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A B S T R A C T  

T h e  Boltzmann machine is a nonlinear network of stochastic binary pro- 
cessing units t ha t  interact pairwise through symmetric connection strengths. 
In a third-order Boltzmann machine, triples of units interact through sym- 
metric conjunctive interactions. The  Boltzmann learning algorithm is general- 
ized t o  higher-order interactions. The  rate of learning for internal representa- 
tions in a higher-order Boltzmann machine should be much faster t han  for a 
second-order Boltzmann machine based on  pairwise interactions. 

I N T R O D U C T I O N  

Thousands of hours of practice are required by humans t o  become 
experts in domains such as chess, mathematics and  physics1. Learning in 
these domains requires the mastery of a large number of highly interrelated 
ideas, and  a deep understanding requires generalization as well as memoriza- 
tion. There are two traditions in the  literature on  learning in neural network 
models. One class of models is based on  the  problem of content-addressable 
memory and  emphasizes a fast, one-shot form of learning. The  second class of 
models uses slow, incremental learning, which requires many repetitions of 
examples. I t  is difficult in humans t o  s tudy  fast and  slow learning in isola- 
tion. In some amnesics, however, the long-term retention of facts is severely 
impaired, but  the slow acquisition of skills, including cognitive skills, is 
spared2. Thus,  it is possible tha t  separate memory mechanisms are used t o  
implement fast learning and  slow learning. 

Long practice is required t o  become a n  expert, bu t  expert performance is 
swift and  difficult to  analyze; with more practice there is faster performance1. 
Why  is slow learning so slow? One possibility is t h a t  the expert develops 
internal representations tha t  allow fast parallel searches for solutions t o  prob- 
lems in the task domain, in contrast t o  a novice who must apply knowledge 
piecemeal. An internal representation is a mental model of the task domain; 
t h a t  is, internal degrees of freedom between the  sensory inputs and  motor 
outputs  t h a t  efficiently encode the variables relevant t o  the solution of the 
problem. This approach can be made more precise by specifying neural net- 
work models and  showing how they incorporate internal representations. 

L E A R N I N G  IN NETWORK M O D E L S  
Network models of fast learning include linear correlation-matrix 

m o d e l ~ ~ ~ ~ ~ ~ l ~  and the more recent nonlinear autoassociative m o d e ~ s ~ ~ ~ ~ ~ ~ ' ~ .  
These models use the Hebb learning rule t o  store information t h a t  can be 
retrieved by the completion of partially specified input patterns. New 



patterns are stored by imposing the pattern on the network and altering the 
connection strengths between the pairs of units that  are above threshold. The 
information that  is stored therefore concerns the correlations, .or second-order 
relationships between the components of the pattern. The internal model is 
built from correlations. 

Network models of slow learning include the perceptronll and adaline12. 
These networks can classify input patterns given only examples of inputs and 
desired outputs. The connection strengths are changed incrementally during 
the training and the network gradually converges to  a set of weights tha t  
solves the problem if such as set of weights exists. Unfortunately, there are 
many difficult problems that  cannot be solved with these networks, such as 
the prediction of parity'3. The perceptron and adaline are limited because 
they have only one layer of modifiable connection strengths and can only 
implement linear discriminant functions. Higher-order problems like parity 
cannot be solved by storing the desired patterns using the class of content- 
addressable algorithms based on the Hebb learning rule. These models are 
limited because the metric of similarity is based on Hamming distance and 
only correlations can be used t o  access patterns. 

The first network model to  demonstrably learn t o  solve higher-order 
problems was the Boltzmann machine, which overcame the limitations of pre- 
vious network models by introducing hidden units14*15116. Hidden units are 
added t o  the network t o  mediate between the input and output units; they 
provide the extra internal degrees of freedom needed t o  form internal 
representations. The Boltzmann learning algorithm incrementally modifies 
internal connections in the network to  build higher-order pattern detectors. 
The hidden units can be recruited t o  form internal representations for any 
problem; however, the learning may require an extremely large number of 
training examples and can be excessively slow. One way t o  speed up the 
learning is to  use hidden units that  have higher-order interactions with other 
units. 

THIRD-ORDER BOLTZMANN MACHINES 
Consider a Boltzmann machine with a cubic global energy function: 

where si is the state of the i t h  binary unit and w;p is a weight between tri- 
ples of units. This type of interaction generalizes the pairwise interactions in 
Hopfield networkslo and Boltzmann machines, which contribute a quadratic 
term t o  the energy. Fig. 1 shows an  interpretation of the cubic term as con- 
junctive synapses. Each unit in the network updates its binary state  asyn- 
chronously with probability 



where T is a parameter 
the i t h  unit is given by 

analagous t o  the temperature and the total input to 

If wijk is symmetric on all pairs of indices 

then the energy of the network is nonincreasing. It  can be shown that  in 
equilibrium the probabilities of global states P, follow a Boltzmann distri- 
bution 

Fig. 1. Third-order interactions between three units. In the diagram the lines between 
units represent reciprocal interactions that are activated only when the third unit is in the 
on state. The third unit acts presynaptically to  conjunctively control the painvise interac- 

tions. 

There are two forms of the Boltzmann learning algorithm, one for net- 
works with inputs and outputs treated identically, and a second for networks 
where the input units are always clamped15. The former learning algorithm 
will be generalized for third-order interactions. The learning metric on weight 
space remains the same: 



where P ,  is the probability of a global state with both the inputs and out- 
puts clamped, and Pd, is the probability of a global state when the network 
is allowed to  run freely. I t  can be shown that  the gradient of G is given by 

where p i jk  is the ensemble average probability of three units all being in the 
on state when the input and output units are clamped, and pi;k is the 
corresponding probability when the network is running freely. T o  minimize 
G , it is sufficient to  measure the time averaged triple co-occurence probabili- 
ties when the network is in equilibrium under the two conditions and t o  
change each weight according to  

where c scales the size of each weight change. 

HIGHER-ORDER BOLTZMANN MACHINES 
Define the energy of a k -th order Boltzmann machine as 

where w 7172 . . . 7t is a k -dimensional weight 
indices. The G matrix can be minimized by 

matrix symmetric on all pairs of 
gradient descent: 

where P ~ , ~ . .  . is the probability of the k-tuple co-occurence of the 
I 

(s 71 ,S 72 , . - . s 7r ) when the inputs and outputs are clamped, and p 7172. . . 7L 

is the corresponding probability when the network is freely running. 

In general, the energy for a Boltzmann machine is the sum over all orders 
of interaction and the learning algorithm is a linear combination of terms 
from each order. This is a Markov random field with polynomial interac- 
tions17. 



DISCUSSION 
Conjunctive synapses such as those studied here can be used t o  model 

multiplicative relationshiPsl8. In a third-order Boltzmann machine the con- 
junctive interactions must be symmetric between all three pairs of units in a 
triple. This configuration has been used t o  implement shape recognition using 
mappings from a retinal-based frame of reference t o  object-based frames of 
r e f e r e n ~ e ' ~ ~ ~ ~ .  In principle, these mappings could be learned by a sufficiently 
large number of hidden units with only pairwise interactions, but  in practice 
the number of units and time required would be prohibitive. Learning this 
mappings using third order interactions occurs much more quickly. 

Higher-order interactions have recently been introduced into content- 
addressable networks with fast learning21j22. The storage capacity of these 
networks is much larger than networks with only pairwise connections, but 
the number of connections is also much larger. Another advantage of higher- 
order interactions is the possibility of storing higher-order predicates13. How- 
ever, these networks remain limited in their ability to  generalize because they 
can only memorize the stored patterns; without hidden units they cannot 
generate new internal representations. 

One of the serious problems with all higher-order schemes is the proli- 
feration of connections, which tend t o  be the most expensive part  of an imple- 
mentation. A network of n units would require O ( n k  ) connections t o  imple- 
ment all interactions of order k .  For example, consider the problem of learn- 
ing mirror symmetries16. Random-dot patterns are generated with a mirror 
symmetry along one of several axes in an N x N  grid. The task is t o  learn t o  
classify new patterns given only examples of correctly classified mirror- 
symmetric patterns. A Boltzmann machine with pairwise interactions and 12 
hidden units between the input and output layer can learn t o  classify patterns 
in about 50,000 trials. Using third-order interactions between the input and 
output layer would require o ( N ~ )  connections, most of which would be 
superfluous since only o ( N ~ )  of these connections carry any information 
relevant t o  the solution of the problem. Thus, learning may be faster but the 
price in connections may be prohibitive. 

Whether a higher-order Boltzmann machine is of practical value depends 
on the tradeoff between the increased number of connections and the 
decreased learning time. A t  present it is not known how learning in 
Boltzmann machines scales with the size and difficulty of a problem, but  it  
should be possible t o  simulate higher-order Boltzmann machines for small 
problems and compare them with conventional second-order Boltzmann 
machines. Other incremental learning algorithms, such as  b a ~ k ~ r o ~ a ~ a t i o n ~ ~  
can also be generalized t o  higher-order units. 
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