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ABSTRACT

In this paper Lipschitzian type error bounds are derived for general convex conic problems under
various regularity conditions. Specifically, it is shown that if the recession directions satisfy Slater’s
condition then a global Lipschitzian type error bound holds. Alternatively, if the feasible region
is bounded, then the ordinary Slater condition guarantees a global Lipschitzian type error bound.
These can be considered as generalizations of previously known results for inequality systems.
Moreover, some of the results are also generalized to the intersection of multiple cones. Under
Slater’s condition alone, a global Lipschitzian type error bound may not hold. However, it is shown
that such an error bound holds for a specific region. For linear systems we show that the constant
involved in Hoffman’s error bound can be estimated by the so-called condition number for linear

programming.
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1 Introduction

In optimization theory it is often desirable to measure the distance to the solution set from a certain
given point. In general, this distance can be difficult to assess, since one may not have a complete
knowledge about the solution set. However, if the form of the solution set is explicitly given, then
in some cases it is possible to estimate the distance to the solution set by the so-called constraint
violation which is computable. This kind of estimation is termed error bound relation. The first
such result was obtained by Hoffman [7] for systems of linear equalities and inequalities. We shall
discuss Hoffman’s error bound in the paper too. A recent extensive survey on various types of error

bound results can be found in Pang [15].

Most papers discussing error bound results assume that the solution set is given by equations and

inequalities, e.g.
S={z| filz) =0fori=1,....,m and g;(z) <0 for j =1,...,l}.
For a given point x the amount of constraint violation can be measured as the following quantity

v() = If @) + [1(g(z)+|

where f(z) = (f1(2), -, fm(2)) and (9(z))+ = ((91(2))+, -, (9:(x))+) with the notation (y); =
max(y, 0).

A measure for constraint violation is similar to a penalty function in the sense that it takes positive
value for points outside the set, and zero otherwise. Note that a measure for constraint viola-
tion should be easy computable, such as the case for the above defined function v(z). Hoffman’s
lemma [7] states that if S # 0, and f; and g; are all affine linear functions, then there is a positive
constant > 0 such that

dist (z, S) < kv(z) (1.1)

for all z € ™. This means that the distance to S is of the same magnitude as v(x). Such a relation

is known as a Lipschitzian type error bound.

In the case that f; and g; are not linear, the above inequality (1.1) does not hold in general. Early
results concerning nonlinear functions are due to Robinson [17] and Mangasarian [13]. Robinson [17]
showed that for inequality systems if all functions are convex and differentiable, S is bounded and
the Slater condition holds, i.e. there is a & such that g;(2) < 0 for all j, then relation (1.1) holds.
Mangasarian [13] removed the assumption that S is bounded by assuming an additional asymptotic

constraint qualification condition, which however can be difficult to verify in general.

In this paper we consider the following convex conic set:

F=0b+L)Nk (1.2)



where b € R”, L is a subspace of R and X C R" is a closed convex cone. Polynomial-time
interior-point algorithms for solving convex optimization problems with convex conic feasible set
were introduced in a systematic manner by Nesterov and Nemirovskii [14]. It turns out that
many important classes of optimization problems, such as linear programming and semidefinite
programming, can be cast in this form. The focus of this paper is to discuss how error bound
type relation can be established for such problems. Throughout this paper we make the following

assumption:
Assumption 1 F # ().

The organization of the paper is as follows. In the next section we prove that with a proper definition
of constraint violation a Lipschitzian type error bound (1.1) can be established for general convex
conic problems, under various conditions on the relations between £ and X, including Slater type
conditions. In Section 3 we discuss a link between the constant in Hoffman’s error bound and the

so-called condition number for linear programming. Finally, we conclude the paper in Section 4.

We use the following notation in this paper. Matrices are denoted by capital letters, e.g. X. For
symmetric matrix X, Apax(X) indicates the maximum eigenvalue of X, and Ay (X) the minimum
eigenvalue of X. We denote n-dimensional Euclidean space by " and its nonnegative quadrant
by R". The space of all symmetric n by n matrices is denoted by S"*" and the cone of all
symmetric positive semidefinite n by n matrices by S ". Vector e represents a vector of all ones
with appropriate dimension. For a vector v € R", we use the capitalized letter V' to denote the
diagonal matrix which takes v as its diagonal elements. For two vectors z € R” and y € R" we
write zy € R” as the component-wise Hadamard product. We use the Euclidean norm for vectors
and the spectral norm for matrices. A vector a > 0 means that each component of a is nonnegative,

and X = 0 indicates that X is positive semidefinite.

2 Convex conic systems

Consider the convex conic set (1.2). For convenience we further assume that K is a pointed and
solid cone, i.e. KN (—K) = {0} and dim K = n.

The dual of I is
K*={x|2Ty>0forallyecK}

Since K is pointed and solid, * too is a closed, convex, pointed and solid cone.

An immediate next question is: How can we define a constraint violation function for 77 For this

purpose we note the following lemma due to Moreau (see Theorem 31.5 in [18]).



Lemma 2.1 For any x € R" there is a unique z, € K and z4 € K* such that x = z, — x4 and

T

pxdzo.

X

In fact, z, is simply the projection of z onto K and ||z4|| measures the distance from z to . A

natural definition for the constraint violation for F is now in order:

Definition 2.1 For any x € R" define
v(z; F) = dist (2,0 + L) + [|z4]|

as the constraint violation function for F.

It is readily seen that v(z, F) =0 iff z € F.

It is, however, not immediately clear how the function v(x; F) can be computed. Below we shall
see some examples in which this function is explicitly derived. First we consider the case K =
R, the nonnegative quadrant of R®". Clearly, * = z + x_ where 2y = ((#1)4,..., (x5)+) and
z_ = (—(=21)4, ..., —(—2p)+). Obviously, z4 € K and —z_ € K and 22z_ = 0. Therefore,

lzql| = ||(z)—||, which is exactly the usual definition of the violation for nonnegativity constraints.

Another example is K = SI™", the cone of n by n symmetric positive semidefinite matrices.
Consider a given n by n symmetric matrix X. Following Lemma 2.1 we know that there is unique
positive semidefinite matrices X, and Xy such that X = X, — X and tr X, Xy = 0. Matrices X,
and X, can be computed as follows. Let X = QAQ” with @ an orthonormal matrix and A is a
diagonal matrix with eigenvalues of X as its components. Splitting A = A, + A, where A, and
A_ denote the nonnegative and nonpositive parts of A respectively, it follows that X, = QAL QT,
X4 = —-QA_QT and X, X, = 0. Hence, || X4| = max(0, —Amin(X)), where Amin(X) denotes the

minimum eigenvalue of X.

Finally, we consider another popular convex cone: the second order cone I € R"*! defined as
K ={(zo,z) | z € R" and z > ||z||}.

It can be shown that in this case

lzall = (2]l — zo)+/ V2.

In general, Definition 2.1 is only related to the geometry of the object under consideration.

Consider now an arbitrary point z € R". Assume that z ¢ F. The following problem yields a
unique point in F with the shortest Euclidean distance to z:
(Proj) minimize |z — z|?
subject to z€b+ L
z e K.



Let this optimal solution be . The Karush-Kuhn-Tucker optimality condition for (Proj) is given

as follows:

(KKT)

Hence,

VAN VAN | |

(Z—2+X—p=0

=0
ze(b+L)NK
ue K
Ae Lt

(2 — z) T+ (2 — 57N
Zhu+ (z —2)TA
lzalllpll + (= = )",

where the first inequality follows from the fact that z, € K and p € K*.

Let the projection of z onto the affine subspace b+ L be z;. Then,

(z—z)T'A

(z—z14+ 2 — :i)T)\
= (z—a)"A

<z = allllAl

= dist (2,0 + L)[|A|l.

Substitute this relation into (2.2) we obtain

(dist (2, F))* = [lz — 2[|* < l|zalllull + dist (z,b + L) Al

(2.1)

(2.2)

(2.3)

In Section 3 we shall discuss how to further bound the errors when K is a polyhedral cone, which is

the situation when the original Hoffman lemma applies. In the rest of this section we assume that

KC is a general convex cone. In addition to this we assume that the Slater condition is satisfied, i.e.

Assumption 2 (b+ £)Nint K # 0.

The following lemma is well-known; see e.g., Duffin [5], Borwein and Wolkowicz [2], Luo, Sturm

and Zhang [11], Nesterov and Nemirovskii [14] and Sturm [21]. For completeness we provide here

a short proof.

Lemma 2.2 Suppose that Assumption 2 holds. Then, for any y € LN K* with y # 0 it must

follow that bT'y > 0.



Proof. Suppose, for the sake of deriving a contradiction, that there is y # 0 such that y € £L-NK*
and by < 0.

Consider the hyperplane
Hy ={z|y"z =0}

For any = € b+ L we have yT2z = bTy < 0, while for any = € K, since y € K* we have yTz > 0.
This means that H, separates b+ L and K, yielding a contradiction to the fact that b+ L intersects
with the interior of K.

For fixed £ we consider again the system (KKT) in terms of 4 and A. After some re-arrangements
this yields
p—A=T—=z
T'u=0
ue KK
e Lt

(2.4)

Define
K=K n{p| 5 p=0}

which is a closed convex cone as well.

Note that Z = 0 is a trivial case and is omitted in our proof. In many applications, 0 &€ £ and so
z #0.

We shall mention another easy case, i.e. Z lies in the interior of K then K = {0}. In this case u = 0
and A = z — T, and therefore
dist (2, F) < dist (z,b+ L)

due to (2.3). In what remains we shall only concentrate on the situation when Z ¢ int K.
Remark that for Z € K, the cone K* is known as a face of K*.

The condition (2.4) is equivalent to

pe(z—z4+LYNK"

Lemma 2.3 If Assumption 2 holds then L+ N K* = {0}.

Proof. Suppose for contradiction that there is y # 0 and y € £+ N KC*. This means that



ye LrNK* and 28y = 0.

However, z € b+ £ and y € £, and so

which is impossible due to Lemma 2.2. O

Now we define the minimum angle between £ and K* as
£(£*+,B*) 1= minfarccos(”v/(Jull[lo])) | u € £4\ {0}, v € £\ {0}}.
Note that both £+ and K* are closed cones. According to Lemma 2.3, it follows that
L(LE KR >0
for any z € (b+ L) N K.

In order to pursue our analysis further, one of the following two mutually exclusive cases will be

considered.

Assumption 3 The set F = (b+ L) N K is compact.
Assumption 4 LN int K # (.

Let us first consider the situation when Assumption 3 holds. In that case we know that there exists

# > 0 such that for any Z € F we always have

L(LHK*)>6>0.

Now take p € (Z — z + L) N K*. Let the projection of 0 onto & — z + L be p.



,CJ-

Figure: Subspace £+ and the cone K*.

Let the angle between p and p — p be . Clearly, 8 < ¢ < 7/2. Moreover,

Il = lipll/ sine < [pl|/ sin6 < ||z — z[|/ sin 6.

Denote
k=1+1/sin6.

We are now in a position to prove the following error bound result.
Theorem 2.1 If Assumption 2 and Assumption 3 hold then
dist (z, F) < kv(z; F)

for all z € R™.

Proof. By (2.5) we have
||l < dist (2, F)/sin @ < kdist (z, F).

Using the first equation in (2.4) we also have

A < |lpell + 1z — 2|l < (1 +1/sin@)dist (z, F) = sdist (z, F).

(2.5)



Recall relation (2.3). By the above estimations on ||| and ||A], it follows from (2.3) that
(dist (z,F))? < wdist (2, F)(||zq]| + dist (z,b+ L))

and consequently
dist (2, F) < kv(z; F).

In the other situation, namely if Assumption 4 holds, then a similar result can be shown.
Theorem 2.2 If Assumption 4 holds, then for any b € R™ we must have (b+ L) N int K # 0.
Moreover, there is a constant k > 0, independent of b, such that

dist (z, F) < kv(z; F)
where F = (b+ L) N K.

Proof. First we show that (b + £) Nint K # () for all b. Suppose otherwise that there is b with
(b+ L) Nint K = 0.
Then, there will be a hyperplane separating b+ £ and K, say with 0 # y € R" and ¢ € R such that
y'(b+z)<cforallz € L

yTz > cfor all z € K.

Since K is a closed cone, the above separation implies that y“z > 0 for all 2 € K and ¢ =

0. Moreover, we also have y’z = 0 for all z € £. This is in contradiction with the condition

LNint K # (.

Compared with Lemma 2.3, we have now a stronger relation: £ N K* = {0}. This means that
the proof of Theorem 2.1 can remain exactly the same, except that now € > 0 can be taken as the

minimum angle between £ and K* which is independent of b. O

We remark that both Theorem 2.1 and Theorem 2.2 easily extend to the case when L is a closed

cone.

Theorem 2.3 Suppose that K1 is a closed convex cone and Kq is a closed, convez, solid and pointed
cone. Furthermore, suppose that (b+ K1) Nint Ko # 0 and (b+ K1) N Kq is compact. Then there

is a constant k > 0 such that
dist (z, F) < w(dist (z,b + K1) + dist (2, K2))
for all z € R, where F = (b+ K1) N Ka.



Proof. We follow similar lines as in the proof of Theorem 2.1. Consider

minimize %[z — 2|2
subject to z € b+ K,
z € Ks.

Let the optimal solution be z. The Karush-Kuhn-Tucker optimality condition yields:

,

T—z—p1—p2=0
(=01 =0
Ty =0
T€(b+K1)NKy
p € K7

w2 € K3.

Let
Ki=Kin{u|(@-0"n=0}

and
K5 =Ksn{p|z" n=0}

Both K} and K} are closed convex cones.

Now we claim that
(=K7) N K5 = {0} (2.6)

Suppose such is not the case. Then, one should be able to find p # 0 satisfying

p e (=K1) N K3
(—0)"p=0
iy =0.

Hence, b’ yn = 0. Therefore, u’ (b + x) <0 for all z € K1 and p’'z > 0 for all z € Ky. This implies
that {z | ul'z = 0} separates b+ K1 from Ky, contradicting the Slater condition.

Since —K?% and K are closed convex cones and, moreover, K3 is a solid pointed cone, we derive
from (2.6) that K} can be strictly separated from —K%. Due to compactness of F we may let  be
a positive lower bound on the minimum angle between this separating hyperplane and K3. Then
we have

2|l < [|Z — [/ sin @

and consequently
g1l < (14 1/sin8)||z — 2|



Now,

12 —zl1” = (F—2)" (1 + p2)
= (b—2)"p —2"po
< dist (2,04 Ky ) [|p || + dist (2, o) | 2|
< (14 1/sind)(dist (2, + K1) + dist (2, K2)) |7 — 2])-

The desired result thus follows. O

Similarly, we have the following result, the proof of which is pretty much the same as that of

Theorems 2.2 and 2.3 and is omitted here.

Theorem 2.4 Suppose that K1 is a closed convex cone and Kq is a closed, convez, solid and pointed
cone. Furthermore, suppose that K1 Nint Ko # 0. Then, for any b € R™ here is a constant k > 0,
independent of b, such that

dist (z, F) < w(dist (z,b + K1) + dist (2, K2))

for all z € R", where F = (b+ K1) N Ka.

When more than two cones are concerned, a similar result holds under Slater’s condition. First we

note the following lemma, see e.g. [11].

Lemma 2.4 Let K be a convex cone and int K # (. Then, z € int K if and only if for any
0 # p € K* it holds that L(x,pu) > 6 > 0.

Theorem 2.5 Let K; be convex cones, 1 = 1,...,m. Suppose that

Then, there is k > 0 such that

dist (z,N;" 1K) < kY _ dist (2, K;)
=1

for any z € R™.

Proof. Consider
minimize ||z — z||?

subject to z € K;,1=1,...,m.

10



Hence, for the optimal solution z the KKT condition yields
m
T—z=) W
i=1

with p; € Kf and #¥'p; = 0 for i = 1,...,m.

Let
d e N, int ;.

By Lemma 2.4 there exists g; > 0 satisfying
d" i > gill il
fori=1,...,m.

Let

2 = Zip — Zid

with 2, € K, ziq € K and zi];,zid = 0 due to Lemma 2.1. Moreover, ||z;q|| = dist (z,K;),1 =1, ...

Therefore,

m
lz =27 = (@-2)">
i=1

A

g
N

S
=

IN

m
> lziallllall.
=1

On the other hand, since
m
ld||lz = 2|l > d"(z — 2) = > d" pi > gill il
i=1
for 1 =1,...,m, it follows that
m
1z = 2)1* < > dist (2, i) (ldll /g:) |12 — ]|
i=1
and so by letting

k= max ||d|/g
i=1,....m

11



it follows that

m
dist (z,Nj%, K;) < K Z dist (z, ;).
i=1

Theorem 2.1 can be viewed as an analogue to Robinson’s result for convex inequality systems. In
the form of convex inequality systems, Theorem 2.2 can be found in Hu and Wang [9] and Deng
and Hu [3]. In particular, Deng and Hu [3] investigated the case when X is the cone of positive
semidefinite matrices. This case is known as linear matriz inequalities (LMIs for short). In its
optimization version it is also called semidefinite programming and has received intensive research
attention recently. Sturm [20] mainly investigated error bounds for LMIs in the absence of Slater’s
condition. In fact, in the context of LMIs, both Theorem 2.1 and Theorem 2.2 also follow from the
analysis in [20]. Moreover, an example was given in Sturm [20] showing that Assumption 2 alone
cannot guarantee a global Lipschitzian type error bound even for LMIs. Such an error bound is

only possible when an additional scaling factor is present.

Below we shall discuss how to derive some conditioned error bound relation for the convex conic

problem (1.2) under Assumption 2, without assuming Assumption 3 and Assumption 4.

In this situation the recession cone £N X must be non-empty and it is not contained in the interior
of K.

For a fixed positive angle 0 < # < 7/2, consider the following cone

C ={z | the projection of z onto £ and the cone £ N K has an angle at least 7/2 + 6}.

Theorem 2.6 Suppose that Assumption 2 holds. There exists a constant k > 0 such that
dist (2, F) < kv(z; F).

for all z € C.

Proof. Observe that if  is the projection of z on F, then it must also be the projection of z + y

on F for any y € £L*. This can be seen as follows. The fact that z € (b4 £) N K is the projection
of z is equivalent to the existence of A € £+ and p € K* such that

T—z=p—Xand 21 p = 0.

(See also (2.1)). Now if z is changed to z + y, then we need only to change A to A +y € L to
satisfy the same set of KKT conditions.

12



Remark also that to prove the theorem it is sufficient to show that, for any z € C, its projection

onto F is contained in a compact set.

Suppose that the theorem is false and that there is a sequence {z(k) €C|k=1,2,..}, such that the
corresponding projection on F, {z¥) € F | k = 1,2,...}, is unbounded. Due to the above remarks
we have made, we need only to consider the projection of z(¥) onto the subspace £. Without loss

of generality, assume that z(¥) € £NC for all k.
For sufficiently large k we have
o) — 5O = O] 4 82 — 240, 24

> 2 + 22 + cos(8/2) 259
2% - 50|

\%

where the first inequality is because Z*) must be pointing towards the cone of recession directions

LN K, and the last inequality is due to the fact that ||Z(®)|| — oo. This contradicts to z(*) being

the closest point in F to z(),

For any given point z € R", we may decompose z = z; + 2o with z; € LN K and zy € C. The

following relation is immediate.

Lemma 2.5 dist (z,F) < dist (22, F).

Proof. Let the projection of z, onto F be z3. Then,
dist (2, F) < ||z2 + z1 — (T2 + 21) || = dist (22, F)

where we used the fact that z; € LN K and so z9 + 21 € F.

Combining Lemma 2.5 and Theorem 2.6 we have

Theorem 2.7 Suppose that Assumption 2 holds. Then
dist (z, F) < Kkv(z2; F)

for all z € R"™ with z =21+ 22, 21 € LNK and z € C.

13



3 Hoffman’s error bound and the condition number

In this section we shall discuss error bounds for the linear system {x | ATz < b} with A € R™*" and
rank (A) = m. This is the setting for which Hoffman’s error bound result applies ([7]). Our purpose
is to see how the constant in Hoffman’s bound is related to other known quantities for the linear

system. Previous results on the constant of Hoffman’s bound can be found, e.g., in [12, 1, 6, 10].

By introducing a slack s(z) = b — ATz we confine ourselves to the range space of AT, i.e.
L={s|FzecR™:s= A"z}

Accordingly, £ = R’}.

For a given z € R" with s(z) ¢ R. Let s(z) = b— A"z € (b+ £) N K which minimizes the distance
to s(z).
Let
K ={i|s(z); >0} and J ={1,...,n} \ K.
Then, for this given s(Z) > 0 we can rewrite (2.1) as
Ajpy = AAT(Z - 2)
pr =0 (3.1)
py 2> 0.

As (3.1) is a necessary condition for optimality, it is certain that (3.1) is feasible. What remains to

be analyzed is the size of the solution. A key ingredient in our analysis is the following lemma.

Lemma 3.1 Suppose that A has full row rank. Then,

x(A) := sup{||DAT(ADA")7Y|| | D diagonal and D > 0} < oc.

Lemma 3.1 was first shown by Dikin [4] and was used in his convergence analysis for affine scaling
methods. Among others, Stewart [19] and Todd [23] rediscovered this result later.

The meaning of Lemma 3.1 can be interpreted as follows. It is well known that Null(4) = {z | Az =
0} and Range(AT) = {z | 3y € R™z = ATy} are orthocomplements to each other. Obviously, for
a given positive diagonal matrix D, Null(A) can only intersect with DRange(A”) at the origin,
hence there must be a positive angle between them. Lemma 3.1 further states that the minimum
angle between Null(4) and DRange(A”) is uniformly bounded from below by a positive constant
which is independent of D.

To understand this fact we may consider the following example. Let A = [1,1]. Then Null(A4) is

simply the line 1 + 22 = 0. For a given positive diagonal matrix D, DRange(A”) is contained

14



in the first and the third quadrants. The angle between these two subspaces never exceeds /4.
An important property of the constant y(A) is that it reflects an intrinsic, geometric relationship
of the spaces. Vavasis and Ye [24] used this constant x(A) as a measure of complexity for solving
the related linear programming problem. Their results showed that, in a real-number computation
model, linear program is solvable in polynomial-time, in terms of total number of basic operations,
with respect to the dimension n and the complexity measure log x(A). For problems with integral
input data, this result yields the usual polynomiality complexity result for linear programs in terms

of the input-length.

Holder, Sturm and Zhang [8] showed that x(A) plays an important role in sensitivity analysis
for linear programming. Furthermore, Sturm and Zhang [22] extended some of the results in [8]
to semidefinite programming. It is known however, that Lemma 3.1 cannot extend to general

semidefinite programming for arbitrary invariant scaling of the cone S*"; see [22].

Fortunately, in analyzing (3.1) we need only to deal with a polyhedral cone. To see how condition
number x(A) can play a role in error bound analysis, we need to introduce a number of technical

lemmas.

First we note the following equivalent definition of x(A) for arbitrary matrix A due to Vavasis and
Ye [24].

Lemma 3.2 It holds that

x(4) = sup{M | y minimizes |[DY?(ATy — ¢)|| for 0 # ¢ € R™ and D positive diagonal}.

el

For our analysis it is important to know the size of a solution for a linear system. To this end,
we note the following two lemmas. Remark that Renegar [16] studied similar problems in a quite

general framework using a quantity called distance to ill-posedness.

Lemma 3.3 Suppose that A has full row rank. Further assume that {x | Ax = b, x > 0} # 0.
Then, there is a solution T in F = {x | Az =b, x > 0} such that

121l < x(A)]bll.

Proof. Consider a linear program

(P) minimize elz

subject to Az =10
z>0

15



and its dual

(D) maximize by
subject to ATy+s=e
s> 0.

Both (P) and (D) satisfy Slater’s condition. Therefore their respective analytic central paths
{z(u) | p >0} and {(y(p),s(n)) | # > 0} exist, satisfying the following relation:

Az(p) =
ATy(u) + (u) e (3.2)
z(p)s(p) =

Multiplying the second equation in (3.2) with X (u), the diagonal matrix with z(u) as its diagonal

components, and applying the first equation in (3.2) we obtain
y(p) = (AX (W) AT) b — p(AX (n) A7)
Substituting this into the second equation and finally using the third relation in (3.2) we have
z(n) = X () AT (AX () AT) 710 + pe — pX () AT (AX () AT) 7 Ae.
Now we can apply Lemma 3.1 to obtain

() = I Ty () | < x(A)1bl

The lemma, is proven. O

Next we shall extend this result to the case when Slater’s condition is no longer assumed.

Lemma 3.4 Suppose that A has full row rank. Further assume that {x | Ax = b,z > 0} # 0.
Then, there is a solution T in F = {x | Ax = b, x > 0} such that

121 < x(A)]bll.

Proof. Let § > 0. Consider a perturbed set
Fs ={z | Az = b+ dAe, z > 0}.
Clearly, F5 contains an interior point and therefore Lemma 3.3 can be invoked. Let z° € Fs5 and

2] < x(A)[|b + 6 Ae]|.

16



The set {z° | 0 < § < 1} is bounded. Let z° be a cluster point of z° as § — 0. Obviously, 2° € F

and
12°] < x(A)|b|.

Next we shall compare the condition number of A and that of its submatrices.

Lemma 3.5 Let A = [A1, As]. Then x(41) < x(A).

Proof. By Lemma 3.2,

x(4) = sup{% | y minimizes | DY/2(ATy — ¢)|| for 0 # ¢ € R* and D positive diagonal}.
c

Let ¢ = [¢!', c}]" and D = diag(D;, D) be partitioned in accordance with A = [4;, A5].
1,62 g

For fixed ¢; # 0 and fixed positive diagonal matrix D;. Let ¢o = 0, and let Dy be positive
diagonal and Dy — 0. Clearly, the set of solutions minimizing ||[D/2(ATy — ¢)|| converges to the
set of solutions minimizing HDi/ 2(AlTy —¢1)]|. For given ¢ and D let y(c, D) be a maximum norm
solution among solutions which minimize ||[D'/?(A”Ty — ¢)||. Define y(c1, D) similarly. It follows
that

timsup [ly(c, D) > lly(cr, D)l

D>—0

As a consequence,
x(A4) = x(41)

and so the lemma is proven. O

Applying Lemmas 3.4 and 3.5 to (3.1) we have
il < X(ANN(AAT) (& = 2)I| < X(A) Amax (AAT)]|Z — 2] (3.3)
Finally we shall give a bound on the constant in Hoffman’s error bound for linear systems.

Theorem 3.1 Suppose that F = {x | ATz < b} # 0 and A has full row rank. It holds that
dist (2, F) < x(4) (cond (AAT)) (4= — b). |

for any z € R", where cond(AAT) := Apax (AAT) /Amin (AAT).
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Proof. Using (3.1) and (3.3),

il = Nl Il < X(A) Amax(AAT) |17 — 2]].

By (2.3), on one hand we have

ls(@) = s(2)I” = (s(z

= (s(@) — s(=)"u

= —s(z)"p

= (ATz-b)"p

< (ATz-0)Tp

< ATz = b) 4[]l

< (AT 2 = B)+ X (A) Amax (AAT) |7 — 2]

On the other hand,
I5(Z) = 5(2)|I” > Amin (AAT)|Z — 2||*.

Combining these two inequalities, the desired result follows. O

4 Conclusions

In this paper we discuss error bounds for sets in convex conic form. The notion of constraint
violation is extended to this class of problems. For a number of applications the measure of
constraint violation is easy computable. We show that under Slater’s condition, and additionally,
if either the feasible set is bounded or the recession directions satisfy the Slater’s condition, then
there is a global Lipschitzian type error bound for general convex conic problems. These results
can be generalized to the intersection of multiple convex cones, or intersection of two shifted convex
cones, one of them being pointed and solid. If only Slater’s condition is satisfied without additional
assumptions on the feasible region, then a global error bound is impossible as shown by Sturm [20].
In this case, one may still identify a region in which Lipschitzian type error bound holds. Finally,
we discuss the bounds in Hoffman’s lemma for linear systems. It is shown that such a bound is

linked closely with the condition number for linear programming as investigated by Vavasis and
Ye [24].

Acknowledgement: I would like to thank Jos Sturm for pointing out an error in an earlier version

of the paper.
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