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Abstract – Three-dimensional printing offers varied possibilities of design that can be bridged to optimisation tools.
In this review paper, a critical opinion on optimal design is delivered to show limits, benefits and ways of improve-
ment in additive manufacturing. This review emphasises on design constrains related to additive manufacturing and
differences that may appear between virtual and real design. These differences are explored based on 3D imaging
techniques that are intended to show defect related processing. Guidelines of safe use of the term ‘‘optimal design’’
are derived based on 3D structural information.
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1 Introduction

Additive Manufacturing (AM) is a collection of versatile
techniques of rapid prototyping that allow material design from
3D digital models [1–3]. The term AM comes also under dif-
ferent other nicknames such as direct digital manufacturing or
solid freeform fabrication [4, 5]. AM is rated as one of the
most promising technology for design [6], presented as a
new industrial revolution [7], and a vector for creativity [8],
impact [9] and interrogations [10]. The laying down of the
material in different states including liquid, powder and fused
material defines roughly categories of AM [2, 7, 11–13]. More
accurate classifications do exist such as the ASTM F42
reported in reference [14]. Wide varieties of materials can be
processed using additive manufacturing including metals
[15–18], alloys [19–22], ceramics [23–26], polymers [27–30],
composites [31–34], airy structures [35, 36] and multi-phase
materials [37–39].

The main characteristic of AM is the reduced number of
manufacturing steps that stands between the virtual design
and the ready-to-use part [40]. In addition, one major advan-
tage of AM reported in the literature is the ability to process

complex shapes that are not easy to design using traditional
ways such as extrusion and moulding [3, 41, 42]. AM poten-
tial, as a leading design technique, is enormous and the related
applications are huge [7, 43–47]. Different printing techniques
are used in the biomedical sector [41, 48] more particularly for
tissue engineering [5, 35, 49–51]. Preform design of compos-
ites is evidently an inspiring topic for AM [31] because of
the wide possibilities in structuring yarns and reinforcing com-
posite structures [34]. Aerospace applications of AM are the
most challenging because of the extreme performance that
need to be achieved under fine scale monitoring and in-service
validation [52, 53]. Recent contributions by NPU demonstrates
the central role of topology optimisation in additive manufac-
turing for aerospace applications [54, 55]. Micro-fabrication
technologies emerge also as an efficient way to produce func-
tional micro-components for microelectronics systems [42].
The scaling down of AM is now possible thanks to cutting
edge processes that allow material design at a very fine scale
like with different types of lithography [55, 56].

The idea behind AM is the direct import of CAD
(Computer-Aided-Design) object as machine instructions
(Figure 1). The preferred way to achieve this import is the
transformation of surface tessellation representing the geome-
try of the virtual part into a set of toolpaths. One starts from an*e-mail: sofiane.guessasma@nantes.inra.fr
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STL or Standard Tessellation Language or STereoLithography
file. All external boundaries and internal surfaces appear
smooth and continuous using STL format. Generation of the
toolpaths represents the first challenge and actually a limitation
for AM [57]. The reason is that the building process in most
3D printing technologies relies on a successive layer-by-layer
building process. So, starting from 3D space tessellation and
ending with 2D building strategy is a first drawback. It is even
worse when droplet based printing is considered because the
fused matter is no more connected in any direction. Disconti-
nuities may appear in all building directions (Figure 2) as a
result of the layer-by-layer laying down process (Figure 3)
[27]. The consequence of this appears to be the development
of dimensional inaccuracy, inacceptable finishing state, struc-
tural and mechanical anisotropies, which are continuously
addressed in many research contributions [12, 28, 58–64].
Anisotropy can be also inferred to the development of partic-
ular grain texture as revealed by laser melting deposition or
arc welding alloying of metals [61, 65–68]. Reduction of
anisotropy can be achieved by selecting the appropriate orien-
tation of the virtual design [69–71]. Numerous papers mention
strategies of common sense to build parts with acceptable per-
formance, which are nearly equivalent or even superior to other
design techniques. Scudino and others [67, 72] report that bet-
ter ductility of metallic materials can be achieved using selec-
tive laser melting compared to casting as a result of the fine
grain structure driven by AM. One particular feature high-
lighted in these contributions refers to avoid building the part
along its largest surface. In other words, if the successive layers
of the part exhibit a lack of cohesion, the large contact area
between layers drives worse performance under tension. Some
other strategies rely on reducing the lack of cohesion between
layers or filaments by further processing of the real design.
An example of radiation treatment is proposed in the work
of Shaffer et al. [28].

In addition to the role of anisotropy, differences between
the virtual and real design can be striking knowing that AM
resolution is finite due to available tooling [64]. If we consider
the example of fused deposition modelling, which is a popular
AM technique [12], the toolpath generation is referred as
collection of filament paths of finite dimensions (Figure 3).
This has three main consequences on the real design: internal
structural features may not be well captured depending on their

size; discontinuities may appear depending on local curvature;
and the surface finishing state may be limited due to rough pro-
files [62]. These limitations are illustrated in Figure 2, which
highlights simple and complex geometries and the correspond-
ing toolpath generation using two software, one is Repetier
from Hot-World GmbH & Co, Germany and the other is Catal-
ystEx from Stratasys Inc. Eden Prairie MN, USA.

All limitations mentioned earlier assume implicitly the
role of defects induced by AM. These need to be faced in
order to deliver a design representing, with much accuracy,
the result of an optimisation procedure. These defects are
related to the porosities that develop as a consequence of
the discontinuous process of printing and other issues related
to process errors [73]. A large number of contributions is ded-
icated to the evaluation of the effect of porosities in printed
parts. One particular consequence of the role of porosity is
that a large amount of them reduces the mechanical perfor-
mance. Such reduction is represented by a theoretical linear
decrease of stiffness with the increase porosity level (if limited
stress transfer between layers is neglected). Under tension,
porosities act as stress concentrators and may induce lower
mechanical strength by enhancing the development of damage
in the form of micro-cracks. Under compression, different
considerations can be pointed out. Even if the porosities are
closed during compressive loading, lateral expansion due to
Poisson’s effect may cause failure driven by opening mode
or shearing effects that are dramatically enhanced by the
anisotropy [27, 58].

Porosity should not be considered systematically as a neg-
ative issue in AM since it can be a positive driving factor for
permeability [74].

Another type of defects is the presence of support material
trapped between internal surfaces. The material is needed to
withstand the fragile printed structure during the printing pro-
cess. While this material is studied to provide limited adhesion
to the deposited materials, its residual amount contributes in
increasing the weight of the structure and modifies the load
bearing distributions. These two drawbacks alter the expected
performance of the optimal design. In addition, none-optimised
support deposition affects finishing state, material consump-
tion, fabrication time, etc. [75]. Strategies exist to reduce the
dependence of AM to the presence of a support material by
operating smart or slimming support generation [75, 76]. For
some strategies, the part orientation is continuously adapted
during the processing [57]. Curved regions can be processed
smoothly under continuous deposition mode and the presence
of support material is no more needed. For other strategies,
building complex shape without the support material relies
on the intrinsic properties of the deposited material itself.
These materials exhibit generally rapid cooling kinetics, which
allow them to support their own weight and prevent the struc-
ture collapsing. This kind of strategies obviously limits the
spectrum of materials that can be printed.

2 Optimisation in additive manufacturing

In this paper, our focus goes towards optimisation difficul-
ties that are inferred to AM. With regards to the large number

Figure 1. The process chain in typical AM.
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of disseminated works on the subject, common characteristics
of optimisation in AM are highlighted in this section and
described through selective literature work. In particular, sev-
eral aspects of additive manufacturing can be optimized. Some
of these aspects are related to design optimisation, more partic-
ularly topology optimisation. Some others like geometry accu-
racy, finishing state are tackled through process planning
optimisation.

For most contributions, optimisation in AM is classically
considered as a process parameter optimisation as it is the case
for many design techniques [77, 78]. Raster angle, building
direction, layer dimensions are some of the main parameters
that find some interest in the literature. For instance, Garg
et al. [79] present genetic programming approach as an intelli-
gence tool to relate the AM process parameters to physical and
structural outputs. While this is an important issue from the

Figure 2. Typical examples of CAD objects transformed into collection of toolpaths using (a) Repetier and (b) CatalystEX software.
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processing viewpoint, it is less attractive from a numerical
analysis perspective, where strong and robust optimisation
tools need to address more significant challenges. This does
not diminish the purpose of the earlier approach. Accurate
dimension, acceptable roughness and processing time are some
of the important outcomes that justify the continuity of the
research effort in this particular field. A typical example show-
ing the importance of the process optimisation is provided in
recent works [54, 55, 78]. The paper by Zhou et al. [78] intro-
duces the concept of pixel blending to define the effect of
neighbour pixels light intensity in solid freeform fabrication
using photopolymerisation medium. The optimisation in such
kind of studies is meaningful as the achievement of shape
accuracy relies on the precise control of light intensity over a
pixel-based image.

The paper by Yang and Zhao [3] report one of the most
recent review on AM-enabled design, which is the closest sub-
ject to topology optimisation. In their review, design guidelines
are exposed and the focus on structure optimisation methodol-
ogy is explored through different contributions. This kind of
methodologies needs to take care about the specificities of
the design in terms of material combination, shape complexity
and the targeted in-service performance. In the same review
[3], the authors bring to our attention the possibilities of pro-
cess combination involving more conventional or AM-based
techniques [80–82]. We consider that this research direction
associating various processes is out of the scope of this paper
from an angle view of topology optimisation. However, the
other considerations discussed there are central to the topology
optimisation such as those related to design simplicity, material
choice efficiency, improved multi-functionality, integrated
technical solutions [83], etc. The concepts of multiphase mate-
rial [37] and functionally graded materials [84, 85] emerge as a

direct consequence to point by point material control in AM
[86]. Also, designers are no more bonded by the tooling which
needs to be a factor in the design with traditional processing
[87]. This opens new chances for simplifying the design but
also for increasing the creativity [7]. This particular point helps
significantly the designers who need generally to reshape the
result of the topology procedure to fit processing constrains
like the development of particular tooling. A simple example
would be the conversion of a material deposition probability
into a graded material [4] instead of thresholding to solid or
air phase [88]. In addition, if the conditions of blending at
the microscale or nanoscale are met, the achievement of
multi-material design is not a threat for the design but mostly
an advantage because of the possibility to further improve per-
formance at a lower material consumption rate [4].

Considerations related to topology optimisation are numer-
ous [37, 88]. Some of them depend on the level of access to the
AM processing technology itself which is not systematically
provided by the commercial solutions. Here are some of these
considerations that are central to the development of robust
AM solutions:

– Geometry of the CAD model: this is direct target of the
topology optimisation, which needs to predict what would
be the exact geometry that satisfies all model constrains.
Successful examples of topology optimisation can be
found in the literature for cellular materials [88, 89], mul-
tiphase materials [37], implants [90].

– Path generation: this is an important parameter that affects
geometry accuracy, cohesion in the part, residual stresses,
and the finishing state [20, 63, 91]. Path generation
needs to handle as much the change in process speed
and the transition time at the borders [92]. A specific

Figure 3. Laying down process of fused ABS polymer in typical FDM equipment.

4 S. Guessasma et al.: Int. J. Simul. Multisci. Des. Optim. 2015, 6, A9



branch of research is dedicated to the optimisation of tool
generation path including studies related to the improve-
ment of the scanning mode [93, 94], geometry slicing
strategies [95, 96], optimal material deposition [97, 98],
multi-directional AM [99], tool path anticipation proce-
dures [100].

– Process selection: different technologies are developed to
enhance the capabilities of AM like jet printing [26, 101],
friction stir AM [102], welding based AM [94], ultrasonic
AM [103], electrochemical AM [104], micro-plasma pow-
der deposition [105], Solid freeform fabrication [106] and
related variants such as selective laser sintering [107,
108], or directed light fabrication [20], selective infiltra-
tion manufacturing [109]). The outcomes of these technol-
ogies diverge. This reinforces specific aspects of AM like
the material type, printing size, accuracy, speed, cost, etc.
[110]. Figure 4 shows two examples of technologies
applied for the design of airy structures, one based on
FDM (uPrint� SE from Stratasys) and the other is a pho-
tolithography equipment (SPS350B from XJRP company).
The earlier one is restricted to printing ABS polymer
where the last one can process only photosensitive resins.
The ability to control the process parameters is crucial to

decide on the relevance of a particular AM process [111].
And perhaps, a badly performing design reflects only the
lack of knowledge of the process. Thus, the mastering of
the process parameters is a criterion for process selection.

– Process resolution: this is also an important aspect that
guarantees the accuracy of the AM process [14, 112]
and the development of appropriate scaling solutions for
nano-, micro- and macro-features [38, 64, 113–116].
Some studies focus on slicing techniques to increase accu-
racy such as adaptive slicing proposed by Siraskar et al.
[117] using volume decomposition by octants.

– Feed material properties: rheological and phase change
properties of the feed materials are essential to the success
of AM building capabilities especially for achieving stan-
dards in material selection [118]. This is a continuous
research direction aiming at increasing the spectrum of
printable materials and optimising the intrinsic material
properties for a better performance during fabrication step
[14, 19, 119–121].

– Support material: optimisation of the support material is
now fully integrated in numerous commercial solutions,
which require supporting of the part during processing.
This optimisation relies on different options such as the

Figure 4. Two examples of airy randomly structured polymers designed using (a) fused disposition modelling (uPrint equipment in GEPEA
lab., university of Nantes, France) and (b) photolithography (SPS350B equipment in ESAC lab, NPU, Xian, China).
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smart deposition for which only reduced amount of sup-
port material is needed [76]. Some research works still
contribute in this particular area to improve the spatial dis-
tribution of airy support material [75, 122].

The logic behind topology optimisation is illustrated in
Figure 5. The geometry of the CAD model can be something
to discover through the optimisation procedure or assisted by
imaging tools such as micro-CT scanning [123]. Since the opti-
misation combines physical and geometrical constrains,
numerical solutions need to be available to predict what would
be the result of the part performance [14, 112]. This is gener-
ally addressed using finite element computation [53]. The
numerical model needs to converge in all design situations
within a short time because the process is meant to be repeated
several times. Depending on the nature of the physical con-
strain, the numerical model can be more or less sophisticated.

For instance, residual stress analysis requires most of the time
solving a multi-physics problems [124, 125]. If numerical
models are able to handle technological, physical, and geomet-
rical constrains, design guidelines can be adopted by coupling
the optimisation tool to decision making paradigms.
Some studies show that AM process simulation is possible
[125, 126] but the ultimate goal would be to bridge such
realistic tools with the optimisation paradigm. Recent works
prove unfortunately that we are far from such ideal situation
[127].

Topology optimisation needs to cope with the specificities
of AM. As this process generates a complex network of 3D
defects, numerical models need to integrate the result of defect
in the analysis as an implicit performance perturbation or
explicit defect influence. This is the main difference between
the two schemes presented in Figure 5. The classical scheme
(Figure 5a) does not handle the defects induced by processing,

Figure 5. (a) Classical view of topological optimisation, (b) Modified scheme with defect sensitive topology optimisation of AM.
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which makes any deviation from the optimal virtual design a
cause of failure. Numerical sizing in aerospace applications
[128] is a typical example where such defects can be an issue
to validate the final design in airframe development. In the sec-
ond scheme (Figure 5b), the corrections introduced by the
monitoring of the defects helps in guiding the optimisation tool
towards the best realistic solution. This resolution is directly
related to the AM tooling constrains, for instance the choice
of the tip size. If the second scheme is used to consider appro-
priate selection for tooling options (like nozzle diameter), then
such process parameter can be considered as a discrete vari-
able. Optimal design can be searched in a larger space depend-
ing on the possibilities offered to select a certain number of
available nozzles. Real-time control of AM like the optical
tomography [129, 130], thermographic analysis [131] or ultra-
sonic monitoring [132, 133] helps in gaining valuable informa-
tion about the structural defects that develop during AM
processing and their direct consequence on failure of the
designed part [73]. This is still a challenging issue as it appears
that adequate non-destructive techniques are not yet fully avail-
able to evaluate properly AM part performance [52]. This sit-
uation can be improved through the development of standards
which is still an ongoing process for the validation of testing
techniques applicable to AM [134]. One of the most promising
techniques to analyse microstructural defects in AM parts is
X-ray micro-tomography [135]. This technique is able to pro-
vide precise information about the porous network induced by
processing, surface roughness, part volume, amount of support
material and any other microstructural defect [27]. As the tech-
nique relies on transformation of 2D projections into 3D image
[136, 137], structural anisotropy effects can be quantified.

Figure 6 shows two examples of defects revealed in ABS
polymer printed using fused deposition modelling. Cross-sec-
tion views refer to a dense block of ABS (30 · 30 · 30
mm3) analysed using X-ray micro-tomography. This block is
oriented at 0� in the printing plateau, but we notice clearly
the crossing of filaments at an angle of 45� and the presence
of bounding layer. In Figure 6a, the resolution of the image
is 1077 · 1062 · 1059 voxels, where a voxel is a graphical
unit in 3D. The physical size of the voxel determines the accu-
racy of the structural defect evaluation. In Figure 5a, the voxel
size is 30 lm. More information about the operating condi-
tions can be found in reference [27]. Figure 5a shows the lack
of cohesion between successive filaments and tendency to flat-
tening because the filament diameter is tripled during the lay-
ing down of the fused matter. The subsequent porosity forms as
a regular network of micro-sized defects, and appears to be
highly connected. Also, residual support material can be found
at the borders, which reveals difficulties of support material
removal. The automatic cleaning process is generally followed
by manual removal step to ensure that no residual support
material is left behind. The second example highlighted in
Figure 6b shows other imperfections that infiltrate the design
of a two phase material. These imperfections are related to dis-
continuities of matter in the cell walls, the change of geometry
due to design mismatch effects and the presence of support
material trapped in closed pores of small size.

In several contributions, the red links in Figure 5b are
ignored as if the approximate result of the optimisation is
unavoidably accepted. More recent contributions tackle such
links by suggesting corrections of the design based on manu-
facturability considerations [64]. This is performed, however,

Figure 6. Microstructural defects in ABS polymer printed using FDM. Analysis is performed using X-ray micro-tomography. Two examples
are shown one is (a) a dense ABS block and the other is (b) airy ABS materials exhibiting more than 60% of porosity.
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independently from the optimisation tool itself and does not
involve defects induced by processing.

3 Challenges for AM topology optimisation

One of the important issues that topology optimisation
needs to address is the pertinence of the constitutive laws rep-
resenting the behaviour of the printed materials. Unfortunately,
material law implementation is not yet fully revisited leaving
an open area for research in this direction [138]. A typical
research direction would be to explore interfacial effect in
terms of limited load transfer and damage kinetics at the light
of results achieved for composite materials [139, 140]. This
direction is fully justified by the fact that lack of performance
is more associated to the weak adhesion between filaments.
Thus, failure mechanisms are likely to be affected by the
arrangement of such weak regions [27].

Another concern is the embedding of the microstructural
details in the topology optimisation. During the past decades,
this opportunity to tune microstructurally the design was out
of reach because of computation resource limitations. Now,
this is accessible at the cost of using efficient paradigms that
avoid unrealistic configurations and constrain the search vol-
ume to design-effective solutions. Recent experimental
achievements show the potential of AM to tune locally the per-
formance of multi-material parts [39]. The next realistic step
would be to promote this kind of experimental attempts to fully
automated procedures. The role of microstructural details can
be even determinant in hierarchical structures. Indeed, previous
studies show large possibilities of airy arrangement using
hybrid optimisation strategies [141]. One can imagine the large
possibilities of pore connectivity tailoring driven by AM if
micro-porosity is considered.

Topology optimisation is not yet ready to provide sys-
tematic process error detection for AM. We know that AM
processes are exposed to inaccuracy in terms of geometry
imperfections, volume mismatch, and undesirable surface
texture. All these drawbacks can be properly addressed by
a tool that apprehends the limits of the AM processing. Real-
istic designs with acceptable defects are better than ideal
designs with unmeasurable bias. Figure 7 shows some clues
about how topology optimisation can achieve a higher sensi-
tivity to defects in AM. A better understanding of the AM
defects is a matter of scaling down the numerical model to
the size of heterogeneities that are the birth sites of the pro-
cess-induced defects. Explicit implementation of discontinu-
ities can be handled as well as lack of bonding between
layers or filaments. Also more elaborated constitutive laws
can be considered in order to take into account anisotropies
that are subsequent to the rapid cooling and stretching of the
matter.

A straight-A learning paradigm is not also accessible for
topology optimisation. The near future developments will meet
substantial use of in-situ or in-line monitoring procedures for
AM [16, 142]. Topology optimisation can integrate some of
these procedures to learn from the design. This requires the
combination with another class of algorithms that are derived
from artificial intelligence [143]. As an end, the optimal design
can be performed using optimal process parameters, which
saves a considerable amount of time.

A bigger tool for higher perspectives is what process man-
agers expect from optimisation tools. Topology optimisation
can be part of it if other considerations are handled carefully
like cost effectiveness with a large material catalogue, material
saving logics, automated process selection, scenarios of durabil-
ity, recyclability and projections of life time. Fully automated
decision making processes can be then launched starting from
the idea of design to the post-mortem step of the AM part.
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