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Abstract

Principal Component Analysis (PCA) has been of great interest in
computer vision and pattern recognition. In particular, incrementally
learning a PCA model, which is computationally efficient for large
scale problems as well as adaptable to reflect the variable state of a
dynamic system, is an attractive research topic with numerous ap-
plications such as adaptive background modelling and active object
recognition. In addition, the conventional PCA, in the sense of least
mean squared error minimisation, is susceptible to outlying measure-
ments. To address these two important issues, we present a novel
algorithm of incremental PCA, and then extend it to robust PCA.
Compared with the previous studies on robust PCA, our algorithm
is computationally more efficient. We demonstrate the performance
of these algorithms with experimental results on dynamic background
modelling and multi-view face modelling.
Keywords Principal Component Analysis (PCA), incremental PCA,
robust PCA, background modelling, multi-view face modelling

1 Introduction

Principal Component Analysis (PCA), or the subspace method, has been
extensively investigated in the field of computer vision and pattern recogni-
tion (Turk and Pentland, 1991; Murase and Nayar, 1994; Moghaddam and
Pentland, 1997). One of the attractive characteristics of PCA is that a high
dimensional vector can be represented by a small number of orthogonal basis
vectors, i.e. the Principal Components. The conventional methods of PCA,
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such as Singular Value Decomposition (SVD) and eigen-decomposition, per-
form in batch-mode with a computational complexity of O(m3) where m is
the minimum value between the data dimension and the number of training
examples. Undoubtedly these methods are computationally expensive when
dealing with large scale problems where both the dimension and the number
of training examples are large. To address this problem, many researchers
have been working on incremental algorithms. Early work on this topic in-
cludes (Gill et al., 1974; Bunch and Nielsen, 1978). Gu and Eisenstat (Gu
and Eisenstat, 1994) developed a stable and fast algorithm for SVD which
performs in an incremental way by appending a new row to the previous
matrix. Chandrasekaran et al. (Chandrasekaran et al., 1997) presented an
incremental eigenspace update algorithm using SVD. Hall et al. (Hall et al.,
1998) derived an eigen-decomposition based incremental algorithm. In their
extended work, a method for merging and splitting eigenspace models was
developed (Hall et al., 2000). Liu and Chen (Liu and Chen, 2002) also intro-
duced an incremental algorithm for PCA model updating and applied it to
video shot boundary detection.

In addition, the traditional PCA, in the sense of least mean squared
error minimisation, is susceptible to outlying measurements. To build a
PCA model which is robust to “outliers”, Xu and Yuille (Xu and Yuille,
1995) treated an entire contaminated vector as an outlier by introducing an
additional binary variable. Gabriel and Odoroff (Gabriel and Odoroff, 1983)
addressed the general case where each element of a vector is assigned with
a different weight. More recently, De la Torre and Black (De la Torre and
Black, 2001) presented a method of robust subspace learning based on robust
M-estimation. Brand (Brand, 2002) also designed a fast incremental SVD
algorithm which can deal with missing/untrusted data, however the missing
part must be known beforehand.

One limitation of the previous robust PCA methods is that they are
usually computationally intensive because the optimisation problem has to be
computed iteratively1, e.g. the self-organising algorithms in (Xu and Yuille,
1995), the criss-cross regressions in (Gabriel and Odoroff, 1983) and the
Expectation Maximisation algorithm in (De la Torre and Black, 2001). This
computational inefficiency restricts their use in many applications, especially
when real-time performance is crucial.

1It is important to distinguish an incremental algorithm from an iterative algorithm.
The former performs in the manner of prototype growing from training example 1,2, ...to
t, the current training example, while the latter iterates on each learning step with all the
training examples 1,2, ... and N until a certain stop condition is satisfied. Therefore, for
the PCA problem discussed in this paper, the complexity of algorithms in the order from
the lowest to highest is: incremental, batch-mode and iterative algorithm.
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To address the issue of incremental and robust PCA learning, we present
two novel algorithms in this paper: an incremental algorithm for PCA and an
incremental algorithm for robust PCA. In both algorithms, the PCA model
updating is performed directly from the previous eigenvectors and a new ob-
servation vector. The real-time performance can be significantly improved
over the traditional batch-mode algorithm. Moreover, in the second algo-
rithm, by introducing a simplified robust analysis scheme, the PCA model
is robust to outlying measurements without adding much extra computation
(only filtering each element of a new observation with a weight which can be
returned from a look-up-table).

The rest of the paper is organised as follows. The new incremental PCA
algorithm is introduced in Section 2. It is then extended to robust PCA in
Section 3 as a result of adding a scheme of robust analysis. Applications
of using the above algorithms for adaptive background modelling and multi-
view face modelling are described in Section 4 and 5 respectively. Conclusions
and discussions are presented in Section 6.

2 Incremental PCA

Note that in this context we use x to denote the mean-normalised observation
vector, i.e.

x = x′ − µ (1)

where x′ is the original vector and µ is the current mean vector. For a new
x, if we assume the updating weights on the previous PCA model and the
current observation vector are α and 1−α respectively, the mean vector can
be updated as

µnew = αµ + (1− α)x′ = µ + (1− α)x (2)

Construct p + 1 vectors from the previous eigenvectors and the current ob-
servation vector

yi =
√
αλiui, i = 1, 2, ..., p (3)

yp+1 =
√

1− αx (4)

where {ui} and {λi} are the current eigenvectors and eigenvalues. The PCA
updating problem can then be approximated as an eigen-decomposition prob-
lem on the p+ 1 vectors. An n× (p+ 1) matrix A can then be defined as

A = [y1,y2, ...,yp+1] (5)
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Assume the covariance matrix C can be approximated by the first p signifi-
cant eigenvectors and their corresponding eigenvalues,

C ≈ UnpΛppU
T
np (6)

where the columns of Unp are eigenvectors of C, and diagonal matrix Λpp is
comprised of eigenvalues of C. With a new observation x, the new covariance
matrix is expressed by

Cnew = αC + (1− α)xxT

≈ αUnpΛppU
T
np + (1− α)xxT

=

p∑
i=1

αλiuuT + (1− α)xxT (7)

Substituting (3), (4) and (5) into (7) gives

Cnew = AAT (8)

Instead of the n×nmatrix Cnew, we eigen-decompose a smaller (p+1)×(p+1)
matrix B,

B = ATA (9)

yielding eigenvectors {vnew
i } and eigenvalues {λnew

i } which satisfy

Bvnew
i = λnew

i vnew
i , i = 1, 2, ..., p+ 1 (10)

Left multiplying by A on both sides and using (9), we have

AATAvnew
i = λnew

i Avnew
i (11)

Defining
unew

i = Avnew
i (12)

and then using (8) and (12) in (11) leads to

Cnewunew
i = λnew

i unew
i (13)

i.e. unew
i is an eigenvector of Cnew with eigenvalue λnew

i .
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Algorithm 1 The incremental algorithm of PCA

1: Construct the initial PCA from the first q(q ≥ p) observations.
2: for all new observation x do
3: Update the mean vector (2);
4: Compute y1,y2, ...,yp from the previous PCA (3);
5: Compute yp+1 (4);
6: Construct matrix A (5);
7: Compute matrix B (9);
8: Eigen-decompose B to obtain eigenvectors {vnew

i } and eigenvalues
{λnew

i };
9: Compute new eigenvectors {unew

i } (12).
10: end for

The algorithm is formally presented in Algorithm 1. It is important to
note:

1. Incrementally learning a PCA model is a well-studied subject (Gill
et al., 1974; Bunch and Nielsen, 1978; Chandrasekaran et al., 1997;
Hall et al., 1998; Hall et al., 2000; Liu and Chen, 2002; Brand, 2002).
The main difference between the algorithms, including this one, is how
to express the covariance matrix incrementally (e.g. Equation (7)) and
the formulation of the algorithm. The accuracy of these algorithms
is similar because updating is based on approximating the covariance
with the current p-ranked model. Also, the speed of these algorithms is
similar because they perform in a similar way of eigen-decomposition or
SVD on the rank of (p+1). Therefore, there is no need to compare the
performance of these algorithms. However, we believe the algorithm as
presented in Algorithm 1 is concise and easy to be implemented. Also,
it is ready to be extended to the robust PCA which will be discussed
in the next section.

2. The actual computation for matrix B only occurs for the elements of
the (p+1)th row or the (p+1)th column since {ui} are orthogonal unit
vectors, i.e. only the elements on the diagonal and the last row/column
of B have non-zero values.

3. The update rate α determines the weights on the previous informa-
tion and new information. Like most incremental algorithms, it is
application-dependent and has to be chosen experimentally. Also, with
this updating scheme, the old information stored in the model decays
exponentially over time.
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3 Robust PCA

Recall that PCA, in the sense of least squared reconstruction error, is suscep-
tible to contaminated outlying measurement. Several algorithms of robust
PCA have been reported to solve this problem, e.g. (Xu and Yuille, 1995;
Gabriel and Odoroff, 1983; De la Torre and Black, 2001). However, the lim-
itation of these algorithms is that they mostly perform in an iterative way
which is computationally intensive.

The reason of having to use an iterative algorithm for robust PCA is that
one normally does not know which part of a sample are likely to be outliers.
However, if a prototype model, which does not need to be perfect, is available
for a problem to be solved, it would be much easy to detect the outliers from
the data. For example, we can easily pick up a “cat” image as an outlier from
a set of human face images because we know what the human faces look like,
and for the same reason we can also tell the white blocks in Figure 5 (the
first column) are outlying measurements.

Now if we assume that the updated PCA model at each step of an incre-
mental algorithm is good enough to function as this prototype model, then we
can solve the problem of robust PCA incrementally rather than iteratively.
Based on this idea, we develop the following incremental algorithm of robust
PCA.

3.1 Robust PCA with M-Estimation

We define the residual error of a new vector xi by

ri = UnpU
T
npxi − xi (14)

Note that the Unp is defined as in (6) and, again, xi is mean-normalised. We
know that the conventional non-robust PCA is the solution of a least-squares
problem2

min
∑

i

‖ri‖2 =
∑

i

∑
j

(rj
i )

2 (15)

Instead of sum-of-squares, the robust M-estimation method (Huber, 1981)
seeks to solve the following problem via a robust function ρ(r)

min
∑

i

∑
j

ρ(rj
i ) (16)

2In this context, we use subscript to denote the index of vectors, and superscript the
index of their elements.
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Differentiating (16) by θk, the parameters to be estimated, i.e. the elements
of Unp, we have

∑
i

∑
j

ψ(rj
i )
∂rj

i

∂θk

= 0, k = 1, 2, ..., np (17)

where ψ(t) = dρ(t)/dt is the influence function. By introducing a weight
function

w(t) =
ψ(t)

t
(18)

Equation (17) can be written as

∑
i

∑
j

w(rj
i )r

j
i

∂rj
i

∂θk

= 0, k = 1, 2, ..., np (19)

which can be regarded as the solution of a new least-squares problem if w is
fixed at each step of incremental updating

min
∑

i

∑
j

w(rj
i )(r

j
i )

2 (20)

If we define

zj
i =

√
w(rj

i )x
j
i (21)

then substituting (14) and (21) into (20) leads to a new eigen-decomposition
problem

min
∑

i

‖UnpU
T
npzi − zi‖2 (22)

It is important to note that w is a function of the residual error rj
i which

needs to be computed for each individual training vector (subscript i) and
each of its elements (superscript j). The former maintains the adaptability of
the algorithm, while the latter ensures that the algorithm is robust to every
element of a vector.

If we choose the robust function as the Cauchy function

ρ(t) =
c2

2
log(1 + (

t

c
)2) (23)

where c controls the convexity of the function, then we have the weight
function

w(t) =
1

1 + (t/c)2
(24)
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Now it seems we arrive at a typical iterative solution to the problem
of robust PCA: compute the residual error with the current PCA model
(14), evaluate the weight function w(rj

i ) (24), compute zi (21), and eigen-
decompose (22) to update the PCA model. Obviously an iterative algorithm
like this would be computationally expensive. In the rest of this section, we
propose an incremental algorithm to solve the problem.

3.2 Robust Parameter Updating

One important parameter needs to be determined before performing the al-
gorithm: c in (23,24) which controls the sharpness of the robust function
and hence determines the likelihood of a measurement being an outlier. In
previous studies, the parameters of a robust function are usually computed
at each step in an iterative robust algorithm (Huber, 1981; Hampel et al.,
1986) or using Median Absolute Deviation method (De la Torre and Black,
2001). Both methods are computationally expensive. Here we present an
approximate method to estimate the parameters of a robust function.

The first step is to estimate σj, the standard deviation of the jth element
of the observation vectors {xj

i}. Assuming that the current PCA model
(including its eigenvalues and eigenvectors) is already a robust estimation
from an adaptive algorithm, we approximate σj with

σj = maxp
i=1

√
λi|uj

i | (25)

i.e. the maximal projection of the current eigenvectors on the jth dimension
(weighted by their corresponding eigenvalues). This is a reasonable approx-
imation if we consider that PCA actually presents the distribution of the
original training vectors with a hyper-ellipse in a subspace of the original
space and thus the variation in the original dimensions can be approximated
by the projections of the ellipse onto the original space.

The next step is to express c, the parameter of (23,24), with

cj = βσj (26)

where β is a fixed coefficient, for example, β = 2.3849 is obtained with the
95% asymptotic efficiency on the normal distribution (Zhang, 1997). β can
be set at a higher value for fast model updating, but at the risk of accepting
outliers into the model. To our knowledge, there are no ready solutions so
far as to estimate the optimal value of coefficient β.

We use an example of background modelling to illustrate the performance
of parameter estimation described above. A video sequence of 200 frames is
used in this experiment. The conventional PCA is applied to the sequence to
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obtain 10 eigenvectors of the background images. The variation σj computed
using the PCA model by Equation (25) is shown in Figure 1(a). We also
compute the pixel variation directly over the whole sequence as shown in
(b). Since there is no foreground object appeared in this sequence, we do not
need to consider the influence of outliers. Therefore (b) can be regarded as
the ground-truth pixel variation of the background image. For a quantitative
measurement, we compute the ratio of σj by Equation (25) to its ground-
truth (subject to a fixed scaling factor for all pixels), and plot the histogram
in Figure 1(c). It is noted that

1. the variation computed using the low-dimensional PCA model is a good
approximation of the ground-truth, with most ratio values close to 1
as shown in Figure 1(c);

2. the pixels around image edges, valleys and corners normally demon-
strate large variation, while those in smooth areas have small variation.

3.3 The Incremental Algorithm of Robust PCA

By incorporating the process of robust analysis, we have the incremental
algorithm of robust PCA as listed in Algorithm 2. The difference from the
non-robust algorithm (Algorithm 1) is that the robust analysis (lines 3-6) has
been added and x is replaced by z, the weighted vector, in lines 7 and 9. For
completeness of description, we include the whole algorithm in Algorithm 2.
It is important to note:

1. It is much faster than the conventional batch-mode PCA algorithm for
large scale problems, not to mention the iterative robust algorithm;

2. The model can be updated online over time with new observations.
This is especially important for modelling dynamic systems where the
system state is variable.

3. The extra computation over the non-robust algorithm (Algorithm 1) is
only to filter a new observation with a weight function. If the Cauchy
function is adopted, this extra computation is reasonably mild. How-
ever, even when more intensive computation like exponential and log-
arithm involved in the weight function w, a look-up-table can be built
for the weight item

√
w(·) in Equation (21) which can remarkably re-

duce the computation. Note the look-up-table should be indexed by
r/c rather than r.
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(a) (b)

(c)

Figure 1: Standard deviation of individual pixels σj computed from (a) the
low-dimensional PCA model (approximated) and (b) the whole image se-
quence (ground-truth). All values are multiplied by 20 for illustration pur-
pose. Large variation is shown in dark intensity. (c) Histogram of the ratios
of approximated σj to its ground-truth value.

Algorithm 2 The incremental algorithm of robust PCA

1: Construct the initial PCA from the first q(q ≥ p) observations.
2: for all new observation x do
3: Estimate cj, the parameter of the robust function, from the current

PCA (25,26);
4: Compute the residual error r (14);
5: Compute the weight w(rj) for each element of x (24);
6: Compute z (21);
7: Update the mean vector (2), replacing x by z;
8: Compute y1,y2, ...,yp from the previous PCA (3);
9: Compute yp+1 (4), replacing x by z;

10: Construct matrix A (5);
11: Compute matrix B (9);
12: Eigen-decompose B to obtain eigenvectors {vnew

i } and eigenvalues
{λnew

i };
13: Compute new eigenvectors {unew

i } (12).
14: end for
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4 Robust Background Modelling

Modelling background using PCA was firstly proposed by Oliver et al. (Oliver
et al., 2000). By performing PCA on a sample of N images, the background
can be represented by the mean image and the first p significant eigenvec-
tors. Once this model is constructed, one projects an input image into the p
dimensional PCA space and reconstruct it from the p dimensional PCA vec-
tor. The foreground pixels can then be obtained by computing the difference
between the input image and its reconstruction.

Although Oliver et al. claimed that this background model can be adapted
over time, it is computationally intensive to perform model updating using
the conventional PCA. Moreover, without a mechanism of robust analysis,
the outliers or foreground objects may be absorbed into the background
model. Apparently this is not what we expect.

To address the two problems stated above, we extend PCA background
model by introducing (1) the incremental PCA algorithm described in Sec-
tion 2 and (2) robust analysis of new observations discussed in Section 3.

We applied the algorithms introduced in the previous sections to an image
sequence in PET2001 datasets3. This sequence was taken from a university
site with a length of 3061 frames. There are mainly two kinds of activities
happened in the sequence: (1) moving objects, e.g. pedestrians, bicycles
and vehicles, and (2) new objects being introduced into or removed from the
background. The parameters in the experiments are: image size 192 × 144
(grey-level), PCA dimension p = 10, size of initial training set q = 20, update
rate α = 0.95 and coefficient β = 10.

4.1 Comparing to the Batch-mode Method

In the first experiment, we compared the performance of our robust algo-
rithm (Algorithm 2) with the conventional batch-mode PCA algorithm. It is
infeasible to run the conventional batch-mode PCA algorithm on the same
data since they are too big to be fit in the computer memory. We randomly
selected 200 frames from the sequence to perform a conventional batch-mode
PCA. Then the trained PCA was used as a fixed background model.

Sample results are illustrated in Figure 2 (more results are available in
the supplementary video file “pets.mpg”4).

It is noted that our algorithm successfully captured the background changes.
An interesting example is that, between the 1000th to 1500th frames (the

3A benchmark database for video surveillance which can be downloaded at
http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-dataset.html

4Available at http://www.dcs.qmul.ac.uk/∼yongmin/sctv2003/pets.mpg.
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Figure 2: Sample results of background modelling. From left to right are
the original input frame, reconstruction and the weights computed by Equa-
tion (24) (dark intensity for low weight) of the robust algorithm, and the
reconstruction and the absolute difference images (dark intensity for large
difference) of the conventional batch-mode algorithm. Results are shown for
every 500 frames of the test sequence.

1st and 2nd rows in Figure 2), a car entered into the scene and became
part of the background, and another background car left from the scene.
The background changes are highlighted by white boxes in the figure. The
model was gradually updated to reflect the changes of the background. In
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this experiment, the incremental algorithm achieved a frame rate of 5 fps
on a 1.5GHz Pentium IV computer (with JPEG image decoding and image
displaying). On the other hand, the fixed PCA model failed to capture the
dynamic changes of the background. Most noticeably are the ghost effect
around the areas of the two cars in the reconstructed images and the false
foreground detection.

Figure 3: The first three eigenvectors obtained from the robust algorithm
(upper row) and non-robust algorithm (lower row). The intensity values
have been normalised to [0, 255] for illustration purpose.

4.2 Comparing to the Non-Robust Method

In the second experiment, we compared the performance of the non-robust
algorithm (Algorithm 1) and robust algorithm (Algorithm 2). After applying
both algorithms to the same sequence used above, we illustrate the first three
eigenvectors of each PCA model in Figure 3. It is noted that the non-robust
algorithm unfortunately captured the variation of outliers, most noticeably
the trace of pedestrians and cars on the walkway appearing in the images of
the eigenvectors. This is exactly the limitation of conventional PCA (in the
sense of least squared error minimisation) as the outliers usually contribute
more to the overall squared error and thus deviate the results from desired.
On the other hand, the robust algorithm performed very well: the outliers
have been successfully filtered out and the PCA modes generally reflect the
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variation of the background only, i.e. greater values for highly textured image
positions.

(a) (b)

Figure 4: The first dimension of the PCA vector computed on the same
sequence in Figure 2 using the robust algorithm (a) and non-robust algorithm
(b).

The importance of applying robust analysis can be further illustrated in
Figure 4 which shows the values of the first dimension of the PCA vectors
computed with the two algorithms. A PCA vector is a p-vector obtained by
projecting a sample vector onto the p eigenvectors of a PCA model. The first
dimension of the PCA vector corresponds to the projection to the most sig-
nificant eigenvector. It is observed that the non-robust algorithm presents a
fluctuant result, especially when significant activities happened during frames
1000-1500, while the robust algorithm achieves a steady performance.

Generally, we would expect that a background model (1) should not
demonstrate abrupt changes when there are continuous foreground activities
involved, and (2) should evolve smoothly when new components being intro-
duced or old components being removed. The results as shown in Figure 4
depict that the robust algorithm performed well in terms of these criteria,
while the non-robust algorithm struggled to compensate for the large error
from outliers by severely adjusting the values of model parameters.
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Figure 5: Sample results of multi-view face modelling. From left to right
are: original face image, mean vectors and reconstructions of (1) view-based
eigenface method, (2) Algorithm 2, (3) Algorithm 1, and (4) batch-mode
PCA, respectively. Results are shown for every 20 frames of the test sequence.

5 Multi-view Face Modelling

Modelling face across multiple views is a challenging problem. One of the
difficulties is that the rotation in depth causes the non-linear variation to the
2D image appearance. The well-known eigenface method, which has been
successfully applied to frontal face detection and recognition, can hardly pro-
vide a satisfactory solution to this problem as the multi-view face images are
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largely out of alignment. One possible solution to this problem as presented
in (Moghaddam and Pentland, 1997) is to build a set of view-based eigenface
models, however, the pose information of the faces need to be known and the
division of the view space is often arbitrary and coarse.

In the following experiments we compare the results of four methods: (1)
view-based eigenface method (Moghaddam and Pentland, 1997), (2) Algo-
rithm 2 (robust), (3) Algorithm 1 (non-robust), and (4) batch-mode PCA.
The image sequences were captured using an electromagnetic tracking sys-
tem which provides the position of a face in an image and the pose angles
of the face. The images are in size of 384 × 288 pixels and contain faces of
about 80×80 pixels. As face detection is beyond the domain of this work, we
directly used the cropped face images by the position information provided
by the tracking system.

We also added uniformly distributed random noise to the data by gener-
ating high-intensity blocks with size of 4-8 pixels at various image positions.
Note that the first 20 frames do not contain generated noise in order to ob-
tain a clean initial model for the robust method. We will discuss this issue
in the last section.

For method (1), we divide the view space into five segments: left profile,
left, frontal, right, and right profile. So the pose information is used addition-
ally for this method. Five view-based PCA models are trained respectively
on these segments with the uncontaminated data because we want to use the
results of this method as “ground-truth” for comparison. For methods (2)
and (3), the algorithms perform incrementally through the sequences. For
method (4), the batch-mode PCA is trained from the whole sequence.

The images are scaled to 80 × 80 pixels. The parameters for the robust
method are the same as those in the previous section: p = 10, q = 20, α =
0.95 and β = 10. Figure 5 shows the results of these methods (more results
are available in the supplementary video file “face.mpg”5). It is evident that

1. the batch-mode method failed to capture the large variation caused by
pose change (most noticeably is the ghost effect of the reconstructions;

2. although the view-based method is trained from clean data and uses
extra pose information, the reconstructions are noticeably blurry owing
to the coarse segmentation of view space;

3. the non-robust algorithm corrupted quickly owing to the influence of
the high-intensity outliers;

5Available at http://www.dcs.qmul.ac.uk/∼yongmin/sctv2003/face.mpg.
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4. the proposed incremental algorithm of robust PCA performed very well:
the outliers have been filtered out and the model has been adapted with
respect to the view change.

6 Conclusions

PCA is a widely applied technique in pattern recognition and computer vi-
sion. However, the conventional batch-mode PCA suffers from two limita-
tions: computationally intensive and susceptible to outlying measurement.
Unfortunately the two issues have only been addressed separately in the pre-
vious studies. In this work, we developed a novel incremental PCA algorithm,
and extended it to robust PCA.

The main contribution of this paper is the incremental algorithm for
robust PCA. In the previous work, the problem of robust PCA is mostly
solved by iterative algorithms which are computationally expensive. The
reason of having to do so is that one does not know what part of a sample
are outliers. However, the updated model at each step of an incremental
PCA algorithm can be used for outlier detection, i.e. given this “prototype”
model, one does not need to go through the expensive iterative process. This
is the starting point of our proposed algorithm.

We have provided detailed derivation of the algorithms. Moreover, we
have discussed several implementation issues including (1) approximating
the standard deviation using the previous eigenvectors and eigenvalues, (2)
selection of robust functions, and (3) look-up-table for robust weight com-
puting. These can be helpful to further improve the performance.

Furthermore, we applied the algorithms to the problems of dynamic back-
ground modelling and multi-view face modelling. These two applications
alone have their own significance: the former extends the static method of
PCA background modelling to a dynamic and adaptive method by introduc-
ing an incremental and robust model updating scheme, and the latter makes
it possible to model faces of large pose variation with a simple, adaptive,
model.

Nevertheless, we have experienced problems when the initial PCA model
contains significant outliers. Under these circumstances, the assumption (the
prototype model is good enough for outlier detection) is broken, and the
model would take long time to recover. Although the model can recover
more quickly by choosing a smaller update rate α, we argue that the update
rate should be determined by applications rather than the robust analysis
process. A possible solution to this problem is to learning the initial model
using the traditional robust methods. Owing to the small size of initial data,
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the performance should not degrade seriously.
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