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1 IntroductionIn optimization theory it is often desirable to measure the distance to the solution set from a certaingiven point. In general, this distance can be di�cult to assess, since one may not have a completeknowledge about the solution set. However, if the form of the solution set is explicitly given, thenin some cases it is possible to estimate the distance to the solution set by the so-called constraintviolation which is computable. This kind of estimation is termed error bound relation. The �rstsuch result was obtained by Ho�man [7] for systems of linear equalities and inequalities. We shalldiscuss Ho�man's error bound in the paper too. A recent extensive survey on various types of errorbound results can be found in Pang [15].Most papers discussing error bound results assume that the solution set is given by equations andinequalities, e.g. S = fx j fi(x) = 0 for i = 1; :::;m and gj(x) � 0 for j = 1; :::; lg:For a given point x the amount of constraint violation can be measured as the following quantityv(x) = kf(x)k+ k(g(x))+kwhere f(x) = (f1(x); :::; fm(x)) and (g(x))+ = ((g1(x))+; :::; (gl(x))+) with the notation (y)+ =max(y; 0).A measure for constraint violation is similar to a penalty function in the sense that it takes positivevalue for points outside the set, and zero otherwise. Note that a measure for constraint viola-tion should be easy computable, such as the case for the above de�ned function v(x). Ho�man'slemma [7] states that if S 6= ;, and fi and gj are all a�ne linear functions, then there is a positiveconstant � > 0 such that dist (x; S) � �v(x) (1.1)for all x 2 <n. This means that the distance to S is of the same magnitude as v(x). Such a relationis known as a Lipschitzian type error bound.In the case that fi and gj are not linear, the above inequality (1.1) does not hold in general. Earlyresults concerning nonlinear functions are due to Robinson [17] and Mangasarian [13]. Robinson [17]showed that for inequality systems if all functions are convex and di�erentiable, S is bounded andthe Slater condition holds, i.e. there is a x̂ such that gj(x̂) < 0 for all j, then relation (1.1) holds.Mangasarian [13] removed the assumption that S is bounded by assuming an additional asymptoticconstraint quali�cation condition, which however can be di�cult to verify in general.In this paper we consider the following convex conic set:F = (b+ L) \ K (1.2)1



where b 2 <n, L is a subspace of <n and K � <n is a closed convex cone. Polynomial-timeinterior-point algorithms for solving convex optimization problems with convex conic feasible setwere introduced in a systematic manner by Nesterov and Nemirovskii [14]. It turns out thatmany important classes of optimization problems, such as linear programming and semide�niteprogramming, can be cast in this form. The focus of this paper is to discuss how error boundtype relation can be established for such problems. Throughout this paper we make the followingassumption:Assumption 1 F 6= ;.The organization of the paper is as follows. In the next section we prove that with a proper de�nitionof constraint violation a Lipschitzian type error bound (1.1) can be established for general convexconic problems, under various conditions on the relations between L and K, including Slater typeconditions. In Section 3 we discuss a link between the constant in Ho�man's error bound and theso-called condition number for linear programming. Finally, we conclude the paper in Section 4.We use the following notation in this paper. Matrices are denoted by capital letters, e.g. X. Forsymmetric matrix X, �max(X) indicates the maximum eigenvalue of X, and �min(X) the minimumeigenvalue of X. We denote n-dimensional Euclidean space by <n and its nonnegative quadrantby <n+. The space of all symmetric n by n matrices is denoted by Sn�n and the cone of allsymmetric positive semide�nite n by n matrices by Sn�n+ . Vector e represents a vector of all oneswith appropriate dimension. For a vector v 2 <n, we use the capitalized letter V to denote thediagonal matrix which takes v as its diagonal elements. For two vectors x 2 <n and y 2 <n wewrite xy 2 <n as the component-wise Hadamard product. We use the Euclidean norm for vectorsand the spectral norm for matrices. A vector a � 0 means that each component of a is nonnegative,and X � 0 indicates that X is positive semide�nite.2 Convex conic systemsConsider the convex conic set (1.2). For convenience we further assume that K is a pointed andsolid cone, i.e. K \ (�K) = f0g and dim K = n.The dual of K is K� = fx j xT y � 0 for all y 2 Kg:Since K is pointed and solid, K� too is a closed, convex, pointed and solid cone.An immediate next question is: How can we de�ne a constraint violation function for F? For thispurpose we note the following lemma due to Moreau (see Theorem 31.5 in [18]).2



Lemma 2.1 For any x 2 <n there is a unique xp 2 K and xd 2 K� such that x = xp � xd andxTp xd = 0.In fact, xp is simply the projection of x onto K and kxdk measures the distance from x to K. Anatural de�nition for the constraint violation for F is now in order:De�nition 2.1 For any x 2 <n de�nev(x;F) := dist (x; b+ L) + kxdkas the constraint violation function for F .It is readily seen that v(x;F) = 0 i� x 2 F .It is, however, not immediately clear how the function v(x;F) can be computed. Below we shallsee some examples in which this function is explicitly derived. First we consider the case K =<n+, the nonnegative quadrant of <n. Clearly, x = x+ + x� where x+ = ((x1)+; :::; (xn)+) andx� = (�(�x1)+; :::;�(�xn)+). Obviously, x+ 2 K and �x� 2 K and xT+x� = 0. Therefore,kxdk = k(x)�k, which is exactly the usual de�nition of the violation for nonnegativity constraints.Another example is K = Sn�n+ , the cone of n by n symmetric positive semide�nite matrices.Consider a given n by n symmetric matrix X. Following Lemma 2.1 we know that there is uniquepositive semide�nite matrices Xp and Xd such that X = Xp �Xd and tr XpXd = 0. Matrices Xpand Xd can be computed as follows. Let X = Q�QT with Q an orthonormal matrix and � is adiagonal matrix with eigenvalues of X as its components. Splitting � = �+ + ��, where �+ and�� denote the nonnegative and nonpositive parts of � respectively, it follows that Xp = Q�+QT ,Xd = �Q��QT and XpXd = 0. Hence, kXdk = max(0;��min(X)), where �min(X) denotes theminimum eigenvalue of X.Finally, we consider another popular convex cone: the second order cone K 2 <n+1 de�ned asK = f(x0; x) j x 2 <n and x0 � kxkg:It can be shown that in this case kxdk = (kxk � x0)+=p2:In general, De�nition 2.1 is only related to the geometry of the object under consideration.Consider now an arbitrary point z 2 <n. Assume that z 62 F . The following problem yields aunique point in F with the shortest Euclidean distance to z:(Proj) minimize 12kx� zk2subject to x 2 b+ Lx 2 K:3



Let this optimal solution be �x. The Karush-Kuhn-Tucker optimality condition for (Proj) is givenas follows: (KKT)8>>>>>>><>>>>>>>: �x� z + �� � = 0�xT� = 0�x 2 (b+ L) \ K� 2 K�� 2 L?: (2.1)Hence, k�x� zk2 = (�x� z)T (�x� z)= (�x� z)T (�� �)= �(zp � zd)T�+ (z � �x)T�� zTd �+ (z � �x)T�� kzdkk�k + (z � �x)T�; (2.2)where the �rst inequality follows from the fact that zp 2 K and � 2 K�.Let the projection of z onto the a�ne subspace b+ L be zl. Then,(z � �x)T� = (z � zl + zl � �x)T�= (z � zl)T�� kz � zlkk�k= dist (z; b+ L)k�k:Substitute this relation into (2.2) we obtain(dist (z;F))2 = k�x� zk2 � kzdkk�k + dist (z; b+ L)k�k: (2.3)In Section 3 we shall discuss how to further bound the errors when K is a polyhedral cone, which isthe situation when the original Ho�man lemma applies. In the rest of this section we assume thatK is a general convex cone. In addition to this we assume that the Slater condition is satis�ed, i.e.Assumption 2 (b+ L) \ int K 6= ;:The following lemma is well-known; see e.g., Du�n [5], Borwein and Wolkowicz [2], Luo, Sturmand Zhang [11], Nesterov and Nemirovskii [14] and Sturm [21]. For completeness we provide herea short proof.Lemma 2.2 Suppose that Assumption 2 holds. Then, for any y 2 L? \ K� with y 6= 0 it mustfollow that bT y > 0. 4



Proof. Suppose, for the sake of deriving a contradiction, that there is y 6= 0 such that y 2 L?\K�and bT y � 0.Consider the hyperplane Hy = fx j yTx = 0g:For any x 2 b + L we have yTx = bT y � 0, while for any x 2 K, since y 2 K� we have yTx � 0.This means that Hy separates b+L and K, yielding a contradiction to the fact that b+L intersectswith the interior of K. 2For �xed �x we consider again the system (KKT) in terms of � and �. After some re-arrangementsthis yields 8>>>>><>>>>>: �� � = �x� z�xT� = 0� 2 K�� 2 L?: (2.4)De�ne �K� = K� \ f� j �xT� = 0gwhich is a closed convex cone as well.Note that �x = 0 is a trivial case and is omitted in our proof. In many applications, 0 62 L and so�x 6= 0.We shall mention another easy case, i.e. �x lies in the interior of K then �K = f0g. In this case � = 0and � = z � �x, and therefore dist (z;F) � dist (z; b + L)due to (2.3). In what remains we shall only concentrate on the situation when �x 62 int K.Remark that for �x 2 K, the cone �K� is known as a face of K�.The condition (2.4) is equivalent to � 2 (�x� z + L?) \ �K�:Lemma 2.3 If Assumption 2 holds then L? \ �K� = f0g.Proof. Suppose for contradiction that there is y 6= 0 and y 2 L? \ �K�. This means that5



y 2 L? \ K� and �xT y = 0:However, �x 2 b+ L and y 2 L?, and so 0 = �xT y = bT ywhich is impossible due to Lemma 2.2. 2Now we de�ne the minimum angle between L? and �K� as6 (L?; �K�) := minfarccos(uT v=(kukkvk)) j u 2 L? n f0g; v 2 �K� n f0gg:Note that both L? and �K� are closed cones. According to Lemma 2.3, it follows that6 (L?; �K�) > 0for any �x 2 (b+ L) \K.In order to pursue our analysis further, one of the following two mutually exclusive cases will beconsidered.Assumption 3 The set F = (b+ L) \ K is compact.Assumption 4 L \ int K 6= ;:Let us �rst consider the situation when Assumption 3 holds. In that case we know that there exists� > 0 such that for any �x 2 F we always have6 (L?; �K�) � � > 0:Now take � 2 (�x� z + L?) \ �K�. Let the projection of 0 onto �x� z + L? be p.

6



p �
0

ss�x� z ' �K�
L?

s
s

Figure: Subspace L? and the cone �K�.Let the angle between � and �� p be '. Clearly, � � ' � �=2. Moreover,k�k = kpk= sin' � kpk= sin � � k�x� zk= sin �: (2.5)Denote � = 1 + 1= sin �:We are now in a position to prove the following error bound result.Theorem 2.1 If Assumption 2 and Assumption 3 hold thendist (z;F) � �v(z;F)for all z 2 <n.Proof. By (2.5) we have k�k � dist (z;F)= sin � � �dist (z;F):Using the �rst equation in (2.4) we also havek�k � k�k+ k�x� zk � (1 + 1= sin �)dist (z;F) = �dist (z;F):7



Recall relation (2.3). By the above estimations on k�k and k�k, it follows from (2.3) that(dist (z;F))2 � �dist (z;F)(kzdk+ dist (z; b+ L))and consequently dist (z;F) � �v(z;F): 2In the other situation, namely if Assumption 4 holds, then a similar result can be shown.Theorem 2.2 If Assumption 4 holds, then for any b 2 <n we must have (b + L) \ int K 6= ;.Moreover, there is a constant � > 0, independent of b, such thatdist (z;F) � �v(z;F)where F = (b+ L) \ K.Proof. First we show that (b+ L) \ int K 6= ; for all b. Suppose otherwise that there is b with(b+ L) \ int K = ;:Then, there will be a hyperplane separating b+L and K, say with 0 6= y 2 <n and c 2 < such thatyT (b+ x) � c for all x 2 LyTx � c for all x 2 K:Since K is a closed cone, the above separation implies that yTx � 0 for all x 2 K and c =0. Moreover, we also have yTx = 0 for all x 2 L. This is in contradiction with the conditionL \ int K 6= ;.Compared with Lemma 2.3, we have now a stronger relation: L? \ K� = f0g. This means thatthe proof of Theorem 2.1 can remain exactly the same, except that now � > 0 can be taken as theminimum angle between L? and K� which is independent of b. 2We remark that both Theorem 2.1 and Theorem 2.2 easily extend to the case when L is a closedcone.Theorem 2.3 Suppose that K1 is a closed convex cone and K2 is a closed, convex, solid and pointedcone. Furthermore, suppose that (b + K1) \ int K2 6= ; and (b+ K1) \ K2 is compact. Then thereis a constant � > 0 such thatdist (z;F) � �(dist (z; b+K1) + dist (z;K2))for all z 2 <n, where F = (b+K1) \ K2. 8



Proof. We follow similar lines as in the proof of Theorem 2.1. Considerminimize 12kx� zk2subject to x 2 b+K1x 2 K2:Let the optimal solution be �x. The Karush-Kuhn-Tucker optimality condition yields:8>>>>>>>>>><>>>>>>>>>>:
�x� z � �1 � �2 = 0(�x� b)T�1 = 0�xT�2 = 0�x 2 (b+K1) \ K2�1 2 K�1�2 2 K�2:Let �K�1 = K�1 \ f� j (�x� b)T� = 0gand �K�2 = K�2 \ f� j �xT� = 0g:Both �K�1 and �K�2 are closed convex cones.Now we claim that (� �K�1) \ �K�2 = f0g: (2.6)Suppose such is not the case. Then, one should be able to �nd � 6= 0 satisfying8>><>>: � 2 (�K�1) \ K�2(�x� b)T� = 0�xT� = 0:Hence, bT� = 0. Therefore, �T (b+ x) � 0 for all x 2 K1 and �Tx � 0 for all x 2 K2. This impliesthat fx j �Tx = 0g separates b+K1 from K2, contradicting the Slater condition.Since � �K�1 and �K�2 are closed convex cones and, moreover, �K�2 is a solid pointed cone, we derivefrom (2.6) that �K�2 can be strictly separated from � �K�1. Due to compactness of F we may let � bea positive lower bound on the minimum angle between this separating hyperplane and �K�2. Thenwe have k�2k � k�x� zk= sin �and consequently k�1k � (1 + 1= sin �)k�x� zk:9



Now, k�x� zk2 = (�x� z)T (�1 + �2)= (b� z)T�1 � zT�2� dist (z; b+K1)k�1k+ dist (z;K2)k�2k� (1 + 1= sin �)(dist (z; b +K1) + dist (z;K2))k�x� zk:The desired result thus follows. 2Similarly, we have the following result, the proof of which is pretty much the same as that ofTheorems 2.2 and 2.3 and is omitted here.Theorem 2.4 Suppose that K1 is a closed convex cone and K2 is a closed, convex, solid and pointedcone. Furthermore, suppose that K1 \ int K2 6= ;. Then, for any b 2 <n here is a constant � > 0,independent of b, such thatdist (z;F) � �(dist (z; b+K1) + dist (z;K2))for all z 2 <n, where F = (b+K1) \ K2.When more than two cones are concerned, a similar result holds under Slater's condition. First wenote the following lemma, see e.g. [11].Lemma 2.4 Let K be a convex cone and int K 6= ;. Then, x 2 int K if and only if for any0 6= � 2 K� it holds that 6 (x; �) � � > 0.Theorem 2.5 Let Ki be convex cones, i = 1; :::;m. Suppose that\mi=1int Ki 6= ;:Then, there is � > 0 such that dist (z;\mi=1Ki) � � mXi=1 dist (z;Ki)for any z 2 <n.Proof. Consider minimize 12kx� zk2subject to x 2 Ki; i = 1; :::;m:10



Hence, for the optimal solution �x the KKT condition yields�x� z = mXi=1 �iwith �i 2 K�i and �xT�i = 0 for i = 1; :::;m:Let d 2 \mi=1int Ki:By Lemma 2.4 there exists gi > 0 satisfyingdT�i � gik�ikfor i = 1; :::;m.Let z = zip � zidwith zip 2 Ki, zid 2 K�i and zTipzid = 0 due to Lemma 2.1. Moreover, kzidk = dist (z;Ki), i = 1; :::;m.Therefore, k�x� zk2 = (�x� z)T mXi=1 �i= � mXi=1 zT�i= � mXi=1(zip � zid)T�i� mXi=1 zTid�i� mXi=1 kzidkk�ik:On the other hand, since kdkk�x � zk � dT (�x� z) = mXi=1 dT�i � gik�ikfor i = 1; :::;m, it follows thatk�x� zk2 � mXi=1 dist (z;Ki)(kdk=gi)k�x� zkand so by letting � = maxi=1;:::;m kdk=gi11



it follows that dist (z;\mi=1Ki) � � mXi=1 dist (z;Ki): 2Theorem 2.1 can be viewed as an analogue to Robinson's result for convex inequality systems. Inthe form of convex inequality systems, Theorem 2.2 can be found in Hu and Wang [9] and Dengand Hu [3]. In particular, Deng and Hu [3] investigated the case when K is the cone of positivesemide�nite matrices. This case is known as linear matrix inequalities (LMIs for short). In itsoptimization version it is also called semide�nite programming and has received intensive researchattention recently. Sturm [20] mainly investigated error bounds for LMIs in the absence of Slater'scondition. In fact, in the context of LMIs, both Theorem 2.1 and Theorem 2.2 also follow from theanalysis in [20]. Moreover, an example was given in Sturm [20] showing that Assumption 2 alonecannot guarantee a global Lipschitzian type error bound even for LMIs. Such an error bound isonly possible when an additional scaling factor is present.Below we shall discuss how to derive some conditioned error bound relation for the convex conicproblem (1.2) under Assumption 2, without assuming Assumption 3 and Assumption 4.In this situation the recession cone L\K must be non-empty and it is not contained in the interiorof K.For a �xed positive angle 0 < � < �=2, consider the following coneC = fx j the projection of x onto L and the cone L \ K has an angle at least �=2 + �g:Theorem 2.6 Suppose that Assumption 2 holds. There exists a constant � > 0 such thatdist (z;F) � �v(z;F):for all z 2 C.Proof. Observe that if �x is the projection of z on F , then it must also be the projection of z + yon F for any y 2 L?. This can be seen as follows. The fact that �x 2 (b+ L) \ K is the projectionof z is equivalent to the existence of � 2 L? and � 2 K� such that�x� z = �� � and �xT� = 0:(See also (2.1)). Now if z is changed to z + y, then we need only to change � to � + y 2 L? tosatisfy the same set of KKT conditions. 12



Remark also that to prove the theorem it is su�cient to show that, for any z 2 C, its projectiononto F is contained in a compact set.Suppose that the theorem is false and that there is a sequence fz(k) 2 C j k = 1; 2; :::g, such that thecorresponding projection on F , f�x(k) 2 F j k = 1; 2; :::g, is unbounded. Due to the above remarkswe have made, we need only to consider the projection of z(k) onto the subspace L. Without lossof generality, assume that z(k) 2 L \ C for all k.For su�ciently large k we havekz(k) � �x(k)k2 = kz(k)k2 + k�x(k)k2 � 2hz(k); �x(k)i� kz(k)k2 + k�x(k)k2 + cos(�=2)kz(k)kk�x(k)k> kz(k) � �x(1)k2where the �rst inequality is because �x(k) must be pointing towards the cone of recession directionsL \ K, and the last inequality is due to the fact that k�x(k)k ! 1. This contradicts to �x(k) beingthe closest point in F to z(k). 2For any given point z 2 <n, we may decompose z = z1 + z2 with z1 2 L \ K and z2 2 C. Thefollowing relation is immediate.Lemma 2.5 dist (z;F) � dist (z2;F):Proof. Let the projection of z2 onto F be �x2. Then,dist (z;F) � kz2 + z1 � (�x2 + z1)k = dist (z2;F)where we used the fact that z1 2 L \ K and so �x2 + z1 2 F . 2Combining Lemma 2.5 and Theorem 2.6 we haveTheorem 2.7 Suppose that Assumption 2 holds. Thendist (z;F) � �v(z2;F)for all z 2 <n with z = z1 + z2, z1 2 L \ K and z2 2 C.13



3 Ho�man's error bound and the condition numberIn this section we shall discuss error bounds for the linear system fx j ATx � bg with A 2 <m�n andrank (A) = m. This is the setting for which Ho�man's error bound result applies ([7]). Our purposeis to see how the constant in Ho�man's bound is related to other known quantities for the linearsystem. Previous results on the constant of Ho�man's bound can be found, e.g., in [12, 1, 6, 10].By introducing a slack s(x) = b�ATx we con�ne ourselves to the range space of AT , i.e.L = fs j 9x 2 <m : s = ATxg:Accordingly, K = <n+.For a given z 2 <n with s(z) 62 <n+. Let s(�x) = b�AT �x 2 (b+L)\K which minimizes the distanceto s(z).Let K = fi j s(�x)i > 0g and J = f1; :::; ng nK:Then, for this given s(�x) � 0 we can rewrite (2.1) as8>><>>: AJ�J = AAT (�x� z)�K = 0�J � 0: (3.1)As (3.1) is a necessary condition for optimality, it is certain that (3.1) is feasible. What remains tobe analyzed is the size of the solution. A key ingredient in our analysis is the following lemma.Lemma 3.1 Suppose that A has full row rank. Then,�(A) := supfkDAT (ADAT )�1k j D diagonal and D � 0g <1:Lemma 3.1 was �rst shown by Dikin [4] and was used in his convergence analysis for a�ne scalingmethods. Among others, Stewart [19] and Todd [23] rediscovered this result later.The meaning of Lemma 3.1 can be interpreted as follows. It is well known that Null(A) = fx j Ax =0g and Range(AT ) = fx j 9y 2 <m x = AT yg are orthocomplements to each other. Obviously, fora given positive diagonal matrix D, Null(A) can only intersect with DRange(AT ) at the origin,hence there must be a positive angle between them. Lemma 3.1 further states that the minimumangle between Null(A) and DRange(AT ) is uniformly bounded from below by a positive constantwhich is independent of D.To understand this fact we may consider the following example. Let A = [1; 1]. Then Null(A) issimply the line x1 + x2 = 0. For a given positive diagonal matrix D, DRange(AT ) is contained14



in the �rst and the third quadrants. The angle between these two subspaces never exceeds �=4.An important property of the constant �(A) is that it re
ects an intrinsic, geometric relationshipof the spaces. Vavasis and Ye [24] used this constant �(A) as a measure of complexity for solvingthe related linear programming problem. Their results showed that, in a real-number computationmodel, linear program is solvable in polynomial-time, in terms of total number of basic operations,with respect to the dimension n and the complexity measure log�(A). For problems with integralinput data, this result yields the usual polynomiality complexity result for linear programs in termsof the input-length.Holder, Sturm and Zhang [8] showed that �(A) plays an important role in sensitivity analysisfor linear programming. Furthermore, Sturm and Zhang [22] extended some of the results in [8]to semide�nite programming. It is known however, that Lemma 3.1 cannot extend to generalsemide�nite programming for arbitrary invariant scaling of the cone Sn�n+ ; see [22].Fortunately, in analyzing (3.1) we need only to deal with a polyhedral cone. To see how conditionnumber �(A) can play a role in error bound analysis, we need to introduce a number of technicallemmas.First we note the following equivalent de�nition of �(A) for arbitrary matrix A due to Vavasis andYe [24].Lemma 3.2 It holds that�(A) = supfkykkck j y minimizes kD1=2(AT y � c)k for 0 6= c 2 <n and D positive diagonalg:For our analysis it is important to know the size of a solution for a linear system. To this end,we note the following two lemmas. Remark that Renegar [16] studied similar problems in a quitegeneral framework using a quantity called distance to ill-posedness.Lemma 3.3 Suppose that A has full row rank. Further assume that fx j Ax = b; x > 0g 6= ;.Then, there is a solution �x in F = fx j Ax = b; x � 0g such thatk�xk � �(A)kbk:Proof. Consider a linear program (P) minimize eTxsubject to Ax = bx � 015



and its dual (D) maximize bT ysubject to AT y + s = es � 0:Both (P) and (D) satisfy Slater's condition. Therefore their respective analytic central pathsfx(�) j � > 0g and f(y(�); s(�)) j � > 0g exist, satisfying the following relation:8>><>>: Ax(�) = bAT y(�) + s(�) = ex(�)s(�) = �e: (3.2)Multiplying the second equation in (3.2) with X(�), the diagonal matrix with x(�) as its diagonalcomponents, and applying the �rst equation in (3.2) we obtainy(�) = (AX(�)AT )�1b� �(AX(�)AT )�1e:Substituting this into the second equation and �nally using the third relation in (3.2) we havex(�) = X(�)AT (AX(�)AT )�1b+ �e� �X(�)AT (AX(�)AT )�1Ae:Now we can apply Lemma 3.1 to obtainkx(0)k = k lim�!0 x(�)k � �(A)kbk:The lemma is proven. 2Next we shall extend this result to the case when Slater's condition is no longer assumed.Lemma 3.4 Suppose that A has full row rank. Further assume that fx j Ax = b; x � 0g 6= ;.Then, there is a solution �x in F = fx j Ax = b; x � 0g such thatk�xk � �(A)kbk:Proof. Let � > 0. Consider a perturbed setF� = fx j Ax = b+ �Ae; x � 0g:Clearly, F� contains an interior point and therefore Lemma 3.3 can be invoked. Let x� 2 F� andkx�k � �(A)kb+ �Aek:16



The set fx� j 0 < � < 1g is bounded. Let x0 be a cluster point of x� as � ! 0. Obviously, x0 2 Fand kx0k � �(A)kbk: 2Next we shall compare the condition number of A and that of its submatrices.Lemma 3.5 Let A = [A1; A2]. Then �(A1) � �(A).Proof. By Lemma 3.2,�(A) = supfkykkck j y minimizes kD1=2(AT y � c)k for 0 6= c 2 <n and D positive diagonalg:Let c = [cT1 ; cT2 ]T and D = diag(D1;D2) be partitioned in accordance with A = [A1; A2].For �xed c1 6= 0 and �xed positive diagonal matrix D1. Let c2 = 0, and let D2 be positivediagonal and D2 ! 0. Clearly, the set of solutions minimizing kD1=2(AT y � c)k converges to theset of solutions minimizing kD1=21 (AT1 y � c1)k. For given c and D let y(c;D) be a maximum normsolution among solutions which minimize kD1=2(AT y � c)k. De�ne y(c1;D1) similarly. It followsthat lim supD2!0 ky(c;D)k � ky(c1;D1)k:As a consequence, �(A) � �(A1)and so the lemma is proven. 2Applying Lemmas 3.4 and 3.5 to (3.1) we havek�Jk � �(AJ )k(AAT )(�x� z)k � �(A)�max(AAT )k�x� zk: (3.3)Finally we shall give a bound on the constant in Ho�man's error bound for linear systems.Theorem 3.1 Suppose that F = fx j ATx � bg 6= ; and A has full row rank. It holds thatdist (z;F) � �(A)(cond(AAT ))k(AT z � b)+kfor any z 2 <n, where cond(AAT ) := �max(AAT )=�min(AAT ).17



Proof. Using (3.1) and (3.3),k�k = k�Jk � �(A)�max(AAT )k�x� zk:By (2.3), on one hand we haveks(�x)� s(z)k2 = (s(�x)� s(z))T (��+ �)= (s(�x)� s(z))T�= �s(z)T�= (AT z � b)T�� (AT z � b)T+�� k(AT z � b)+kk�k� k(AT z � b)+k�(A)�max(AAT )k�x� zk:On the other hand, ks(�x)� s(z)k2 � �min(AAT )k�x� zk2:Combining these two inequalities, the desired result follows. 24 ConclusionsIn this paper we discuss error bounds for sets in convex conic form. The notion of constraintviolation is extended to this class of problems. For a number of applications the measure ofconstraint violation is easy computable. We show that under Slater's condition, and additionally,if either the feasible set is bounded or the recession directions satisfy the Slater's condition, thenthere is a global Lipschitzian type error bound for general convex conic problems. These resultscan be generalized to the intersection of multiple convex cones, or intersection of two shifted convexcones, one of them being pointed and solid. If only Slater's condition is satis�ed without additionalassumptions on the feasible region, then a global error bound is impossible as shown by Sturm [20].In this case, one may still identify a region in which Lipschitzian type error bound holds. Finally,we discuss the bounds in Ho�man's lemma for linear systems. It is shown that such a bound islinked closely with the condition number for linear programming as investigated by Vavasis andYe [24].Acknowledgement: I would like to thank Jos Sturm for pointing out an error in an earlier versionof the paper. 18
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