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On Sums of Consecutive Squares

A. Bremner* R.J. Stroeker! N. Tzanakis*

Abstract

In this paper we consider the problem of characterizing those perfect squares
that can be expressed as the sum of consecutive squares where the initial term in
this sum is k2. This problem is intimately related to that of finding all integral
points on elliptic curves belonging to a certain family which can be represented by a
Weierstrall equation with parameter k. All curves in this family have positive rank,
and for those of rank 1 a most likely candidate generator of infinite order can be
explicitly given in terms of k. We conjecture that this point indeed generates the
free part of the Mordell-Weil group, and give some heuristics to back this up. We
also show that a point which is modulo torsion equal to a nontrivial multiple of this
conjectured generator cannot be integral.

For k in the range 1 < k < 100 the corresponding curves are closely examined, all
integral points are determined and all solutions to the original problem are listed. It
is worth mentioning that all curves of equal rank in this family can be treated more
or less uniformly in terms of the parameter k. The reason for this lies in the fact
that in Sinnou David’s lower bound of linear forms in elliptic logarithms—which is
an essential ingredient of our approach—the rank is the dominant factor. Also the
extra computational effort that is needed for some values of £ in order to determine
the rank unconditionally and construct a set of generators for the Mordell-Weil
group deserves special attention, as there are some unusual features.
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1 Preliminaries

1.1 Introduction
Everyone is familiar with the Pythagorean identity
32+ 4% =57
and many with the identity resulting from Lucas’ “Square Pyramid” problem,

12422 4+ ... 4242 = 70°.

The problem of determining those squares equal to the sum of consecutive squares has

attracted considerable interest throughout the years: the reader is referred to Guy
Problem D3] for a comprehensive list of both historical and contemporary references.
We are interested in integer solutions of

4 (k+1)P2 4+ (k+n—1) =4,

which equation may be written in the form of an elliptic curve

1 1 1
Ek:gn?’—l—(k—§>n2—|—<k2—k—|—6>n:t2.

[57

(1)
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Most authors to date have considered n as fixed and asked for corresponding pairs of
integers k,t if any. It is known that there exist solutions for infinitely many n, and in
particular all such n < 1000 have been determined. The analysis in this instance depends
upon an associated Pellian equation.

Alternatively, one can consider k as fixed and ask for corresponding integer pairs n,t
(when k = 1 this is the Lucas problem mentioned above). The analysis now depends upon
the theory of elliptic curves; a few explorations have been made in this direction (Platiel
& Rung [8], Rung [9]; see also Kuwata & Top [7]). The present paper offers a systematic
investigation of this approach, and all integer solutions n,? of (2) are found in the range
1 <k <100.

Stroeker & Tzanakis [14] and Gebel, Pethé & Zimmer [4] have studied specific elliptic
curves over Q, showing that when the rational Mordell-Weil group of the curve is known,
then finding all integer points can be reduced to a practicably efficient process. Both
papers employ similar methods, not following the traditional well established path of
solving Thue equations, but instead relying on a highly nontrivial lower bound for linear
forms in elliptic logarithms recently obtained by Sinnou David [3]. Where the calculations
in [4] leading to the computation of the Mordell-Weil group are based on the assumption
of the Birch and Swinnerton-Dyer conjectures, the results of [14] are unconditional. This
is also one of the objectives of the present paper, and our results for k£ in the range
1 <k <100 do not depend on any of the usual conjectures. However, in practice, this
often means that an extensive amount of computational effort is required.

In [13] Stroeker takes the elliptic logarithm method one step further and examines
the parametrized family of elliptic curves that arises from demanding that the sum of
consecutive cubes be a square. He is able systematically to treat the first 50 curves of
the family, showing that certain aspects of the computations can be successfully carried
through uniformly in terms of the parameter. The current paper is modelled on this latter,
though with some extra features. First, to determine the Mordell-Weil rank uncondition-
ally in eleven cases required an extra argument; in particular for k& = 68, it was found
necessary to invoke the arithmetic of a number field with class-group of order 16128. A
detailed discussion is devoted to this exceptional case, because it is rather surprising that
the nontrivial structure of this class-group ultimately clinches the argument. Some of the
curves in our range have generators of large height, and an extra descent was necessary in
order to compute the corresponding Mordell-Weil groups. Second, the curve (2) possesses
an ‘obvious’ integer solution for each k, namely (n,¢) = (1,k). It turns out that the point
Q) on the corresponding elliptic curve has infinite order, and one might reasonably ask
two associated questions in the case that the curve has rank 1:

(i) Is Q) always a generator, and

(ii) Can any multiple of ); modulo torsion give rise (on specialization) to a nontrivial
integer solution of equation (2)?
In the range 1 < k < 100, question (i) can be answered in the affirmative, and we offer
some suggestions as to the reason why the answer should be yes for all sufficiently large
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k. We answer question (ii) in the negative by means of a p-adic approach (p = 2,3),
involving straightforward but intricate double induction arguments.

1.2 The family of curves

Under the substitution

(x,y) = (12n + 12k — 6,72t) (3)

with inverse

1 1
net) = (g5 +6) = k)
the curve Ej at (2) transforms into the following Weierstrafl form
By y® = 2® — 362 — 864k(k — 1)(2k — 1). (4)

We shall denote by FEi(Q) the rational Mordell-Weil group of this curve. There is a

rational point T} on FEj of order 2, namely

T, = (6(2k — 1),0), (5)
and with the substitution
(X, V) = (z = 6(2k = 1),y) (6)
(4) transforms to
Y= X(X?+18(2k — 1)X + 72(6k* — 6k + 1)) (7)

with T transforming to (0,0). For P € E,(Q), the coordinates (x(P),y(P)) will always
be relative to (4), and the coordinates (X(P),Y (P)) will always be relative to (7).
The discriminant Ay of Fj is given by

Ay = —21235(12k% — 12k — 1)(6k — 6k + 1)
and the j-invariant j; by
gk = —2°3%/(12k* — 12k — 1)(6k* — 6k + 1)°.

Some simple facts are easy to establish.
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Lemma 1. (i) Fi(Q)tors >~ Z/2Z X Z[2Z and Ey(Q)iors = Z /27 for k > 2,
(ii) The rank ry, of Ex(Q) satisfies ry > 1 for k> 1.

Proof. (i) For k = 1, the torsion statement follows from Silverman [10, p. 311]. For
k > 2, we use the well-known fact (Silverman [10, p. 176]) that if a prime p does not
divide the discriminant Ay of Ej, then Ei(Q)iors injects in Ey,(F,) where Fy, is the
reduction mod p of K. With p =5, we have

LZ]2Z x Z.]AZ for k =0,1,3 mod 5,

Erps(Fs) ~
ks(Fs) {Z/SZ for k = 2,4 mod 5.

Thus |Ek(Q)tors | divides 8. Certainly Ej(Q) has precisely the one point T}, of order 2, since
6(2k — 1) is the only real zero of the right-hand side of (4). Furthermore, E,(Q) possesses
no point of order 4, for such a point P(x,y) satisfies 2P = (6(2k — 1),0), implying

(2% +36)* 4+ 6912k(k — 1)(2k — 1)a
4y? ’

6(2k — 1) =

But this forces = to be exactly divisible by 2, and hence 6(2k — 1) should be exactly
divisible by an even power of 2, which is clearly absurd. This shows (i), with the immediate
consequence that the point Qy = (12k 4 6, 72k) on (4), corresponding to (n,t) = (1,k) on
(2), cannot be of finite order, which shows r; > 1. O

Our goal is to determine all integer solutions of (2) in the range 1 < k < 100. We
shall actually do more and determine all integer solutions of (4) in the range 1 < k£ < 100;
integer solutions of (2) correspond via the transformation (3) and its inverse to a subset
of integer solutions of (4). The attack falls into two distinct parts: determination of the
Mordell-Weil groups and subsequent determination of the integer points.

2 The Mordell-Weil groups

In this part the Mordell-Weil groups for £ in the range 1 < £ < 100 will be computed
completely and unconditionally. As the torsion subgroups have been determined in the
previous part, that leaves the rank and the generators of infinite order.

2.1 Rank calculations

The first step is to compute the rank of each curve in the family. Connell’s APECS
program was able to determine rank unconditionally in the range 1 < & < 100 except in
the 11 cases k = 29, 40, 49, 51, 53, 57, 68, 77, 84, 93, 99. To fill in these gaps we used

the following descent arguments.
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At a rational point of (7), put X = AA?*/B?* A squarefree, A,B € Z, (A, B) = 1.
There results a quartic of type

CoA4 + 01A2B2 + CQB4 == 02 (8)

on which we seek points. John Cremona’s algorithm “mwrank” (see [2]) will quickly sieve
out all quartics (8) locally unsolvable for some prime p (including oo). Therefore we can
safely assume that (8) is everywhere locally solvable. Then the associated quadric

coX2+chy—|—02y2222 (9)

is everywhere locally solvable, and hence globally solvable. Let (a, 3,7) be a point of (9);
then (9) may be rationally parametrized as follows:

XY :Z =
aW? = 29WV + (aco + Be ) VZ: BW? — V) i AW? — (2c0a + a1 )WV + oy V2.

It follows from (8) that

hA* = aW? — 29WV + (acy + Be;)V? 10
hB2 — 6(w2 o CO‘/Z)7 ( )
where the squarefree part of & is a divisor of the resultant of the two quadratics in W, V/,
namely, 3*(ci — 4cgez). That is, the squarefree part of h divides 3(c¢i — 4cgcy). The
possibilities for h can be tested in (10), discarding those for which the pair of quadrics
is not everywhere locally solvable. For a remaining value of /i, the second quadric at
(10) being locally solvable implies it is globally solvable, and so rationally parametrizable.
Substituting into the first quadric at (10) results in a homogeneous quartic in two variables
being a square. In ten of the eleven exceptional cases listed above, all the resulting
quartics turn out to be locally unsolvable. The rather tedious but straightforward details
of these cases are omitted; verification should not pose any serious problems. However,
for k = 68 everywhere locally solvable quartics remain, so that we are still uncertain
about the expected non-existence of global solutions. We had to do some rethinking at
this point, and the proof we found in the end to show that these quartics can possess no
global solution is interesting enough in itself to justify a detailed description. Moreover, it
clearly shows the power that sophisticated software like PARI/GP puts at one’s fingertips.

After this the rank will have been determined unconditionally for all k& in the range
1 < k <£100. The rank values are listed in Table 1; here we just indicate their distribution,
namely 31 cases of rank 1, 52 cases of rank 2, 14 cases of rank 3, and 3 cases of rank 4.
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2.2 The exceptional case k = 68
Details are provided here that show the rank res of (4) for k = 68
Ees : y* = z(2® 4 2430z + 1968264) (11)

is unconditionally equal to 2. We refer to [2, Chapter III, 3.6] and [10, Chapter III] for
background and notational conventions. For the computation of the rank we also need
the isogenous curve

Bl y® = x(2® — 4860z — 1968156) (12)
and the standard 2-isogenies ¢ : Fgs — Fig and b Fls — Fes. 1t is well-known that

| Eos(Q)/ & Es(Q))] - | Egs(Q)/( Eos(@))] = 2772,

and we will show that

| Eos(Q) /0 Eés(@)] = | Egs(Q)/d( Eos(Q)] = 2°,
Putting x = da*/b*, 6,a,b € Z, § squarefree, (6,b) =1, (a,b) =1 in (11) gives

1968264, _

Sat + 2430a%0* + 5 ,

§|2-3.27337. (13)

Moreover, the group EGS(Q)/Q%(EéS(Q)) is isomorphic to the subgroup of Q*/(Q*)? gen-
erated by the factors § for which the diophantine equation (13) has an integer solution.
Cremona’s “mrank” tells us that global solutions exist at § = 1, 3, 2 - 27337, 6 - 27337,
and the remaining four values of §, § = 2, 6, 27337, 3 - 27337 give everywhere locally
solvable curves, but the existence of a global solution for these values remains undecided.
However it is easy to see that |E68(Q)/qAb(Eé8(Q))| = 2% or 22, depending, respectively, on
the existence or non-existence of a solution for § = 2.

When § = 2,
2a" + 2430a%b* + 984132b" = ¢
with parametrization
a?:b* 1 c= —639u? — 996uv + 115207 : u? — 207 : 498u* + 126uv + 99607
so that for coprime integers U, V. there exist integers h, «g, 3 satisfying

—639U% — 996UV + 1152V? = hag (14)
U? —2V? = hp?,
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where h is a squarefree divisor of the resultant of the two polynomials in the left-hand
side; so h | 2-3-23-2377. However, 3|k implies U? = 2V? mod 3, which is impossible.
Thus h | 2-23-2377. From (14), 3|ha?, so ap = 3a, and

—213U% — 332UV + 384V? = 3ha’ (15)
U? —2V? = b2 (16)

The quadrics (15) and (16) are locally solvable for precisely the following eight values of
h:

h=1, =2, =23, 46, 2377, —2- 2377, —23.2377, 46 - 2377, (17)
Write (15), (16) in the form
(=213 + H)U* — 332UV + (384 — 20)V? = h(3a® 4+ t3°) (18)

where t is chosen so that the left-hand side is a singular quadratic; this demands ¢ =

202 + 0, where % — 0 + 13668 = 0, and (18) may then be written
—2(83U 4 (10 + 0)V)? = h(10 + 0)(3a® + (202 + 0)3%)
or, equivalently,
9a® + (606 + 30)3% = —6(83U + (10 + 0)V)?/(h(10 + 0)).

Define the number field K = Q(¢) where ¢* = —606—30, so that ¢*+1215x*+492066 = 0.
Further, let L = Q(6). Then

Normgp(3a + Bp) = —6(83U + (10 4 0)V)?/1(10 + 0). (19)

The following arithmetic information about K, L. was obtained by use of PARI/GP. In
L there are the prime factorizations (2) = pap}, (3) = paphs, (83) = psabss, (23) = pas,
(2377) = p3grr, (10 + 8) = phpi. A Z-basis for the ring of integers Oy, is {1,0}; and the

following congruences hold:

mod | P P, | P35 | Pss Pas
0 1 0} 1 0111 -10

In I py = a3, py = 45, bs = 43, P53 = 65, (¥) = Gotsdbdorasr, (14 @) = datasen;
a Z-basis for the ring of integers Oy is {1, ¢, %992, %993}; and the class-group is of order
16128 and of type Z504 X Z4 X Z2 X Z2 X ZQ.

The following congruences hold:
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/

mod | g2 dqy | g3 95

e |1 0|0 0
1201 0|1 2
1 0olo o

Now at (19), the greatest ideal common factor of (3o + B¢) and (3o — f¢) divides
(60, 28¢,3a + Bp). Since F=0(2) = U =0(2) = V =0(2) at (16), we have (3,2) = 1;
and certainly (,3) = 1. Further, (o, 3) = 1, for any common prime divisor m divides
the resultant at (15), (16), so m € {2,23,2377}, that is, 7 € {23,2377} (5 odd). But
then (15), (16) force U = V = 0 mod n. Thus (6a, 3) = 1, and the above g.c.d. divides
(60, 2¢,3c0 + Bp). Further, @ = 0 mod ga733r = a = 0 mod 27337, and from (15),
“213(U + 7573V + 27337 - 1ISV(U + 12822V) = 0 mod 273372, giving U + 7573V =
0 = V(U 4 12822V) mod 27337, contradicting (U, V) = 1. So the above gcd is g2q305 («
odd), 959395 (o even).

At (19), let the ideal (83U + (10 4 0)V') = pg.a, so that we obtain as ideals:

Normyp,(3a + ) = papaps(h) ™ a?. (20)

Now, from (17), (k) € SUp2psS where S is the set {(1), P33, Pa377, P3sPasrr s and thus (20)

implies an ideal equation

papspsb?

o,y for an integral ideal b of Oy,. (21)

Normg1,(3cr + Bp) = {

From the above remarks on greatest common divisor, (21) implies an ideal equation in K
of type

(20395%B>

e for an integral ideal B of Ok.
q29393

(3a + Bp) = {

But this gives a contradiction in the class-group of K. For in the group Zsoy X Zy X Zg X
Z2 X ZQ,

gz ~ [46670717070]7 q/2 ~ [3872717070]7 qs ~ [3070707170]7 qé ~ [22272707070]

so that g203q5 ~ [214,2,1,1,0], g59395 ~ [290,0, 1, 1,0].

If B ~ [e0,€1,62,3, 4], then B2 ~ [229,221,0,0,0], implying (3a + Bp) ~ [*,*,1,1,0]
is in the principal class, a contradiction.
Consequently there are no global solutions for § = 2, and |E68(Q)/qAb(Eé8(Q))| =22

[t should be noted here that the ideal classes are given relative to a certain (unspecified)
ordered basis. This basis will generally change with each interactive session, resulting in
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different representations for the ideal classes.

Also, the algorithms used in PARI for constructing the class-group are correct under
GRH. However, in most cases it should be comparativelyeasy to verify the results PARI
produces.

Next we consider the isogenous curve (12). In a completely analogous way it can be
seen that, starting with

1968156
AA* — 4860A4%B* — TB4 = (C?, A|2-3-23.2377,
it suffices to show that there are no global solutions for A = —2. Now, the class-group of

the relevant quartic number field generated by a zero of 2 +243022 — 492039 is isomorphic
to Ziy X Zig X Ziy X Zig. An argument similar to that used before applies and ultimately we
find |E4(Q)/d(Fes(Q))| = 22, thus proving that res = 2.

2.3 Constructing generators

The next step towards the construction of Mordell-Weil bases is to find on each curve
the maximal number of linearly independent points. APECS was used extensively but
failed to find the right number of points in six instances. It was necessary to perform
the extra descent described above and search the resulting quartics for global solutions,
which, when found, could be pulled back to the corresponding points of (4). This descent
finds the points of large height in Table 1; and it is clear why the APECS search failed to
find them.

Further we remark that any determination of generators of a Mordell-Weil group will
depend on estimation of height functions on the curve, in particular the relation between
the logarithmic height hA(P) and the canonical height iL(P) of a point P on the curve.
Silverman [11] gives general estimates for the difference h(P) — 2h(P), but it turns out
that these are not precise enough for our purposes, and it was necessary to tailor his
arguments specifically to the curve (4).

Lemma 2. (i) For P € F1(Q),
—log 6 — 4.076 < h(P) — 2h(P) < log 6 + 4.504

(ii) For k > 2 and P € E,(Q),

2 1 A 1
—=1 ——— )| <h(P)—=2h(P)<logl12 + -1
o8 (3 e ) < MR = 20(P) < log 12+ log €

where Cy = (6k* — 6k + 1) I1, p°r!?, the product running over all primes p for which pr
exactly divides 12k* — 12k — 1 and e, > 2.
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Proof. (i) Example 2.2 of Silverman [11].

(ii) This is a careful book-keeping exercise using the methods and formulae of Silver-
man [11], [12]. Brief details of the proof are given below.

Theorem 4.1 of Silverman [11] gives

1 ) 1 1
—ﬂlogJ’ |]|p < )\p(P) - §log+ |x(P)|p < _Elog |A|p (22)

for all finite primes p (where A, is the local component of the height); and that for primes
p dividing the denominator of j to the first power, (22) may be replaced by

1 ) 1 1
Elog—l_ |]|p < )‘p(P) - §log+ |x(P)|p < _Elog |A|p- (23)

Summing over the finite primes results in

A 1 1
F(k) < B(P) = Aa(P) = S Infden(a(P)) € - log]A] (21)
where
F(k) = —21—4 In(|den(7)]) + %ln(squarefree part of |1 + 12k — 12k%|). (25)

To compute the component A, (P) of the height of P at infinity, refer to Silverman [12],
noting it is the height there termed X that is used in the inequalities (22), (23). See also
[12, Remark, p. 341].

The cubic in x, 2® —36x —864k(k—1)(2k—1), has precisely one real zero at x = 12k —6;
so for P(x,y) € E(R) then necessarily « > 12k — 6, and h(P) = In(num(z)) = In(z) +
In(den(a)).

Define a sequence of reals {z,} by

vt + 7222 + 6912k(k — 1)(2k — 1)z, + 1296
A(a? — 36, — 864k(k — 1)(2k — 1))

To =T, Tp41 =

and a sequence {z,} by z, = Z(x,), where

2+ 7227 4+ 6912k(k — 1)(2k — 1)a + 1296

4

Z(x) =

X

Then Aoo(P) = =5 In Al + L In(Z(x)z*) + £ 372, 47" In |z, so that (24) implies

1 A 1
P(k) = = 0 |A] < h(P) = Sh(P) - —an - —24 " In|z,| < 0. (26)
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Now using « > 6(2k — 1),

2 32k(k — 1) 1 Ly
A S U g T e Tk (3_<2k—1>2> |

Similarly,

0<Inl|z|<2In(3 !
~In|z2, >~ n (2]{—1)2

so that

> . 2 1

n=1

Substituting into (26) results in

F(k) — %m IA| < h(P) — %h(P) < %m (3 - ﬁ)

where the left-hand side is

1 1 1 1
F(k) = 75 n(273%) = 5 Infden(j)) = =5 In(12) = 2 In C,

by (25). This completes the proof of Lemma 2 (ii). O

At the final step, determination of bases for the Mordell-Weil groups, we choose to
consider four cases, according to rank.

Rank 1 (31 instances)

Suppose the known point P is not a generator. It is easy to verify in each case that
neither P nor P + T} lies in 2E(Q), so there exists m € Z, Q € Ex(Q) with P = mQ@,
m > 3, and where, without loss of generality, we may suppose m prime. By looking at
Ey(F,) for a suitable prime p, it can be shown in each of the cases that m # 3. So m > 5,
and iL(Q) = #ﬂ(m@) = #ﬂ(P) < 21—5%(]3) Using the bounds of Lemma 2, a simple
search shows no such ) can exist in any of the cases.

Ranks 3, 4 (14, 3 instances, respectively)

In each case the known independent points do not have particularly large height, and
the following idea of Silverman is applicable.

Let Pi,..., P be a maximal set of independent points in Fi(Q) corresponding to a
set of generators for Ei(Q)/Fr(Q)tors . Select a complete set S of 27 representatives for
Er(Q)/2E,(Q) from the set

{Zﬁ:eiPi = {0,11}}
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and set B = maxpegs iL(P) Then Ei(Q) is generated by all points X of E(Q) satisfying
h(X) < B.

The most intransigent of these cases occurred at k = 74 with B = 13.1286, leading to
h(P) < 20.8066 and a run-time of several hours on a SUN workstation.

Rank 2 (52 instances)

The above method of Silverman works in many instances, but cannot deal with the
cases where one of the two known independent points has large height, for example k =
75, where the known points have heights 2.6069 and 28.3739. We need to introduce
a further idea. Suppose the known points P, P, generate a subgroup of index m in
FEr(Q)/ Er(Q)tors - 1t is straightforward to verify in all the cases that m is odd, by showing
that if e; Py + g9 P + e3T), € 2E,(Q) for ¢; € {0,1}, then ¢, =0 for ¢ = 1,2, 3.

Suppose now m > 1, and let ¢ be a prime dividing m Then either Py € qEL(Q) or
at least one of the points Py £ 7P, with r € {0,1,..., %5 =11 Jies in qFx(Q). In the latter
case, let P+ 1P, =qQ, |r] < % Then

h(P,+rPy) + h(P, — rP,) = ziL(P )

so that

from which
A 1 1\°. 2 . .
h(Py) + 5 l——) h(FP,) < —zh(Pl) + ih(Pz). (27)

Thus either there exists Q) € E,(Q) satisfying iL(Q) = %iL(PQ) or there exists Q € Fi(Q)
satisfying the inequality (27).

In each numerical case we eliminate the possibilities ¢ = 3,5,7 by showing that none
of Py, P £ 7P, with r € {0,1,..., %} lies in ¢EL(Q). As an example, when k = 24, the
structure of the groups Fq4(Fi9) and Fau(Fis7) was used to eliminate ¢ = 7. It follows
that ¢ > 11, with consequently a point Q € FE(Q) satisfying either iL(Q) < lélh(Pg)
or iL(Q) < 1§1h(P1) + %iL(PQ) By choosing P; to be the point with larger height than
Py, only the second inequality matters. It implies a manageable bound for A(Q), and by
search there are no such Q.

It only remains to indicate how in practice the search for points of bounded height
was carried out.

We are searching on the curve (4) for points P with A(P) < B, for some known bound
B. Let X(P) at (7) be given by r/s*, so that using (6),

0<r+6(2k—1)s* <eP,
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whence
1/2
0§5§<J7m@k—UD L 0<r <P —6(2k — 1)s?. (28)

In practice, write r = §p? where § is a squarefree divisor of 72(6k? — 6k + 1). Then for
each 4, (28) becomes

1/2

0<s< <eB/(6(2k . 1))) e” —6(2k - 1)32>1/2.

< p <
, O_p_< 3

Of course one can also restrict to those § known to correspond to everywhere locally solv-
able curves, but in our cases the time of running was so short that this minor refinement
was unnecessary.

Table 1: The Mordell-Weil groups Ex(Q), k=1,...,100

Rank and generators of F(Q), k=1,...,100
rank
k rL generators Py, ..., P, on (4)
1| 1 | @8, 2
2 | 1 | (30, 144)
31 2 | (42, 216), (54, 360)
4] 2 | (54,288), (46, 152)
51 1 | (66, 360)
6 | 1 | (78, 432)
7| 3 | (144, 1584), (90, 504), (124, 1196)
8 | 2 | (102, 576), (286, 4760)
9 | 2 | (114, 648), (390, 7632)
10| 2 | (126, 720), (189, 2295)
11 2 (138, 792), (132706/25, 48342896 /125)
12| 2 | (150, 864), (864, 25344)
13| 2 | (162, 936), (300, 4860)
14| 2 | (174, 1008), (166, 568)
15| 2 | (252, 3276), (186, 1080)
16| 2 | (198, 1152), (1342, 49096)
17| 2 | (474, 9936), (405, 7659)
18| 2 | (342, 5544), (222, 1296)
19 1 (234, 1368)
20 | 4 | (246, 1440), (258, 2088), (522, 11376), (396, 7020)
o1 | 2 | (258, 1512), (1398, 52128)
continued on next page
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continued from previous page (Table 1)
Rank and generators of F(Q), k=1,...,100
rank
k rL generators Pp,..., P, on (4)
22 | 3 | (540, 11844), (634, 15416), (14076, 1670004)
23| 1 | (282, 1656)
24 2 (294, 1728), (30952606,/101761, 77602986872 /32461759)
25 | 4 | (606, 14040), (333, 3393), (306, 1800), (300, 1260)
2% | 1 | (318, 1872)
27| 3 | (714, 18216), (330, 1944), (406, 5896)
28 | 3 | (342, 2016), (480, 8640), (930, 27720)
20 | 1 | (354, 2088)
30 | 2 | (366, 2160), (1777/4, 52649/8)
31 2 (378, 2232), (127824/289, 30083760/4913)
32 | 3 | (390, 2304), (396, 2844), (3886/9, 138952,/27)
33| 2 | (402, 2376),
(5981669022636,/908721025, 14628110492415103884 /27393395298625)
34| 1| (414, 2448)
35 2 (426, 2520), (139164, 51914700)
36 | 2 | (438, 2592), (5278/9, 301112/27)
37| 1| (450, 2664)
38 | 3 | (1158, 38232), (582, 10296), (528, T488)
30 | 2 | (474, 2808), (12726/25, 721224/125)
40 | 1| (486, 2880)
41 2 (498, 2952), (2398896,/3025, 3259927944 /166375)
421 1 | (510, 3024)
43 1 | (522, 3096)
44| 4 | (534, 3168), (810, 19728), (1122, 35640),
(24739884 /25, 123054213348/125)
45 2 (546, 3240),(590713/16 454008653 /64)
46 | 2 | (558, 3312), (909, 24255)
47 2 (570, 3384), (108734694 /46225, 1126245391128 /9938375)
48 3 (582, 3456), (3093, 171477), (5230/9, 89720/27)
49 | 1| (594, 3528)
50 | 2 | (1317, 45549), (1558, 59768)
51| 1 | (618, 3672)
52 | 3 | (780, 15444), (630, 3744), (314, 17416)
53| 1 | (642, 3816)
54 | 1 | (654, 3888)
continued on next page
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continued from previous page (Table 1)

Rank and generators of Fi(Q), k=1,...,100

rank
k rL generators Py, ..., P, on (4)
55| 2 | (666, 3960), (42402, 8731296)
56 2 (678, 4032), (13101598/1089, 47418685768 /35937)
57| 1| (690, 4104)
58 | 2| (702, 4176), (25590, 4093560)
59 | 1| (714, 4248)
60 3 (1110, 31680), (813, 13167), (726, 4320)
61| 1 | (738, 4392)
62| 1 | (750, 4464)
63| 2 | (957, 21321), (762, 4536)
64 2 (774, 4608), (1644, 63252)
65| 3 | (1461, 51525), (786, 4680), (1068, 27468)
66 | 1 | (798,4752)
67 | 3 | (810, 4824), (1398, 47160), (102198, 32671080)
68 | 2 | (822, 4896), (53374/25, 11989432/125)
69 | 1 | (834,4968)
70| 1 | (846, 5040)
71 2 (858 5112),(1442448,1732408272)
72| 2 | (870, 5184), (1584, 57816)
73| 3 | (2334, 109800), (1246, 35720), (882, 5256)
74 3 (894, 5328), (2469, 119853), (353329/400, 14064983 /8000)
75 2 (906, 5400), (3136967230856518683905833/2054749957279742824336,
4966969507247775157308223126323839317,/93140479655477517058675181003584)
76| 2 | (918, 5472), (1194, 30960)
77 2 (930, 5544), (164364/25, 66545388 /125)
78 2 (942, 5616), (5187822/5329, 4230301536,/389017)
79 2 (954, 5688), (3355673398086,/82283041, 6147051433138245528 /746389464911)
80| 1 | (966, 5760)
81 2 (978, 5832), (6548193/4096, 14792957487 /262144)
82| 1 | (990, 5904)
83 3 (2253, 102303), (2674, 134720), (78768/49, 19353312/343)
84 2 (1014 6048) (26494/25,1696472/125)
85| 1 | (1026, 6120)
86 2 (1038, 6192), (812416/625, 522039464 /15625)
87| 2 | (1050, 6264), (1638, 57240)
88 2 (1062, 6336), (132093/121, 15938217/1331)

continued on next page




On sums of consecutive squares 17

continued from previous page (Table 1)
Rank and generators of F(Q), k=1,...,100
rank
k rL generators Py, ..., P, on (4)
89 2 (1074, 6408), (68688707715787803174/26984922344516161,
548220350317108568623851392352/4432836967250255286207841)
90 | 1 | (1086, 6480)
01 | 2 | (1098, 6552), (1968, 79632)
92 | 1 | (1110, 6624)
93 | 1 | (1122, 6696)
94 | 2 | (1134, 6768), (38713 /4, T611085/8)
95 | 2 | (1146, 6840), (174025341/25, 2295719061111 /125)
96 2 (1158, 6912), (967461/529, 826267725/12167)
97 | 2 | (1170, 6984), (57772/9, 13845140,27)
98 | 2 | (1182, 7056), (1677, 55809)
99 | 1 | (1194, 7128)
100 2 (1206, 7200), (184812, 79450236)

2.4 A rank 1 conjecture

From Table 1 it can be seen that for all 31 curves of rank 1 the point
Qr = (12k +6,72k)

on (4) serves as a generator for Ey(Q)/Fk(Q)ors. Can this be a coincidence? We think
not, but we have no more hard evidence than these 31 examples. Nevertheless, we wish
to formulate the

Conjecture. [If the curve given by (4) has rank 1, then

Er(Q)/ Ex(Q)ors =~ (Qp)-

Support of a heuristic nature may be found in the following remark which contains
ideas due to Samir Siksek. We are grateful to him for allowing us to use them.

Remark. The Szpiro ratio of an elliptic curve £ over Q is the ratio
op = log (discriminant £)/log (conductor E),

and is conjectured to be bounded. Hindry and Silverman [6] show that all non-torsion
points P € E(Q) satisfy h(P) > (ZOUE)_819_1'1_40E log(discriminant £), so that applied
to the curves Fj, we obtain an estimate h(P) > clog(k) where ¢ is an absolute and
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effective constant, provided o is bounded. On the other hand, our estimates indicate
that iL(Qk) is asymptotic to %log(k\/g). So if @1 generates a subgroup of index m in
E(Q), then Qr = mQ}, + T, for some @}, € E(Q) and torsion point T, and m?clog(k) <
mZiL(Qz) = iL(Qk) ~ %log(k\/g) implying a uniform bound on the index m for sufficiently
large k.

It now seems plausible that for a rank 1 curve, there can only be finitely many k
where the index m exceeds 1. For otherwise, there exists mg € N such that Qr = mo(z,y)
as an equation in F(Q) is solvable for x,y € Q for infinitely many k. Equating first
components, there results an equation F(z,k) = 0 of degree m3 in x, which is known to
have infinitely many rational solutions x,k. Further, Q) = mo(x,y) forces = to be an
integer, so F'(x,k) = 0 has infinitely many integer solutions x, k. Consequently, F'(z,k)
must represent a curve of genus 0, which seems unlikely in general.

3 Determination of integral points

Now that the rank ry and a complete set of generators for Fy(Q) are known, set

Ey(Q)/ Ex(Qsors = (Pry- -+, Pry)-

For P € E;(Q), there exist integers my,... ,m,, such that

k
P=mP +---+m, P, +F, (29)

where Fy is a torsion point, satisfying (from Lemma 1) 2P, = 0 in Fy(Q). For integral
P = (x(P),y(P)) we intend to estimate the integral vector m = (my,... ,m, ). Once
(small) upper bounds for its coordinates m; are known, an attempt can be made to recover
all integral points by direct search.

3.1 Elliptic logarithms

Considering m as a column vector, then iL(P) = m”H,m where H, is the r; x r; height-

pairing matrix
1
Hk — §<PZ, P]>

with (R, S) = iL(R +95)— iL(R) — iL(S) the Néron-Tate pairing. The matrix Hy is positive

definite and hence
h(P) > A\, M? (30)

where Ay is the smallest eigenvalue of Hj, and M} = maxi<i<,, |mil.
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Suppose now P is an integral point of (7) with X (P) > 0, that is, 2(P) > 6(2k — 1).
Then P is a point on the component of Ei(R) containing the identity 0 of Ex(Q). The
known boundedness of x(P) can be expressed by saying that P cannot be too close to 0.
In order to measure the distance between P and 0, we use the group isomorphism

¢ : EL(R)— R/Z (circle group)

where F| = Ej, for k > 2 and E{(R) is the noncompact component of £;(R), with ¢ given
by

0 mod 1 if P =0,
1 [~ dt
Py=< — d1 ify(P) >0,
#E) w/x(P)Vt3_36t‘|‘bk mod 1 ify(F) 2
—¢(—P)mod 1 if y(P) < 0.

(see Zagier [14, p. 429]). Here by = —864k(k — 1)(2k — 1), and w = 2f6°(<;k_1) —— d;6t+b
\V/ - k

is the fundamental real period of the Weierstrafl p-function associated with (4). There is
no loss of generality in assuming that ¢(P) € [0,1), so that ¢(P) € [0, 2] when y(P) > 0,

12
which henceforth we shall assume. The quantities u; = w¢(F;) are known as the elliptic

logarithms associated with the basis {Py,..., P, }. Applying ¢ to (29) yields
O(P)=mip(P) + -+ m, o(P,) + %5 mod 1,

where ¢ = 0,1, according to whether Py = 0, Fy # 0, respectively. Hence there exists
mo € Z such that

&(P)=mo+ %5 +mid(Pr) 4+ -+ me, d(Fr). (31)

Clearly, |mo| < 14 |ma| + -+ 4+ |m,, | < 14 reMy. Multiplying by uo = w and setting
L(P) = wop(P) yields

1
= (m " 55) o 1ty o+ (32)

It is now straightforward to obtain an upper bound for |L(P)| in terms of k and Mj.

Lemma 3. Let P = (x(P),y(P)) € Ex(Q) be an integral point of (4) with x(P) > 12k,
y(P) > 0. Suppose that P satisfies (29), and let L(P) be as in (32). Then

|L(P)| < diVk exp(—\e M),
where

dy = 53.2 and d, = 4.08 for k > 2.
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Proof. From the definition of ¢ and by (32), it follows that

> dt
L(P)| = / . _ .
x(P) \/1? + 18(2k — 1)t% 4+ 72(6k% — 6k + 1)1

g/ t32dt < 2X(P)~Y2,
X(P)

Using the estimates of Lemma 2 applied to (30), together with x(P) > 12k, we deduce

for k > 2,
log X(P) = log(«(P) — 6(2k — 1)) = log z(P) + log (1 —

6(2k — 1)
z(P) >

2 1 1

1
> 20 M} —logk — glog 72,

z(P)
= h(P) + log (1 =

and the result follows. For k = 1 the reasoning is similar.

6(2k — 1)

O

The upper bound for |L(P)| of Lemma 3, combined with Sinnou David’s lower bound
(Lemma 4) produces an upper bound for M. We shall state this lower bound for |L(P)]
as it applies to the curves (4), referring the reader to Stroeker & Tzanakis [14] for further

details.
Lemma 4. (David) Let P € Fx(Q) be as in Lemma 3. Put

B {log 1728, ifk=1,
log ((12k* — 12k — 1)(6k* — 6k + 1)%), if k > 2,
and for 3 =0,....1y, let A; be a posilive number satisfying
Ay = max{h(F;), hi}
(where Py = 0 by definition). If
By > max{exp(Ao),...,exp(A,,),2|mo| + 1, |mal,...,|m.|, 16},
then a lower bound for |L(P)| is given by
|L(P)| > exp (—ck(log Bi + 1)(loglog By, + 1 + hk)rk‘”) \

where

9 2(rr+1)2 Tk
e =2 1077’k—|—15 (_) (Tk + 2)4r§+18rk+14 HAJ”

€ ,
J=0

(33)

(34)
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This is a special case of David [3, Théoreme 2.1]). O

Remark. Following closely Stroeker & Tzanakis [14, Appendix], we have, for & > 2,
taken the following fundamental periods for Fy:

W :Q1—|—Q2, WQ:2Q1 and T:wl/wz,

where
Ql - ° 9
M <\/6</3(2k —1)2 -1, %\/18(% — 1) +12y/3(2k — 1)2 - 1)
0, = T

M <\/6</3(2k T LAy 182k - 1)+ 12/3(2F — 1) - 1) |

Here M(u,v) denotes the AGM (Arithmetic-Geometric Mean) of v and v. Also note that
Q) = iw is the real period of the Weierstraf o function associated with (4). Then 7

2
satisfies the requirements R+ = %, 37 >0, || > 1,and for j =0,...,rp we have

For k =1, we have chosen

27 . )
W= ——F——=—, wy=wil, and T =uwy/w =1i.

TERYG)

Then w = w; and

3ru? 3
] = .
ST < 27 < mkm(hk).

Moreover, the number £ of [14, Appendix] has been chosen equal to e.

Corollary 5. If By, satisfies the inequality (34) then

M\eM? < e(log By + 1)(loglog By, + 1 + hi)* 2 + log(diVk). (35)
Proof. Combine Lemmas 3 and 4. O
Remark. If we take By = 2ry My + 3 then By > max{2|mo| + 1, |m4l,...,|m.|}.

Furthermore, if M}, is taken sufficiently large to meet the remaining conditions of (34),
then (35) says that M) cannot be too large.

It is clear from (35) that ry is the dominant factor in the calculation of the upper
bound for M. For this reason we shall put the curves E; into classes, depending on their
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rank. Only the first curve (k = 1) will be treated separately. Second to the rank, Ay is
the major contributor to the size of the upper bound for M}; the values of hy, dy and the
A; have only a minor influence. Therefore it is not necessary to distinguish between the
curves where these quantities are concerned. Since from (33)

2
max hp < max log (%(Zk — 1)6> < 33.67,

2<k<100 2<k<100
we replace hy in (35) by 33.67. Furthermore,

max max iL(P]‘) = 28.3739...,
2<k<100 1<5<r,
and hence A; may be chosen as 28.4 for all 2 < £ <100, 1 <5 < ry.
Finally,

max log(dxVk) < log40.8 = 3.708 ...,

1<k<100

which makes it possible to replace log(d,v/k) by 3.71 in (35) for all 2 < k < 100.
For £ = 1 we have iL(Pl) = 04443 ... and hy = 7.454..., so that we may choose
Ao = Ay = T7.46.

The following table gives particulars about the calculations of the upper bound for
M., broken into cases for k = 1 and for each of the rank-classes.

Upper bound K for My, by (35)
in the range 1 <k <100
Tk k )\k K
1 1 0.444 | 5.80 x 10%*2
re | # k| min Ay K
1| 30 | 0.800 | 8.90 x 10*
2 | 52 | 0.607 | 5.73 x 10%
3] 14 | 0.740 | 2.40 x 10%°
41 3 0.705 | 2.07 x 10%

3.2 LLL-reduction

Clearly the resulting upper bounds K are far too large to be of practical use, and it
is necessary now to apply the LLL-reduction process described in detail in Stroeker &
Tzanakis [14, Sec. 5] in order to reduce the magnitude of the bounds. See also de Weger
[16, Chap. 3]. A brief description of the procedure should suffice here.
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From Lemma 3,
|p(P)| < Ky exp(—K,M?) and M, < K, (36)

where K; = dk\/E/w, and Ky = min A;. But we can bound |¢(P)| from below, as follows.
Let £ be the (rp+1)—dimensional lattice, generated by the columns of the integral matrix

1 . 0 0
0 . 0 0
./4/; - T ”
0 e 1 0
[Kod(P1)] ... [Kop(P)] Ko
(here [a] means rounding « towards 0, that is, [a] = [a] if @ < 0, and [a] = |«a] if
a > 0) where K, will be a large integer that will be conveniently chosen later. If the
vector (my,...,m,,,mg) € Z"t! satisfies |m;| < K for j =1,... 7, put
le le
= A : -1 =
g . 2m,, 2m,,
2m0 —|— & tk

with
f = Z omi[Kod(P})] + (2mo + ) Ko.
Then using (31),
ty =2 i mi<[[x’0¢(Pj)] = f&”osb(Pj)) + 2Kop(P)

so that
|tk| < 2rp K + 2[&70¢(P)

and

Tk
[06]> =4 " m? + 17 < 4rp K2 + A(re K + Ko|o(P)|)%. (37)
=1

On the other hand, if {by,... b, 41} is an LLL-reduced basis of £, then
o ]|* < 27| 4] (38)
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Combining (37) with (38) yields

Kold(P)| > v/27%=2||by |2 — ri K2 — 1 K. (39)

From (36), (39), we have a new upper bound for M, given implicitly by the inequality

M} < K7t <1og(K0K1) —log(/277+=2||by ||z — r K2 — rkK)> : (40)

provided that the right-hand side of (39) is positive, that is, provided

[by|| > 292K\ /12 4 1y (41)

It is reasonable to expect that |[by|| ~ (det Az)/(st1) = Ké/(rk—l_l). Therefore, if we
choose Ky such that Ké/(rk-l_l) is slightly larger than the right-hand side of (41), then it
is likely (41) will be satisfied. In that case, (40) produces a new upper bound which is
of the size of \/log i, a considerable improvement. There is nothing to prohibit using
this reduction process as many times as possible; we found in practice that at most three
reduction steps were needed to bring the upper bound for My down to a manageable size
(between 3 and 6). In order to execute the reduction process, it is necessary to know the
values of ¢(F;) to a great number of decimal places (600 in the case of rank 4). Zagier
[17] describes a very efficient algorithm to compute these values to the precision needed,
and this was programmed in the very fast UBASIC language. The LLL-reduction step was
carried out using the integral LLL algorithm of PARI/GP. Below we list the outcome of
each reduction process.

Reduction process for 1 < k& < 100
(d stands for the number of digits precision)

step 1 step 2 step 3
k Ky d K| Ky d K Ky d K
1| 10°° 100 11| 10° 20 5 104 20 4
step 1 step 2 step 3
re | Ko d K| Ky d K Ky d K

10°° 100 9 | 10° 20
10'2% 200 18 | 10*° 30
10%° 400 24 | 10** 30
10*° 600 34 | 10 40

103,100 20 3
107,108 20 5*
5x10° 20 5
6.6 x 1012 30 6

= o DN —
-1 O Oy v

The * in the final column indicates one exception at £ = 79, in which case the process
stopped at step 2 with K value of 6.
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3.3 All integral points for 1 < k& < 100

When completing the final search for integral points with the K values from the above
table, the worst instances occur for rank 4 curves. Corresponding to my; > 0; my = 0,
my > 0; my = mg =0, mg > 0; my = mg =ms =0, myg > 0in (29), there are respectively
2:6-13°,2-6-13%,2-6-13, 2-6 cases to consider, a total of 13* — 1 = 28560 points to
check for integrability. For each k-value, this search took about three hours using APECS
on a 486 desktop with 16 Mbytes of extended memory. For the other ranks, this final
search was significantly shorter. A list of all the integral points found is given in Table 2.
In fact the coeflicients m; corresponding to integral points rarely exceed unity; there are
only five instances where this is not true (for £ = 1,2,7,9 and 20), and then the largest
(absolute) coefficient is 2.

Table 2: Integer points on (7), k =1,...,100

All integer points (X,Y) with Y > 0 for the curves (7), k= 1,...,100,
omitting in each case the point (0, 0)
k (X,Y)
1| (-12,0), (-6,0), (-9, 9), (-8, 8), (6, 36), (12, 72), (288, 5040)
2 | (12, 144), (78, 936)
3 | (12, 216), (18, 288), (24, 360), (111, 1665), (148, 2368),
(222, 3996), (2178, 103752), (6936, 531400), (11532, 1243224)
4| (4, 152), (12, 288), (147, 2583), (438, 10512), (1314, 49932),
(2883, 158193)
5 | (12, 360), (726, 21780)
6 | (12, 432), (1086, 39096)
7 | (12, 504), (46, 1196), (66, 1584), (88, 2024), (207, 4761),
(276, 6624), (396, 10296), (600, 17640), (882, 20736),
(1518, 63756), (2208, 109296), (18975, 2629935),
(26508, 4334904)
8 | (12, 576), (196, 4760), (363, 9603), (2022, 97056)
9 | (12, 648), (288, 7632), (294, T812), (2598, 140292),
(6624588, 17050940568)
10 | (12, 720), (75, 2295), (196, 5320), (3246, 194760)
11| (12, 792), (3966, 261756), (274776, 144134136)
12 | (12, 864), (726, 25344), (4758, 342576)
13 | (12, 936), (150, 4860), (1152, 46944), (5622, 438516)
14 | (4, 568), (12, 1008), (2523, 139113), (6558, 550872),
(19674, 2793708), (38307, 7545123)
15 | (12, 1080), (78, 3276), (1164, 48888), (3744, 245232), (7566, 680940)
continued on next page
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continued from previous page (Table 2)

All integer points (X,Y) with Y > 0 for the curves (7), k =1,...,100,
omitting in each case the point (0, 0)

k (X,Y)

16 | (12, 1152), (1156, 49096), (3646, $30016)

17 | (12, 1224), (207, 7659), (276, 9936), (426, 15336), (568, 21016),
(9798, 999396), (63948, 16246296)

18 | (12, 1296), (132, 5544), (1002, 42084), (2475, 139095),

(11022, 1190376)

19 | (12, 1368), (12318, 1404252)

20 | (12, 1440), (24, 2088), (162, 7020), (288, 11376), (294, 11592),
(1587, 77625), (2178, 118404), (3468, 225216), (6843, 595341),
(13686, 1642320), (18723, 2610081), (20164, 2913272), (85698, 25190244),
(14652300, 56087890560)

21 | (12, 1512), (1152, 52128), (15126, 1905876)

22 | (12, 1584), (282, 11844), (376, 15416), (531, 21771), (708, 20736),
(13818, 1670004), (16638, 2196216), (82668, 23880096),
(1848411, 2513556999)

23 | (12, 1656), (18222, 2514636)

24 | (12, 1728), (19878, 2862432)

25 | (6, 1260), (12, 1800), (39, 3393), (288, 13104), (312, 14040),
(588, 25704), (831, 37395), (1300, 63440), (1734, 91188),

(2548, 151424), (6648, 578376), (7200, 648720), (18954, 2670408),
(21606, 3240900), (43212, 9074520), (259200, 132187680),
(1277679, 1444716117), (4926999, 10937361897)

26 | (12, 1872), (23406, 3651336)

27 | (12, 1944), (88, 5896), (162, 8856), (396, 18216), (766, 35236),
(1650, 87120), (3447, 230949), (4056, 289224), (25278, 4095036)

28 | (12, 2016), (150, 8640), (600, 27720), (1152, 56736),

(20667, 3042531), (27222, 4573296)

29 | (12, 2088), (20238, 5087412)

30 | (12, 2160), (2028, 116064), (31326, 5638680)

31 | (12, 2232), (33486, 6228396)

32 | (12, 2304), (18, 2844), (6936, 625464), (23812, 3762296),

(30603, 5453001), (35718, 6857856), (48672, 10863216),
(735000, 630617400), (1785900, 2387391120)

33 | (12, 2376), (38022, 7528356)

34 | (12, 2448), (40398, 8241192)

35 | (12, 2520), (42846, 8997660), (138750, 51914700)

continued on next page
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continued from previous page (Table 2)
All integer points (X,Y) with Y > 0 for the curves (7), k= 1,...,100,
omitting in each case the point (0, 0)
k (X,Y)
36 | (12, 2592), (1875, 110025), (45366, 9799056)
37 | (12, 2664), (47958, 10646676)
38 | (12, 2736), (78, 7488), (132, 10296), (531, 20205), (708, 38232),
(858, 46332), (1144, 62920), (2475, 157905), (3744, 271440),
(4602, 358956), (7788, 747648), (50622, 11541816), (142572, 54088416)
39 | (12, 2808), (53358, 12485772), (58482, 14310648)
40 | (12, 2880), (56166, 13479840)
A1 | (12, 2952), (59046, 14525316)
42 | (12, 3024), (61998, 15623496)
43 | (12, 3096), (65022, 16775676)
44 | (12, 3168), (147, 12537), (288, 19728), (600, 35640), (1734, 106488),
(2178, 139788), (42483, 8918217), (68118, 17983152)
45 | (12, 3240), (460374, 312911388), (71286, 19247220)
46 | (12, 3312), (363, 24255), (74526, 20569176)
47 | (12, 3384), (77838, 21950316)
48 | (12, 3456), (2523, 171477), (20667, 3094821), (81222, 23391936),
(58159227, 443541563451)
49 | (12, 3528), (84678, 24895332)
50 | (12, 3600), (723, 45549), (964, 59768), (1098, 68076), (1464, 92232),
(88206, 26461800), (187500, 81576000)
51 | (12, 3672), (91806, 28092636)
52 | (12, 3744), (162, 15444), (196, 17416), (1152, 72864), (4056, 319176),
(11163, 1278621), (95478, 29789136)
53 | (12, 3816), (99222, 31552596)
54 | (12, 3888), (103038, 33384312)
55 | (12, 3960), (41748, 8731296), (106926, 35285580)
56 | (12, 4032), (110886, 37257696)
57 | (12, 4104), (114918, 39301956)
58 | (12, 4176), (24900, 4093560), (119022, 41419656)
59 | (12, 4248), (123198, 43612092)
60 | (12, 4320), (99, 13167), (396, 31680), (3862, 308960), (15448, 2054584),
(20164, 3016648), (38148, 7661016), (127446, 45880560)
61 | (12, 4392), (131766, 48226356)
62 | (12, 4464), (136158, 50650776)
63 | (12, 4536), (207, 21321), (8152, 839656), (140622, 53155116)
continued on next page
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continued from previous page (Table 2)

All integer points (X,Y) with Y > 0 for the curves (7), k =1,...,100,

omitting in each case the point (0,0)

ki (X,Y)

64 | (12, 4608), (882, 63252), (2904, 220968), (145158, 55740672)

65 | (12, 4680), (294, 27468), (687, 51525), (2616, 196200),
(10368, 1175904), (16023, 2176839), (37098, 7370136),
(149766, 58408740)

66 | (12, 4752), (154446, 61160616)

67 | (12, 4824), (600, 47160), (2178, 160776), (30772, 5609296),
(101400, 32671080), (159198, 63997596)

68 | (12, 4896), (164022, 66920976)

69 | (12, 4968), (168918, 69932052)

70 | (12, 5040), (173886, 73032120)

71| (12, 5112), (178926, 76222476), (1441602, 1732408272)

72 | (12, 5184), (726, 57816), (184038, 79504416)

73 | (12, 5256), (376, 35720), (1098, 83448), (1464, 109800),
(1551, 116325), (2068, 157168), (6039, 573705), (7942, 826804),
(189222, 82879236), (273612, 143803944)

74 | (12, 5328), (1587, 119853), (194478, 86348232), (437772, 290524752)

75 | (12, 5400), (199806, 89912700)

76 | (12, 5472), (288, 30960), (14406, 1894536), (205206, 93573936)

77 | (12, 55449, (210678, 97333236)

78 | (12, 5616), (216222, 101191896)

79 | (12, 5688), (221838, 105151212)

80 | (12, 5760), (227526, 109212480)

81| (12, 5832), (233286, 113376996)

82 | (12, 5904), (239118, 117646056)

83 | (12, 5976), (1263, 102303), (1684, 134720), (1746, 139680), (2328, 188568),
(245022, 122020956), (311052, 174308904)

84 | (12, 6048), (250998, 126502992)

85 | (12, 6120), (257046, 131093460)

86 | (12, 6192), (263166, 135793656)

87 | (12, 6264), (600, 57240), (7938, 849744), (269358, 140604876)

88 | (12, 6336), (275622, 145528416)

89 | (12, 6408), (281958, 150565572)

90 | (12, 6480), (288366, 155717640)

91 | (12, 6552), (882, 79632), (2904, 249480), (294846, 160985916)

92 | (12, 6624), (301398, 166371696)

continued on next page
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continued from previous page (Table 2)

All integer points (X,Y) with Y > 0 for the curves (7), k= 1,...,100,
omitting in each case the point (0, 0)

k (X,Y)

93 | (12, 6696), (308022, 171876276)

94 | (12, 6768), (314718, 177500952)

95 | (12, 6840), (321486, 183247020), (522786, 379225440)

96 | (12, 6912), (328326, 189115776)

97 | (12, 6984), (335238, 195108516)

98 | (12, 7056), (507, 55809), (12100, 1528120), (342222, 201226536)

99 | (12, 7128), (349278, 207471132)

100 | (12, 7200), (183618, 79450236), (356406, 213843600)

From Table 2, it is immediate to deduce a full list of integer solutions (n, 1) to equation
(2) in the range 1 < k < 100. These are listed in Table 3, in the form of triples (k, k +
n—1,1).

Table 3: Integer solutions of (1), k=1,...,100

All integer solutions (k +n — 1,t) with ¢ > k of (1)
No entry for k indicates no solution exists

25 | (48, 182), (50, 195), (73, 357), (578, 8033), (624, 9010),
3625, 126035), (21624, 1835940)

27 | (59, 253), (364, 4017)

k (k4+n—1,1)
1| (24, 70)
3 | (4, 5), (580, 8075), (963, 17267)
7 1(29, 92), (39, 143), (56, 245), (190, 1518), (2215, 60207)
9 | (32, 106), (552057, 236818619)
11 | (22908, 2001863)
13 | (108, 652)
15 | (111, 679), (326, 3406)
17 | (39, 138), (5345, 225643)
18 | (28, 77)
20 | (21, 29), (43, 158), (308, 3128), (1221044, T78998480)
21 | (116, 724)
22 | (80, 413), (6910, 331668)
(
(
(

continued on next page
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continued from previous page (Table 3)

All integer solutions (k+n — 1,¢) with ¢ > k of (1)
No entry for k£ indicates no solution exists

k (k4+n—1,1)

28 | (77, 385), (123, 788)

30 | (198, 1612)

32 | (609, 8687), (4087, 150878), (61281, 8758575), (148856, 33158210)
38 | (48, 143), (96, 531), (349, 3770), (686, 10384), (11918, 751228)
44 | (67, 274), (93, 495)

50 | (171, 1281), (15674, 1133000)

52 | (147, 1012), (389, 4433)

55 | (3533, 121268)

58 | (2132, 56855)

60 | (92, 440), (3238, 106403)

64 | (305, 3069)

65 | (282, 2725), (928, 16332)

67 | (116, 655), (8516, 453765)

73 | (194, 1525), (22873, 1997277)

74 | (36554, 4035066)

76 | (99, 430)

83 | (276, 2619), (26003, 2420957)

87 | (136, 795)

91 | (332, 3465)

3.4 The rank 1 case

Now we restrict attention to the case where the rank of Ei(Q) equals 1. The point
Qr = (1, k) at (2), respectively, Q) = (12k+6,72k) on (4), is a point of infinite order. We
show here that for any integer k, then neither mQy (m > 1) nor mQy+ Ty (m > 1) can be
an integer point of (2). By virtue of the previous determination of Ej(Z) for 1 < k < 100,
we could assume £ > 100, but in fact we shall assume only k£ > 2, implying that the
torsion point Ty is (0,0) on (2) or as at (5) on (4). A consequence of this result is that
if Q is indeed a generator for the group Ey(Q)/Ek(Q)tors, then the only integer solution
of (2) is (n,t) = (1, k).

The approach of this section is much in the spirit of Ayad [1] and it is from that paper
that it has been inspired. The idea is in essence quite simple. When expressing the

z-coordinate of m@), as the quotient of two polynomials in Z[k], it turns out that the
resultant of these two polynomials is an integer divisible by only 2 and 3; so any common
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factor of the polynomials upon specialization to any integer k is also divisible by only 2
and 3. But the numerator polynomial lies in 1 + 12Z[k]; so numerator and denominator
are coprime for any integer k. Provided the denominator is not 1, the result follows. In
practice, it proved rather slippery converting these ideas into a formal proof, and several
intricate induction arguments are necessary.

For any point P = (x,y) on (4), define the associated division polynomials ¢,,,(P) as
follows (see, for example, Silverman [10, Ch. III, Exercise 3.7]):

@/)o(P) 0, ¢1(P) =1, %/)2(13) =2y,

Y3(P) = 32* — 2162° — 10368k (k — 1)(2k — 1)z — 1296,

a(P) = 4y(2° — 180" — 17280k (k — 1)(2k — 1)2° — 64802 — 124416k(k — 1)(2k — 1)z
— 46656(8k* — 8k + 1)(64k™ — 128k + 72k* — 8k — 1),

with, for m > 2,

¢2m+1 = ¢m—|—2¢§n - ¢m—1¢?n+17 2y¢2m = ¢m(¢m+2¢¢2n—1 - ¢m—2¢72n+1)' (42)
Then

(43)

P = (a(m ), ynp)) = (o = Dottt )

2 "
For the specific point () we have

o (Qr) = 2% - 3k,
P3(Qr) = 2°- 31 =1 — 12k + 24k% 4 72k — 36k, (44)
Da(Qr) = 238K (1 + 6k — 6K%)(—1 — 12k + 12k 4 36K™).

Henceforth we shall simply write ¢, instead of ©,,(Qx), but shall always write explicitly
Y (P) for any point P # Q. The only primes p such that @ is singular on Ej ,(F,) are
p=2,3. Let § = {2,3}; then from Ayad [1], we have the following lemma.

Lemma 6. (i) For any positive integer m, the point mQy, on Ey is S-integral if and only
if the only prime divisors of 1, are 2 and 3,

(ii) For any positive integer m, the point mQy + Ty on Ey is S-integral if and only if
the only prime divisors of 1242 — 1, 140, 1 are 2 and 3.

Proof. For a proof we refer to [1]. O

We introduce the following relatively standard notation. Let p be prime, and f(k) €
Q(k). Write v,(f) = e € Z to denote that

_ 9lk)
f(k)=p )’
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where g, h € Z[k], and in both ¢g and h at least one coefficient is not divisible by p. It
is easy to see that v,(FG) = v,(F) 4 v,(G) and v,(F + G) > min{v,(F),v,(G)} with
equality if v,(F) # v,(G).

Lemma 7. (i) For any integer m > 1 we have

va(Yam—1) = 3m(m — 1), 3(am-1) = 2m(m — 1),
V2(¢2m) Z 3m2 —|— 1, 1/3(77Z)2m) Z 2m2.

(ii) Defining 1; to be the part of 1; prime to 6, or more precisely
(=D=0/2y) . = 9v2(¥i) gra(vs) o),
then for m > 1,
$om—1 € 1+ 12kZ[K], o € KZ[K]. (45)

Proof. Use induction on m. Both parts are certainly true for m = 1,2; cf. (44).
Consider now m > 3, and suppose the lemma is valid for all indices less than m. First,
for m odd, m =2r + 1, r > 1, then (42) gives

77Z)2m—1 — 77Z)27’-|—277Z)§)7’ - 77Z)27’—177Z)37’+1 (46)
and by the induction hypothesis,

va(orsats,) > 3(r + 1)? + 14+ 3(3r* +1) = 120 +6r 4 7,
va(thar 1ty gy) = 3r(r — 1) + 3 3(r 4 I)r = 120% 4 61,

so that
vo(Yom_1) = 12r* + 6r = 3m(m — 1)
as claimed. Also from (42),

144k - oy, = o 11 (243003, — ¢2r—1¢§r+2) (47)

and, by the induction hypothesis,

V2(¢2r+1¢2r+3¢§r) > 12r% + 12r + 8,
V2(¢2r+1¢2r—1¢§r+2) > 12r% +12r + 38,

so that

44 va(ham) > 120 + 127 + 8,
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whence, as claimed,
vo(Yom) > 1202 +12r + 4 = 3m* + 1.

The induction for v is similar, and details are safely left to the reader.
To show part (ii) of the Lemma (still under hypothesis m = 2r 4 1), observe that (46)
and the ensuing valuations imply

Vom—1 € @/7)27»—1@/;;4_1 + 27 32k 7K.

By the induction hypothesis, ¥, and g4 lie in 1 4+ 12kZ[k], and hence so does g, _1,
as claimed.
Further, (47) implies a relation of type

ktham = —or41(273% s, pat0s, — 273% 40, 1903, 1),

where «a, 3,7,d are nonnegative integers with ay = 0 and 3¢ = 0. By the induction
hypothesis, 1y,, 12,42 € kZ[k] and it follows that v, € kZ[k], as claimed.

In the second case (m even, m = 2r), the induction arguments are similar, using the

identities
Vo1 = 77Z)2T+177Z)§r—1 - 77Z)27’—277Z)§7’ and 144k, = ¢2r(¢2r+2¢§r—1 - ¢2r—2¢§r+1)-
This completes the proof of Lemma 7. O

Now let m > 1 be an integer such that m@); has integral coordinates. We shall use
repeatedly the following fact (see Ayad [1]):

If nP is an S-integral point, then P is an S-integral point. (48)

If m is even, then the above fact implies that 2Q), is integral: but then x(2Q;) = (14 12k—

24k> + 36k*)/4k*, a contradiction. If 3|m, then 3Q is integral, so by Lemma 6, the only

primes dividing t3 are 2 and 3. From (44), this forces 1 + 12k — 24k* — 72k + 36k* = 1,

impossible for k& # 0. Accordingly, if mQ)y, is integral then we may assume (m,6) = 1.
Next we develop a “3-adic” estimation of certain ;.

Lemma 8. For every even positive integer n, with 31 n, and every positive integer N,

Upsvyy € 1Enk(l+k —E*)3V+ 4 3V P27 K. (49)

Remark. Since 1 + %k — k% # 0 mod 3 for all &, it will follow from (49) that for m > 1
and (m,6) = 1, then 1, # 1. But, by Lemma 7, 1, = 1 mod 6 and thus ,, has a prime
divisor larger than 3, which is of course also a prime divisor of #,,. This will contradict
Lemma 6, establishing the fact that m@; cannot be integral.

To prove Lemma 8, two subsidiary lemmas are needed.
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Lemma 9. For every positive integer n with 31 n, and any positive integer N,
1/3(77Z)2n,3N) Z 2n2 . 32N + N.

Proof. First we fix n = 1 and prove the assertion by induction on N. For N = 1,
straightforward computation (Maple V was used) shows that 15(¢s) = 19, as required.
Suppose now v3(1y.3v) = € > 2:3*N 4+ N; we must show that v3(hygnvi1) > 2:32VF2 4L N 41,
From Tschope and Zimmer [15, Sec. 1] we have

Prs(Qr) = 8 (Qu)tbr(sQw), (50)
from which
Po.antr = ¢3(2.3N) = ¢3.3N ) @Z’S(Q ) 3NQk)- (51)

In order to compute 15(2 - 3V Q) we need to substitute =+ = (2 - 3V Q) into the formula
P3(2 -3V Q) = 3z* — 21622 — 10368k(k — 1)(2k — 1)x — 1296. Now from (43)

$(2 . 3NQk) — 12k 4 6 — 77Z)2~3N—177Z)2~3N-|—1

2 ’
2.3N

and, by Lemma 7, we have v3(tg.an_1¥gany /002 ,x) = 43N — 2e < 0, which implies
va(2(2-3VQr)) = 4+ 3% — 2¢, and 153(¥3(2 - 3V Q) = v3(321) = 4(4 - 32V — 2¢) + 1.
Consequently, from (51),

va(thyavi) = 9e +4(4 -3 —2¢) +1>2.32 N2 L N 41,

as required for the induction.
Second, let n > 1 with 3 {n, and let N be any positive integer. From (50),

77Z)2n~3N = ?Z’72123N ) ¢n(2 ) 3NQk)- (52)

Here, 1,(2 - 3V Qy) is a polynomial in x = (2 - 3V Q) with v3(z) = 4 - 32V — 2¢ < 0,
so that v5(,(2 - 3V Q) = 15 (leading term of ¢,,(x)). It is well-known that the leading
term of ¢, (x) as polynomial in x is nz™=1/2 for n odd, and %n¢2(x)x(”2/2)_2 for n even,
and accordingly,

n=l(4- 32N — 2¢), if n odd,

N —
va(¥n(2-37Qk)) = { <§ _ 2) (4 - 92N _ 2e)+2, ifn even.

In both cases, the right-hand side is at least ”22—_1(4 - 32N — 2¢), so that from (52),

21

vs(Vanan) 2 n'e + %(4 -3 —2¢) > 20737V 4 N,

as required. O
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Lemma 10. Let r be a positive even integer, 34 r and N any positive integer. Then the

relations

Upanv_q € 1 —rk(1 4k — k3N 4 3V 2k (k) + 3N T3RZ[E],
Upan gy € 1+ rk(1 4k — E%)3NT 4 3892k (k) + 3V T3RZ[K],

where u,u’ € Z[k], imply the relations

Popan_q € 1= 2rk(1 +k — E*)3NTY 4 3VF2ky/ (k) + 3N T3RZ[K],
Uopsngy € 14 2rk(1 + k — E%)3NT 1 38T 2Ly (k) 4 3V P3RZ[K].

Proof. Trom (42), ty,an 1 = panatlsn — pan 13y which gives
Uoran g1 € Upan_1WPign g + 3NVTIRZIK),
by Lemmas 7 and 9. Now (54) implies
Vv € L+ rk(L+k — K)3V12 4 3NV LZ[k]

and multiplying by (53) in (57) gives (56).
The deduction of (55) is entirely analogous.

O

Proof of Lemma 8. The result is first proved for n = 2 by induction on N. The case
N =1 is verified by direct computation. Suppose the claim is true for the integer NV, so

that

aan_y € 1 —2k(1 +k — k%3N 4 3V 2 (k) + 3V T3RZ(K),
aanyy € 14 2k(1 + k — K53V 4 3821/ (k) + 3NT3RZ(K),

for some u(k),u (k) € Z(k). Then by Lemma 10,

aav_y € 1 — k(1 + k — E*)3VE 4 3821/ (k) + 3N T3RZ(k),
aavgy € 1+ 4k(1 +k — £*)3VF 4 382 Ly (k) + 3V TRZ(K).

We use the following general relation (see Ayad [1]):

¢r—|—s¢r—s = ¢r+1¢7’—1¢3 - 77Z)5+177Z)5—177Z)72"

With r =4-3V, 5 =23V 4+ 1, then Lemmas 7 and 9 imply

- - - - - 5 - - -
Yo.3N+141 Y938y = ¢4.3N+1¢4.3N—1¢§.3N+1 — 273 ¢2.3N+2¢2.3N¢i.3N



36 A. Bremner, R.J. Stroeker and N. Tzanakis

for integers ¥ > 0, § > 3N + 2, where the second summand on the right-hand side lies in
k*Z[k]. Thus

7[)2.3N+1_|_17I)2.3N_1 S 7754.3N+177Z)4.3N_17I)§,3N+1 ‘|‘ 3N+3kZ[k] (63)
In view of (59),
Uravy € 1+ A4k(L 4k — K2)3NH! 4 2%/ (k)3N T2 4 3N Z[K]. (64)

Furthermore, viewing (58) as a relation in Z[[k]], then t,.3v_; is an invertible element
with
W €14 2k(1 + k — K3V — ku(k)3NT? 4 3NTIRZ[[K]). (65)

2.3V -1

Multiplying together (60), (61), (64) and (65), there results from (63)
osneiyy € 14 2k(1 + k — k*)3VF2 4 3V LZ[[K]),

where clearly Z[[k]] may be replaced by Z[k] since we know a priori that ty.3v114, € Z[k].
This completes the reduction on N (for n = 2) in (49) with the upper sign. The induction
on N (for n = 2) with lower sign at (49) is entirely analogous.

[t remains to induct on n. We shall assume that n is an even integer at least 4, 31 n,
and that (49) is true for all even integers < n, not divisible by 3, and all N > 1. We must
show

Upsvar € 12 nk(l +k — k*)3V 4 3V P27 k]

for all N > 1. The inductive arguments needed are similar to those used in the previous
lines, and in the proofs of Lemmas 9 and 10. In addition to these lemmas, the relations at
(42) and (62) are crucial for the completion of the proof. Although delicate, the remaining
arguments do not contain any surprising feature, and so to avoid unnecessary repetition,
we suppress further details in the proof, safely leaving them to the reader. This induction
on n completes the verification of Lemma 8. O

By the remark immediately following the statement of Lemma 8, m(); cannot be
integral for m > 2, and it remains to show that mQy + T on (2) cannot be integral for
m > 1. As the reader by now will have gotten the gist of our inductive argument, we
shall cut down the remaining “torsion twisted” case to its most essential parts.

Since the coordinates of the point Q) + Ty with respect to (2) are not integral, we may
assume that m > 1.

Suppose henceforth that m > 1 with mQy + T}, an integral point of Ej at (2). In view
of the transformation (3) and its inverse, the coordinates x(mQy + T), y(mQr + Ty) of
the point m@y + T with respect to the model Ej at (4) are also integers with

z(mQy + Tr) = 2 mod 4. (66)
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Let ¥ = 12¢02 — t,,_1%n11, then by Lemma 6 (ii),
2 and 3 are the only prime divisors of V. (67)

From Lemma 7. it is readily checked that for m even

3 3
Vo(Vm—1Upms1) = §m2 < §m2 +4 < 1/2(12;/);),

V3(¢m—1¢m—|—1) =m?<m?+1 < V3(12¢3n),
and for m odd,

3m?+7  3m*+1
V2(¢m—177bm+1) Z 9 > 9 = V2(1277Z)*r2n)7

V3(¢m—1¢m+1) > m’ +1> m? = V3(1277Z)*r2n)
These imply in (67),

2 2
23m°/23m% m even,

+2Bm* +)/23m* g odd. (68)

U= 1277Z)’r2n - 77Z)m—177z)m-|—1 = {

Now compute x(mQy + T¢) in terms of the ¢»’s. We have

y(ka) - y(Tk)>2
z(mQy) —2(Ty) )

Qe+ T) = —e(mQy) — a(Ty) + (

and, by (43),
x(ka) + J?(Tk) =12k +6 — % + (12k . 6),
_ Yo V2 Vmgr — 2 2
y(mQy) — y(Ty) = Toi = SR + ‘

It follows that

=213 2P 4 (Y2 g — 77Z)*r2n-|—177bm—2)2

x(ka + Tk) = 21034 f24)2 2

+12(1—2k).  (69)

Let ey denote the 2-adic valuation on Q. In the case where m is odd, then by Lemma 5

and (68),
1
ea(2'93 k%2 W) = 5(9m2 +19) + 2e5(k),
(219342 0%) — %(97712 +93) 4 265(k),

e2(¢3n—1¢m+2 - ¢72n+1¢m—2) Z i(gmz + 19) + eQ(k)v
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so that (69) implies es(x(mQy + Tk)) > 2, contradicting (66). Thus m is even. Writing
m = 2V g with q odd, then mQy+ Ty = q(2Y Q1+ Ty) and by (48) it follows that 2V Q)+ T}
is integral. It is checked that 2Q); + T is non-integral, so we assume that N > 2. In
order to obtain a contradiction to the integrality of 2VQj + T}, we need the following
facts accumulated in a final lemma.

Lemma 11. (i) Forn > 1,
an_1thgnyy € 1+ 22" (k + k*) + 22" EZ[K]. (70)
(ii) If 2N Qy, + Ty is integral, then k divides 3 - 22N . Moreover,
Yon_1thanyy € 14+ 22N HIEZ[k]. (71)

Proof. Both statements can, as before, be proved by inductive arguments. Although
lengthy, and not everywhere trivial, we feel that the reader by now must have acquired
sufficient insight in the methods of this section to enable him to produce complete proofs
unaided. O

To obtain a contradiction to the integrality of 2V Q,+ T}, first note that k # 3, because
rs = 2. Thus, from Lemma 11, k must be even. But then (70) and (71) are contradictory.
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