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Abstract. In this study, we examine the effect of random input fluctuations in the mean flow to a circular
cylinder undergoing transverse oscillations. A Duffing-Van der pol combined system has been used to model
the structure and wake oscillators in the VIV system. We observe that the addition of noise brings in major
qualitative and quantitative changes on the structural response of the system compared to the deterministic cases.
It has been observed that the stochastic system is always influenced by the presence of structural frequency. In
contrast, the system under mean flow condition aligns with the structural frequency, only in the lock-in range.
This feature is seen as noise exciting multiple frequencies in the response of the cylinder in the pre lock-in and
post lock-in regimes.

1 Introduction

Vortex induced vibrations (VIV) of circular cylinders is
an important area of research in many real life situa-
tions including heat exchangers, bridges, tall buildings,
riser tubes, towing pipes, power transmission lines etc.
VIV, considered and studied as a Fluid Structure Interac-
tion (FSI) problem, demands a crucial attention because
of the high amplitude vibrations undergone by the struc-
tures which can lead to large scale damages. Flow around
circular cylinders stands as the first step in understand-
ing such flows. An important phenomenon which has to
be discussed while discussing VIV of cylinders is lock-
in. When a cylinder is allowed to oscillate freely in a
flow, for lower velocities, it oscillates with lower ampli-
tudes whose magnitude varies as per the system parame-
ters. During this stage, the vortex shedding frequency of
the cylinder, will be based on the non dimensional quan-
tity, Strouhal number (S t). Strouhal number follows the
Strouhal relationship, which is, S t= fvD

U , where fv is the
vortex shedding frequency at the particular flow velocity,
D is the diameter of the cylinder, U is the flow velocity.
But as velocity is increased, the response undergoes ma-
jor qualitative changes. The vortex shedding frequency
gets closer to the cylinder’s natural frequency and fv gets
locked onto fn, resulting in a resonance like condition, re-
flected as high amplitude oscillations for a range of ve-
locities. During lock in, the frequency of vortex shed-
ding is not in accordance with the Strouhal relationship
mentioned earlier, but becomes the structure’s natural fre-
quency itself. As the velocity is further increased, lock-
out happens again, with the vortices shedding as per the
Strouhal relationship again. There have been numerous

�e-mail: aswathymek@gmail.com
��e-mail: sunetra.sarkar@gmail.com

amounts of experimental works with focus onto the lock-
in phenomenon, structural dynamics and the correspond-
ing flow patterns [1], [2], [3], [4]. Experimental studies
explain the hydrodynamics part in VIV through explaining
the vortex shedding modes and synchronisation regimes in
terms of the flow fields [5], [6], [7]. Later, analytical for-
mulations based on ‘wake oscillators’ gained prominence
due to the reason that they are effective in understanding
the physics and overall dynamics of the problem through
lesser computational efforts [8], [9], [10].

The focus of the present work is to investigate the
changes in the dynamics in the presence of noise. A real
time system can be subjected to a lot of system uncer-
tainties, which can alter the behaviour of the system as
a whole. Studies emphasising the importance of mod-
elling physical systems with the inclusion of noise have
been prevalent [11], [12]. Modelling of noise in engineer-
ing systems have also gathered attention recently. Trigger-
ing mechanism and the role of stochastic noise has been
studied for thermoacoustic systems by Waugh et al. [13]
and Noiray et al. [14]. Waugh et al. [13] have reported
that the intensity of noise has a major role in deciding the
practical stability limits. Poirel et al. [15], [16] and Zhao
et al. [17] have addressed that aerofoils undergoing flutter
with cubic and freeplay nonlinearities are subjected to ma-
jor qualitative changes when subjected to turbulence in the
environment. The number of studies pertaining to discus-
sions on stochastic uncertainties which can be inherently
present or externally induced on VIV system are limited.
So it is important that we have an understanding on the im-
pact that the fluctuations will have on the system dynamics
by studying how big or small changes they can bring onto
the response.

In short, we make efforts to capture the role of noise
superimposed on an uniform incoming flow in affecting
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the dynamics of an elastically mounted rigid cylinder un-
dergoing transverse oscillations. In the base determinis-
tic model, at each time step, we add a parametric noise
modelled through a uniform distribution to the mean flow.
Then the system response and their changes are studied
with change in the bifurcation parameter. Section 2 ex-
plains the formulation of the base deterministic model
used for the present study. The bifurcation behaviour
of the deterministic system captured using the continua-
tion techniques and direct numerical integration (DNI) are
given in section 3. Later, section 4 discusses the stochas-
tic responses obtained using DNI and their qualitative fea-
tures. In the present work, a low value of noise intensity
has been chosen, which is σ=0.1.

2 Methodology

The model consists of a single degree of freedom elasti-
cally supported circular cylinder subjected to incompress-
ible constant flow with uniformly distributed noise su-
perimposed on it, as in Figure 1. As described earlier,
the physical model is captured using an analytical model
where a mechanical spring mass system of the Duffing
type models the transverse vibrations of an infinitely long
cylinder and a van der Pol oscillator to describe the wake
dynamics.

Figure 1: Schematic of cylinder undergoing vortex
induced vibrations

The formulation of the model as done by Fachinetti et
al. [10] is briefly given as follows. A cubic term has been
additionally incorporated in the final structural equation in
order to account for the nonlinearities present. The struc-
ture oscillator is considered to be a spring mass system
oscillating with a single degree of freedom as

mŸ + rẎ + hY = S (1)

The above equation is given in the dimensional form.
Here, the dots denote differentiation with respect to the
dimensional time T , m = ms + mf , r = rs + r f , where
ms,mf , rs, r f , h, Y, S are the structural mass, fluid added
mass, structural damping, fluid added damping, spring

stiffness, structural displacement, forcing due to the ef-
fect of wake, respectively. Here, mf =

πρD2CM
4 and r f =

γΩ fρD2, where CM is the added mass coefficient taken
as 1 in case of circular cylinder, γ is a stall parameter as-
sumed to be 0.8,Ω f =

2πS tU
D is the angular vortex shedding

frequency of the cylinder with S t the Strouhal number, U
as the incoming flow velocity, D as the diameter of the
cylinder. Dividing equation (1) by m gives

Ÿ + ((2ζΩs) +
γµ

Ω f
) + Ωs

2Y = S/m (2)

with µ being a non dimensional mass ratio as ms+mf

ρD2 , Ωs =√
h
m , being the angular structural natural frequency.

The wake oscillator is modelled by a nonlinear Van der
pol equation as

q̈ + εΩ f (q2 − 1)q̇ + Ω2
f q = F (3)

with F being the forcing term on the wake due to the cylin-
der motion.

Nondimensionalising equations (2) and (3) using t =
TΩs and y = Y/D and incorporating a cubic term account-
ing for the geometrical non linearities, as done by Srinil et
al. [18] , The final forms of non dimensional equations of
motion are

ÿ + (2ζ +
γΩ

µ
)ẏ + y + αy3 = MΩ2q (4)

q̈ + εΩ(q2 − 1)q̇ + Ω2q = Aÿ (5)

In the above equations, overdots mean derivatives with
respect to the non dimensional time t. Here, Ω is the ra-
tio of the vortex shedding frequency to the cylinder natural
frequency in the medium. It is also defined as Ω = S tUr,
where Ur is the reduced velocity which is the bifurcation
parameter in the present case. The Strouhal number for the
present study is assumed to be 0.2, in the subcritical range
of Reynolds numbers [19]. Here, µ is the mass ratio re-
lated to conventional mass ratio as defined by Williamson
et al. [7] as m∗ = 4µ

pi − Cm; ε and A are empirical coeffi-
cients chosen as by [10] as 0.3 and 12 respectively and α
is taken as 0.7. M is a mass number which is a function of
the mass ratio defined as M = Cl0

16π2S t2 [10], with Cl0 being
the associated lift coefficient of a stationary cylinder, taken
as 0.3 [19]. The coupling model used for the wake in the
present work is an acceleration coupling model [10]. This
has been used due to the reason that acceleration coupling
model which considers that the structure has a linear iner-
tial effect on the fluid. This coupling model was success-
ful in explaining numerous qualitative aspects of the VIV
phenomenon like the lift magnification at lock-in, range of
lock-in etc in contrast to the previous coupling models that
existed. In the current case, we have used a m∗=248 and
m∗ζ = 0.013. Further details of the parameters chosen can
be referred from [10].

However, a numerical integration of the differential
equations alone would not give an exact picture of the type
of bifurcations involved, the stability of the trajectories,
detection of any unstable branches present etc. In order to
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detection of any unstable branches present etc. In order to

understand these, we do a continuation study of the set of
differential equations. This has been achieved by using the
tool XPPAUT [20], which contains codes and algorithms
for the continuation and bifurcation software AUTO [21].
Numerical continuation techniques [22] help in finding so-
lutions to a set of parameterised nonlinear equations, from
an initial guess for starting the problems. Initially, iter-
ative schemes such as the Newton method are used for
solving the system of equations and convergence towards
the end solution. The stability of the solutions is deter-
mined by calculating eigenvalues and eigenvectors of the
fixed points or the Floquet multipliers in case of periodic
orbits. Subsequently, this solution is continued to get a
curve of solutions of the system for different values of the
parameter. Continuation can also be done by starting from
a periodic solution. This initial starting orbit is determined
by integration and the period of this orbit is used as an ap-
proximate period to do continuation by XPPAUT.

3 Analysis of the deterministic system

Before studying the stochastic dynamics, it is important
to have a clear understanding regarding the dynamics of
the deterministic VIV system. We first discuss the bifur-
cation behaviours and dynamics of the deterministic VIV
system obtained using continuation. Later, (DNI) is done
to obtain the time histories and frequency spectrums of the
structural responses.

Figure 2 shows the bifurcation plot of the VIV sys-
tem captured using the continuation method. Closed cir-
cles show the amplitudes of the stable limit cycles and the
open circles show the amplitudes of the unstable limit cy-
cle. Arrows represent the direction of movement of the re-
sponses at points where bifurcation of the orbits happen. It
is seen that the system is characterised by regions of bista-
bility (two stable solutions for a single parameter) and the
steady state solutions of the given system are dependent on
the initial conditions given. For example, consider a region
consisting of an unstable branch, as in the region between
Ur = 4.29927 to Ur = 4.77048. Any initial condition
above the unstable branch would take the system to the
high amplitude branch, whereas any initial condition be-
low the unstable branch would take it to the low amplitude
branch. The unstable solutions become the steady state so-
lution only when our initial condition is also exactly that
value. The region between Ur = 4.29927 to Ur = 4.77048
and Ur = 5.31756 to Ur = 6.1896 are regions of hysterisis.
The orbit chosen by the system on these regions depends
on whether we move in the forward or reverse direction in
the bifurcation diagram. It has been understood that the
type of bifurcation undergone by the system while transit-
ing from the low amplitude to high amplitude limit cycles
is a saddle node bifurcation. These have been confirmed
from a Floquet analysis near the bifurcation points and are
not shown here for the sake of brevity.

Figure 2: Bifurcation diagram of deterministic system

In the basic formulation of the deterministic model it-
self, the response y and q are considered to be structural re-
sponse and wake response respectively with a phase differ-
ence, oscillating with a common angular frequency [10].
This common frequency comes out to be the vortex shed-
ding frequency outside lock-in and the structural natural
frequency during lock-in. The differential equations have
been numerically integrated using a fourth order Runge
Kutta method with the bifurcation parameter Ur being in-
cremented in steps of 0.1. As the parameter is increased
from Ur = 4, the low amplitude response jumps to a
higher branch of response at Ur = 4.8. From Ur = 4.8
to Ur = 5.3, system exhibits high amplitude oscillations.
Figure 3 shows the bifurcation diagram obtained by plot-
ting the maximum non dimensional amplitude versus re-
duced velocity. Figure 4 (a-L) and (a-R) shows time his-
tories and FFTs respectively for Ur=4.7, figure 4 (b-L)
and (b-R) for Ur=4.8, figure 4 (c-L) and (c-R) for Ur=5.4,
where L and R represents left and right sides respectively.
The X-axis of the power spectrum plots shows f , which
is the ratio of oscillation frequency of the response ( fo) to
the structural natural frequency ( fn).

Figure 3: Bifurcation diagram of deterministic system
using direct numerical integration
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Figure 4: Time histories and FFTs corresponding to the
deterministic case for Ur= 4.7(a-L) and (a-R), Ur=

4.8(b-L) and (b-R), Ur= 5.4(c-L) and (c-R)

From Figure 3, it is evident that lock-in occurs from
Ur=4.8 to Ur=5.3 in the deterministic case. As is seen
from the FFTs of Figure 4, all these responses are charac-
terised by single frequencies. At Ur=4.7, we have small
amplitude oscillations of the order of 10−3, characterised
by a single frequency, which is the vortex shedding fre-
quency at this particular velocity. At Ur=4.8, the oscilla-
tions suddenly jump to a high amplitude of order of 10−1(2
orders higher), again characterised by a single frequency.
But this time, the vortex shedding frequency has locked
onto the cylinder’s frequency and in turn from Ur=4.8 to
Ur=5.3, the cylinder oscillates with its own natural fre-
quency of oscillation in the fluid. Again at Ur=5.4, the
system has moved out of lock-in, oscillating with very low
amplitudes, with the vortex shedding frequency at that par-
ticular velocity. As we further increase velocities, it is
seen that the oscillation amplitudes get lower though the
frequency of oscillation would be the vortex shedding fre-
quencies at the particular velocities.

4 Noise induced dynamics of the VIV
system

In this section, we investigate the effect of noise on the sys-
tem dynamics and compare the results with the determin-
istic cases. The stochastic modelling of velocity is done
as follows: The reduced velocity is considered to be a
fluctuating parameter, since it is one of the best choices to
account for the incoming flow uncertainties. That is, the
total reduced velocity at every time considered becomes,
Urtotal = Ur + σu′(t) where Urtotal = total reduced veloc-
ity , σ is the intensity of noise and u′(t) is the fluctuating
parameter changing at every time step. The input noise
fluctuations have been mathematically modelled through a
uniform distribution. A distribution like the normal distri-
bution can lead to very large net values and even negative
velocity values, which is an unrealistic situation. On the
contrary, uniform distribution bounds or limits the maxi-
mum value of the net velocity. The values of the fluctua-
tions are determined over a time scale which is very less

compared to the system time scale, through a linear inter-
polation. That means, the input noise is a rapidly chang-
ing one compared to the system responses. Fluid particles
will have such high frequency random fluctuations super-
imposed on their mean velocity generally while operating
in the transition regimes to turbulence. These fluctuations
can be present not only in the incoming stream, but also
in the associated wake of the bluff body, which is encoun-
tering vortex shedding. Slight local disturbances around
the body, along with the combined effects of the above-
mentioned effects, might change the dynamics of the FSI
problem subjected to transient fluctuations [23].

The output VIV response is analysed for a noise inten-
sity (σ) of 0.1. Figure 5 and Figure 6 show the time histo-
ries and FFTs at different values of Ur. Figure 5 (a) corre-
sponds to the response prior to lock-in, at Ur = 4.6. Com-
paring these and the deterministic responses prior to lock
in discussed previously, it is noticeable that the response
is no longer periodic characterised by a single frequency.
A Fourier analysis of the structural response shows the ex-
istence of two frequencies in the spectrum. One of these
frequencies correspond to the vortex shedding frequency
itself at the particular velocity. The other frequency seen
was found to be corresponding to the structural natural fre-
quency in the oscillating system. These can be seen in
Figure 6 (a). That is, the system no longer oscillates with
a single frequency, but oscillates as a combination of the
inherent system frequencies. The lock-in region is still in-
fluenced by the structural dynamics alone, as in the de-
terministic case, as seen in Figure 6 (b), which is for Ur

= 5. Outside lock-in, the system again tries to follow the
Strouhal law, following the vortex shedding frequency, but
the presence of noise induces a part of structural compo-
nent in this also, which is seen through the presence of the
extra frequency as in Figure 6 (c), for Ur = 5.4. The effects
of noise are prominent in the non lock-in states.

Figure 5: Responses in the presence of noise at Ur

(a)=4.6 [pre lock-in] (b)=5 [lock-in] (c)=5.4 [just after
lock-in]
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The existence of two frequencies under the effect of
free stream turbulence has been discussed through exper-
iments by So et al. [24], where a circular cylinder was
allowed to undergo cross flow vibrations. They report
that the two frequencies correspond to vortex shedding fre-
quency and structural frequency and observe that the two
frequencies coalesce at the lock-in point. However, free
stream turbulence has been reported to change the Strouhal
number post lock-in (unlike in the current work), due to
which the domination of the flow or the structural com-
ponent also changes. In any case, their experiments are
consistent with our observations that external noise play a
major role in altering the frequency characteristics of the
system. Noise seems to act a mechanism through which
energy is supplied to the cylinder motion and hence the
cylinder’s tendency to be in locked-in state remains high.
However, the present study has been based on a noise in-
tensity which is very low. The manifestation of frequen-
cies with a higher level of noise intensity might be different
from the current scenario. Investigation on these features,
along with the identification of the transitional states by a
probabilistic approach and through time series analysis are
being carried out by the authors presently.

5 Conclusion

In the present study, we investigated the effect of stochas-
tic uncertainties in altering the response characteristics
of a circular cylinder undergoing Vortex Induced Vibra-
tions. We have observed that uncertainties in the incoming
flow can alter the response behaviour considerably both
in quantitative and qualitative ways. The responses be-
come fluctuating signals owing to the presence of noise.
Noise is seen to invoke additional frequencies in the re-
sponse oscillations compared to the deterministic cases.
The non lock-in states which were characterised by the
vortex shedding frequency only in the deterministic cases
become subjected to the presence of structural frequency
also in the presence of noise. Thus, noise plays a role in
driving a part of the system dynamics always controlled by

the structure as well. An investigation on whether similar
behaviour occurs under a higher noise intensity and stud-
ies based on stochastic bifurcations are being pursued by
the authors.
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