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Semantic Ambiguity Effects in Word Identification 

Ron Borowsky and Michael E. J. Masson 
University of Victoria 

The influence of semantic ambiguity on word identification processes was explored in a series of 
word naming and lexical-decision experiments. There was no reliable ambiguity effect in 2 naming 
experiments, although an ambiguity advantage in lexical decision was obtained when orthographi- 
cally legal nonwords were used. No ambiguity effect was found in iexical decision when 
orthographically illegal nonwords were used, implying a semantic locus for the ambiguity 
advantage. These results were simulated by using a distributed memory model that also produces 
the ambiguity disadvantage in gaze duration that has been obtained with a reading comprehension 
task. Ambiguity effects in the model arise from the model's attempt to activate multiple meanings 
of an ambiguous word in response to presentation of that word's orthographic pattern. Reasons for 
discrepancies in empirical results and implications for distributed memory models are considered. 

Any comprehensive theory of mental representation and 
process must accommodate the complex means by which 
concepts are communicated through language. Through the 
course of history, humans have developed tools of communica- 
tion that facilitate the relaying of ideas and concepts, such as a 
writing system or orthography. This mapping of concepts to 
orthography is not entirely one to one, however, resulting in 
some words that correspond to multiple concepts, which are 
known as semantically ambiguous words. When reading text, 
the context provided by preceding words and sentences pro- 
vides a means of disambiguating such words. As a result, we 
may not even notice the ambiguity in words that we are reading 
in context. If, on the other hand, semantically ambiguous 
words are presented in isolation, their alternative meanings 
are readily accessible, and thus their ambiguous nature is 
noticed. In the research reported in this article, we compare 
performance on semantically ambiguous words with that of 
semantically unambiguous words in isolated word identifica- 
tion tasks and describe simulations of the empirical effects 
within the framework of a distributed memory architecture 
(Masson, 1995). 

The effect of semantic ambiguity on isolated word identifica- 
tion has usually been determined by comparing performance 
on unambiguous words (which are associated with only one 
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meaning) to performance on ambiguous words (which are 
associated with more than one meaning). There are many 
reports of an advantage in response latency for ambiguous as 
compared with unambiguous words, both in the word naming 
task, in which participants are required to pronounce words 
(e.g., Balota, Ferraro, & Conner, 1991; Fera, Joordens, Balota, 
Ferraro, & Besner, 1992; Hino & Lupker, 1993), and in the 
lexical-decision task, in which participants are asked to decide 
whether letter strings spell words (e.g., Jastrzembski, 1981; 
Jastrzembski & Stanners, 1975; Kellas, Ferraro, & Simpson, 
1988; Millis & Button, 1989; Pugh, Rexer, & Katz, 1994; 
Rubenstein, Garfield, & Millikan, 1970; Rubenstein, Lewis, & 
Rubenstein, 1971). 

M o d e l s  o f  Seman t i c  Ambigu i ty  Effects  

An exploration of how the language processing system 
handles semantically ambiguous words may be particularly 
informative with respect to theories of lexical representation 
and processing. Two classes of visual word identification 
models have been used to examine the processing advantage 
for semantically ambiguous words: localist and distributed 
representation models. Localist representation models assume 
that lexical information is represented in specific units that 
correspond to individual words. One type of localist represen- 
tation model is based on the principle of serial search (e.g., 
Forster & Bednall, 1976; Rubenstein et al., 1970). In these 
models, orthographic input resulting from the presentation of 
a word is compared with a set of lexical entries one at a time, 
with the search terminating when the correct entry is located. 
This process occurs in two stages. First, the letters that make 
up the word are identified, with the representation of this 
information serving as an access code for selecting a subset of 
lexical entries. Second, a serial search (ordered by word 
frequency) of this subset is carried out until a match is made 
and verified against the orthographic input. The ambiguity 
advantage in serial search models stems from ambiguous 
words having separate lexical entries and the greater probabil- 
ity that one of these multiple correct entries will be accessed 
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during verification as compared with the case of an unambigu- 
ous word for which there would be only one correct entry. 

Activation models constitute another type of localist repre- 
sentation model (e.g., the Jastrzembski, 1981, extension of 
Morton's, 1969, logogen model and the Kellas et al., 1988, 
extension of McClelland and Rumelhart's, 1981, interactive 
activation model). These models are founded on the assump- 
tion that the lexical system consists of one detector, or logogen, 
for each word or concept known to the reader. These detectors 
serve as evidence collectors when orthographic input is pre- 
sented, and a word is recognized when the evidence accrued on 
its behalf reaches a threshold. Multiple detectors can collect 
evidence at the same time, and it is assumed in these models 
that there are separate detectors corresponding to the sepa- 
rate meanings of ambiguous words. The ambiguity advantage 
in activation models thus stems from the greater probability of 
an ambiguous word activating one of its multiple detectors 
compared with an unambiguous word activating its only 
detector. This advantage has been described further within an 
interactive activation framework as being due to greater 
inhibition of other competing detectors by the multiple detec- 
tors corresponding to an ambiguous word, which in turn serves 
to feed a greater amount of converging evidence (and thus 
facilitation) back to a letter detector level (Kellas et al., 1988), 
thereby enhancing word identification. 

The second class of model that has been applied to the 
problem of understanding semantic ambiguity effects consists 
of distributed representation models (known also as parallel 
distributed processing or distributed memory models). Distrib- 
uted representation models represent lexical knowledge in 
weights associated with links that connect a set of processing 
units to one another and instantiate a known word by evoking 
its unique pattern of activation across the processing units. In 
contrast to localist representation models, there is no single 
processing unit that corresponds to a known word. The 
representation and processing of semantically ambiguous words 
present a challenge for distributed representation models 
because one orthographic pattern must be mapped onto two 
different patterns of activation among the collection of units 
that represent meaning. At an intuitive level, this mapping 
problem implies that an ambiguity disadvantage, not an 
advantage, should be observed in word identification tasks. 

Of the distributed representation models that have been 
used to simulate word identification processes (e.g., Hinton & 
Shallice, 1991; Joordens & Besner, 1994; Kawamoto, 1993; 
Kawamoto, Farrar, & Kello, 1994; Masson, 1991, 1995; Plaut & 
Shallice, 1993), there are only two accounts of the semantic 
ambiguity advantage (Joordens & Besner, 1994, and Kawa- 
moto et al., 1994). We now turn to a brief description of these 
two accounts. 

Using the distributed memory model developed by Masson 
(1991), Joordens and Besner (1994) attempted to simulate the 
ambiguity advantage in lexical decision. This model consists of 
two processing modules: one representing the orthography of 
words, and the other representing the meanings of words. 
Joordens and Besner found that after learning ambiguous 
words (orthographic patterns that are mapped onto two 
different meaning patterns on different learning trials), the 
model often failed to settle into one of the appropriate 

meaning patterns of an ambiguous word. Instead, the model 
settled into a blend, representing a mixture of the two learned 
meaning patterns. If these blend states are considered to 
represent errors, as Joordens and Besner have argued, then 
the main problem is a simulated error rate (74% errors) that is 
far from being comparable with human performance (usually 
less than 15% errors). In terms of accuracy then, this model 
clearly does not account for the empirical data. However, when 
they examined the simulated lexical-decision response latency 
for words (nonwords were not presented to the network in 
their simulations), as measured by the number of processing 
cycles for the meaning module to settle on a correct pattern, an 
ambiguity advantage was found. 

The basis for the ambiguity advantage found by Joordens 
and Besner (1994) was a proximity effect associated with the 
meaning units. At the beginning of a word identification trial, 
meaning units were placed into a random pattern. By chance, 
such a starting pattern is likely to be closer to one of the two 
meanings of an ambiguous word than to the only meaning of an 
unambiguous word. When the starting pattern is closer to the 
target pattern into which the meaning units must settle to 
complete a lexical decision, fewer processing cycles are re- 
quired to move the units into the target pattern. 

The model developed by Kawamoto et al. (1994) provides a 
different account of the ambiguity advantage in the lexical- 
decision task. Their model consists of an orthographic and a 
meaning module and uses an error--correction learning algo- 
rithm (unlike the Hebbian learning rule used by Joordens and 
Besner [1994] and in the simulations reported later in this 
article). We do not present the details of their model here, but 
some aspects of it are germane to our discussion on semantic 
ambiguity. In the case of an ambiguous word, the model is 
presented with an inconsistent mapping between an ortho- 
graphic pattern and a meaning pattern. The connection 
weights between orthographic and meaning units therefore do 
not receive consistent modifications across learning trials that 
involve the different meanings of the ambiguous word. To 
compensate for this inconsistency when learning ambiguous 
words, the error-correction learning algorithm makes the 
connection weights between orthographic units--which take 
on the same pattern of activation on all learning trials involving 
an ambiguous word--particularly strong. For an unambiguous 
word, the consistent mapping between orthography and mean- 
ing leads the learning algorithm to generate more moderate 
connection weights both within and between modules. 

To simulate the lexical-decision task, Kawamoto et al. 
(1994) assumed that the orthographic units must settle into a 
stable pattern of activation. The orthographic units settled 
more quickly for ambiguous words because the connection 
weights between orthographic units were more strongly influ- 
enced by the orthographic patterns of these words than for 
unambiguous words. 

Robustness  of  Empirical  Semantic  Ambigui ty  Effects 

How confident can researchers be in the empirical effects of 
ambiguity that have been the target of these recent simulation 
efforts? Several researchers have raised this concern (e.g., 
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Joordens & Besner, 1994; Masson & Borowsky, 1995; Ruecki, 
1995), and rightly so. The between-stimuli nature of the 
ambiguity advantage requires that some caution be exercised 
when considering its validity. Indeed, there are a substantial 
number of reports in which no such advantage was found in the 
lexical-decision task (Clark, 1973; Forster & Bednall, 1976; 
Gernsbacher, 1984). As is usually the case with between- 
stimuli effects, accounts for discrepancies in the empirical 
results regarding semantic ambiguity have typically empha- 
sized the artifactual influence of some confounding variable 
(such as differences in subjective familiarity, for example, 
Gernsbacher, 1984), discrepancies between laboratories regard- 
ing how the variable of interest (i.e., ambiguity) is measured 
(e.g., Kellas et al., 1988; Millis & Button, 1989; Rubenstein et 
al., 1971), or the conservative nature of the statistical tests used 
(Clark, 1973; Forster & Bednall, 1976). Thus, it is difficult to 
assess the validity of a between-stimuli effect like that of 
semantic ambiguity. 

Although the generality of an effect such as an ambiguity 
advantage will always be compromised by its between-stimulus 
nature, steps can be taken to maximize the validity of the 
effect. Some of the potentially confounding (or extraneous) 
variables can be controlled by matching the two sets of words 
on such variables or by partialling out their influence by using 
multiple regression techniques. Neither of these approaches 
alone is likely to be adequate. Although items might be 
matched on a number of extraneous variables, a sizeable 
portion of variability in task performance may be determined 
by these factors. If that variability is not accounted for (e.g., as 
a factor in the experiment), it remains as part of the error term 
used in assessing the effect of the factor of interest. In the 
multiple regression approach, the degree of multicolinearity 
between extraneous variables and the variable of interest will 
restrict the amount of unique variance in the dependent 
variable that can be accounted for by the variable of interest. 
Using these techniques together, however, generates a number 
of benefits. Matching stimuli as closely as possible on extrane- 
ous variables legitimizes the use of the more powerful repeated 
measures analysis of variance as opposed to a between-groups 
analysis. In the multiple regression analysis, matching serves to 
orthogonalize extraneous variables with respect to the variable 
of interest when they are regressed on the dependent variable. 
These variables will then not compete for the same variance in 
the dependent variable. Instead, extraneous variables will 
account for variability that is unrelated to the variable of 
interest, making for a more powerful test of the variable of 
interest's unique predictive strength. 

In Experiment 1 we used materials taken from another study 
in which an ambiguity advantage was reported (Fera et al., 
1992), but in subsequent experiments we adopted the ap- 
proach of matching items to permit the application of a 
repeated measures analysis by items and to produce a more 
powerful regression analysis. We report the results of these 
experiments in which reliable evidence for an ambiguity 
advantage was found in the lexical-decision task but not in the 
naming task. A modified version of the distributed memory 
model described by Masson (1995) is introduced and simula- 
tions that replicate the observed pattern of ambiguity effects 
are presented. 

Exper iment  1 

In our first attempt at examining potential semantic ambigu- 
ity effects in naming, we used the same materials as Fera et al. 
(1992). In selecting their materials, Fera et al. defined ambigu- 
ous words in the same way as Kellas et al. (1988; Ferraro & 
Kellas, 1990). That definition was based on a task in which 
participants decided whether a given word has one or more 
than one meaning. A word was considered ambiguous i[ a 
sufficient percentage of the participants claimed it had more 
than one meaning. 

The procedure we used for the word naming task was 
identical to that of Fera et al. (1992, Experiment 1), with the 
following exceptions. First, rather than having participants 
code their own errors, an experimenter was present during 
testing to code the responses. Second, rather than having each 
trial begin at a fixed time after the preceding trial, participants 
controlled the onset of each trial. 

M e t h o d  

Partic~aants. Thirty University of Victoria students participated in 
the experiment for extra credit in an introductory psychology course. 
All participants had normal or corrected-to-normal vision and consid- 
ered English to be their first language. 

Materials and design. The critical stimuli consisted of the 60 
unambiguous and 60 ambiguous words used by Fera et al. (1992). Fera 
et al. defined ambiguity for these stimuli by using the same procedure 
as Kellas et ai. (1988). The two sets of critical words were equal with 
respect to mean word frequency (43.4 per million; Ku~era & Francis, 
1967). In addition to the critical words, we used 16 practice words. Half 
of the practice words were unambiguous and half were ambiguous 
words according to the Ferraro and Kellas (1990) ratings, with the 
exception of 2 words that did not appear in the Ferraro and KeUas 
ratings. 

Apparatus. Micro Experimental Laboratories (MEL) software and 
an IBM-compatible computer controlled the stimulus displays and the 
timing of events as well as recorded the data. The stimuli appeared on 
two monochrome monitors; participants viewed the stimuli on one 
monitor while the experimenter observed an identical display on the 
other monitor. A microphone was connected to the MEL button 
box-voice key apparatus to detect the onset of vocalization. Partici- 
pants controlled the rate of stimulus presentation by pressing the 
spacebar on the computer keyboard, and the experimenter coded the 
accuracy of the participant's response by using the MEL button box. 
Response latency was measured from the onset of the target on the 
screen to the onset of the participant's vocalization. 

Procedure. Participants were individually tested in a quiet room. 
The procedure lasted approximately 15 min. Participants sat in front of 
a monitor and were instructed, both in writing and verbally, that they 
would see one word on each trial and that they should pronounce each 
word as quickly and as accurately as possible. The experimenter coded 
each response as correctly pronounced, incorrectly pronouncer or 
spoiled (i.e., stutter, failed to trigger voice key, or other noise-triggered 
voice key). Participants initiated stimulus presentation by pressing the 
spacebar on the computer keyboard. 

The sequence of events was as follows: (a) a fixation row of three 
asterisks appeared in the center of the screen, (b) the participant 
pressed the spacebar to initiate the trial, (c) there was a 275-ms 
interstimulus interval, (d) a word appeared in lowercase letters and 
remained visible until the participant responded, and (e) the screen 
was blank for a variable amount of time during which the experimenter 
coded the correctness of the response. 
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Results 

Following Fera et al. (1992), we based response latency 
analyses on correct responses after trimming latencies that fell 
outside the range of 150 to 1,200 ms. This criterion excluded 
only 0.03% of correct trials, allowing us to retain almost all of 
the data. The mean and median response latencies for remain- 
ing correct trials were computed for each participant (averag- 
ing across items) and for each item (averaging across subjects). 
Unlike previous studies, in which the effects of semantic 
ambiguity on mean response latency have been assessed, 
analyses of both mean and median response latencies were 
carried out. We emphasize here analyses of median response 
latencies, however, because the median is less affected than 
the mean by outliers. An analysis of variance (ANOVA) of 
mean response latency is reported only if it differed from that 
of median response latency. A trial was classified as an error if 
the participant mispronounced the word, accidentally trig- 
gered the voice key, or if the voice key failed to detect the 
participant's response. The error rate for each subject and 
item was computed as the percentage of trials on which an 
error was made. The means of subject and item latency means 
and medians and the mean for subject and item error percent- 
ages are shown in Table 1. 

The latency and error data were submitted to two types of 
ANOVA, with ambiguity as the variable. One analysis was a 
repeated measures ANOVA, with subjects as the random 
variable, and the other was an independent-groups ANOVA, 
with items as the random variable. Unless otherwise stated, the 
Type I error rate was .05. There was no effect of ambiguity on 
median response latency by subjects or by items (Fs < 1). The 
analysis of mean response latency yielded a reliable ambiguity 
effect by subjects, F(1, 29) = 4.61, MSE = 84.63, but not by 
items (F < 1). The power to detect an ambiguity effect of the 
size obtained by Fera et al. (1992; effect size was 13 ms by 
subjects and 19.5 ms by items) on median response latency was 
estimated as .98 by subjects and .91 by items. The analyses of 
error percentages also failed to reveal an ambiguity effect by 

Table 1 
Mean and Median Latencies (in Milliseconds) and Percentage of  
Error Rates as a Function of  Ambiguity in Experiments I and 2 

Mean latency Median latency Error rate (%) 

Experiment U A U A U A 

Experiment 1 
Subjects 

M 508 503 495 494 4.8 4.0 
SD 59 59 56 61 4.3 2.9 

Items 
M 507 503 491 489 4.8 3.9 
SD 31 23 34 29 4.7 4.1 

Experiment 2 
Subjects 

M 495 494 485 485 5.1 4.1 
SD 44 45 42 45 2.6 2.9 

Items 
M 495 494 484 485 5.1 4.1 
SD 21 19 23 21 5.1 3.9 

Note. U = unambiguous; A = ambiguous. 

subjects, F(1, 29) = 1.95, MSE = 5.34, or by items, F(1,118) = 
1.07,MSE = 19.56. 

To determine whether Experiment 1 was sufficiently sensi- 
tive to detect the effects of word attributes other than 
ambiguity, we computed correlations across items between 
median response latency and orthographic neighborhood den- 
sity (N, which represents the number of words [including the 
target word] orthographically similar to the target word as 
determined by changing one letter at a time; Coltheart, 
Davelaar, Jonasson, & Besner, 1977), length, number of higher 
frequency neighbors (NHF, which has been shown to facilitate 
naming of low-frequency words, see Grainger, 1990), phono- 
logical error score (PE, from the Seidenberg & McClelland, 
1989, parallel distributed processing model of word recogni- 
tion, which can be used as a rough measure of spelling-to- 
sound regularity such that the lower the phonological error 
score, the higher the spelling-to-sound regularity and word 
frequency), orthographic error score (OE, also from the 
Seidenberg and McClelland model, 1989, which can be used as 
a rough measure of orthographic familiarity and word fre- 
quency such that the lower the error score, the higher the 
orthographic familiarity), and word frequency (from Ku~era 
and Francis, 1967, which was transformed to log10 word 
frequency to create a linear relationship between response 
latency and word frequency; see Balota & Chumbley, 1984; 
Borowsky & Besner, 1993). The correlations between these 
variables, including ambiguity (coded as one for unambiguous 
words and two for ambiguous words), are presented in Table 2. 
The correlations between these variables and the dependent 
measures (median response latency and error percentage) are 
shown in Table 3. Response latency was significantly corre- 
lated with N, length, PE, OE, and word frequency. 

As a further test for an ambiguity effect, we conducted 
multiple regression analyses. The rationale for these analyses 
was that a small ambiguity effect might be masked by the 
relatively large amount of variability in response latency or 
error rates. Thus, we reasoned that if variability that was due 
to extraneous factors could be removed from response laten- 
cies and error rates, then a small ambiguity effect might be 
detected. 

As a first step in setting up the regression analyses, we 
examined the stimulus variables that we had measured to find 
ones that might serve as unique predictors of latency. Note 
that, in Table 2, each variable is significantly correlated with at 
least two other variables. In selecting predictors for inclusion 
in the regression analysis, we followed two guidelines. First, 
ambiguity, N, NHF, PE, and OE were to be included. Ambigu- 
ity was included as the variable of interest, and the remaining 
variables were included because they were confounded (i.e., 
correlated) with ambiguity. Second, other variables signifi- 
cantly correlated with the dependent measure (median re- 
sponse latency or error rate), but not with each other, were 
included. Whenever a potential predictor variable was found 
to be correlated with another predictor variable, only the 
variable that was most strongly related to the dependent 
measure was included in the analysis. We adopted this ap- 
proach to avoid multicolinearity among predictor variables. 

The correlations between the set of potential predictor 
variables and median response latency and percentage of error 
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Tab le  2 
Correlations Between the Measures of Word Characteristics in Experiment 1 and Experiments 2-4 

Characteristic Ambiguity N Familiarity Length NHF PE OE Frequency 

Ambiguity - -  .34* - .12  .21" -.23* -.40* .18 
N .14 - -  -.42* .69* - .21" -.38* .02 
Familiarity - .10  .10 - -  
Length .04 -.63* - .08  - -  -.30* .01 .21" .10 
NHF .02 .75* - .15 -.53* - -  - .11 - .16 - .10 
PE - .01 - .22" -.29* - .01 - .07  - -  - .21" - .50" 
OE .03 - .30" -.43* .04 - .13 .49* - -  - .47" 
Frequency .00 - .12  .58* .24* - .41" -.46* -.53* - -  

Note. Correlations above the diagonal are for the words used in Experiment 1. (Blank cells indicate that 
familiarity ratings were not collected in Experiment 1.) Correlations below the diagonal are for the words 
used in Experiment 2--4. In Experiment 1, for correlations involving PE or OE, n = 127, otherwise n = 128. 
In Experiments 2--4, for correlations involving PE or OE, n = 119, otherwise n = 120. N = orthographic 
neighborhood density; NHF = number of higher frequency neighbors; PE = phonological error score; 
OE = orthographic error score. 
*p < .05. 
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are shown in Tab le  3. T h e  corre la t ions  in Table  3 indicate  tha t  
N, length,  PE,  OE,  and  f requency were  significantly re la ted  to 
latency. Leng th  and  frequency,  then ,  a re  the  only po ten t ia l  
p red ic tor  var iables  o t h e r  t han  those  t ha t  were  d e e m e d  neces-  
sary to include in the  regress ion equa t ion  (i.e., ambiguity,  N, 
NHF,  PE, and  OE).  Because  length  and  f requency were  not  
cor re la ted  with one  ano ther ,  they were  b o t h  chosen  for 
inclusion in the  regress ion analysis. 

A s imul taneous  mult iple  regress ion was conduc ted  on  la- 
tency, wi th  ambiguity,  N, NHF,  PE, OE,  length,  and  f requency 
as predictors .  A summary  of  the  regress ion analysis can  be  
seen in Tab le  4. The  un ique  re la t ion  be t w een  la tency and  
ambigui ty  (i.e., af ter  removing var iance  tha t  was a t t r ibu tab le  to 
N, NHF,  PE, OE,  length,  and  f requency)  was not  significant. 
Bo th  length  and  f requency  accoun ted  for reliable,  un ique  
amoun t s  of  la tency variability. N did  not  account  for  a rel iable  
a m o u n t  of  un ique  variabil i ty because  N and  length  were  
strongly re la ted  in this  sample  of  words  and  length  had  a 
s t ronger  re la t ionship  with latency. 

Tab le  3 
Correlations Involving Median Latencies and Percentage of 
Error Rates in Experiments I and 2 With Word Characteristics 

Experiment 1 a Experiment 2 b 

Characteristic Latency Error rate (%) Latency Error rate (%) 

Ambiguity - .03 - .10  .03 - .04  
N -.30* - .07 - .24" .14 
Familiarity - -  - -  -.39* - .12  
Length .46* .03 .45* - .05 
NHF - .15 - .04 - .18" .20* 
PE .21" .01 .25* .10 
OE .30* .04 .14 -.11 
Frequency - .21" - .08 - .10  - .17  

Note. Familiarity ratings were not collected in Experiment 1. N ffi 
orthographic neighborhood density; NHF = number of higher fre- 
quency neighbors; PE = phonological error score; OE ffi orthographic 
error score. 
aFor correlations involving PE or OE, n = 119, otherwise n = 
120. bFor correlations involving PE or OE, n = 123, otherwise n = 124. 
*p < .05. 

T h e r e  were  no  var iables  significantly re la ted  to e r ror  percent -  
age, so only the  var iables  tha t  were  con founded  with ambiguity 
were  en t e red  as predic tors  in a s imul taneous  mul t ip le  regres-  
sion, wi th  e r ro r  pe rcen tage  as the  cr i ter ion variable.  T h e  
results  of  this  analysis are  shown in Tab le  4. None  of  the  
predic tors  accoun ted  for a rel iable  a m o u n t  of  un ique  variabil-  
ity in e r ro r  percentage .  

Tab le  4 
Summary of Regression Analyses in Experiments 1 and 2 

Criterion and 
predictor variables Coefficient t df 

Experiment 1" 

Latency 
Ambiguity 8.85 1.60 112 
N -1.01 -1.52 112 
NHF .75 .58 112 
PE .65 .44 112 
OE .71 .64 112 
Length 16.99 4.66*** 112 
Frequency - 11.16 -2.27" 112 

Error rate (%) 
Ambiguity - .68 - .73 114 
N - .03 - .28 114 
NHF .01 .04 114 
PE - .04  - .16 114 
OE .01 .05 114 

Experiment 2 b 

Latency 
Ambiguity - 1.56 - .47 119 
N .44 1.14 119 
Familiarity -7.99 -4.85*** 119 
Length 13.65 5.00*** 119 

Error rate (%) 
Ambiguity - .38  - .51 120 
N .00 .02 120 
NHF .26 1.42 120 

Note. N = orthographic neighborhood density; NHF = number of 
higher frequency neighbors; PE -- phonological error score; OE = 
orthographic error score. 
an = 120. bn = 124. 
*p < .05. ***p < .001. 
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Discussion 

The ambiguity effect on response latency (by subjects) was 
significant when mean latencies were computed for each 
participant, but not when median response latencies were 
used, nor when item analyses were done. This pattern of 
results suggests that the ambiguity effect by subjects may have 
been due to outliers in the response latency distributions. 
Given that the outlier trimming procedure we used removed 
only 0.03% of the data, this account is plausible. It is not clear, 
however, why Fera et al. (1992), using the same materials and 
outlier trimming procedure with latency data of similar magni- 
tude, obtained a reliable ambiguity effect when they analyzed 
subject and item means. Our regression analyses also showed 
no significant effect of ambiguity on naming performance but 
did reveal that our experiment was sensitive enough to detect 
significant unique effects of word length and frequency on 
median response latency. 

One possibility is that the two classes of words differed on 
some other factor to which participants in the Fera et al. 
(1992) experiment were more sensitive than were our partici- 
pants. For example, although mean word frequency was equal 
for the ambiguous and unambiguous words, median frequency 
was 20 for the ambiguous words and 10.5 for the unambiguous 
words. Thus, it appears that these two groups of words were 
not closely matched on word frequency. Second, there was also 
a slight difference with respect to word length. Ambiguous 
words were shorter than unambiguous words (Ms = 4.3 letters 
vs. 4.6 letters). For example, there were eight 3-letter words in 
the ambiguous word set, and only one 3-letter word in the 
unambiguous word set. Given the demonstration of a positive 
correlation between word length and median response latency 
in Experiment 1, differences in length may be important. 
Third, N has been suggested by D. Besner and P. Fera 
(personal communication, February 14, 1994) to be a confound- 
ing factor with these stimuli. Indeed, N was found to be 
significantly greater among ambiguous words than among 
unambiguous words (Ms = 10.9 vs. 7.4). Given that Andrews 
(1989, 1992) found shorter response latencies in both lexicai 
decision and naming for words with high N (although An- 
drews's effect appears to be restricted to low-frequency words) 
and given our own finding that N was significantly correlated 
with naming latency, N must be considered as a potential 
confound when examining the effect of semantic ambiguity. 
Fourth, NHF, PE and OE were found to be significantly 
related to ambiguity, and, thus, they must also be considered as 
potentially confounding variables. 

closely matched as possible on these seven variables. This type 
of pairwise matching also legitimizes a more powerful re- 
peated measures analysis to be conducted when treating items 
as a random factor. 

Subjective familiarity ratings were also collected. Gerns- 
bacher (1984) has demonstrated that a confound between 
familiarity and ambiguity can produce an apparent ambiguity 
advantage in lexical decision, underscoring the importance of 
using stimuli that are equated on this variable. Furthermore, 
Gernsbacher has convincingly argued that familiarity ratings 
are a more sensitive measure of the actual frequency of 
encounters with words and pointed out that familiarity ratings 
are more contemporary than printed frequency counts. 

Method 

Participants. The participants were 42 students drawn from the 
same population as in Experiment 1. All participants had normal or 
corrected-to-normal vision and considered English to be their first 
language. 

Materials and procedure. The same apparatus, materials, design, 
and procedure used in Experiment 1 were used in Experiment 2, with 
the following exceptions. Four additional semantically ambiguous 
words from Experiment 2 of Fera et al. (1992) were included, resulting 
in a total of 64 ambiguous words. Sixty-four unambiguous words were 
selected with the constraint that they have only one entry in the 
Random House Dictionary (1978) and that they not appear as an 
ambiguous word (i.e., did not have a mean ambiguity rating greater 
than 1.5) in the Ferarro and KeUas (1990) corpus. These 64 unambigu- 
ous words were matched as closely as possible to the ambiguous words 
on initial phoneme, word length, and word frequency. In selecting 
these unambiguous items, we also considered N, NHF, PE and OE 
(see the Appendix). 1 

After participating in the naming task, 19 of the 42 participants 
made familiarity judgments on a 7 point scale with responses ranging 
from 1 (very unfamiliar) to 7 (very familiar). Participants were asked to 
base their decisions on how often they could remember having seen or 
heard the word. Participants were encouraged to use all of the 
numbers between one and seven in making their judgments. The 
familiarity rating for each item and the mean over all items within each 
group are shown in the Appendix. The mean familiarity rating 
was similar for ambiguous and unambiguous words, F(1, 63) -- 1.87, 
MSE = 0.70. 

Repeated measures ANOVAs applied to each of the measures in 
the Appendix indicated that the sets of words were comparable on 
these variables (F ratios did not approach significance), except for N, 
which was significantly higher for ambiguous words, F(1, 63) = 4.98, 
MSE = 15.70. As noted earlier, N has a facilitative effect on naming 
latencies (Andrews, 1989, 1992), so any difference that was due to this 
variable should favor ambiguous word naming latencies. 

Exper iment  2 

Given the concerns about possible differences between the 
ambiguous and unambiguous words used by Fera et al. (1992) 
and in Experiment 1, we developed a set of unambiguous 
words that were better matched to the ambiguous stimuli and 
used these items in a second experiment. We attempted to 
match stimuli with respect to word length, word frequency, N, 
NHF, PE, and OE, as well as initial phoneme. Thus, for each 
semantically ambiguous word used by Fera et al., an unambigu- 
ous word was chosen to create a pair of words that was as 

Results 

As in Experiment 1, latencies were included in the analysis 
only if the naming response was correct and the latency fell 
within the range of 150 to 1,200 ms. This constraint excluded 
0.08% of correct trials. The means of subject and item mean 
and median response latencies and the means of subject and 

z Summed bigram frequency was also examined but did not differ 
between the two groups of words, nor did it correlate with any of the 
dependent variables in any of the experiments. 
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item error percentages are presented in Table 1. Both mea- 
sures of average latency revealed only very small differences 
between ambiguous and unambiguous words. 

The same analyses used in Experiment I were conducted on 
the data from Experiment 2, except that repeated measures 
analyses were used when treating items as a random variable 
because the items in Experiment 2 were matched pairs. There 
was no ambiguity effect on median response latency by subjects 
or by items (Fs < 1). Power to detect an ambiguity effect on 
median response latency of the size obtained by Fera et al. 
(1992) was estimated to be greater than .99, both by subjects 
and by items. The analysis of error percentages yielded a 
significant effect of ambiguity by subjects, F(1, 41) = 4.40, 
MSE = 4.46, but not by items (F < 1), with a higher error rate 
among unambiguous items. 

Given the significant ambiguity effect on error percentage, it 
is possible that a speed-accuracy trade-off may have obscured 
an ambiguity effect on latency. On the other hand, the fact that 
the effect on errors did not hold in the items analysis led us to 
suspect that the effect in the subjects analysis was due to a few 
error-prone unambiguous words. To check this possibility we 
examined the item means for outliers. Two unambiguous items 
produced unusually high error percentages: plug and steak, 
with means of 19.0% and 23.8%, respectively. The experi- 
menter noted that participants tended to pronounce plug as 
"plunge" (one of the practice items) and that steak tended to 
elicit the regularized pronunciation "steek." It is likely that 
participants regularized the pronunciation of steak because of 
some intrusions from the pronunciations of the seven other 
words in the stimulus set that contained ea (pronounced a s / i / )  
in their word bodies fear, lean, meat, stream, seat, steam, and tea 
(see Burt and Humphreys, 1993, for a detailed discussion of 
such intrusion effects in naming). Because it was plausible that 
these outliers were responsible for the ambiguity effect on 
error percentage in the analysis by subjects, data for these two 
items and data for their matched ambiguous words were 
excluded, and the analyses of latencies and errors were 
recomputed. The latency analyses produced exactly the same 
results, including the power estimates. The mean error percent- 
ages (4.2% vs. 4.6% for ambiguous and unambiguous words, 
respectively) were not reliably different by subjects or by items 
(Fs < 1). 2 The data from these four items were also excluded 
from the analyses that follow. 

In setting up the regression analyses, we examined the 
stimulus variables that we had measured to find ones that 
might serve as unique predictors of latency. The correlations 
between these variables, including ambiguity (coded as one for 
unambiguous words and two for ambiguous words), are pre- 
sented in Table 2. Note that with the exception of ambiguity, 
each variable was significantly correlated with at least three 
other variables. By virtue of our matching procedure, these 
variables were orthogonal to ambiguity status in this set of 
items. In selecting predictors for inclusion in the regression 
analysis, we followed two guidelines. First, ambiguity and N 
were to be included. Ambiguity was included as the variable of 
interest, and N was included because there was a tendency for 
ambiguous words to have higher values of N and we were 
concerned about a potential confound. We note, however, that 
the correlation between ambiguity and N was not significant 

with these materials (see Table 2), although with a more 
sensitive repeated measures ANOVA, a reliable relationship 
was found. Second, other variables significantly correlated 
with the dependent measure (median response latency or 
error rate), but not with each other, were included. As 
described in Experiment 1, if a potential predictor variable was 
found to be correlated with another predictor variable, only 
the variable that was most strongly related to the dependent 
measure was included in the analysis to avoid multicolinearity 
among predictor variables. 

The correlations between the set of potential predictor 
variables and median response latency and percentage of error 
are shown in Table 3. The correlations in Table 3 indicate that, 
ambiguity and N aside, four variables were significantly related 
to latency: familiarity, length, NHF, and PE. Familiarity and 
length were not reliably correlated with each other, but PE was 
related to familiarity, and NHF was related to length (see 
Table 2). Because familiarity had a stronger relationship with 
latency than did PE, and because length had a stronger 
relationship with latency than NHF, familiarity and length 
were chosen for inclusion in the regression analysis. 

A simultaneous multiple regression was conducted on la- 
tency, then, with ambiguity, N, familiarity, and length as 
predictors. A summary of the regression analysis can be seen in 
Table 4. The unique relation between latency and ambiguity 
(i.e., after removing variance that was attributable to N, length, 
and familiarity) was not significant. Both length and familiarity 
accounted for reliable unique amounts of latency variability. N 
did not account for a reliable amount of unique variability 
because N and length were strongly related in this sample of 
words and length had a stronger relationship with latency. 

The only factor related to error percentage was NHF so that 
variable was included with ambiguity and N in a simultaneous 
multiple regression, with error percentage as the dependent 
variable. The results of this analysis are shown in Table 4. 
None of the predictors accounted for a reliable amount of 
unique variability in error percentage. 

Discussion 

The results of Experiment 2 replicated those of Experiment 
1. Using unambiguous words that were matched to the 
ambiguous words on initial phoneme, word frequency, and 
word length and that were similar with respect to spelling-to- 
sound regularity, orthographic familiarity, and number of 
higher frequency neighbors, we found no reliable ambiguity 
effects in naming latency. Moreover, correlational analyses 

2 We also noticed that six of the words used in Experiment 2 were 
not perfectly matched on word length (five ambiguous words were one 
letter longer than their partners, and the reverse was true for another 
pair; see the Appendix). Given that response latency and word length 
were related, we considered the possibility that absence of an 
ambiguity processing advantage in the present experiment may have 
been due to the unambiguous stimuli that were shorter than their 
ambiguous counterparts. Thus, the data from the six pairs of stimuli 
that were not perfectly matched on word length, and the two pairs that 
contained the error-prone words, were removed and the analyses were 
recomputed. The analyses produced the same results as when only the 
two error-prone items and their partners were removed. 
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indicated that response latency was sensitive to neighborhood 
density, familiarity ratings, word length, and phonological 
error score but not to ambiguity. Despite the correlation 
between latency and neighborhood density, and the larger 
average neighborhood density among ambiguous words in our 
sample, no ambiguity advantage in response latency was found. 
Furthermore, there was no significant unique effect of ambigu- 
ity on latency (partialling out variance attributable to neighbor- 
hood density, familiarity, and length). The absence of a 
significant unique relationship between ambiguity and re- 
sponse latency or error rate, coupled with finding no difference 
on naming latency or error rate when ambiguity was treated as 
a repeated measures factor, provides converging evidence for 
the conclusion that there is no advantage for ambiguous words 
in the naming task. 

One reason for not being able to detect an ambiguity 
advantage in naming performance could be that an ambiguity 
disadvantage occurs during the production of a naming re- 
sponse to an ambiguous word. Although we had no a priori 
reason to hypothesize that such a disadvantage would occur 
during response production, the combination of an ambiguity 
advantage in the processes that lead up to response produc- 
tion, coupled with an ambiguity disadvantage in response 
production, would serve to nullify an ambiguity advantage in 
the naming task. Response production effects in naming can be 
isolated with a delayed naming task that requires the partici- 
pant to delay the response until a cue appears (e.g., Balota & 
Chumbley, 1985; Monsell, Doyle, & Haggard, 1989). If a cue 
delay is used that is sufficiently long to allow all preproduction 
processes enough time to finish, then the resulting latency and 
error rate data will represent naming production performance 
independent of preproduction performance. If an ambiguity 
disadvantage during response production was the reason that a 
reliable ambiguity advantage was not found in Experiment 2, 
then a reliable ambiguity disadvantage in delayed naming 
performance should be seen. We carried out such an experi- 
ment only to find no sign of an ambiguity disadvantage. Thus, 
we can conclude that the lack of an ambiguity advantage in 
standard naming is not attributable to an opposing ambiguity 
processing disadvantage during naming production. 

E x p e r i m e n t  3 

Experiments 1 and 2 failed to replicate the ambiguity 
advantage reported by other researchers using the naming task 
(Balota et al., 1991; Fera et al., 1992; Hino & Lupker, 1993). 
Because the purported ambiguity advantage in naming did not 
appear to be robust, we also examined the effect in the 
lexical-decision task. Earlier demonstrations of an ambiguity 
advantage in the lexical-decision task (e.g., Kellas et al., 1988; 
Millis & Button, 1989; Pugh et al., 1994) might also be 
questioned on the grounds that some unidentified variable was 
confounded with ambiguity and was responsible for the effect. 
This possibility is quite real given that Gernsbacher (1984) 
showed that a number of earlier demonstrations of an ambigu- 
ity advantage in the lexical-decision task were compromised by 
a confound with the rated familiarity of the words. 

In Experiment 3, we used the matched set of unambiguous 
and ambiguous words from Experiment 2 in a lexical-decision 

task. The nonwords in this experiment were pronounceable 
and orthographically legal. The data were analyzed by using 
both ANOVA and multiple regression, as in Experiments 1 
and 2. 

M e t h o d  

Para'cipants. The participants were 30 students drawn from the 
same population as in Experiments 1 and 2. Some students received $5 
for their participation, and others received extra credit in an introduc- 
tory psychology course. All participants had normal or corrected-to- 
normal vision and considered English to be their first language. 

Materials and procedure. The same apparatus, materials, design, 
and procedure used in Experiment 2 were used in Experiment 3, with 
the following exceptions. Participants viewed stimuli on a color 
monitor and responded by pressing one of two keys (z and slash keys 
on the computer keyboard) to indicate their lexical-decision response. 
The key under the participant's dominant hand was used to signal 
word, and the key under the nondominant hand was used to signal 
nonword. Response latency was measured from the onset of the target 
on the screen to the participant's key press response. A set of 128 
pronounceable nonwords (matched in length to the word stimuli) was 
added to the stimulus set, resulting in an equal number of word and 
nonword stimuli. Experimental trials were preceded by 16 practice 
trials (4 ambiguous words, 4 unambiguous words, and 8 nonwords). 
The experiment lasted approximately 25 min. Participants were 
instructed, both in writing and verbally, that they would see one letter 
string on each trial and that they should decide as quickly and as 
accurately as possible whether it spells a word that they know. 

Resul ts  

Analyses of response latency were based on correct re- 
sponses after removing response latencies that fell outside the 
range of 150-2,000 ms. This criterion excluded 0.23% of 
correct trials and allowed us to retain most of the data. One of 
the unambiguous words, rev, elicited an extremely high error 
rate (87% errors) and thus was removed from the analyses 
along with its ambiguous word partner, row. The  means of 
individual subject and item mean and median response laten- 
cies, along with mean percentage of errors, are presented in 
Table 5. 

The same analyses used in Experiment 2 were applied in 
Experiment 3. The ANOVA of median response latency 
yielded a significant ambiguity advantage by subjects, F(1, 
29) = 5.10, M S E  = 248.27, but not by items, F(1, 62) = 2.19, 
M S E  = 1,541.86. The analysis of percentage error showed no 
significant ambiguity advantage in either the subjects analysis, 
F(1, 29) = 2.95, M S E  = 6.27, or the items analysis, F(1, 62) -- 
1.68, M S E  = 23.12. 

The correlations between the measured stimulus variables 
and median response latency and error percentage were 
computed across the 126 critical items (excluding the rev-row 
pair). These correlations are presented in Table 6. Ambiguity 
was not significantly correlated with response latency or 
percentage of error. A multiple regression analysis, with 
response latency as the dependent variable, was conducted by 
following the same procedure as in Experiments 1 and 2. By 
those criteria, the predictor variables included in the regres- 
sion analysis were ambiguity, N, and familiarity. Although 
frequency, OE, and PE were also correlated with response 
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Table 5 
Mean and Median Lexical Decision Latencies (in Milliseconds) 
and Percentage of Error Rates as a Function of Ambiguity in 
Experiments 3 and 4 

Mean Median Error 
latency latency rate (%) 

Experiment U A NW U A NW U A NW 

Experiment 3 
Subjects 

M 647 637 729 610 601 687 4.3 3.2 6.4 
SD 95 92 108 88 79 96 2.7 3.5 5.2 

Items 
M 649 639 732 613 603 685 4.3 3.2 6.4 
SD 49 51 71 50 44 64 6.6 3.5 7.9 

Experiment 4 
Subjects 

M 567 569 570 540 540 546 2.6 2.3 2.3 
SD 65 64 55 54 52 46 3.0 2.1 1.7 

Items 
M 567 569 570 537 539 544 2.6 2.3 2.3 
SD 34 34 34 28 28 31 3.3 3.1 3.7 

Note. U = unambiguous; A = ambiguous; NW -- nonword. 

latency, all were significantly correlated with familiarity, which 
had the strongest correlation with latency. 

A summary of the regression analysis can be seen in Table 7. 
The unique relation between latency and ambiguity (i.e., after 
removing variance that was attributable to N and familiarity) 
was significant. The negative coefficient indicates that, after 
removing any effects of familiarity and N, ambiguous words 
were, on average, responded to 17 ms faster than unambiguous 
words. The unique relation between latency and familiarity 
(after removing variance attributable to ambiguity and N) was 
also significant. There was no significant unique relation 
between N and latency. 

A similar regression analysis was conducted with percentage 
of error as the dependent variable. Our procedure for selecting 
predictor variables resulted in the inclusion of ambiguity, N, 
familiarity, and NHF in the set of predictor variables. A 
summary of this analysis is shown in Table 7. As in the 

Table 6 
Correlations Involving Median Latencies and Percentage of 
Error Rates in Experiments 3 and 4 With Word Characteristics 

Experiment 3 Experiment 4 

Characteristic Latency Error rate (%) Latency Error rate (%) 

Ambiguity -.11 -.11 .03 - .04 
N -.08 .03 -.01 .00 
Familiarity -.53* -.47* -.24* -.10 
Length .05 - .  11 .10 -.02 
NHF .16 .19" .04 .00 
PE .21" .26* .18" .00 
OE .35* .24* .13 -.11 
Frequency -.48" -.40" -.27" -.05 

Note. For correlations involving PE or OE, n = 125, otherwise n = 
126. N = orthographic neighborhood density; NHF = number of 
higher frequency neighbors; PE = phonological error score; OE = 
orthographic error score. 
*p < .05. 

Table 7 
Summary of Regression Analyses in Expemnents 3 and 4 

Criterion and 
Predictor variables Coefficient t df 

Experiment 3 

Latency 
Ambiguity - 17.21 -2.41" 122 
N -.12 -.19 122 
Familiarity -26.87 -7.32*** 122 

Error rate (%) 
Ambiguity - 1.83 -2.13" 121 
N .02 .14 121 
Familiarity -2.61 -5.57*** 121 
NHF .18 .77 121 

Experiment 4 

Latency 
Ambiguity .00 .00 122 
N .03 .07 122 
Familiarity - 6.98 - 2.75 * * 122 

Error rate (%) 
Ambiguity -.27 -.47 123 
N .00 .08 123 

Note. n = 126. N ffi orthographic neighborhood density; NHF = 
number of higher frequency neighbors. 
*p < .05. **p < .01. ***p < .001. 

regression analysis of latency data, only ambiguity and familiar- 
ity accounted for reliable amounts of unique variance. 

Discussion 

Although the ambiguity advantage in latency was significant 
by ANOVA only in the subjects analysis, a reliable items effect 
was obtained in the multiple regression analysis. In contrast to 
naming performance (Experiments 1 and 2), ambiguity ac- 
counted for significant unique variance in lexical-decision 
latency. This combination of findings suggests that semantic 
ambiguity produces an advantage in lexical decision but not in 
naming. 

If we had not collected familiarity ratings, and had included 
frequency instead of familiarity as a predictor variable, would 
the ambiguity advantage still be reliable? Apparently not, the 
regression of ambiguity, N, and frequency on latency in 
Experiment 4 yielded only a significant unique effect of 
frequency (-43.67 ms per log unit of frequency), t(122) = 
-6.30, p < .001. The contrasting results obtained by using 
familiarity versus frequency attest to the fragility of the 
ambiguity advantage we have observed. If an insufficient 
proportion of variability in latency is accounted for by extrane- 
ous variables (e.g., familiarity), the proportion of variability 
accounted for by ambiguity may fail to reach significance. 

Exper iment  4 

After finding an ambiguity advantage in lexical decision but 
not in naming, we sought evidence concerning the locus of the 
ambiguity advantage. Two views regarding the source of the 
advantage have been developed in the context of connectionist 
models of word identification. Joordens and Besner (1994) 
proposed that the ambiguity advantage is due to the distrib- 
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uted representation of the meaning of ambiguous words, 
thereby implying a conceptual locus; whereas Kawamoto et al. 
(1994) proposed that the advantage is due to stronger connec- 
tion weights between orthographic units that are active in the 
representation of ambiguous words, thus implying an ortho- 
graphic locus. 

As an initial test of these ideas we conducted another 
lexical-decision experiment, this time using nonwords that 
could be distinguished faster and more easily from words. 
Orthographically legal nonwords (i.e., pronounceable non- 
word letter strings that are word like in their orthographic 
characteristics, such as those used in Experiment 3) are 
difficult to discriminate from words. When the task involves 
rejecting such nonwords, a more careful familiarity assessment 
or a more thorough search of memory for relevant conceptual 
information may be required than is the case when the 
nonwords are easily distinguishable at the orthographic level. 
The nonwords from Experiment 3 were modified by replacing 
vowels with consonants, thereby producing orthographically 
illegal nonwords (i.e., unpronounceable consonant strings). If 
the ambiguity advantage occurs at an orthographic level in 
word identification, then it ought to be present when the 
stimuli encourage lexical decisions to be primarily made on the 
basis of orthographic information. On the other hand, if the 
ambiguity effect has a semantic basis, then encouraging partici- 
pants to make decisions at an orthographic level should reduce 
or eliminate the effect. 

One effect of moving the basis of the lexical decision to the 
orthographic level was expected to be a reduction in response 
latency relative to Experiment 3. Another expected effect, 
given the reduced role of semantic processing, was that 
response latency for nonwords should more closely approxi- 
mate latency for words (i.e., reducing the effect of lexicality). 
The expected similarity in latencies contrasts with the typical 
result, obtained in Experiment 3, in which response latency for 
nonwords is much longer than for words. Following this logic, 
we predicted an interaction between lexicality (word vs. 
nonword) and experiment (Experiment 3: legal nonwords vs. 
Experiment 4: illegal nonwords). If the locus of the semantic 
ambiguity advantage is, indeed, at the semantic level of 
processing, then we should also find an interaction between 
ambiguity and experiment in a regression analysis. 

Method 

Participants. The participants were 30 students drawn from the 
same population as in the earlier experiments. Some students received 
$5 for their participation, and others received extra credit in an 
introductory psychology course. All participants had normal or cor- 
rected-to-normal vision and considered English to be their first 
language. 

Materials and procedure. The same apparatus, materials, design, 
and procedure used in Experiment 3 were used in Experiment 4, with 
the following exceptions. A set of 128 orthographically illegal non- 
words was created from the orthographically legal nonwords used in 
Experiment 3 by replacing all vowels with consonants that resembled 
the vowels in shape. 

Resul t s  

Analyses of response latencies were based on correct re- 
sponses after excluding latencies that fell outside the range of 
150-2,000 ms. This criterion excluded 0.12% of the correct 
trials. Data for the word rev and its ambiguous partner row 
were removed for the purpose of making the present analyses 
comparable to those of Experiment 3. The means of subject 
and item mean and median response latencies, along with 
mean percentage of errors, are shown in Table 5. 

The same analyses used in Experiment 3 were used in 
Experiment 4. The analyses of median response latency 
yielded no effect of ambiguity by subjects or by items (Fs < 1). 
The analysis of percentage error also showed no sign of an 
ambiguity effect (Fs < 1). Power to detect an ambiguity effect 
on median response latency of the size obtained by subjects in 
Experiment 3 (i.e., 9 ms) was estimated to be .63. 

A consistent (although nonsignificant) pattern of an ambigu- 
ity advantage on error percentages in Experiments 1, 2, and 4 
caused us some concern in that an ambiguity advantage may 
have been emerging in error rates rather than in response 
latencies in these experiments. To test this possibility, we 
analyzed the error data from Experiments 1, 2, and 4 together. 
There was no significant ambiguity advantage on error percent- 
age by subjects (unambiguous = 4.1% errors; ambigu- 
ous = 3.6% errors), F(1, 101) = 2.18, MSE = 5.06, or by items 
(unambiguous -- 4.0% errors; ambiguous = 3.5% errors), F(1, 
368) = 1.30, M S E  --- 16.13. 

Regression analyses. The relationship between median re- 
sponse latency and error percentage and the set of stimulus 
characteristics explored in the earlier experiments was exam- 
ined by computing correlations across the 126 critical items. 
These correlations are shown in Table 6. There was no 
significant correlation between ambiguity and either latency or 
error rate. As in the earlier experiments, however, multiple 
regression analyses were also conducted. Applying the same 
criteria for inclusion of predictor variables as in Experiments 2 
and 3 led to a set of three predictors for response latency: 
ambiguity, N, and frequency. Because frequency and familiar- 
ity were so similar in the size of their correlations with latency, 
however, and because of our interest in comparing the results 
of the regression on Experiment 3 latency (which included 
familiarity as a predictor) to the regression on Experiment 4 
latency, familiarity was included in the regression model 
instead of frequency. A summary of the regression analysis can 
be seen in Table 7. Only familiarity accounted for a significant 
proportion of unique variance in latency. 3 Power to detect an 
ambiguity effect on median response latency of the size 
obtained in the regression analysis of Experiment 3 (i.e., 17.21 
ms) was estimated to be .97. The smallest effect size for which 
this experiment had at least .80 power to detect was 12.36 ms. 

When error rate was used as the dependent variable, our 
criteria for entering predictor variables selected only ambigu- 

3 Similar results were obtained when frequency was used as a 
predictor instead of familiarity. Frequency was the only significant 
unique predictor of latency (-14.13 ms per log unit of frequency), 
t(122) = -3.10,p < .01. 



SEMANTIC AMBIGUITY EFFECTS 73 

ity and N. A summary of the results of this analysis is shown in 
Table 7. Neither variable was uniquely related to error rate. 

Comparison of  Experiments 3 and 4. To test our prediction 
that the use of orthographically illegal nonwords would serve 
to make lexical decisions more rapid (and also less influenced 
by semantic processing), we examined the effects of lexicality 
(words vs. nonwords) and the type of nonword used in the 
experiment (Experiment 3: legal nonwords vs. Experiment 4: 
illegal nonwords; see Table 5). In the ANOVA by items, 
lexicality was treated as a between-items effect, and experi- 
ment was treated as a within-item effect. In the ANOVA by 
subjects, lexicality was treated as a within-subject effect, and 
experiment was treated as a between-subjects effect. A signifi- 
cant main effect of lexicality on median latency Was obtained 
by items, F(1,252) = 93.76, MSE = 2,295.65, and by subjects, 
F(1, 58) = 91.15, MSE = 822.29. A reliable main effect of 
lexicality on percentage of error was also obtained by items, 
F(1, 252) = 6.71, MSE = 28.49, and by subjects, F(1, 58) = 
9.25, MSE = 8.97. These lexicality effects both indicated a 
significant advantage for word performance over nonword 
performance when collapsing the data over experiments. A 
significant main effect of experiment on median latency was 
found in the analysis by items, F(1, 252) = 817.97, MSE = 
1,726.71, and by subjects, F(1, 58) = 33.11, MSE = 9,639.30. 
The main effect of experiment was also found to be significant 
on error percentage by items, F(1,252) = 31.39, MSE = 28.77, 
and by subjects, F(1, 58) = 19.17, MSE = 11.13. Taken 
together, the significant main effect of experiment on both 
latency and error percentage indicated an advantage for 
performance when illegal nonwords are used over perfor- 
mance when legal nonwords are used. Most important, how- 
ever, a reliable interaction between lexicality and experiment 
was found on median latency by items, F(1, 252) = 91.57, 
MSE = 1,726.71, and by subjects, F(1, 58) = 52.81, MSE = 
822.29. This interaction was also significant on percentage of 
error by items, F(1,252) -- 7.97, MSE = 28.77, and by subjects, 
F(1, 58) = 6.04, MSE = 8.97. This interaction of lexicality and 
experiment on both latency and error percentage indicated 
that the lexieality effect (i.e., the advantage for words over 
nonwords) diminished when illegal nonwords were used. 

We also analyzed the interaction between ambiguity and 
type of nonword on the premise that if the ambiguity effect 
occurs primarily at the level of conceptual processing, then it 
ought to diminish in size when the task involves less conceptual 
processing. Although this hypothesis received some support 
from the significant ambiguity effect in Experiment 3 and the 
nonsignificant effect in Experiment 4, we sought more convinc- 
ing evidence in the form of an interaction. In our analysis of 
this interaction, we included the median latency data from 
both Experiments 3 and 4 as a repeated measure and regressed 
the same predictor variables on latency as those used in the 
separate regressions on latency in Experiments 3 and 4: 
ambiguity, N, and familiarity. In this regression and in the one 
that follows, only the interaction between experiment (i.e., 
nonword type) and ambiguity was of interest, and only the test 
of this effect is reported. The median latency analysis revealed 
a significant interaction between experiment and ambiguity, 
F(1, 122) = 4.34, MSE = 1,033.09, indicating that the size of 
the ambiguity advantage was significantly reduced by using 

illegal nonwords. This interaction can be visualized by compar- 
ing the coefficient for ambiguity as a predictor of latency in 
Experiment 3 (17.21 ms in Table 7) with the same coefficient in 
Experiment 4 (0.00 ms in Table 7). 

These analyses were also conducted on the percentage of 
error data. In examining the interaction between ambiguity 
and experiment, we included the same predictor variables as 
were used in the regression analysis of error percentage in 
Experiment 3, namely: ambiguity, N, familiarity, and NHF. 
The interaction between experiment and ambiguity was not 
reliable, F(1, 121)= 1.99, MSE = 14.24. 

Discussion 

By using consonant strings as nonwords in a lexical-decision 
task, thereby encouraging participants to make more rapid 
decisions on the basis of orthographic information, we elimi- 
nated the ambiguity advantage that had been obtained in 
Experiment 3. This interaction between ambiguity and experi- 
ment (i.e., nonword type), combined with the significant 
interaction between lexicality and experiment, suggested that 
the locus of the semantic ambiguity advantage is, indeed, at the 
semantic level and not at the orthographic level, contrary to 
the view proposed by Kawamoto et al. (1994). We can be 
reasonably certain that the task encouraged an orthographic 
basis for making lexical decisions because of the interaction 
between lexicality and experiment. In Experiment 4, response 
latencies were very similar for words and nonwords, in contrast 
to the shorter latency for words than for nonwords observed in 
Experiment 3. When nonword letter strings are less word like, 
as they were in Experiment 4, a lexical decision can be made 
faster, and thus there is less opportunity for semantic process- 
ing to contribute to the discrimination between words and 
nonwords. Under these conditions, the ambiguity advantage 
disappears. 

It might be argued, however, that participants in Experiment 
4 could have carded out the lexical-decision task merely by 
looking for the presence or absence of vowels. Such decisions 
would not be "lexical" at all because looking for the presence 
or absence of vowels can be accomplished without accessing 
any lexical representations or making any familiarity judgment. 
It is unlikely that this strategy was used extensively because 
word-level characteristics such as familiarity and frequency 
were found to be significantly correlated with response latency, 
and familiarity was found to be a unique predictor of response 
latency. Furthermore, in a regression on latency that included 
frequency instead of familiarity, frequency was a significant 
predictor of unique latency variability (see footnote 4). If 
participants had merely been searching for vowels, no effect of 
word familiarity or frequency should have been obtained. This 
does not, however, eliminate the possibility that a mixture of a 
vowel searching and lexical-access processes was carried out by 
our participants. 

To preclude the use of a vowel-searching strategy, ortho- 
graphically illegal nonwords that contain vowels, but are still 
unpronouncable, could be used; Shulman, Hornak, and Sand- 
ers (1978) used such nonwords only to find that the effect in 
which they were interested (i.e., graphemic similarity between 
pairs of words on lexical-decision performance) was similar to 
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the effect obtained when consonant strings served as non- 
words. However, the fact that Shulman et al. also found a 
semantic priming effect when orthographically illegal non- 
words (containing vowels) were used in a lexical-deeision task 
speaks to the automatic nature of access to semantic informa- 
tion during lexical decision. Although it remains to be seen 
whether this semantic priming effect would be reduced when 
consonant strings are used as nonwords, or enhanced when 
orthographically legal nonwords are used, it is clear that it is 
nearly impossible to make lexical decisions solely on the basis 
of orthographic level information (contrary to Kawamoto et 
al., 1994). Thus, although our use of consonant strings as 
nonwords in Experiment 4 can only discourage (but not 
preclude) the use of semantic information during lexical 
decision, it is likely that, overall, less semantic information 
contributed to lexical decision than in Experiment 3 in which 
legal nonwords were used. This differential contribution of 
semantic information suggests that the semantic ambiguity 
effect has a semantic locus because the effect was much smaller 
(i.e., nonsignificant) in Experiment 4. Evidence supporting this 
conclusion was also provided by Pugh, Rexer, and Katz (1994), 
who found that the ambiguity advantage in lexical decision 
disappears when nonwords with few or no orthographic 
neighbors are used. If nonwords have few or no orthographic 
neighbors, then it follows that they are much less word like in 
their orthographic characteristics than if the nonwords have 
many orthographic neighbors. 

S imula t ion  o f  Resu l t s  W i t h  a D i s t r i bu t ed  
M e m o r y  M o d e l  

We simulated the results of the naming and lexical-decision 
experiments by using a version of the distributed memory 
model described by Masson (1991, 1995). This model is a 
Hopfield network (Hopfield, 1982) consisting of three modules 
or sets of processing units: orthographic, phonological, and 
meaning. Each processing unit takes on one of two possible 
values or states ( -+ 1). A word is instantiated in the network as a 
pattern of activation (+  1 and - 1 states) across the entire set of 
processing units. Knowledge about words is stored in the 
weights of the connections between processing units. The 
processing units are fully interconnected, both within and 
between modules. Connection weights are determined by a 
simple learning rule derived from Hebb (1949). When learning 
a pattern of activation, the connection weight between any pair 
of units is incremented if the two units are in the same state 
and decremented if the units are in different states. In 
particular, the change in the connection weight between a pair 
of units is defined as 

AWly = n inj, 

where w~- represents the connection weight between units i and 
j ,  and ni and nj represent the states (-+1) of units i a n d j  when 
the learned pattern is instantiated. This rule captures the 
correlations between units that happen to hold across the 
entire set of patterns that the network learns. 

To simulate word identification tasks, the network is pre- 
sented with an orthographic pattern corresponding to a word's 

printed form. The construction of the word's phonological 
pattern and instantiation of its meaning are simulated by 
updating the states of the phonological and meaning units. 
Units are randomly selected for updating until some criterion 
is reached. Updating consists of computing the activation 
coming into a unit and changing its state according to a simple 
threshold function. Activation coming into a unit is com- 
puted as 

a i = X w i y n j ,  
i#j 

where ai represents the amount of activation directed to unit i. 
The received activation is transformed into an activation value 
by a threshold function: 

if a i > 0, then n i = 1, else n i = - 1. 

This process of updating units amounts to moving the network 
through the space of possible patterns of activation into a basin 
of attraction that, under ideal circumstances, corresponds to a 
learned pattern of activation (i.e., a known word). Thus, given 
the orthographic pattern of a word, the network is capable of 
instantiating the phonological code for and the meaning of that 
word. 

The simulations reported here were based on the same 
model architecture and procedures as those described by 
Masson (1995), with a few exceptions that are explained at 
appropriate points. A number of general changes should be 
noted at the outset. First, the architecture used for the present 
simulations consisted of an orthographic module with 70 units, 
a phonological module with 40 units, and a meaning module 
with 140 units. This arrangement contrasts with the architec- 
ture used by Masson (1995) in which there were more 
orthographic than meaning units. This modification was made 
because we discovered that when the network was trained on 
ambiguous words, the patterns of activation corresponding to 
the meanings of those words did not form stable basins of 
attraction unless a large number of units were assigned to the 
meaning module. A pattern of activation represents the 
bottom of a stable basin of attraction in a Hopfield (1982) net 
if, when the pattern is instantiated, no updating of units will 
lead to a change in state. Thus, once the system is in such a 
pattern of activation, it cannot escape unless external input or 
some other process intervenes. 

Second, rather than starting a word identification trial by 
instantiating a word's complete orthographic pattern into the 
model's orthographic units, these units were randomly sampled 
for updating along with units from the other modules. When 
updating an orthographic unit, however, its state was com- 
pletely determined by external input (i.e., the defined ortho- 
graphic pattern) and not by activation received from other 
units in the network. To ensure that the orthographic pattern 
would be instantiated rather quickly, we set the probability of 
sampling a unit from the orthographic module to .6. As in the 
simulations reported by Masson (1995), sampling occurred 
more frequently from the phonological than from the meaning 
units (probabilities of .3 and .1, respectively), reflecting the 
role of a phonological recoding route in the retrieval of a 
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word's meaning (Lukatela & Turvey, 1994; Perfetti & Bell, 
1991; Perfetti, Bell, & Delaney, 1988; Van Orden, Johnston, & 
Hale, 1988; Van Orden, Penn!ngton, & Stone, 1990). 4 

Third, for the sake of efficiency, two alterations were made 
with respect to sampling units for updating. Rather than 
sampling units with replacement, units within a module were 
randomly selected for updating without replacement. Once 
every unit in a module had been sampled, all units were once 
again eligible for sampling. Sampling of units within a module 
ceased after an entire pass through the units failed to produce 
a change of state in any of the units. An uneventful pass 
through the units of a module indicated that the module had 
reached a stable state. 

In each of the simulations reported below, the network was 
trained on a small vocabulary consisting of two unambiguous 
words and two ambiguous words. Each ambiguous word had 
two unrelated meanings associated with it. The pattern of 
activation for each word was randomly constructed as a 
sequence of _+ 1 values across the network's units. The network 
was trained by first setting all connection weights to zero, then 
presenting each unambiguous word twice and each ambiguous 
word twice (once with each of the different meanings) by using 
the Hebbian learning rule described above. Thus, the two 
types of words were equated with respect to frequency of 
exposure to the orthographic patterns of the words. After 
training, the network was tested 40 times on each word. Each 
test was conducted by setting all units to a random starting 
value of -+ 1, then updating the units until a specified criterion 
was reached (see the Word Naming, Lexical Decision, and Gaze 
Duration During Comprehension sections for details regarding 
criteria). We used the number of cycles to reach criterion as a 
measure of response latency under the assumption that num- 
ber of updating cycles is a monotonic function of time. The 
training-test sequence was run 80 times with independently 
generated words used on each run. 

Word Naming 

Performance on the word naming task in Experiment 2 was 
simulated by updating the network until the phonological units 
settled into a stable state. We assumed that once a stable state 
was reached, the participant would be able to produce a vocal 
response. The number of updating cycles required to reach 
stability was taken as a measure of response latency. 

In preliminary simulations of the naming task we found that 
because of the large number of meaning units, the influence of 
the meaning module on the phonological units was too strong 
and the influence of the orthographic units was too weak. In 
particular, the model consistently produced a disadvantage for 
ambiguous words in the naming task, reflecting dynamics in the 
meaning module that are discussed below. Given that no effect 
of ambiguity was observed in the naming task we reduced the 
influence of meaning units on phonological units in an attempt 
to suppress this effect. 5 A reduced influence was achieved by 
weighting the activation coming from meaning units to phono- 
logical units by a factor of .3. 

On each test trial, the network was allowed a maximum of 
315 cycles to reach a stable state in the phonological units. 
Trials in which stability was not achieved by that time were 

considered errors. The limit of 315 cycles was selected so that 
the error rates would be similar to those observed in Experi- 
ment 2. The orthographic units typically reached full instantia- 
tion of a word's orthographic pattern by 150 cycles, so by that 
time only phonological and meaning units were sampled. The 
mean number of cycles required to reach a stable phonological 
pattern and the mean percentage of errors for unambiguous 
and ambiguous words are shown in Table 8. Separate ANOVAs 
were used to test the difference in means for latency and for 
error rates. Neither test produced a significant difference 
(F < 2 for latency; F < 1 for errors). 

Some insight into the behavior of the network can be 
obtained by examining Figure 1, which shows the mean 
activation of a word's orthographic, phonological, and mean- 
ing patterns across cycles. Activation is defined as the propor- 
tion of units in a module that is currently in a state that 
matches the word's pattern of activation. Thus, at the begin- 
ning of a trial, half of the units (by chance) are in the 
appropriate state. As updating progresses, more of the units 
are moved into the appropriate state. Activation values are 
plotted for 300 cycles of updating and include data from every 
trial in which a word was successfully named within 315 cycles. 

By examining Figure 1 it is apparent that in the early stages 
of processing, one of the two meanings of an ambiguous word 
is slightly more active (this meaning was found to be the more 
active of the two meanings at the time the phonological units 
settled) than the meaning of an unambiguous word. The less 
active meaning of the ambiguous word is at a lower level of 
activation. The reason for the initial advantage for one 
meaning of an ambiguous word is that the random starting 
pattern for the meaning units is, by chance, more likely to be 
closer to one of the two meanings of an ambiguous word than 
to the only meaning of an unambiguous word. During later 
updating cycles, however, the situation reverses and the 
meaning of an unambiguous word is more highly activated than 
even the more active meaning of an ambiguous word. 

Activation of the target word's phonological pattern grows 
at virtually the same rate for both ambiguous and unambigu- 
ous words. The stronger activation of one meaning of an 
ambiguous word does not produce an ambiguity advantage in 

4 In a review of an earlier version of this article, J. Rueckl pointed 
out (personal communication, November 18, 1994) that instead of 
implementing different sampling rates, faster settling of phonological 
units ought to occur if the connection weights between orthographic 
and phonological units were more structured than those between 
orthographic and meaning units. We think this idea is interesting and 
highly plausible. In all the simulations reported in this article, 
however, patterns of activation for words were purely random, and no 
attempt was made to approximate a structured relationship between 
orthographic and phonological patterns of words. We hope to explore 
the consequences of using structured orthographic and phonological 
patterns in future simulations. 

s It is possible that the influence of meaning units on phonological 
units could instead be reduced by introducing structure into the 
connection weights between orthographic and phonological units, as 
discussed in footnote 4. The structure inherent in these weights should 
produce a stronger influence on the phonological units than the 
unstructured weights between meaning and phonological units. Again, 
we thank Jay Rueckl for pointing out this possibility. 
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Table 8 
Mean Latencies fin Updating Cycles) and Percentage of  Error 
Rates in Simulation Results 

Latency Error 

Experiment U A NW U A NW 

Experiment 2 

Word naming 
M a 290.2 290.8 3.7 3.7 
SD 2.9 2.5 2.6 2.7 

Experiment 3 

Lexical decision: 
legal nonwords 

M b 119.1 116.2 240.0 5.2 3.2 
SD 6.9 5.6 0.0 4.2 3.2 

4.9 
3.2 

Experiment 4 

Lexical decision: 
illegal nonwords 

M b 54.5 54.5 80.0 4.0 3.6 
SD 1.9 2.2 0.0 2.1 2.2 

Gaze duration during 
comprehension 

M c 629.3 688.8 0.0 0.8 
SD 8.0 17.0 0.1 1.3 

5.5 
2.0 

Note. U = unambiguous; A = ambiguous; NW = nonword. 
aLatency to settle units in the phonological module, bLatency to 
reach criterion energy, eLatency to settle units in the meaning 
module. 

naming because the connection weights that link meaning and 
phonological units are more strongly determined by unambigu- 
ous than by ambiguous words. This comes about because of the 
learning regimen in which each meaning of an ambiguous word 
is experienced only once; whereas the meaning of an unambigu- 
ous words is presented twice. The early activation advantage 
for ambiguous words, then, seems to be counterbalanced by 
the stronger influence of unambiguous word meanings on 
phonological units. We note, however, that the time course of 
activation of phonological and meaning units may be critical to 
this balance. If meaning units were sampled at a higher rate, 
then the point at which activation of meaning among unambigu- 
ous words exceeds that of ambiguous words would occur 
earlier and an advantage for unambiguous words might be 
observed. 

Lexical Decision 

The lexical decision results of Experiments 3 and 4 were 
simulated by using exactly the same model and parameters as 
in the simulation of naming results. The crucial extension to 
the model was the assumption that a lexical decision is made 
on the basis of familiarity invoked by a letter string (e.g., 
Balota & Chumbley's, 1984, variant of Atkinson & Juola's, 
1973, word recognition model; Besner, 1983; Besner & Johns- 
ton, 1989). Others have simulated the lexical-decision task by 
assuming that some set of processing units settle into a stable 
state. For example, using a model similar to that described 
here, Joordens and Besner (1994) assumed that lexical deci- 
sion required full settling of meaning units. Similarly, Kawa- 
moto et al. (1994) and Plaut and Shallice (1993) assumed that 

lexical decisions required full settling of a set of orthographic 
units. We have argued elsewhere (Masson & Borowsky, 1995) 
that full settling, particularly of meaning units, is not necessar- 
ily the best characterization of the lexical-decision task. 

As an alternative to full settling, there is a feature of 
Hopfield (1982) networks that suggests itself as a potential 
means of assessing the familiarity of a stimulus. Recall that the 
updating procedure used in a Hopfield network can be 
described as movement into a basin of attraction that corre- 
sponds to a learned pattern of activation (a word's representa- 
tion). A metric known as energy can be used to gauge the 
network's progress down a basin of attraction (Hopfield, 1982). 
Energy is computed as 

E = -~_ ,  wijninj 
i <j 

and monotonically decreases (becomes a larger negative num- 
ber) as updating cycles continue. Larger negative values for 
energy occur as pairs of units take on values (---1) that are 
consistent with the weight of the connection between them. 
For example, two units with a positive connection weight make 
a greater contribution to energy if both units are in the same 
state. Thus, as the network relaxes into a known state, energy 
takes on a larger negative value. 

To simulate lexical decisions, we computed energy within 
the orthographic and meaning modules. These measures of 
energy were intended to reflect the familiarity of a letter 
string's orthography and meaning. Within the orthographic 
module, for example, energy was computed by applying the 
formula for energy to each pair of orthographic units. We did 
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Figure 1. Mean activation of orthographic (Orth.), phonological 
(Phon.) and meaning patterns (Mng.) of unambiguous (Unam.) and 
ambiguous (Ambig.) words as a function of update cycle in the 
distributed memory model. This figure shows the activation for both 
meanings of ambiguous words, one of which typically is more strongly 
activated than the other because of the random starting position of the 
network. Results are shown for all trials in which the phonological 
units reached a stable state within 315 updating cycles. 
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not include energy in the phonological module in the simula- 
tion under the assumption that orthography and meaning 
would be the important determinants of a lexical decision. We 
expect, however, that if energy in the phonological module 
were included, similar results would be obtained. 

During the simulation of a lexical-decision trial, energy was 
computed after every two updating cycles were run. Energy 
was not computed after every cycle because that computation 
is quite time consuming. If computed energy (taken as the sum 
of energy within the orthographic and meaning modules) 
reached a minimum criterion before a waiting period expired, 
then a positive decision was made. Response latency was 
defined as the number of cycles taken to reach the criterion. If 
the criterion was not reached by the end of the waiting period, 
a negative decision was made (see also Anderson, 1976; King 
& Anderson, 1976). Nonwords were defined by orthographic 
patterns consisting of random patterns of -+1 across ortho- 
graphic units. Two nonword patterns were constructed: one 
was similar to a learned unambiguous word, and the other was 
similar to a learned ambiguous word. 

In preliminary runs of the model, to accomplish two goals, 
we independently varied the degree of similarity between word 
and nonword orthographic patterns, energy criterion, and 
waiting period for simulations of Experiments 3 and 4. First, 
we sought to obtain an effect of ambiguity in the simulation of 
Experiment 3, but not in Experiment 4. Second, we aimed to 
have the model generate error rates that would be roughly 
similar to those observed in the experiments. The variation of 
these parameters was conducted with the constraint that the 
similarity between words and nonwords was greater for Experi- 
ment 3 than for Experiment 4. This constraint quite naturally 
produced the result that accurate lexical decisions could be 
made after fewer processing cycles in the simulation of 
Experiment 4. 

Satisfactory results were obtained for Experiment 3 when 
each nonword differed from its similar word in 9 of the 70 
orthographic units and for Experiment 4 when the difference 
between word and nonword pairs was maximal (i.e., they 
differed in 35 of the 70 orthographic units). These values are 
reasonable and consistent with the features of the nonwords 
used in the two experiments (orthographically legal nonwords 
in Experiment 3 and orthographically illegal nonwords in 
Experiment 4). The selected energy criteria and waiting 
periods were -4,600 and 240 cycles for Experiment 3 and 
-1,200 and 80 cycles for Experiment 4. The shorter waiting 
period used for the simulation of Experiment 4 was consistent 
with the much shorter response lateneies observed in that 
experiment, relative to Experiment 3. 

A set of 80 runs was performed under each set of parameters 
to simulate the results of Experiments 3 and 4. The mean 
correct response latencies measured in cycles to reach the 
energy criterion and the mean error percentages for each 
simulation are shown in Table 8. A small but reliable ambiguity 
advantage in both latency, F(1, 79) = 13.25, MSE = 25.83, and 
error percentage, F(1, 79) = 18.29, MSE = 8.42, was observed 
in the simulation of Experiment 3, consistent with the empiri- 
cal data. No ambiguity advantage was found in the simulation 
of Experiment 4, either in latency (F < 1), or in error 
percentage, F(1, 79) = 1.47, MSE = 4.08. 
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Figure 2. Summed orthographic and meaning energy for the patterns 
corresponding to unambiguous and ambiguous words and nonwords as 
a function of update cycle in the distributed memory model. The top 
section of the figure shows the simulation of Experiment 3, in which 
pronounceable nonwords were used, and the bottom section shows the 
simulation of Experiment 4, in which consonant strings as nonwords 
were used. The horizontal line in each section represents the energy 
criterion used to make word-nonword decisions, nonw. = nonword. 

The network's behavior in simulating the lexical-decision 
results is summarized in Figure 2, which shows the mean 
energy value across updating cycles. The values shown in 
Figure 2 are the sum of energy within the orthographic and the 
meaning modules. The results for Experiment 3, in which 
orthographically legal nonwords (i.e., patterns that are similar 
to those of words) were used, are shown at the top of the 
figure. A very small advantage can be seen in the energy values 
for ambiguous words, particularly in the range of 100-200 
cycles. 

The source of the energy advantage is revealed by inspection 
of the energy within the orthographic and meaning modules, as 
shown in Table 9. The top section of the table shows the energy 
values from the simulation of Experiment 3 for the ortho- 
graphic and meaning modules separately, as well as the total 
energy, computed at three different points during processing. 
These points bracket the average response latency for words. 
The ambiguous words had a very slight advantage in energy 
within the orthographic module, but this was just a chance 
occurrence and was not sustained across repeated simulations. 
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Table 9 
Mean Energy Values for Orthographic and Meaning Modules in the Distributed Memory Model 
Simulations of the Lexical-Decision Task 

Orthography Meaning Total 

Cycle U A N-W U A NW U A NW 

Experiment 3 

Lexical decision: 
legal nonwords 

100 -3,557 -3,584 -1,949 -202 -231 -228 -3,759 -3,815 -2,177 
120 -4,657 -4,686 -2,550 -236 -273 -270 -4,893 -4,959 -2,820 
140 -4,826 -4,847 -2,641 -269 -313 -313 -5,095 -5,160 -2,954 

Experiment 4 

Lexical decision: 
illegal nonwords 

40 -561 -562 60 -97 -95 -103 -658 -657 -96 
60 -1,269 -1,273 14 -134 -142 -153 -1,403 -1,415 -139 
80 -2,265 -2,269 32 -166 -185 -208 -2,431 -2,454 -176 

Note. U -- unambiguous; A = ambiguous; NW = nonword. 

A somewhat larger and more robust energy advantage for 
ambiguous words was found among the meaning units. These 
energy values indicated that the meaning units moved into a 
basin of attraction slightly earlier when an ambiguous rather 
than an unambiguous word was presented. We believe this 
phenomenon is a manifestation of the proximity effect de- 
scribed by Joordens and Besner (1994), in which the random 
starting state of the meaning units is likely to be more similar to 
one of the two meanings of an ambiguous word than to the 
single meaning of an unambiguous word. 

A rather surprising result is apparent, however, when 
nonwords are considered. Although the energy values in the 
orthographic module dear ly  distinguished words from non- 
words, the same cannot be said for the meaning module. It is 
clear from Table 9 that energy in the meaning module built up 
at virtually the same rate for nonwords as for words. Thus, 
although energy differences in the meaning units were respon- 
sible for producing the ambiguity advantage in lexical decisions 
about words, these differences did not contribute to the 
model's general ability to make word-nonword discrimina- 
tions. 

The buildup of energy in the meaning module during 
processing of nonwords appears to be a consequence of the 
meaning units moving into the basin of attraction that was 
closest to the randomly selected starting pattern for the 
meaning units. During updating cycles, activation from the 
orthographic units (representing a nonword pattern unknown 
to the system) would not be very systematic and therefore 
would provide very little constraint on the pattern of activation 
of the meaning units. Thus, the meaning units were, for the 
most part, free to move into the closest basin of attraction, 
thereby accumulating energy at a high rate. In our view, this 
behavior of the meaning units is not realistic and ought to be 
curbed in some way. For present purposes, however, this 
problem is not serious because we are primarily interested in 
the energy values associated with processing ambiguous and 
unambiguous words. 

The lower part of Figure 2 shows the energy functions for 
the simulation of Experiment 4, in which orthographically 

illegal nonwords were used. Lexical decisions could be made 
earlier in that case because the nonword orthographic patterns 
were unfamiliar and therefore had very small energy values. 
This observation can be verified by inspecting the lower section 
of Table 9, which shows the energy values separately for the 
orthographic and meaning modules. The ability to make 
word-nonword discriminations earlier means that a decision 
can be made before the ambiguity advantage in the meaning 
units has had adequate time to build up. Also note that energy 
in the meaning units built up more rapidly for nonwords. This 
occurred because the meaning units were entirely uncon- 
strained by orthographic input in the case of nonwords because 
of the purely random nature of these orthographic patterns. 
The meaning units, therefore, were completely free to move 
into the nearest basin of attraction when a nonword was 
presented. Once again, we are not seriously concerned about 
this problem because our major interest lies in the comparison 
between ambiguous and unambiguous words. 

Gaze Duration During Comprehension 

In addition to using the distributed memory model to 
simulate the results of the present naming and lexical-decision 
experiments, we applied it to a third paradigm. Time spent 
viewing individual words during reading for comprehension, as 
measured by fixation duration, can be used to assess word 
identification processes (e.g., Just & Carpenter, 1980). Rayner 
and his colleagues (Duffy, Morris, & Rayner, 1988; Rayner & 
Duffy, 1986; Rayner & Frazier, 1989) measured gaze durations 
(the sum of the durations of all fixations made on a word 
before the eye moves to a different word) associated with 
ambiguous and unambiguous words presented in neutral 
sentence contexts. The advantage of using a neutral context is 
that no information is provided to bias participants toward one 
of the possible meanings of an ambiguous word, making this 
paradigm similar to the naming and lexical-decision paradigms 
in that respect. 

Gaze duration results show that participants spend signifi- 
cantly more time viewing ambiguous words with equally 
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frequent meanings than either unambiguous words or ambigu- 
ous words with one dominant meaning. This ambiguity disad- 
vantage stands in contrast to the ambiguity advantage found in 
our Experiment 3 with lexical decision. Rayner and Frazier 
(1989) have argued that the ambiguity disadvantage in gaze 
duration is a result of accessing all of the common meanings of 
an ambiguous word, and they suggested that the selection of 
one of the meanings occurs as a by-product of later integration 
with a disambiguating context. This argument runs counter to 
Joordens and Besner's (1994) assumption that participants 
choose a particular meaning of an ambiguous word when 
identifying it. Joordens and Besner implicitly make this assump- 
tion by their requirement that full settling on a particular 
meaning must occur in the meaning units for a lexical decision 
to be made. 

We assume that in a comprehension task, unlike lexical- 
decision and naming tasks, participants must instantiate a 
substantial portion of a word's meaning. In the simulation 
results reported here, this assumption was realized by requir- 
ing the model to run until the meaning units reached a stable 
state. Other possibilities exist, such as requiring the meaning 
units to reach a specified degree of activation (e.g., 70% of the 
units are in the appropriate state for the target word's 
meaning), but we have not yet explored them. Gaze duration 
results were simulated by running the distributed memory 
model until the meaning units reached a stable state, as 
defined by an entire pass through the module without any unit 
changing state. A set of 80 runs was performed by using the 
same version of the model as in the earlier simulations. If the 
meaning units failed to settle within 1,000 cycles, the trial was 
ended and was counted as an error. A relatively large number 
of cycles were permitted because we sought to minimize errors. 
The method of obtaining gaze duration data of the type 
reported by Rayner and his colleagues (e.g., Rayner & Frazier, 
1989) does not lend itself to measurement of error rates, and 
we assume that participants engage a word for sufficient time 
to permit an accurate reading on nearly all occasions. 

The mean cycles required for the meaning units to settle and 
the mean percentage of error trials are shown in Table 8. 
There was a strong latency advantage for unambiguous words 
in this simulation, F(1, 79) = 707.77, MSE -- 200.19, and also a 
small advantage in percentage of errors, F(1, 79) = 30.42, 
M SE = 0.86. 

We monitored the activation in all three modules as the 
model moved toward a stable state in the meaning units. The 
progress over time in each module is shown in Figure 3, which 
reveals a number of interesting features of the model's 
behavior. First, the asymptotic activation of the two meanings 
of the ambiguous words, on average, was substantially below 
the maximum of 1.0. This result reflects the fact that on nearly 
92% of the trials involving ambiguous words, the meaning units 
settled into a state in which both meanings were partially 
activated (one more strongly than the other) but did not 
correspond to the meaning of any single word. Joordens and 
Besner (1994) referred to these states as blend states and 
considered them as errors in their simulation of the lexical- 
decision task. In the analysis of the simulation reported here, 
however, trials such as these were not considered errors. 

Our view is that blend states reflect the partial instantiation 
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Figure 3. Mean activation of orthographic (Orth.), phonological 
(Phon.), and meaning patterns (Mng.) of unambiguous (Unam.) and 
ambiguous (Ambig.) words as a function of update cycle in the 
distributed memory model. This figure shows the activation for both 
meanings of ambiguous words, one of which typically is more strongly 
activated than the other because of the random starting position of the 
network. Results are shown for all trials in which the meaning units 
reached a stable state within 1,000 updating cycles. 

of two different meanings of an ambiguous word. With no 
disambiguating contextual information, one meaning typically 
is more strongly activated on the basis of the random starting 
pattern of the meaning units. This meaning typically is pre- 
vented from achieving full activation, however, because the 
influence of orthographic units on the meaning units maintains 
partial activation of the alternative meaning. It might be 
argued that a blend should be considered an error because it 
amounts to an instantiation of an incoherent mixture of 
features (e.g., in the case of the word buck, a green piece of 
paper with antlers). This argument overlooks the natural 
coherence associated with the subsets of meaning units that 
instantiate the different meanings of an ambiguous word. 

The coherence we have in mind can be seen most easily in 
the case of a sparse representation of meaning, but we suspect 
the ideas apply to a full distributed representation as well. In 
sparsely coded representations, each semantic feature is repre- 
sented by a single unit, and the meaning of any single word 
involves activation of only a small subset of these units or 
features (e.g., Plaut & Shallice, 1993). An ambiguous word 
would have two (or more) such subsets of features associated 
with it (one subset for each distinct meaning), and each subset 
likely would partially be activated when the word's ortho- 
graphic pattern is presented. Having some members of each 
subset activated does not mean, however, that an incoherent 
blend arises. Rather, activated units within each subset cohere 
with one another by virtue of the relatively strong connection 
weights between them. Connection weights between units 
from different subsets would be weaker. Thus, the pattern of 
activated units and the connection weights within the meaning 
module provide a basis for segregating the different elements 
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of an ambiguous word's multiple meanings. Although we have 
not implemented a mechanism for separately accessing differ- 
ent subsets of units related to the different meanings of an 
ambiguous word, we expect that effective methods could be 
constructed on the basis of the coherence in these subsets. 

The functions in Figure 3 also indicate that the growth of 
activation of meaning for unambiguous words and for the more 
active of the two meanings of ambiguous words cross each 
other at an earlier point than was the case for the simulation of 
naming data, shown in Figure 1. Moreover, the initial discrep- 
ancy between the two ambiguous word meanings is smaller in 
Figure 3. These differences appear to be due to a selection 
artifact. The simulation of naming data produced a greater 
proportion of errors (failure to settle the phonological units 
before a deadline) than the simulation of gaze duration data. 
The typical naming error trial appears to have occurred when 
the initial state of the meaning units gave little or no activation 
advantage to one of the two meanings of an ambiguous word. 

Finally, it is clear that the advantage in accrual of activation 
associated with unambiguous words holds even before the 
meaning units reach asymptotic activation. Therefore, other 
methods of defining gaze durations that might be based on 
activation of meaning units would also yield an advantage for 
unambiguous words. 

Discussion 

The most impressive aspect of the simulation results is the 
fact that the distributed memory model was able to produce 
the pattern of ambiguity effects across three different para- 
digms, consisting of an ambiguity advantage (lexical decision), 
an ambiguity disadvantage (gaze duration during comprehen- 
sion), and no effect of ambiguity (naming). The simulation of 
these effects was achieved by adopting plausible criteria for 
defining the response on each task while holding basic param- 
eters of the model constant. The model's ability to accommo- 
date all three ambiguity effects might be interpreted as an 
example of a connectionist model that is too powerful to be 
meaningful, inasmuch as it is capable of generating any of the 
three possible ambiguity effects (Massaro, 1988). We contend, 
however, that the different criteria used to obtain simulations 
of the different tasks and the behavior of the model under 
these criteria reveal some useful principles regarding semantic 
ambiguity. 

The learning regimen we used was defined such that the 
presentation of an ambiguous word incorporated only one 
meaning of the word. Consequently, the meanings of ambigu- 
ous words in comparison to those of unambiguous words were 
necessarily more weakly represented both in the connection 
weights within the meaning module itself and in the connec- 
tion weights between the meaning module and the ortho- 
graphic and phonological modules. The differential represen- 
tation of ambiguous and unambiguous word meanings in the 
connection weights leads to an inherent advantage for unam- 
biguous words, as revealed in the simulation of gaze duration; 
the stable states associated with the meaning of unambiguous 
words were reached in fewer updating cycles. 

There is also a source of advantage for ambiguous words, 

however, that derives from the proximity effect pointed out by 
Joordens and Besner (1994). For an ambiguous word, two 
different patterns of activation in the meaning units are 
associated with a single orthographic pattern. When a word is 
presented for identification, the meaning units begin in a 
random pattern. On average, a random pattern of activation in 
the meaning units is more likely to be close to one of the two 
possible meanings of an ambiguous word than to the single 
meaning of an unambiguous word. It is this initial advantage 
that, in the distributed memory model, has the potential to 
generate an ambiguity advantage such as that observed in the 
lexical-decision task. 

Despite the success of the distributed memory model's 
simulation of ambiguity effects across three word identification 
paradigms, there were some aspects of the results that could be 
considered troublesome. Of primary concern is the fact that 
the relative amount of time taken by the model to perform the 
three different tasks, as measured in updating cycles, did not 
conform to the ordering of actual time to perform the tasks. 
Empirical data typically show that gaze durations are shorter 
than naming latencies, which are shorter than lexical-decision 
latencies. An examination of Table 8 reveals that the model 
produced the reverse ordering of tasks. Only in the case of the 
two variants of the lexieal-decision task were the overall task 
latencies ordered correctly by the model. 

We do not see this situation as fatal for the model for two 
reasons. First, the model is intended to capture only some of 
the processes required to complete the tasks in question. 
Other processes, not included in the model, would require 
additional time. In the case of lexical decision, for example, 
once the computed energy of the orthographic and meaning 
modules exceeds the criterion, a manual response must be 
prepared and executed. For the naming task, a vocal response 
must be initiated. In the case of gaze durations, the next eye 
movement must be made. We know very little about the time 
required for these different task components. Second, we have 
only intuition to guide us with respect to translating updating 
cycles into a measure of real time. We have assumed, for 
example, that updating cycles within each module takes the 
same amount of time and that the function relating updating 
cycles to real time is constant across tasks. Neither assumption 
is necessarily correct. For example, under a general capacity 
model (e.g., Just & Carpenter, 1992), it is possible that 
updating cycles might take longer when task demands are 
heavier. In the case of lexical decision, for example, it is 
assumed that participants must evaluate the familiarity of a 
stimulus. This evaluation is realized in the model by a time 
consuming computation of energy. In fact, although the model 
generated lexical decisions in fewer cycles than it required to 
produce a naming response, it actually took longer to compute 
the information needed to perform the former task. For these 
reasons, although we are confident in making within-task 
comparisons of latency results, we are much more tentative 
regarding arguments about cross-task comparisons of latency. 

A second concern about the model stems from the simula- 
tion of lexical decisions. We based decisions on the sum of 
energy in the orthographic and meaning modules, as shown in 
Figure 2. Energy in the orthographic module reached a much 
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larger (negative) asymptotic value for words than for nonwords 
and was responsible for the model's ability to discriminate 
between words and nonwords (see Table 9). The energy in the 
meaning module, however, accrued at a similar rate for words 
and nonwords. That is, despite presenting the model with an 
unknown orthographic pattern (even a purely random pattern 
in the case of the simulation of Experiment 4), the meaning 
units still moved into a basin of attraction, and energy among 
those units changed accordingly. The activation sent to mean- 
ing units by orthographic units in the case of nonwords is noisy 
and therefore exerts less influence on the meaning units than is 
the case for words. Unconstrained by a coherent orthographic 
or phonological message, the meaning units moved into the 
basin of attraction that was closest to the arbitrary starting 
pattern of those units. This situation would be akin to a 
participant thinking of the first word meaning that came to 
mind while viewing a nonword letter string. Our intuition is 
that although participants may engage in such behavior, it is 
unlikely to happen as early in the course of a lexical-decision 
trial as it did in the model. To prevent the model from 
engaging in this behavior, it might be necessary to allow activity 
in the orthographic and phonological units to influence the 
rate at which updating in the meaning units takes place. For 
example, the updating rate for meaning units might initially be 
very low but would increase as the energy in the orthographic 
or phonological modules grows, indicating that a potentially 
familiar stimulus has been presented. 

Although the details of the distributed memory model we 
used to generate the simulations reported here are unlikely to 
be entirely correct, we see merit in adopting as working 
hypotheses two ideas that are embodied in the model. First, 
the advantage of ambiguity springs from a short-lived proxim- 
ity advantage in the meaning units. Second, the disadvantage 
of ambiguity results from competition between the two mean- 
ings of an ambiguous word that are invoked by their shared 
orthographic and phonological patterns. This competition 
makes activation of one meaning of an ambiguous word less 
efficient, and even less likely, than in the case of an unambigu- 
ous word. 

Genera l  Discussion 

In Experiments I and 2 we examined the effects of semantic 
ambiguity (i.e., whether a word has one or more than one 
meaning) in a standard naming task. Although an advantage 
for naming ambiguous words has been reported by Balota et al. 
(1991), Fera et al. (1992), and Hino and Lupker (1993), we 
found no reliable advantage with either the Fera et al. items 
(Experiment 1) or our own (Experiment 2). Turning to the 
lexicai-decision task in Experiment 3, we found a significant 
ambiguity advantage, which served to replicate similar results 
reported by other researchers (e.g., Jastrzembskl, 1981; Jas- 
trzembski & Stanners, 1975; Kellas et al., 1988; Millis & 
Button, 1989; Pugh et al., 1994; Rubenstein et al., 1970, 1971). 
In Experiment 4, we tested the Kawamoto et al. (1994) 
assumption that the locus of the ambiguity advantage in lexical 
decision is at the orthographic level of processing. We used 
orthographically illegal nonwords that could be more quickly 

and easily discriminated from the word stimuli, thus encourag- 
ing a more rapid and, arguably, a less conceptually influenced 
lexical decision. Contrary to the Kawamoto et al. assumption, 
there was no reliable ambiguity advantage under these circum- 
stances. 

A necessary caveat, however, concerns the robustness of the 
semantic ambiguity advantage observed in the lexical-decision 
task. Despite careful, item-by-item matching of ambiguous and 
unambiguous words on a variety of word characteristics, the 
potential remains for incorrectly concluding that an ambiguity 
advantage exists in lexical decision and similarly for the null 
effect of ambiguity in naming. This is so because we cannot be 
exhaustive with respect to the variables on which the items are 
matched. Previously unidentified variables that affect word 
identification performance will continue to appear in the 
literature, potentially compromising the robustness of any 
between-stimuli effect (e.g., word frequency, semantic or 
phonological ambiguity, neighborhood density, and so forth). 
For example, had we not collected subjective familiarity 
ratings (following Gernsbacher's, 1984, demonstration of a 
confound between familiarity and ambiguity) and considered 
them for inclusion in our regression analyses, we would have 
concluded that there is no reliable unique effect of ambiguity 
(by items) on response latency in the lexical-decision task. 
Thus, it remains to be seen whether the ambiguity advantage 
that we observed in the lexical-decision task (and, for that 
matter, the lack of an ambiguity effect in naming) will prevail 
when future word identification variables are taken into 
consideration. 

A simulation of the naming task used in Experiments I and 2 
demonstrated the ability of the distributed memory model to 
simulate the empirical observation of no ambiguity advantage 
in word naming. The same model successfully simulated the 
lexical-decision task and the empirical observation of an 
ambiguity advantage in this task by tracking how close the 
network is to a known or familiar state (i.e., energy) when 
presented a letter string and by imposing a criterion that 
served to distinguish words from nonwords. The distributed 
memory model also captured the empirical observation of no 
reliable ambiguity advantage when orthographically illegal 
nonwords are used. Finally, the ambiguity disadvantage on 
gaze duration that is seen when participants are asked to read 
for comprehension (Duffy et al., 1988; Rayner & Duffy, 1986; 
Rayner & Frazier, 1989) was also accommodated by this 
model. Thus, a version of the distributed memory model 
common to all of these simulations was successful in accommo- 
dating (a) the absence of an ambiguity effect in naming 
performance, (b) the ambiguity advantage seen in lexical- 
decision performance, and (c) the ambiguity disadvantage 
seen in gaze duration during reading for comprehension. We 
acknowledge, however, that modeling semantic ambiguity 
effects is a dynamic process itself. As we have demonstrated in 
this article, there is a high degree of flexibility in distributed 
models that will permit one to accommodate an increasingly 
complicated set of empirical findings. We are not espousing 
the distributed memory model here as the final model of 
semantic ambiguity effects. Instead, we have provided a 
general solution in response to a general problem that was 
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pointed out by Joordens and Besner (1994) and have extended 
the model to accommodate existing semantic ambiguity effects. 

The distributed memory model also generates some interest- 
ing, and testable, predictions about semantic ambiguity. In 
general, the model predicts a potential ambiguity advantage 
whenever the task requires a judgment that can be made on the 
basis of familiarity with the stimulus (e.g., the lexical-decision 
task used in Experiment 3 and perhaps the "semantic access" 
task used by Pugh et al., 1994, in which participants were asked 
to press a button when any meaning of the target word has 
come to mind). However, the distributed memory model 
predicts an ambiguity disadvantage whenever the task requires 
settling on a particular meaning of a word (e.g., the studies 
reviewed earlier involving gaze duration during reading for 
comprehension) or on a subset of a word's semantic features. 
For example, a classification task requiring living-nonliving 
judgments would be simulated by requiring an appropriate 
subset of the meaning units to settle. This settling would be 
achieved sooner in the case of an unambiguous word (just as 
full settling occurs sooner for an unambiguous word). It 
remains for future research to determine whether this predic- 
tion will be borne out by the data. 

An alternative account of the present data concerns the 
similar null effects of ambiguity in both the naming task and 
the lexical-decision task with orthographically illegal non- 
words. It could be argued that both of these tasks yielded null 
effects of ambiguity because participants did not have to carry 
out conceptual processing and that both tasks could be 
simulated without any contribution of conceptual processing. 
Although this account is parsimonious in that it appeals to a 
common process to accommodate the absence of ambiguity 
effects in these two tasks, it fails to account for other empirical 
observations in both of these tasks. First, Joordens and Besner 
(1992) have reported a small, but significant, effect of semantic 
priming over an intervening word in a rapid, continuous 
naming task. If there were no conceptual processing during the 
naming task, then such an effect could not exist. Furthermore, 
it is difficult to account for this priming effect with a nonseman- 
tic mechanism, say, by direct associative links between repre- 
sentations at a subsemantic level because of the fact that this 
priming effect occurs over an unrelated intervening word. 
Second, in our Experiment 4 data (lexical decision with illegal 
nonwords), we found a significant, albeit reduced, correlation 
between response latency and word frequency, a variable that 
has been argued to reflect semantic-level processing in the 
lexical-decision task (Borowsky & Besner, 1993). Thus, it 
appears that at least some degree of conceptual processing was 
occurring during both of these tasks, and our simulations 
reflect this view. 

Another model that appeared to be promising with respect 
to simulation of the ambiguity advantage in lexical decision 
and the ambiguity disadvantage in gaze duration during 
reading for comprehension was that of Kawamoto et al. (1994). 
However, how would this model handle the lack of any effect of 
ambiguity in naming? A logical extension of the Kawamoto et 
al. model to handle the naming task would incorporate a set of 
phonological units. Word naming would be simulated on the 
basis of activation in the phonological units (Kawamoto, 1993). 
Because the phonology of a semantically ambiguous word is 

consistent regardless of its multiple meanings, although the 
connections between phonology and meaning are not, the 
error-correction learning algorithm will serve to compensate 
for inconsistency by increasing the influence from consistent 
sources. Thus, the weights connecting phonological units will 
be more influenced by the pattern of activation for an 
ambiguous word than for an unambiguous word. In fact, the 
Kawamoto et aL model makes a straightforward prediction 
regarding performance on any task that requires a consistent 
response to be made to an ambiguous word (e.g., naming and 
lexical decision). Such tasks will yield a processing advantage 
for ambiguous words at the level where the consistency occurs: 
the phonological level during the naming task and the ortho- 
graphic level during the lexical-decision task. As long as the 
level that is monitored for the response is the level where the 
consistency occurs, an ambiguity advantage in performance 
will result. On the other hand, if the level that is monitored for 
the response is, instead, where an inconsistency in processing 
occurs (e.g., the conceptual level during reading for comprehen- 
sion), an ambiguity disadvantage in performance will result. 
Nonetheless, if we are correct in concluding that there is no 
ambiguity processing advantage during word naming, then it is 
clear that the Kawamoto et al. model does not adequately 
capture the full range of ambiguity effects discussed in this 
article. 

One solution to the problem inherent in assessing the 
between-stimuli effect of semantic ambiguity is to create an 
analogous within-stimuli manipulation of semantic ambiguity. 
If an orthographically legal and pronounceable nonword (e.g., 
gr/ck is considered) as a potential noun that can arbitrarily be 
mapped to one concept (unambiguous) or multiple concepts 
(ambiguous), then a manipulation of semantic ambiguity 
within-stimuli is conceivable. 6 For example, in a learning phase 
a participant could be asked to consider the concept of broken 
glass and to associate the orthographic pattern grick to this 
concept. A researcher could be reasonably certain that grick 
would unambiguously represent the concept of broken glass 
for that participant. On the other hand, if the participant is 
later asked to consider another concept, say, a pile of leaves, 
and is also asked to associate that concept also to the 
orthographic pattern gr/ck, a researcher could be reasonably 
certain that grick would now ambiguously represent both the 
concept of broken glass and the concept of a pile of leaves. 
After the learning phase, the participant's word identification 
performance could then be tested in any one of the tasks that 
have been discussed in this article. If our conclusions from the 
present experiments are correct, then the same pattern of 
word identification performance should also be obtained in 
this paradigm. 

6 We note that other researchers have had ideas along this line. D. 
Besner and S. Joordens (personal communication, November 18, 
1994) have proposed a similar experiment. Also, Rueckl and Olds 
(1993) have conducted a similar learning study but did not examine 
lexical decision or naming performance. They did find, however, that 
there was no ambiguity effect on identification accuracy (response 
latency was not a dependent measure in their experiments). 
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Appendix 

Characteristics of Ambiguous (A) and Unambiguous (U) Words Used in Experiment 2 

No. of 
Orthographic higher 

Orthographic Phonological Word Familiarity Word neighborhood frequency 
Word error score error score frequency rating length density neighbors 

A U A U A U A U A U A U A U A U 

ace ate 4.76 4.93 6.90 5.70 15 16 4.63 6.63 3 3 12 10 5 2 
bat bet 3.76 5.10 3.72 2.89 18 20 5.05 5.05 3 3 23 22 13 12 
bluff bloat 8.64 8.60 4.65 5.75 8 8 3.47 3.95 5 5 2 4 0 0 
bolt bite 10.19 6.76 4.83 3.22 10 10 3.95 5.74 4 4 10 15 0 5 
boot buzz 5.18 11.51 3.07 2.77 13 13 5.84 4.42 4 4 12 14 2 7 
bowl bend 6.92 4.53 3.58 4.81 23 24 6.16 5.26 4 4 5 2 0 1 
buck bold 5.08 3.71 3.54 2.75 20 21 4.58 4.53 4 4 17 11 3 1 
charge chance 6.04 3.88 3.85 3.12 122 131 5.11 5.84 6 6 12 5 3 0 
chest chain 5.23 3.52 4.42 2.74 53 50 5.58 4.79 5 5 6 6 0 4 
coast curve 4.44 3.97 3.66 2.59 61 45 5.53 5.26 5 5 10 7 2 3 
dash duke 8.17 11.26 4.84 6.54 I1 11 3.84 2.95 4 4 20 13 4 3 
date deep 6.09 5.51 2.79 3.09 103 109 5.89 6.11 4 4 16 9 8 3 
deck disk 4.05 4.95 2.83 3.27 23 25 4.79 5.53 4 4 19 17 5 7 
draft drain 5.94 4.51 3.98 3.27 24 18 4.58 5.00 5 5 4 9 1 0 
drag dish 3.52 5.05 3.04 3.81 15 16 4.11 6.37 4 4 16 6 5 2 
duck dusk 5.20 8.38 3.26 3.74 9 9 5.00 4.37 4 4 8 15 2 5 
field force - -  3.42 - -  2.80 274 230 5.21 5.00 5 5 15 16 5 7 
fine fear 4.34 3.83 3.03 3.17 161 127 6.00 6.21 4 4 12 14 0 1 
foil fame 6.73 5.01 3.61 2.96 20 18 3.53 4.84 4 4 8 4 4 1 
grade grown 4.67 5.30 2.73 3.16 35 43 6.32 5.26 5 5 6 5 4 0 
grave grain 5.41 4.25 3.69 3.51 33 27 4.74 4.74 5 5 9 20 1 6 
hail hunt 4.34 5.46 3.73 4.65 10 10 3.74 4.74 4 4 17 6 4 1 
hog hug 7.64 6.68 7.55 4.54 3 3 3.89 6.00 3 3 17 9 5 2 
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Orthographic Phonological 
Word error score error score 

A U A U A U 

Orthographic 
Word Familiarity Word neighborhood 

frequency rating length density 

No. of 
higher 

frequency 
neighbors 

A U A U A U A U A U 

hound hitch 7.57 7.96 5.69 4.77 
jerk jolt 22.99 15.80 7.66 9.74 
joint jump 11.46 4.92 5.56 3.17 
land love 3.77 4.57 3.27 2.61 
lean loud 4.98 8.46 5.28 5.38 
light large 3.38 4.80 2.64 3.64 
loaf lint 19.11 4.68 5.03 3.34 
match meat 4.35 3.89 2.72 2.87 
mint maze 6.01 5.79 3.04 2.85 
miss mind 4.16 3.92 2.53 2.82 
palm plug 6.20 4.75 8.23 3.62 
pet pig 8.47 6.41 3.93 3.53 
pound pond 7.75 7.33 4.12 3.39 
punch plumb 7.65 24.18 5.25 4.13 
ram rum 5.21 8.34 2.87 3.14 
rock rain 4.70 3.62 2.79 2.75 
roll rice 3.39 5.18 2.85 2.94 
row rev 4.30 10.06 5.63 4.00 
sack sane 6.73 6.57 4.06 3.65 
screen stream 6.69 4.00 2.55 5.05 
seal soup 4.17 11.74 3.15 6.20 
shed shoe 8.49 5.77 3.60 8.27 
sink soap 3.97 5.95 3.16 4.51 
spade steak 11.57 5.01 3.00 9.75 
spring spent 5.64 4.87 3.27 4.00 
stall steam 5.87 4.21 6.71 4.67 
star stuck 4.49 6.26 3.66 3.28 
steer stack 8.22 4.43 3.48 3.95 
stick stuff 8.20 6.00 4.68 4.19 
strike strife 4.96 7.73 3.5 5.04 
strip storm 7.53 5.35 3.78 4.20 
swamp sworn 9.94 12.94 9.46 6.03 
switch swept 5.13 4.71 3.05 2.88 
tag tee 5.17 4.67 3.24 5.20 
tick turf 7.65 18.51 3.46 5.40 
tip tea 3.72 5.69 3.51 5.75 
tire tent 4.52 5.49 3.28 2.97 
type town 6.43 3.33 2.87 2.63 
vault valve 24.19 9.95 8.34 7.33 
wake wash 3.73 4.59 2.91 3.15 
watch worth 3.54 3.26 2.82 2.75 

Mean 6.70 6.50 4.09 4.13 

7 5 3.53 3.53 5 5 9 9 1 3 
2 4 5.32 3.37 4 4 16 7 3 0 

39 24 4.63 6.42 5 4 5 6 3 2 
217 232 6.00 6.84 4 4 9 4 0 0 

20 20 4.37 6.47 4 4 6 4 0 2 
333 361 6.63 6.63 5 5 13 5 6 1 

4 4 5.05 4.21 4 4 18 9 3 2 
41 45 5.42 6.26 5 4 16 2 5 2 

7 6 5.47 4.05 4 4 21 2 4 0 
258 325 5.58 6.16 4 4 2 3 1 1 
22 23 4.32 5.26 4 4 9 7 2 2 

8 8 5.84 5.47 3 3 12 10 3 4 
28 25 5.42 4.68 5 4 4 5 0 0 

5 5 4.89 3.21 5 5 13 17 3 6 
2 3 3.26 4.79 3 3 10 9 2 1 

75 70 6.21 6.89 4 4 10 6 2 2 
35 33 5.37 5.74 4 4 8 9 7 3 
35 33 5.84 2.32 3 3 2 8 0 2 

8 8 4.47 4.79 4 4 10 4 3 0 
48 51 4.84 4.68 6 6 6 15 3 8 
17 16 4.26 6.00 4 4 9 4 2 1 
11 14 4.74 6.79 4 4 22 17 15 7 
23 22 5.79 6.32 4 4 17 15 9 9 
10 10 2.89 5.63 5 5 14 22 7 10 

127 104 5.68 5.63 6 5 3 3 0 0 
18 17 4.00 5.16 5 5 8 4 3 0 
25 23 5.74 4.95 4 5 9 18 1 4 
9 9 4.47 4.37 5 5 6 11 3 3 

39 32 5.42 5.89 5 5 10 5 1 1 
6 6 4.89 3.05 6 6 9 7 2 2 

30 26 4.68 6.05 5 5 4 6 1 2 
5 5 3.89 4.32 5 5 5 4 0 1 

43 34 4.84 4.58 6 5 25 20 6 10 
5 5 4.74 2.89 3 3 17 17 3 8 
3 3 3.58 3.53 4 4 6 9 0 1 

22 28 5.58 6.32 3 3 4 7 1 1 
22 20 5.63 5.37 4 4 9 4 0 1 

200 212 5.79 5.89 4 4 4 5 0 0 
2 3 3.32 3.89 5 5 12 16 1 0 

23 37 5.79 6.47 4 4 14 12 0 3 
81 94 6.11 5.32 5 5 17 13 6 1 

46 46 4.94 5.14 4.4 4.3 10.9 9.4 2.9 2.8 

Note. Dashes indicate error scores were not available. 
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