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Abstract The safe and reliable operations in industrial
manufacturing processes play a crucial role in the economic
productivity. Machining process disturbances such as colli-
sion, overload, breakdown, and tool wear tend to cause pro-
duction system failures. The current study aims at investigat-
ing the limitations of tool wear prediction on the milling of
CGI 450 plates, through the simultaneous detection of accel-
eration and spindle drive current sensor signals. Tool wear
prediction has been accomplished, by utilizing the experimen-
tal results that derived from third degree regression models
and pattern recognition systems. These results indicate that
predictability is affected by the mean signal energy, acquired
from the vibration acceleration signals.

Keywords Tool wear .Monitoring . Predictability . Fused
sensorial signals . Pattern recognition

1 Introduction

Themilling process that belongs in the category of mechanical
material removal processes forms the backbone of industrial
manufacturing practices, by providing great flexibility, since
the shape and the kinematics of the tool and workpiece define
the parts’ geometry [1]. A milling cutter’s design and its

respective cutting edges come in a vast range of shapes and
sizes [2]. The current practice in industrial environments im-
plies the usage of trial and error techniques for the very first
machined parts so as to evaluate and fine tune the machining
process. This approach not only does it require a significant
amount of time, but potentially, it also contains a significant
number of errors, thus reducing the performance of the pro-
cess in terms of profit, people, and pollution [3]. Amajor issue
is the occurrence of tool wear. There is significant theoretical
study [1, 4, 5], and there is a background comprising literature
that deals with corresponding sensing, processing methods
[6], and reliability assessment [7]. This is due to the fact that
successful monitoring [1] of the tool wear during machining
may provide significant benefits in terms of cost and machin-
ing quality [8]. It is reported [9] that using wear sensors, a tool
cost saving up to 40 % may be reached. Thus, the trend is that
the tool status be identified in terms of tool wear level via
online sensing methods. The optimal goal is that this informa-
tion be finally incorporated into the machining policy design
and process planning. The first step to do that is to adopt a
monitoring strategy, using available and suitable sensors.
Concerning a primary classification of related sensors, they
are divided into direct and indirect [10], depending on their
relation to the phenomenon studied. The most frequently im-
plemented monitoring systems involve in-direct sensors [11].
In these types of systems, auxiliary quantities which are af-
fected by tool wear are measured. These quantities have been
empirically correlated with those deriving from machining
phenomena [12].

Sensors and sensing devices, such as torque [13], acoustic
emission [14], or even feed rate [15], are classified in detail
into [6]. As regards milling operations, numerous studies have
proven the link between tool condition monitoring and various
indirectly linked quantities/measures. The effectiveness of
acoustic emissions (AE), excited by machining-related
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mechanical phenomena has been documented in [16–18].
However, they are primarily used in detecting tool breakage
and not wear, due to the fact that the breakage phenomenon
causes an eminent peak in the AE signal [19–21]. In the same
framework of mechanical vibration sensing, surface rough-
ness measurements [22] and cutting forces [23–25] (or eddy
currents [26]) have been utilized. Cutting force signals may be
affected by the dynamic behavior of the machine [27] or limit
the machining envelope [28–30]. Spindle motor current is
another factor, affected by the cutting force, and it has also
been used in tool condition monitoring. The implementation
of signal filtering to minimize the machine noise increases the
stability of such systems’ performance. Between spindle cur-
rent consumption and cutting force monitoring, the tool wear
level identification is accomplished [31]. Such an approach is
characterized as having a low cost when compared to that of
conventional monitoring methods. Trends of the last two de-
cades, in the field of machining monitoring, highlight the ef-
fectiveness of techniques, based on the signal acquisition of
different types of sensors, also known as sensor fusion [29].
This kind of systems provides effective and efficient integra-
tion with information sourcing from different sensors of dif-
ferent nature to achieve an integrated description of the tool’s
status while machining [32–37]. A major drawback of these
methods is that they usually require a great amount of data.
Study [38] indicates that less costly andmountable current and
voltage sensors may offer an alternative to force sensors for
industrial tool condition monitoring. As regards the methods
of acquired signal processing, an evaluation of approaches
was originally presented in [24]. It is apparent that in order
for an accurate interpretation of the information produced to
be provided, a high level of signal processing and analysis is
required. The simplest method is through the use of a constant
threshold. If the latter is crossed tool wear or tool breakage can
be detected. The use of a dynamic threshold is considered
being a more reliable approach to various case studies [27].
Numerous domains such as the time domain [39], the spec-
trum [39], and the hybrid [40] have been utilized so far
throughout the literature along with reviews. There are also
statistical processing [41], pattern recognition methods [42],
or even semi-empirical methods, such as autoregressive
models [43]. Even more sophisticated methods of processing
and decision making involve the hidden Markov models,
ANFIS [44], fractal characterization [45], or support vector
machines [46]. Besides, there are numerous works [41, 45,
13] that correlate the tool wear with various parameters (such
as RPMs and feed rate).

Part of the current study in the FoFdation project [47] is
based, among others, on achieving the creation of a tool of-
fering a realistic adaptive approach that compensates for the
condition changes, during the milling process. Tool wear pre-
diction is a functionality aiming at preventing a catastrophic
behavior. Correlation between the cutting force and the tool

wear has proven sufficient and it has been utilized as a means
of tool wear prediction. Replicating the same machining con-
ditions, in overlap [48] and in mixing up and down milling
[49], in case of a different machine tool, additional studies
have also correlated tool wear with electrical current [31].
The missing link (mechanism) between the investigations is
the cutting force. In the current study, the first set of studies
following, aims to investigate into the type of components of
raw vibration and/or electrical signals that carry tool-wear-
related information.

A multiple sensor system for the monitoring of milling
operations has been developed for the current investigation.
The objective is that tool wear be correlated with spindle
torque and the accelerometer signals. The choice of the sen-
sors has beenmade under the prism of low cost and easiness to
integrate in real industrial environments. The strategy of the
wear experiments, including process parameters and machin-
ing motion profile, has been designed so to allow the incor-
poration of statistical parameters that may alter the prediction
relationship. Such parameters may be: the cutting force varia-
tions, the statistical behaviour of the vibrations and the rela-
tionship between spindle current and cutting force. The pre-
dictions have also been correlated with the machine tool dy-
namic behaviour, as it is proven that they have a close rela-
tionship [14, 32]. The machine tool behaviour affects the cut-
ting forces, which are used for the monitoring of tool wear
[15] and thus affect the tool wear predictability. To this end,
from the signal’s processing point of view, a regression model
has been developed for the estimation of tool wear, based on
experimental data, and the pattern recognition systems used,
for both single and fused sensors’ data processing. A correla-
tion has also been implemented with machine tool dynamics,
aiming to study the system’s predictability. Metrics have been
applied to measure the predictability and study the tool wear
prediction.

2 Experimental setup

2.1 Material and equipment

The CGI 450 was the material used in the tool wear machining
experiments [50]. For the current set of experimental investi-
gation, the workpiece dimensions have been selected to be
equal to 250 mm×250 mm×50 mm. Placement and fixturing
of the CGI plates on the mill bed have been as indicated in
Fig. 1. Material properties and chemical composition are
shown in Tables 1 and 2, respectively.

The cutting tool used in the current experimental investi-
gation is SANDVIK 365 face milling with 5 PVD titanium
nitride coated carbide inserts, namely the N365-1505ZNE-
KW4 1020. Its tool diameter is equal to 50 mm. The cutting
tool’s selection is aligned with the standards of the same type

510 Int J Adv Manuf Technol (2016) 82:509–521



of industrial applications in terms of average cutting speeds
[50, 51]. Finally, the machine tool used is an XYZ three-axis
vertical milling machine with a Prototrak controller and a 5
HP spindle type.

2.2 Monitoring equipment

A PC-based data acquisition system (Fig. 2) has been used,
consisting of an eight-channel dynamic signal acquisition
module and a dedicated analog-to-digital converter per chan-
nel. The acceleration sensor was a triaxial accelerometer with
an effective frequency range, up to 7 kHz, and a sensitivity of
100mV/g. The current measurement has been performed via a
power analyzer and inductive clamps. There was a special jig
(Fig. 1) for mounting of the accelerometer as closely as pos-
sible to the machining area.

2.3 Experimental procedure

As per the findings of previous studies [31, 47–49], the tool
path during machining is shown in Fig. 3, with the feed direc-
tion during cutting along the y-axis. Each pass consists of six
passages, and the cutting path of the tool is denoted with a
dashed line. Dotted parts in Fig. 3 schematic indicate no cut-
ting regions. The axial depth of cut has been set to 0.5 mm
with the width of cut equal to 50 % of the tool diameter
(25 mm). Cutting conditions have been selected for the upper
operating region of the tools aiming at the acceleration of tool

wear progression. The feed per tooth has been constant (equal
to 0.15 mm) in all cases, while the cutting speed varied as
indicated in Table 3. Three values of the spindle rotational
velocity have been selected, namely 1350, 2175, and 3000
RPMs, resulting in cutting speeds equal to 210, 338, and
467 m/min respectively. The feed rate has been equal to
1000 mm/min, while the depth of cut was equal to 0.5 mm.
Targeting tool wear, dry cutting conditions have been selected.

The experiment consisted of machining straight lines with
cutting parameters as described above. Following a predefined
time period, the process had been paused in order for the
inserts to be changed. The accelerometer signals and spindle
current have been monitored during each pass for 5-s inter-
vals. The tool wear level has been assessed by optical micros-
copy measurements for each full set of inserts.

3 Results

3.1 Microscope photos

Worn inserts have been removed from the tool and examined
under a camera, equipped with an optical microscope. A ref-
erence mark has been added to each picture for measurement
purposes. Figure 4 shows a microscopy photo of the flank and
crater wear. For the purposes of the study, a mean value has
been calculated out of five values of each experimental run,
one for each insert.

3.2 Tool wear levels and Taylor curves

Figures 5, 6, and 7 indicate the progression of the mean flank
wear [μm] over machining time for the three levels of RPMs,
as indicated in Table 3. Taking into account the final measure-
ment of each diagram, the mean tool wear rate can be approx-
imately estimated at 120/660=0.18, 126/660=0.19, and 180/
826=0.22 μm/s, for increasing values of RPMs, which is in
accordance with the tool wear theory and Taylor’s model [52].

Fig. 1 Experimental setup and accelerometer mounting

Table 1 Material
mechanical properties CGI 450 mechanical properties

Ultimate tens. strength 450–500 MPa

Yield strength 315–365 MPa

Elastic modulus 145–155 GPa

Density 7–7.2 gn

Hardness 207–255 BHN

Source: Doukas et al. [31]

Table 2 Material
chemical composition CGI 450 chemical composition

Pearlite >90

C 3.6–3.8

SI 2.1–2.5

CE 4.4–4.7

Mn 0.2–0.4

S <0.022

Mg <0.014

CeMM 0.01–0.03

Cu 0.7–1.0

Sn 0.08–0.10

Source: Doukas et al. [31]
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3.3 Spindle current measurements

The corresponding spindle electrical current measurements
are shown in Figs. 8, 9, and 10, for various cutting speeds
according to the experimental data (Table 3). Each curve cor-
responds to a single experiment with a variation number of
passes. The measurements indicate an increasing trend,

implying that there is a correlation between the tool wear level
and the spindle current signals.

3.4 Accelerometer measurements

As indicated in [31], the high over low frequency band (HoL)
index, based on a primary filter bank analysis and the mean

Fig. 2 Monitoring system
schematic

Fig. 3 Machining strategy
schematic
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square of the acceleration, can be utilized. It is worth noting
that the mean square of the acceleration is equal to the mean
signal power, since the mean value of acceleration has been
approximately equal to zero, which is predictable, considering
that during monitoring, the accelerometer’s motion is of con-
stant velocity, due to constant feed rate value. The progress of
the signal’s spectrum magnitude is shown below for the case
of 3000 RPMs (Fig. 11).

Since the distinction between the vibrations and the wave
propagation can be made via a time scale [53], the detection of
the tool wear level, using vibration signals, can be straightfor-
ward, especially at wavelengths comparable to the tool wear
size [53, 54]. Utilizing the S wave velocity in nitride titanium
[55] and the fact that the tool wear characteristic length, as
measured, is about 100 μm, the frequency to be detected is in
the range of 100 MHz. Technological limitations of instru-
mentation utilized in the current study (i.e., accelerometer–
maximum frequency acquired) do not allow the aforemen-
tioned. Thus, only indirect effects can be detected on the sig-
nals, occurring from the change in the vibrations, sourcing
from the change of the cutting force. This fact implied that
the signal noise was fed into the HoL-related model, in accor-
dance with [31]. The RMS value of the electrical current sig-
nal could be used for the assessment of the wear level, while
for the accelerometer signals, a frequency domain analysis
seems to be the appropriate one for a useful indication of tool
wear levels. The physical phenomena taking place are multi-
fold and complex. However, partitions of the signal, even if

distorted due to the legacy system or ambient noise, may carry
pieces of information correlated with tool wear. In the follow-
ing sections, this prediction is studied and its limitations are
attempted to be correlated with the form of the signal itself.

4 Discussion of the results

The aim of the current study is to identify and predict the wear
state of the cutting tool. Two different methodologies are
followed. Initially, empirical models were used, i.e., regres-
sion between the tool wear and the metrics derived from each
one of the acquired signals individually (Figs. 12, 13, 14, 15,
16, 17, 18, and 19). As regards the spindle drive current,
normalized RMS values have been used. On the other hand,
acceleration has been taken into consideration in terms of HoL
index. Finally, pattern recognition systems have been imple-
mented using signals from one sensor (acceleration example
hereafter in Fig. 20) and signals from both sensors (accelera-
tion and electrical current in Fig. 23). The regression between
the tool wear and the normalized spindle current, as well as the

Table 3 Experiments data

Experimental plan

Depth of cut=0.5 mm

Width of cut=25 mm

Feed/z=0.15 mm (Feed rate=1 m/min)

Set 1 Set 2 Set 3

Vf=210 m/min 1350 rpm Vf=340 m/min 2175 rpm Vf=470 m/min
3000 rpm

Fig. 4 Microscopy photos
showing the progress of the tool
wear (a crater, b flank)
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Fig. 5 Tool wear (flank) over time, at 1350 rpm
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pattern recognition with the use of signals from both sensors,
point out specific trends that can be used for the prediction of
the tool wear. The diagrams below indicate the correlation
between the normalized spindle current and the tool wear.
All the trends, expressed by third degree polynomial regres-
sion, tend to be described by increasing functions. Increase in
the RPMs tends to produce more clear wear trends. At high
cutting speed values, the mean inclination tends to be positive
all over the curve.

The following diagrams (Figs. 15, 16, and 17) correlate the
forms of the curves acquired by correlating the tool wear–time
and the tool wear–electrical current. It can be observed that, as
the RPMs increase, the curves tend to follow identical paths.
This has to do with the behavior of the electrical current; its time
evolution becomes more linear in time as the RPMs increase.

As mentioned, the two curves (tool wear and spindle cur-
rent) are clearly in harmony with each other in all three cases

(Figs 15, 16, and 17). However, in the case of 1350 RPM, the
similarity between the two curves is not as apparent. This can be
interpreted by the sampling strategy described in Sect. 2.3. The
statistical nature of measurements in the present study (electrical
current mean value from different experiments) seems to be
affecting the efficiency of the tool wear prediction, especially
for the high values of electrical current. This is due to the elec-
trical current tendency in [31], where a noisy behavior is evident
and a standard deviation of 0.05 A can be measured. This value
interprets the uncertainty shown herein in Fig. 15. Finally, the
fact that tool wear is regarded in terms of a mean value from five
inserts, the uncertainty of 5 μm can be explained.

Furthermore, the measurements of the acceleration HoL
index are compared against the tool wear level. The index is
designed to capture the redistribution of energy in frequencies,
due to vibration changes caused by the increase in the tool
wear level and consequently in the cutting force changes.
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Fig. 6 Tool wear (flank) over time, at 2175 rpm
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Fig. 7 Tool wear (flank) over time, at 3000 rpm
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Fig. 8 Spindle current signals at 1350 rpm
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Fig. 9 Spindle current signals at 2175 rpm
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However, the scattering of the points, as displayed in (Figs 18
and 19) have restricted the acquirement of any algebraic rela-
tion. This is due to the statistical nature of measurements. Thus,
as an immediate conclusion, it can be stated that when Hol is
considered incrementally, referring to the same insert as in [31],
it is a good indicator of tool wear; however, statistically, it is
very sensitive to the statistical motion profile, owing to the
surface roughness. As shown further below in the fused sensor
data, the mean power of acceleration is more robust.

The position of the two greatest spectrum maxima (f1, f2)
in the arbitrary region [0, 280] Hz and their correlation with
the level of tool wear are depicted in Figs. 20 and 21. The
particular region has been selected due to its smoothness and
easiness of finding specific maxima, aiming at the creation of
a library, capable of providing the tool wear level that has
given these maxima. This analysis can be considered being a
pattern recognition system. Since the various points are

relatively separable, the creation of the aforementioned library
is feasible.

Finally, a pattern recognition system, based on fused sensors
data, has been set up to predict the tool wear level. It has been a
single-layer linear, in contrast to [42], the perceptron system
(Fig. 22), using both acceleration and current as inputs, with an
output was set to provide information on the tool wear level
(high, medium, low) compared to that of specific thresholds.
Results of this classification are shown in Figs. 23 and
24. Specifically, a set of linear systems has been used
for the identification of various tool wear levels. Three
fuzzy sets representing tool wear level classes have
been used in this study (low (L), medium (M), and high
(H)). The mean value across RPMs of the tool wear
thresholds, where this happens has been used as the
critical values among L, M, and H. Two lines in each
case, also depicted in the figures below, indicate the
thresholds between the various fuzzy tool wear sets.
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Fig. 10 Spindle current signals at 3000 rpm
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Fig. 11 Evolution of the obtained acceleration signals’ spectrum
magnitude at 3000 rpm
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Fig. 12 Correlation between spindle current and tool wear for 1350 rpm
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Fig. 13 Correlation between spindle current and tool wear for 2175 rpm
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Having these lines as decision thresholds would cause a
cost C, in case that some points would be misclassified by
the perceptron system. This cost can be computed, given that
there are four potential events:

1. A: Changing tool
2. B: Not changing tool
3. H: High tool wear level
4. M: Medium tool wear level

and denoting simple costs as follows:

1. C1: The cost of changing tool
2. C2: The cost of throwing away the workpiece

Following the definition of the corresponding probabilities
below (given the shapes used to denoting classified measure-
ments in Fig. 23):

P
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�
�
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¼ Number of triangles crossing the threshold

Total number of triangles
ð1Þ

P
B

�
�
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¼ Number of circles crossing the threshold

Total number of circles
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the cost is calculated to be equal to

C ¼ P
A
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Fig. 14 Correlation between spindle current and tool wear for 3000 rpm
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Fig. 15 Tool wear versus time (red line/axis) and electrical current (black
line/axis) for 1350 RPM
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Fig. 16 Tool wear versus time (red line/axis) and electrical current (black
line/axis) for 2175 RPM
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Fig. 17 Tool wear versus time (red line/axis) and electrical current (black
line/axis) for 3000 PM
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From the results, it is clear that the low tool wear level is
hard to be made distinct in the case of 3000 RPMs due to the
noise existence in both the current and the acceleration sig-
nals. The same occurs for the 1175 RPMs. However, in the
case of 2175 RPMs, the trend indicated that the high level of
tool wear existed for high values of current and low accelera-
tion RMS values. Moreover, since the predictability is cutting
speed dependent, it is of interest to compare the predictability
measures with those of the machine tool dynamics and conse-
quently, with the nature of the captured signals. The schematic
in Fig. 25 provides a graphic overview of the operational
analysis (OMA) [56] that has been taken into consideration.
The response of the machine tool in the present study has been
acquired only by using the result (vibration) during machin-
ing, as the machine tool has not be found to be linear in the

strict sense via a piezoelectric hammer. Moreover, the spec-
trum of the excitation; a combination of cutting forces and
vibrations due to the rotating spindle, could not be predicted/
estimated.

Figure 26 shows the correlation between the various pre-
dictability measures taken into account (a, b, d) and the mean
size of vibration (c), given by the RMS acceleration. The
horizontal axes are indicative of the cutting speed (in terms
of spindle rotational velocity) and the various metrics, normal-
ized with respect to the maximum values, which are depicted
in the vertical axes. The residues of the regression in the
Figs. 12, 13, and 14 are measured by the R2 index, divided
by the mean signal power. This is an indication of the inverse
predictability of the measurements. An additional predictabil-
ity metric is the number of discrete linear thresholds that can
be set, as it is depicted in Figs. 23 and 24. Both predictability
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metrics obtain high values at 2175 rpm and low values at
3000 rpm. This is also valid in the case of the obtained signal
energy levels (Fig. 26c). Finally, regarding the plane f1-f2
predicting tool wear, as shown in Figs 20 and 21, the distance
between the various points can be considered as an index of
predictability. The metric Dm, which is defined as the maxi-
mum distance over the mean distance between the points, has
been regarded. Since the values obtained are greater than one,
the normalized value from Eq. 4:

D
0
m ¼ 1= lnDm þ 1ð Þ ð4Þ

From the diagrams below, it can be seen that when the
machine vibrations are intense, due to different machining
conditions, the predictability of the tool wear is enhanced.

This trend has to be further compared with the machine’s
behavior. A modal analysis, however, reveals a nonlinear be-
havior of the machine, even below 1000 Hz. The transfer
function, with force as input and displacement as output, has
been considered. Even though the maxima seem to occur in
the same frequencies for different forces, the transfer functions
are not the same. Furthermore, the fact that the spindle is
raised or lowered brings about changes in the transfer func-
tion. Therefore, continuing with performing an operational
analysis on the machine, simply by rotating the spindle but
without cutting, it is found that the minimum energy in dis-
placement is around 2175 RPM, while the displacement

energy values are much greater at the remaining RPM values.
The load (cutting) changes this trend as seen in the accelera-
tion trend of Fig. 26c. It is indicated that the intensity of os-
cillation affects the predictability of tool wear in an unobvious
way (intensively and inversely proportionally). This dictates
that a study be conducted in an ideal situation, where there is
no statistical noise on the measurement. The effect of the
parameters, in Fig. 25, will then be taken into consideration.

5 Conclusions

Multiple sensor monitoring for the tool wear state has been
carried out on milling CGI 450 plates through the simulta-
neous detection of acceleration and spindle drive current sen-
sor signals. Tool wear prediction has been accomplished by
utilizing third degree regression models and pattern recogni-
tion systems. The electrical current signals provide clearer
prediction results since statistically their correlation to tool
wear is more immune to ambient noise when compared with
the correlation of the tool wear and acceleration metrics.
Moreover, sourcing from the current study, the electrical cur-
rent signal has been proven easier to process, since it consists
of simple values with minor fluctuations. When considering
the sensor fixturing, the electrical current signal retrieval poses
an additional advantage. As far as the fused sensor

Fig. 22 Input/output model of
the perceptron pattern recognition
system
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Fig. 24 Classification of tool wear level based on acceleration and
spindle current (3000 rpm)
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methodology is concerned, it is suggested that the monetary
costs due to misclassifying a tool wear measurement be en-
capsulated in terms of weights in the criterion for setting the
threshold in pattern recognition systems.

Regarding a rough quantification of the physical mecha-
nism, according to which the tool-wear-related information is
concealed within the acquired signals, there are specific con-
clusions that can be extracted. Since the cutting force is direct-
ly affected by tool wear, the spindle requires more current in
order for the milling process to be performed. Furthermore,
the change in the vibration of the machine tool is a critical
point, as it seems to be the main reason that the vibration
signals change when the toolwear levels increase. However,

it is up to the studies to investigate into the way that pure
information can be extracted, by removing noise related to
friction, machine tool components dynamics, and more.

The predictability of the tool wear in a system that uses
fused multisensorial data has been also investigated. The de-
rived results indicate that predictability is affected by the mean
signal energy, acquired from the vibration acceleration sig-
nals. An implication of that is that maximizing both predict-
ability and quality are contradictive optimization objectives.
Further research aims to separate the ambient noise and the
useful information from the acquired signals using numerical
models, along with a stricter formulation of the relationship
between the information and the system’s predictability.

Fig. 25 Input/output model of a
machine according to operational
analysis
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