitive statisti-
cian before the institutionalization of the tool and (b) the case of
Thurstone, who proposed a probabilistic model that was for-
mally equivalent to one important present-day theory of intu-
itive statistics but was never interpreted in this way; the analogy
was not yet seen. Brunswik's case illustrates that tools may act
on two levels: First, new tools may suggest new cognitive the-
ories to a scientist. Second, the degree to which these tools are
institutionalized within the scientific community to which the
scientist belongs can prepare (or hinder) the acceptance of the
new theory. This close link between tools for justification on
the one hand and discovery and acceptance on the other reveals
the artificiality of the discovery-justification distinction. Dis-
covery does not come first and justification afterward. Discov-
ery is inspired by justification.

How Heuristics of Discovery May Help in
Understanding Limitations and Possibilities

of Current Research Programs
In this section I argue that the preceding analysis of discovery

is of interest not only for a psychology of scientific discovery

and creativity (e.g., Gardner, 1988; Gruber, 1981; Tweney, Doth-
erty, & Mynatt, 1981) but also for the evaluation and further
development of current cognitive theories. The general point is
that institutionalized tools like statistics do not come as pure
mathematical (or physical) systems, but with a practical context
attached. Features of this context in which a tool has been used
may be smuggled Trojan horse fashion into the new cognitive
theories and research programs. One example was mentioned
earlier: The formal tools of significance testing have been used
in psychology as tools for rejecting hypotheses, with the assump-
tion that the data are correct, whereas in other fields and at
other times the same tools were used as tools for rejecting data
(outliers), with the assumption that the hypotheses were correct.
The latter use of statistics is practically extinct in experimental
psychology (although the problem of outliers routinely
emerges), and therefore also absent in theories that liken cogni-
tive processes to significance testing. In cases like these, analy-
sis of discovery may help to reveal blind spots associated with
the tool and as a consequence, new possibilities for cognitive
theorizing.

I illustrate this potential in more detail using examples from
the "judgment under uncertainty" program of Daniel Kahne-
man, Amos Tversky, and others (see Kahneman, Slovic, &
Tversky, 1982). This stimulating research program emerged
from the earlier research on human information processing by
Ward Edwards and his coworkers. In Edwards's work, the dual
role of statistics as a tool and a model of mind is again evident:
Edwards, Lindman, and Savage (1963) proposed Bayesian sta-
tistics for scientific hypothesis evaluation and considered the
mind as a reasonably good, albeit conservative, Bayesian statisti-
cian (e.g., Edwards, 1966). The judgment-under-uncertainty
program that also investigates reasoning as intuitive statistics
but focuses on so-called errors in probabilistic reasoning. In
most of the theories based on the metaphor of the intuitive
statistician, statistics or probability theory is used both as nor-
mative and as descriptive of a cognitive process (e.g., both as the
optimal and the actual mechanism for speech perception and
human memory; see Massaro, 1987, and Anderson & Milson,
1989, respectively). This is not the case in the judgment-under-
uncertainty program; here, statistics and probability theory are
used only in the normative function, whereas actual human
reasoning has been described as "biased," "fallacious," or "inde-
fensible" (on the rhetoric, see Lopes, 1991).

In the following, I first point out three features of the practi-
cal use of the statistical tool (as opposed to the mathematics).
Then I show that these features reemerge in the judgment-
under-uncertainty program, resulting in severe limitations on
that program. Finally, I suggest how this hidden legacy of the
tool could be eliminated to provide new impulses and possibili-
ties for the research program.

The first feature is an assumption that can be called "There is
only one statistics." Textbooks on statistics for psychologists
(usually written by nonmathematicians) generally teach statisti-
cal inference as if there existed only one logic of inference. Since
the 1950s and 1960s, almost all texts teach a mishmash of R. A.
Fisher's ideas tangled with those of Jerzy Neyman and Egon S.
Pearson, but without acknowledgment. The fact that Fisherians
and Neyman-Pearsonians could never agree on a logic of statis-
tical inference is not mentioned in the textbooks, nor are the
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controversial issues that divide them. Even alternative statisti-
cal logics for scientific inference are rarely discussed (Giger-
enzer, 1987a). For instance, Fisher (1955) argued that concepts
like Type II error, power, the setting of a level of significance
before the experiment, and its interpretation as a long-run fre-
quency of errors in repeated experiments, are concepts inappro-
priate for scientific inference—at best they could be applied to
technology (his pejorative example was Stalin's). Neyman, for
his part, declared that some of Fisher's significance tests are
"worse than useless" (because their power is less than their size;
see Hacking, 1965, p. 99). I know of no textbook written by
psychologists for psychologists that mentions and explains this
and other controversies about the logic of inference. Instead,
readers are presented with an intellectually incoherent mix of
Fisherian and Neyman-Pearsonian ideas, but a mix presented
as a seamless, uncontroversial whole: the logic of scientific infer-
ence (for more details, see Gigerenzer et al., 1989, chap. 3 and 6;
Gigerenzer & Murray, 1987, chap. 1).

The second assumption that became associated with the tool
during its institutionalization is "There is only one meaning of
probability." For instance, Fisher and Neyman-Pearson had dif-
ferent interpretations of what a level of significance means.
Fisher's was an epistemic interpretation, that is, that the level of
significance indicates the confidence that can be placed in the
particular hypothesis under test, whereas Neyman's was a
strictly frequentist and behavioristic interpretation, which
claimed that a level of significance does not refer to a particular
hypothesis, but to the relative frequency of wrongly rejecting
the null hypothesis if it is true in the long run. Although the
textbooks teach both Fisherian and Neyman-Pearsonian ideas,
these alternative views of what a probability (such as a level of
significance) could mean are generally neglected—not to speak
of the many other meanings that have been proposed for the
formal concept of probability.

Third and last, the daily practice of psychologists assumes
that statistical inference can be applied mechanically without
checking the underlying assumptions of the model. The impor-
tance of checking whether the assumptions of a particular sta-
tistical model hold in a given application has been repeatedly
emphasized, particularly by statisticians. The general tendency
in psychological practice (and other social sciences) has been to
apply the test anyhow (Oakes, 1986), as a kind of ritual of justi-
fication required by journals, but poorly understood by authors
and readers alike (Sedlmeier & Gigerenzer, 1989).

These features of the practical context, in which the statisti-
cal tool has been used, reemerge at the theoretical level in
current cognitive psychology, just as the tools-to-theories heur-
istic would lead one to expect.

Example 1: There Is Only One Statistics, Which Is
Normative

Tversky and Kahneman (1974) described their judgment-
under-uncertainty program as a two-step procedure. First, sub-
jects are confronted with a reasoning problem, and their an-
swers are compared with the so-called normative or correct
answer, supplied by statistics and probability theory. Second,
the deviation between the subject's answer and the so-called

normative answer, also called a bias ofreasoning, is explained by
some heuristic ofreasoning.

One implicit assumption at the heart of this research pro-
gram says that statistical theory provides exactly one answer to
the real-world problems presented to the subjects. If this were
not true, the deviation between subjects' judgments and the
"normative" answer would be an inappropriate explanandum,
because there are as many different deviations as there are sta-
tistical answers. Consider the following problem:

A cab was involved in a hit-and-run accident at night. Two compa-
nies, the Green and the Blue, operate in the city. You are given the
following data:

(i) 85% of the cabs in the city are Green and 15% are Blue, (ii) A
witness identified the cab as a Blue cab. The court tested his ability
to identify cabs under the appropriate visibility conditions. When
presented with a sample of cabs (half of which were Blue and half
of which were Green), the witness made correct identifications in
80% of the cases and erred in 20% of the cases.

Question: What is the probability that the cab involved in the
accident was Blue rather than Green? (Tversky & Kahneman,
1980, p. 62)

The authors inserted the values specified in this problem into
Hayes's formula and calculated a probability of .41 as the
"correct" answer; and, despite criticism, they have never re-
treated from that claim. They saw in the difference between this
value and the subjects' median answer of .80 an instance of a
reasoning error, known as neglect of base rates. But alternative
statistical solutions to the problem exist.

Tversky and Kahneman's reasoning is based on one among
many possible Bayesian views—which the statistician I. J.
Good (1971), not all too seriously, once counted up to 46,656.
For instance, using the classical principle of indifference to
determine the Bayesian prior probabilities can be as defensible
as Tversky and Kahneman's use of base rates of "cabs in the
city" for the relevant priors, but it leads to a probability of .80
instead of .41 (Levi, 1983). Or, if Neyman-Pearson theory is
applied to the cab problem, solutions range between .28 and
.82, depending on the psychological theory about the witness's
criterion shift—the shift from witness testimony at the time of
the accident to witness testimony at the time of the court's test
(Birnbaum, 1983; Gigerenzer & Murray, 1987, pp. 167-174).

There may be more arguable answers to the cab problem,
depending on what statistical or philosophical theory of infer-
ence one uses. Indeed, the range of possible statistical solutions
is about the range of subjects' actual answers. The point is that
none of these statistical solutions is the only correct answer to
the problem, and therefore it makes little sense to use the devia-
tion between a subject's judgment and one of these statistical
answers as the psychological explanandum.

Statistics is an indispensable tool for scientific inference, but,
as Neyman and Pearson (1928, p. 176) pointed out, in "many
cases there is probably no single best method of solution."
Rather, several such theories are legitimate, just as "Euclidean
and non-Euclidean geometries are equally legitimate" (Ney-
man, 1937, p. 336). My point is this: The idee fixe that statistics
speaks with one voice has reappeared in research on intuitive
statistics. The highly interesting judgment-under-uncertainty
program could progress beyond the present point if (a) subjects'
judgments rather than deviations between judgments and a so-
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called normative solution are considered as the data to be ex-
plained and if (b) various statistical models are proposed as
competing hypotheses of problem-solving strategies rather than
one model being proposed as the general norm for rational
reasoning. The willingness of many researchers to accept the
claim that statistics speaks with one voice is the legacy of the
institutionalized tool, not of statistics per se.

Note the resulting double standard: Many researchers on intu-
itive statistics argue that their subjects should draw inferences
from data to hypotheses by using Bayes's formula, although
they themselves do not. Rather, the researchers use the institu-
tionalized mixture of Fisherian and Neyman-Pearsonian statis-
tics to draw their inferences from data to hypotheses.

Example 2: There Is Only One Interpretation of
Probability

Just as there are alternative logics of inference, there are alter-
native interpretations of probability that have been part of the
mathematical theory since its inception in the mid-17th cen-
tury (Daston, 1988; Hacking, 1975). Again, both the institution-
alized tool and the recent cognitive research on probabilistic
reasoning exhibit the same blind spot concerning the existence
of alternative interpretations of probability. For instance, Lich-
tenstein, Fischhoff, and Phillips (1982) have reported and sum-
marized research on a phenomenon called overconfidence.
Briefly, subjects were given questions such as "Absinthe is (a) a
precious stone or (b) a liqueur"; they chose what they believed
was the correct answer and then were asked for a confidence
rating in their answer, for example, 90% certain. When people
said they were 100% certain about individual answers, they had
in the long run only about 80% correct answers; when they were
90% certain, they had in the long run only 75% correct answers;
and so on. This discrepancy was called overconfidence bias and
was explained by general heuristics in memory search, such as
confirmation biases, or general motivational tendencies, such
as a so-called illusion of validity.

My point is that two different interpretations of probability
are compared: degrees of belief in single events (i.e., that this
answer is correct) and relative frequencies of correct answers in
the long run. Although 18th-century mathematicians, like
many of today's cognitive psychologists, would have had no
problem in equating the two, most mathematicians and philoso-
phers since then have. For instance, according to the frequentist
point of view, the term probability, when it refers to a single
event, "has no meaning at all" (Mises, 1957, p. 11) because
probability theory is about relative frequencies in the long run.
Thus, for a frequentist, probability theory does not apply to
single-event confidences, and therefore no confidence judg-
ment can violate probability theory. To call a discrepancy be-
tween confidence and relative frequency a bias in probabilistic
reasoning would mean comparing apples and oranges. More-
over, even subjectivists would not generally think of a discrep-
ancy between confidence and relative frequency as a bias (see
Kadane & Lichtenstein, 1982, for a discussion of conditions).
For a subjectivist such as Bruno de Finetti, probability is about
single events, but rationality is identified with the internal con-
sistency of probability judgments. As de Finetti (1931 /1989, p.
174) emphasized: "However an individual evaluates the proba-

bility of a particular event, no experience can prove him right,
or wrong; nor in general, could any conceivable criterion give
any objective sense to the distinction one would like to draw,
here, between right and wrong."

Nonetheless, the literature on overconfidence is largely silent
on even the possibility of this conceptual problem (but see
Keren, 1987). The question about research strategy is whether
to use the deviation between degrees of belief and relative fre-
quencies (again considered as a bias) as the explanandum or to
accept the existence of several meanings of probability and to
investigate the kind of conceptual distinctions that untutored
subjects make. Almost all research has been done within the
former research strategy. And, indeed, if the issue were a gen-
eral tendency to overestimate one's knowledge, as the term over-
confidence suggests—for instance, as a result of general strate-
gies of memory search or motivational tendencies—then ask-
ing the subject for degrees of belief or for frequencies should not
matter.

But it does. In a series of experiments (Gigerenzer, Hoffrage,
& KleinbOlting, in press; see also May, 1987) subjects were given
several hundred questions of the absinthe type and were asked
for confidence judgments after every question was answered (as
usual). In addition, after each 50 (or 10,5, and 2) questions, the
subjects were asked how many of those questions they believed
they had answered correctly; that is, frequency judgments were
requested. This design allowed comparison both between their
confidence in their individual answers and true relative fre-
quencies of correct answers, and between judgments of relative
frequencies and true relative frequencies. Comparing frequency
judgments with the true frequency of correct answers showed
that overestimation or overconfidence disappeared in 80% to
90% of the subjects, depending on experimental conditions.
Frequency judgments were precise or even showed underesti-
mation. Ironically, after each frequency judgment, subjects
went on to give confidence judgments (degrees of belief) that
exhibited what has been called overconfidence.

As in the preceding example, a so-called bias of reasoning
disappears if a controversial norm is dropped and replaced by
several descriptive alternatives, statistical models, and mean-
ings of probability, respectively. Thus, probabilities for single
events and relative frequencies seem to refer to different mean-
ings of confidence in the minds of the subjects. This result is
inconsistent with previous explanations of the alleged bias by
deeper cognitive deficiencies (e.g., confirmation biases) and has
led to the theory of probabilistic mental models, which de-
scribes mechanisms that generate different confidence and fre-
quency judgments (Gigerenzer et al., in press). Untutored intu-
ition seems to be capable of making conceptual distinctions of
the sort statisticians and philosophers make (e.g., Cohen, 1986;
Lopes, 1981; Teigen, 1983). And it suggests that the important
research questions to be investigated are How are different
meanings of probability cued in everyday language? and How
does this affect judgment?, rather than How can the alleged bias
of overconfidence be explained by some general deficits in
memory, cognition, or personality?

The same conceptual distinction can help to explain other
kinds of judgments under uncertainty. For instance, Tversky
and Kahneman (1982,1983) used a personality sketch of a char-
acter named Linda that suggested she was a feminist. Subjects
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were asked which is more probable: (a) that Linda is a bank
teller or (b) that Linda is a bank teller and active in the feminist
movement. Most subjects chose Alternative b, which Tversky
and Kahneman (1982) called a "fallacious" belief, to be ex-
plained by their hypothesis that people use a limited number of
heuristics—in the present case, representativeness (the similar-
ity between the description of Linda and the alternatives a and
b). Subjects' judgments were called a conjunction fallacy be-
cause the probability of a conjunction of events (bank teller and
active in the feminist movement) cannot be greater than the
probability of one of its components.

As in the example just given, this normative interpretation
neglects two facts. First, in everyday language, words like proba-
ble legitimately have several meanings, just as "if. . . then" and
"or" constructions do. The particular meaning seems to be auto-
matically cued by content and context. Second, statisticians
similarly have alternative views of what probability is about. In
the context of some subjectivist theories, choosing Alternative b
truly violates the rules of probability; but fora frequentist, judg-
ments of single events such as in the Linda problem have noth-
ing to do with probability theory: As the statistician G. A. Bar-
nard (1979, p. 171) objected, they should be treated in the con-
text of psychoanalysis, not probability.

Again, the normative evaluation explicit in the term conjunc-
tion fallacy is far from being uncontroversial, and progress in
understanding reasoning may be expected by focusing on sub-
jects' judgments as explanandum rather than on their devia-
tions from a so-called norm. As in the previous example, if
problems of the Linda type are rephrased as involving fre-
quency judgments (e.g., "How many out of 100 cases that fit the
description of Linda are [a] bank tellers and [b] bank tellers and
active in the feminist movement?"), then the so-called conjunc-
tion fallacy decreases from 77% to 27%, as Fiedler (1988)
showed. "Which alternative is more probable?" is not the same
as "Which alternative is more frequent?" in the Linda context.
Tversky and Kahneman (1983) found similar results, but they
maintained their normative claims and treated the disappear-
ance of the phenomenon merely as an exception to the rule
(p. 293).

Example 3: Commitment to Assumptions Versus Neglect
ofThem

It is a commonplace that the validity of a statistical inference
is to be measured against the validity of the assumptions of the
statistical model for a given situation. In the actual context of
justification, however, in psychology and probably beyond,
there is little emphasis on pointing out and checking crucial
assumptions. The same neglect is a drawback in some Bayesian-
type probability revision studies. Kahneman and Tversky's
(1973) famous engineer-lawyer study is a case in point. In the
study, a group of students was told that a panel of psychologists
had made personality descriptions of 30 engineers and 70 law-
yers, that they (the students) would be given 5 of these descrip-
tions, chosen at random, and that their task was to estimate for
each description the probability that the person described was
an engineer. A second group received the same instruction and
the same descriptions, but was given inverted base rates, that is,
70 engineers and 30 lawyers. Kahneman and Tversky found

that the mean probabilities were about the same in the two
groups and concluded that base rates were ignored. They ex-
plained this alleged bias in reasoning by postulating that people
use a general heuristic, called representativeness, which means
that people generally judge the posterior probability simply by
the similarity between a description and their stereotype of an
engineer.

Neither Kahneman and Tversky's (1973) study nor any of the
follow-up studies checked whether the subjects were committed
to or were aware of a crucial assumption that must hold in order
to make the given base rates relevant: the assumption that the
descriptions have been randomly drawn from the population. If
not, the base rates are irrelevant. There have been studies, like
Kahneman and Tversky's (1973) "Tom W study, where subjects
were not even told whether the descriptions were randomly
sampled. In the engineer-lawyer study, subjects were so in-
formed (in only one word), but the information was false.
Whether a single word is sufficient to direct the attention of
subjects toward this crucial information is an important ques-
tion in itself, because researchers cannot assume that in every-
day life, people are familiar with situations in which profession
guessing is about randomly selected people. Thus, many of the
subjects may not have been committed to the crucial assump-
tion of random selection.

In a controlled replication (Gigerenzer, Hell, & Blank, 1988),
a simple method was used to make subjects aware of this crucial
assumption: Subjects themselves drew each description
(blindly) out of an urn and gave their probability judgments.
This condition made base rate neglect disappear; once the sub-
jects were committed to the crucial assumption of random
sampling, their judgments were closer to Bayesian predictions
than to base rate neglect. This finding indicates that theories of
intuitive statistics have to deal with how the mind analyzes the
structure of a problem (or environment) and how it infers the
presence or absence of crucial statistical assumptions—just as
the practicing statistician has to first check the structure of a
problem in order to decide whether a particular statistical
model can be applied. Checking structural assumptions pre-
cedes statistical calculations (see also Cohen, 1982,1986; Ein-
horn & Hogarth, 1981; Ginossar & Trope, 1987).

My intention here is not to criticize this or that specific exper-
iment, but rather to draw attention to the hidden legacy that
tools bequeath to theories. The general theme is that some fea-
tures of the practical context in which a tool has been used (to
be distinguished from its mathematics) have reemerged and
been accepted in a research program that investigates intuitive
statistics, impeding progress. Specifically, the key problem is a
simplistic conception of normativeness that confounds one
view about probability with the criterion for rationality.

Although I have dwelt on the dangerous legacy that tools
hand on to theories, I do not mean to imply that a theory that
originates in a tool is ipso facto a bad theory. The history of
science, not just the history of psychology, is replete with exam-
ples to the contrary. Good ideas are hard to come by, and one
should be grateful for those few that one has, whatever their
lineage. But knowing that lineage can help to refine and criti-
cize the new ideas. In those cases where the tools-to-theories
heuristic operates, this means taking a long, hard look at the



TOOLS-TO-THEORIES HEURISTIC 263

tools—and the statistical tools of psychologists are overdue for
such a skeptical inspection.

Discussion

New technologies have been a steady source of metaphors of
mind: "In my childhood we were always assured that the brain
was a telephone switchboard. ('What else could it be?')," re-
called John Searle (1984, p. 44). The tools-to-theories heuristic
is more specific than general technology metaphors. Scientists'
tools, not just any tools, are used to understand the mind. Ho-
lograms are not social scientists' tools, but computers are, and
part of their differential acceptance as metaphors of mind by
the psychological community may be a result of psychologists'
differential familiarity with these devices in research practice.

The computer, serial and parallel, would be another case
study for the tools-to-theories heuristic—a case study that is in
some aspects different. For instance, John von Neumann (19 5 8)
and others explicitly suggested the analogy between the serial
computer and the brain. But the main use of computers in
psychological science was first in the context of justification:
for processing data; making statistical calculations; and as an
ideal, endlessly patient experimental subject. Recently, the
computer metaphor and the statistics metaphors of mind have
converged, both in artificial intelligence and in the shift toward
massively parallel computers simulating the interaction be-
tween neurons.

Herbert A. Simon's Heuristics of Discovery and the
Tools-to-Theories Heuristic

Recently, in the work of Herbert A. Simon (1973) and his
co-workers (e.g., Langley, Simon, Bradshaw, & Zytkow, 1987),
the possibility of a logic of discovery has been explicitly recon-
sidered. For example, a series of programs called BACON has
"rediscovered" quantitative empirical laws, such as Kepler's
third law of planetary motion. How does BACON discover a
law? Basically, BACON starts from data and analyzes them by
applying a group of heuristics until a simple quantitative law
can be fitted to the data. Kepler's law, for instance, can be
rediscovered by using heuristics such as "If the values of two
numerical terms increase together, then consider their ratio"
(Langley et al., 1987, p. 66). Such heuristics are implemented as
production rules.

What is the relation between heuristics used in programs like
BACON and the tools-to-theories heuristics? First, the research
on BACON was concerned mainly with the ways in which laws
could be induced from data. BACON's heuristics work on ex-
tant data, whereas the tools-to-theories heuristic works on ex-
tant tools for data generation and processing and describes an
aspect of discovery (and acceptance) that goes beyond data. As I
argued earlier, new data can be a consequence of the tools-to-
theories heuristic, rather than the starting point to which it is
applied. Second, what can be discovered seems to have little
overlap. For Langley et al. (1987), discoveries are of two major
kinds: quantitative laws such as Kepler's law and qualitative
laws such as taxonomies using clustering methods. In fact, the
heuristics of discovery proposed in that work are similar to the
statistical methods of exploratory data analysis (Tukey, 1977). It

is this kind of intuitive statistics that serves as the analogy to
discovery in Simon's approach. In contrast, the tools-to-the-
ories heuristic can discover new conceptual analogies, new re-
search programs, and new data. It cannot—at least not
directly—derive quantitative laws by summarizing data, as BA-
CON'S heuristics can.

The second issue, What can be discovered?, is related to the
first, that is, to Simon's approach to discovery as induction
from data, as "recording in a parsimonious fashion, sets of em-
pirical data" (Simon, 1973, p. 475). More recently, Simon and
Kulkarni (1988) went beyond that data-centered view of discov-
ery and made a first step toward characterizing the heuristics
used by scientists for planning and guiding experimental re-
search. Although Simon and Kulkarni did not explore the po-
tential of scientists' tools for suggesting theoretical concepts
(and their particular case study may not invite this), the tools-
to-theories heuristic can complement this recent, broader pro-
gram to understand discovery. Both Simon's heuristics and the
tools-to-theories heuristic go beyond the inductive probability
approach to discovery (such as Reichenbach's). The approaches
are complementary in their focus on aspects of discovery, but
both emphasize the possibility of understanding discovery by
reference to heuristics of creative reasoning, which go beyond
the merely personal and accidental.

The Tools-to-Theories Heuristic Beyond Cognitive
Psychology

The examples of discovery I give in this article are modest
instances compared with the classical literature in the history
of science treating the contribution of a Copernicus or a Dar-
win. But in the narrower context of recent cognitive psychology,
the theories I have discussed count as among the most influen-
tial. In this more prosaic context of discovery, the tools-to-
theories heuristic can account for a group of significant theoreti-
cal innovations. And, as I have argued, this discovery heuristic
can both open and foreclose new avenues of research, depend-
ing on the interpretations attached to the statistical tool. My
focus is on analytical tools of justification, and I have not dealt
with physical tools of experimentation and data processing.
Physical tools, once familiar and considered indispensable, also
may become the stuff of theories. This holds not only for the
hardware (like the software) of the computer, but also for theory
innovation beyond recent cognitive psychology. Smith (1986)
argued that Edward C. Tolman's use of the maze as an experi-
mental apparatus transformed Tolman's conception of purpose
and cognition into spatial characteristics, such as cognitive
maps. Similarly, he argued that Clark L. Hull's fascination with
conditioning machines has shaped Hull's thinking of behavior
as if it were machine design. With the exception of Danziger's
(1985,1987) work on changing methodological practices in psy-
chology and their impact on the kind of knowledge produced,
however, there seems to exist no systematic research program
on the power of familiar tools to shape new theories in psy-
chology.

But the history of science beyond psychology provides some
striking instances of scientists' tools, both analytical and physi-
cal, that ended up as theories of nature. Hackmann (1979),
Lenoir (1986), and Wise (1988) have explored how scientific
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instruments shaped the theoretical concepts of, among others,
Emil DuBois-Reymond and William Thomson (Lord Kelvin).

The case of Adolphe Quetelet illustrates nicely how the tools-
to-theories heuristic can combine with an interdisciplinary ex-
change of theories. The statistical error law (normal distribu-
tion) was used by astronomers to handle observational errors
around the true position of a star. Quetelet (1942/1969), who
began as an astronomer, transformed the astronomer's tool for
taming error into a theory about society: The true position of a
star turned into I'homme moyen, or the ideal average person
within a society, and observational errors turned into the distri-
bution of actual persons (with respect to any variable) around
I'homme moyen—actual persons now being viewed as nature's
errors. Quetelet's social error theory was in turn seminal in the
development of statistical mechanics; Ludwig Boltzmann and
James Clerk Maxwell in the 1860s and 1870s reasoned that gas
molecules might behave as Quetelet's humans do; erratic and
unpredictable as individuals, but regular and predictable when
considered as a collective (Porter, 1986). By this strange route of
discovery—from astronomer's tool to a theory of society, and
from a theory of society to a theory of a collective of gas mole-
cules—the deterministic Newtonian view of the world was fi-
nally overthrown and replaced by a statistical view of nature
(see Gigerenzer et al., 1989). Thus, there seems to exist a
broader, interdisciplinary framework for the tools-to-theories
heuristic proposed here, which has yet to be explored.

Discovery Reconsidered

Let me conclude with some reflections on how the present
view stands in relation to major themes in scientific discovery.

Data-to-theories reconsidered. Should psychologists con-
tinue to tell their students that new theories originate from new
data? If only because "little is known about how theories come
to be created," as J. R. Anderson introduced the reader to his
Cognitive Psychology (1980, p. 17)? Holton (1988) noted the ten-
dency among physicists to reconstruct discovery with hindsight
as originating from new data, even if this is not the case. His
most prominent example is Einstein's special theory of relativ-
ity, which was and still is celebrated as an empirical generaliza-
tion from Michelson's experimental data by such eminent fig-
ures as R. A. Millikan and H. Reichenbach, as well as by the
textbook writers. As Holton demonstrated with firsthand docu-
ments, the role of Michelson's data in the discovery of Einstein's
theory was slight, a conclusion shared by Einstein himself.

Similarly, with respect to more modest discoveries, I argue
that a group of recent cognitive theories did not originate from
new data, but in fact often created new kinds of data. Tanner
and Swets (1954) are even explicit that their theory was incon-
sistent with the extant data. Numerical probability judgments
have become the stock-in-trade data of research on inductive
thinking since Edwards's (1966) work, whereas this kind of de-
pendent variable was still unknown in Humphrey's (1951) re-
view of research on thinking.

The strongest claim for an inductive view of discovery came
from the Vienna Circle's emphasis on sensory data (reduced to
the concept of "pointer readings"). Carnap (1928/1969), Rei-
chenbach (1938), and others focused on what they called the
rational reconstruction of actual discovery rather than on actual

discovery itself, in order to screen out the merely irrational and
psychological. For instance, Reichenbach reconstructed Ein-
stein's special theory of relativity as being "suggested by closest
adherence to experimental facts," a claim that Einstein re-
jected, as mentioned earlier (see Holton, 1988, p. 296). It seems
fair to say that all attempts to logically reconstruct discovery in
science have failed in practice (Blackwell, 1983, p. 111). The
strongest theoretical disclaimer concerning the possibility of a
logic of discovery came from Popper, Hempel, and other propo-
nents of the hypotheticodeductive account, resulting in the
judgment that discovery, not being logical, occurs irrationally.
Theories are simply "guesses guided by the unscientific" (Pop-
per, 1959, p. 278). In contrast, I have dealt with guesses that are
guided by the scientific, by tools of justification. Induction
from data and irrational guesses are not exhaustive of scientific
discovery, and the tools-to-theories heuristic explores the field
beyond.

Scientists' practice reconsidered. The tools-to-theories heur-
istic is about scientists' practice, that is, the analytical and physi-
cal tools used in the conduct of experiments. This practice has a
long tradition of neglect. The very philosophers who called
themselves logical empiricists had, ironically, little interest in
the empirical practice of scientists. Against their reduction of
observation to pointer reading, Kuhn (1970) emphasized the
theory ladenness of observation. Referring to perceptual exper-
iments and gestalt switches, he said: "Scientists see new and
different things when looking with familiar instruments in
places they have looked before." (p. 111). Both the logical em-
piricists and Kuhn were highly influential on psychology (see
Toulmin & Leary, 1985), but neither's view has emphasized the
role of tools and experimental conduct. Their role in the devel-
opment of science has been grossly underestimated until re-
cently (Danziger, 1985; Lenoir, 1988).

Through the lens of theory, it has been said, growth of knowl-
edge can be understood. But there is a recent move away from a
theory-dominated account of science that pays attention to
what really happens in the laboratories. Hacking (1983) argued
that experimentation has a life of its own and that not all obser-
vation is theory laden. Galison (1987) analyzed modern experi-
mental practice, such as in high-energy physics, focusing on the
role of the fine-grained web of instruments, beliefs, and prac-
tice that determine when a fact is considered to be established
and when experiments end. Both Hacking and Galison empha-
sized the role of the familiarity experimenters have with their
tools, and the importance and relative autonomy of experimen-
tal practice in the quest for knowledge. This is the broader
context in which the present tools-to-theories heuristic stands:
the conjecture that theory is inseparable from instrumental
practices.

In conclusion, my argument is that discovery in recent cogni-
tive psychology can be understood beyond mere inductive gen-
eralizations or lucky guesses. More than that, I argue that for a
considerable group of cognitive theories, neither induction
from data nor lucky guesses played an important role. Rather,
these innovations in theory can be accounted for by the tools-
to-theories heuristic. So can conceptual problems and possibili-
ties in current theories. Scientists' tools are not neutral. In the
present case, the mind has been recreated in their image.
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