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Abstract – Recently, the use of linkage disequilibrium (LD) to locate genes which affect
quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping
using linkage disequilibrium techniques for QTL has not been well studied. The main objectives
of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby
markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in
simulated populations using a dense map of multiallelic or biallelic marker loci. The test of
association between a marker and QTL and the power of the test were calculated based on single-
marker regression analysis. The results show the presence of substantial linkage disequilibrium
with closely linked marker loci after 100 to 200 generations of random mating. Although the
power to test the association with a frequent QTL of large effect was satisfactory, the power was
low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods
may be required to map low frequent QTL with small genetic effects, as well as combining
both linkage and linkage disequilibrium information. The results also showed that multiallelic
markers are more useful than biallelic markers to detect linkage disequilibrium and association
at an equal distance.

linkage disequilibrium / quantitative trait locus / fine mapping

1. INTRODUCTION

Linkage disequilibrium (LD), or nonrandom allelic association between loci,
has been used to locate simply-inherited Mendelian disease genes in human
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populations [8,16,17]. More recently, there has also been an increasing interest
in using LD for fine mapping of complex disease genes [15,28,33,36] and
quantitative trait loci (QTL) [4,24,27,31]. For details on the use of LD in
mapping disease genes the reader is referred to the reviews by Pritchard and
Przeworski [26] or by Jorde [15].

Linkage disequilibrium can be potentially useful but has been less studied
for quantitative traits. It is problematic for quantitative traits because they
are influenced by environmental factors. As for most putative genes, QTL
genotypes are not known. Therefore, information on the QTL has to be
inferred using phenotypic data and marker genotypes. In addition, genetic
heterogeneity, i.e., multiple mutations at the functional locus, has not been
widely considered in usual LD mapping methods.

Linkage analysis, which is based on following the cosegregation of marker
and phenotypic data through a pedigree, is often used to localise genes within
several centimorgans. The main advantage of LD mapping over linkage
analysis is that it makes use, in principle, of all historical recombinations
in populations of unrelated individuals, giving more precise estimates of gene
location. For the purpose of gene mapping, an ideal measure of LD is one that
is a monotone decreasing function of recombination distance and that is robust
to departures due to random drift. It is well known, however, that the pattern
of LD may be extremely variable due to the history of recombination and to
the history of mutations and it is the variability due only to recombination
history that is useful for mapping purposes [25]. Spurious LD can also occur
due to population admixture and, more importantly, the region of highest
association with the trait may not necessarily be the one that contains the
causal mutation.

The main objectives of this study were to measure the extent and pattern of
LD and assess its usefulness for fine-scale mapping of quantitative trait loci in
simulated populations. We used single-marker regression analysis to detect the
association between marker loci and the QTL.

2. MATERIALS AND METHODS

2.1. Simulations

Simulations were carried out based on two extreme scenarios. The first
(LD scenario) assumes that at some point in the history of the population a
mutation in a quantitative trait locus occurred in one haplotype of a single
individual. This results in a complete initial linkage disequilibrium between
the QTL locus and other loci in the region. The second scenario assumes initial
linkage equilibrium in the base population (LE scenario) between the QTL and
markers as well as between markers. Note that the LE scenario is equivalent to
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having many origins of the same mutation and then differential amplification
due to genetic drift. The first model is the simplest and most frequently used in
human genetics epidemiological studies. Real situations most likely will fall
in between these two extreme models.

Initially, we considered an 18 cM chromosomal region with 40 markers and
a biallelic QTL in a base population (G0) of 500 individuals. We then confined
our analyses to a 3 cM region with the QTL and 30 equally spaced markers
because the regression P-value was very rarely significant beyond 3 cM. We
also considered populations of 100 and 200 individuals. The case of 100
individuals resulted in high rates of allele fixation, and therefore it was not
possible to get enough replicates in a reasonable computing time.

Two types of markers were considered: biallelic (SNP) and multiallelic
(MST) markers. In G0, each MST marker had five alleles at equal frequen-
cies. An initial allele frequency of 0.5 was used for SNP markers. Two
hundred generations of intermating were simulated. Haplotypes for offspring
were simulated by choosing parents at random and allowing individuals to
inherit recombinant or non-recombinant haplotypes based on Mendel’s laws
and recombination probabilities. The MST marker alleles were allowed to
mutate at a rate of 10−4 per generation using a stepwise mutation model, i.e.,
an allele increased or decreased its count by one. Mutation was assumed
negligible for SNP.

In the LD scenario, a single allele was simulated for the QTL in G0 and 100
generations later (G100) a QTL mutation with a positive effect on the trait was
introduced in one haplotype of a single individual. A slight selective advantage
was conferred to the mutated haplotype for a few generations such that the
expected QTL frequency was 0.02 in the first 10 generations after the mutation.
This was done to ensure that not many simulations are lost due to the rapid loss
of QTL alleles as a result of genetic drift. In later generations (G111–G200),
haplotypes of progeny were inherited at random from the population. In the
LE scenario, QTL and marker loci in G0 were simulated, assuming a linkage
equilibrium with a QTL frequency of 0.20 for the allele with a positive effect
on the trait.

The simulation procedure used here is based on the gene dropping
method [22]. Other simulation methods based on the coalescent theory can
be used [5,14,37,40]. However, these methods are complex especially for
multiple markers. Importantly, simulations, as herein, allow us to assess the
variability of LD across different conceptually repeated populations.

The simulations were discarded when in any generation fixation occurred
for QTL alleles or any of the markers. Simulations were classified based on
QTL frequency in the last generation (G200). The lowest number of replicates
for any class was 700 with a total of 10 000 simulations required in G200 for
the LD scenario and 6000 for the LE scenario.
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The phenotype, y, of the quantitative trait for an individual was simulated
as y = g + e, where g is the additive genetic value of the QTL genotype of the
individual and e is an environmental value drawn from a normal distribution
with a mean of 0 and variance of 1.0. Following Falconer and Mackay [3], for
a QTL locus with two alleles, Q and q, and an additive QTL effect equal to a (in
standard deviations), the genetic values of the genotypes QQ, Qq, and qq are
a, d, and −a, respectively. The additive genetic variance explained by the trait
locus is 2p(1 − p)a2 where p is the frequency of the QTL. We evaluated three
values for a, namely 1.0, 0.5, and 0.25 sd with d = 0 (assuming no dominance
effects on the trait) in all cases.

2.2. Linkage disequilibrium measures

Measures for the estimation of linkage disequilibrium were the standardised
disequilibrium coefficient D′ [9], and the squared correlation of allele frequen-
cies, r2 [11,12,34]. These two measures of LD are widely used in the literature
e.g. [2,25]. According to Hill and Weir [12], r2 is the most often used measure
of LD. Furthermore, D′ and r2 are easily calculated for multiallelic loci.

For two multiallelic loci A and B, D′ and r2 are obtained as:

D′ =
∑

i

∑

j

piqj|D′
ij|,

where pi and qj are the population allele frequencies of the ith allele on locus

A and the jth allele on locus B. D′
ij = Dij

Dmax
is the Lewontin normalised LD

measure [19], where Dij = xij − piqj, and xij is the frequency of the haplotype
with alleles i and j on loci A and B, respectively. Dmax = min[piqj, (1−pi)(1−
qj)] when Dij < 0, and min[pi(1 − qj), (1 − pi)qj] when Dij > 0. The squared
correlation of allele frequencies is calculated as:

r2 =
∑

i

∑

j

D2
ij

piqj
·

2.3. Regression analysis

The measure of LD for quantitative traits is a measure of association. Here
we used regression analysis to test for association because it is simple and
has well characterised statistical properties. The phenotypic trait value yi of
individual i was regressed on the number of copies xij of allele j of marker M
according to the regression model:

yi = µ +
∑

j

bjxij + ei,
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where µ = the population mean of the quantitative trait, bj = the regression
coefficient on allele j of marker M, and ei = the residual error for i = 1 to the
number of individuals and j = 1 to the number of alleles. The F-statistic to test
the significant association of marker M with the QTL was obtained by testing
the above model against the model yi = µ + ei, i.e., we tested the overall
association of marker alleles on the trait. The corresponding P-values (the
probability of an F-value as large or larger than the observed F-statistic given
the null hypothesis of no association, [35]) were obtained using the appropriate
degrees of freedom.

The power to map the QTL within a given interval (0.5, 1.0, and 1.5 cM)
was calculated as the proportion of replicates where at least one single-marker
analysis showed a significant (P-value < 0.05) association with the trait locus.

3. RESULTS AND DISCUSSION

3.1. LD Pattern

Average values of D′ and r (
√

r2) between the QTL and microsatellite
markers are plotted as a function of genetic distance and class of QTL frequency
(Fig. 1). The decay of linkage disequilibrium by recombination distance is
evident. This decay is slower for classes with a low QTL frequency. The
results were similar for biallelic markers (data not shown). However, mean
values of r were smaller for biallelic markers than for MST due to differences
in allele frequencies.

Both D′ and r depend on QTL frequency but the behaviour of D′ as a function
of QTL frequency was opposite to that of r. This occurs because D′ and r weigh
allele frequencies inversely. It has been indicated by other researchers [2,
6,9] that, unlike D′, other measures of LD, including r2, depend on allele
frequency. Lewontin [20], however, argued that even D′ is not independent
of gene frequency and that there are generally no gene frequency independent
measures of association between the loci. Nordborg and Tavaré [25] showed
that measures of LD including D′ depend on the frequencies of the markers
and the disease gene. They further argued that this frequency-dependence is
best viewed as age-dependence; the more frequent an allele, the older it is.

Table I shows the percentage of replicates where maximum LD between
QTL and markers was within 0.5, 1.0 and 1.5 cM. Frequency of maximum
LD increased as QTL frequency increased for both D′ and r2, indicating
that the accuracy of LD mapping is very sensitive to QTL frequency, the
more extreme the QTL frequencies the less accuracy is to be expected. For
MST, the maximum disequilibrium was higher when measured by D′ compared
to r2 but the opposite was generally true for SNP. This may be irrelevant for
QTL mapping because information on QTL alleles is usually absent, but it
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Table I. The frequency (%) that the maximum disequilibrium was with the marker within a specified distance in the linkage disequilibrium
(LD) scenario. The base population (G0) was simulated assuming linkage equilibrium. A QTL mutation was introduced in G100. The
results are from generation 100 after the introduction of a QTL mutation (G200).

Distance
(cM)

Marker
type

QTL frequency (P)

0 < P < 0.05 0.05 < P < 0.1 0.1 < P < 0.15 0.15 < P < 0.2 P > 0.2

0.5 MST 1 D′ 49.6 78.0 87.5 90.6 92.3

r2 44.4 60.5 72.5 79.6 85.3

SNP 2 D′ 30.7 54.1 61.1 66.9 72.2

r2 37.0 52.6 60.6 64.7 80.1

1.0 MST D′ 69.3 90.2 95.3 97.7 97.7

r2 63.4 80.6 88.7 92.9 97.7

SNP D′ 51.6 73.1 78.9 85.0 86.7

r2 59.3 72.9 81.3 86.0 95.2

1.5 MST D′ 80.4 94.9 97.4 98.6 98.9

r2 75.8 89.2 94.3 97.4 99.2

SNP D′ 66.1 83.8 88.7 92.9 92.2

r2 73.6 86.2 90.8 92.7 97.7
1 multiallelic markers; 2 biallelic markers.
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Figure 1. Mean values of D′ and r = √
r2 between the QTL locus and 30 multiallelic

marker loci as functions of the distance and QTL frequency in G200 in the LD (linkage
disequilibrium) scenario. QTL mutation introduced in G100. Population size = 500
individuals.

is useful for mapping genes affecting simply-inherited Mendelian traits. The
frequency of maximum LD was consistently higher for MST compared to
SNP. This was in agreement with the results by others [10,30] who found that
the statistical power to test disequilibrium increased as the number of marker
alleles increased.

Results for the LE scenario are in Figure 2 and Table II. Because QTL
frequency in G200 was generally higher in the LE scenario, some of the QTL
classes were different from the LD scenario. Trends in the LD measures
for the LE scenario were similar to the LD scenario: power increased with
less extreme QTL allele frequencies. For the same frequency classes, the
levels of D′ in G200 were lower in the LE scenario compared to the LD
scenario for both MST and SNP. In the LE scenario, unlike the LD scenario,
the frequency of maximum disequilibrium measured by r2 was higher than
that measured by D′. This suggests that the optimum linkage disequilibrium
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Table II. The frequency (%) that the maximum disequilibrium was with the marker within a specified distance in the linkage equilibrium
(LE) simulation scenario. The base population (G0) was simulated assuming linkage equilibrium with a QTL frequency of 0.2. The
results are from generation 200 (G200).

Distance
(cM)

Marker
type

QTL frequency (P)

0 < P < 0.1 0.1 < P < 0.15 0.15 < P < 0.2 0.2 < P < 0.3 P > 0.3

0.5 MST 1 D′ 63.1 80.7 80.2 83.1 87.0

r2 68.2 83.7 88.4 87.2 92.1

SNP 2 D′ 40.8 56.2 58.0 62.5 64.1

r2 51.0 58.7 66.1 71.5 73.9

1.0 MST D′ 79.5 90.8 93.6 94.2 95.7

r2 84.4 95.0 97.7 97.6 98.6

SNP D′ 58.0 74.8 73.9 79.8 79.3

r2 70.8 77.8 90.1 89.0 90.3

1.5 MST D′ 87.3 95.2 95.8 96.8 97.7

r2 91.8 97.8 98.8 98.8 99.8

SNP D′ 70.9 83.6 83.2 86.9 86.9

r2 81.2 86.1 97.0 96.3 96.1
1 multiallelic markers; 2 biallelic markers.
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Figure 2. Mean values of D′ and r = √
r2 between the QTL locus and 30 multiallelic

marker loci as functions of the distance and QTL frequency in G200 in the LE (linkage
equilibrium) scenario. The base population (n = 500) was simulated assuming linkage
equilibrium.

measure for mapping single disease genes with complete penetrance may
depend on the genetic heterogeneity of the trait: D′ may be better than r2

in the usual LD model, whereas r2 may be preferred if there are several original
mutations.

Measures of linkage disequilibrium usually have high variability [9,12,13,
39]. The variances of D′ and r between the QTL and MST markers are plotted
in Figure 3 as functions of distance and QTL frequency. The variance of D′
was low for markers close to the QTL then increased up to 1 cM and slowly
decreased afterwards except when QTL frequency was less than 0.05 where
the variance continued to increase. The explanation for the behaviour of this
class is not evident to us. The variance of r had a more stable behaviour, and
it monotonically decreased as the distance from the QTL increased with no
differences among classes of QTL frequency, i.e., the variance of r was less
influenced by the QTL frequency. Note that the variance of D′ was larger than
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Figure 3. Variances of linkage disequilibrium measures as functions of marker dis-
tance and QTL frequency in G200 in the LD (linkage disequilibrium) scenario using
multiallelic markers.

the variance of r except for markers very close to the QTL. These observations
indicate that r is more stable and more consistent than D′. It is difficult
to explain the variation in LD measures as these are potentially affected by
several factors including sample size, allele number and allele frequency [39].
In any case, the overall decrease in variance as we move away from the QTL
makes sense because it is expected that LD decreases with distance and there
will be less uncertainty about this decrease when the marker is located farther
away.

3.2. QTL Mapping

Figure 4 presents mean significance levels (P-values) for the F-statistic
to test the association between the multiallelic marker loci and QTL for
the LD scenario. On average, P-values decreased as the distance from the
QTL decreased indicating a higher significant association. Mean P-values
also decreased as the QTL frequency and QTL effect increased, showing that
the power and accuracy of LD mapping will be higher when the QTL allele
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Figure 4. Mean P-values for the test of the association between QTL and multiallelic
markers as a function of distance and QTL frequency in G200 in the LD (linkage
disequilibrium) scenario for QTL effects of 1.0 sd (A), and 0.25 sd (B). Population
size = 500.

frequencies are moderate than when they are extreme, which is in agreement
with the results from the previous section. Multiallelic markers showed lower
mean P-values (i.e. more significant) compared to biallelic markers (data not
shown).

Table III shows the power to map the QTL within 0.5, 1.0, and 1.5 cM from
its true position by the class of QTL frequency in G200 for the LD simulation
scenario. The power increased as a function of the QTL effect and frequency.
For a QTL with an effect of 1 sd and using multiallelic markers, in 95.1% of
the replicates the most significant association was with a marker within 1 cM
from the true position of the QTL when the QTL frequency exceeded 0.20
(heritability > 0.25). The percentage was equal to 44.1 when QTL frequency
was less than 0.05 (heritability < 0.10). For a QTL of 0.25 sd, the percentage
decreased to 55.7% for QTL frequency > 0.20 (heritability > 0.075) and
21.6% for QTL frequency < 0.05 ( heritability < 0.025).
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Table III. The power (%) to map a QTL within a specified distance using multiallelic (MST) and biallelic (SNP) markers in the linkage
disequilibrium (LD) scenario. The base population (G0) was simulated assuming linkage equilibrium. The QTL mutation was introduced
in G100. The results are from generation 100 after introduction of the QTL mutation (G200).

Distance
(cM)

Marker
type

QTL
effect

QTL frequency (P)

0 < P < 0.05 0.05 < P < 0.1 0.1 < P < 0.15 0.15 < P < 0.2 P > 0.2

0.5 MST 1.0 29.1 54.3 68.1 76.4 81.8
0.5 17.2 37.2 55.4 63.1 76.9

0.25 11.4 18.0 27.0 31.1 38.2
SNP 1.0 20.4 40.9 54.7 63.4 73.3

0.5 16.0 30.7 41.2 49.8 63.7
0.25 10.3 13.8 21.6 30.8 36.8

1.0 MST 1.0 44.1 73.6 84.9 90.7 95.1

0.5 28.8 54.0 70.4 79.3 91.1
0.25 21.6 29.7 37.7 45.5 55.7

SNP 1.0 36.1 60.1 75.5 81.4 93.0
0.5 28.6 47.6 61.4 72.2 80.4

0.25 23.1 25.8 39.9 49.3 49.2
1.5 MST 1.0 54.7 84.4 90.9 95.0 98.0

0.5 38.5 64.7 80.2 85.9 94.4
0.25 31.0 37.8 49.0 56.1 66.1

SNP 1.0 49.0 75.3 85.9 90.8 95.9
0.5 40.1 59.5 72.5 81.8 88.2

0.25 33.8 38.3 54.8 64.5 64.2
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For the LE scenario, the trends in mean P-values (not shown) and power
(Tab. IV) as a function of the QTL effect and frequency were similar to those
of the LD scenario. For the same QTL frequency, the power was higher in
the LE scenario than in the LD scenario when using MST but was similar for
SNP. This is interesting because it is usually assumed that LD mapping will be
more useful when there is a single founder haplotype. This occurred because
in the LE scenario there was probably more than one allele in association with
the trait locus. Note that we did not test the association of a particular allele
to the trait but, rather, the global association between all marker alleles and the
trait. Thus, in the LD scenario we expect that a single allele is associated with
the trait, making the other allele effects “blur” the global marker association.
In contrast, in the LE scenario it may well happen that more than one allele
become correlated with the trait. This is true for multiallelic markers. For
biallelic markers, the test reduces to that of a single allele which explains why
there was no difference between the two scenarios in the case of SNP.

We have seen that power increases with less extreme QTL frequencies; this
is logical because, other things being equal, the proportion of the phenotypic
variance explained by the QTL (i.e. heritability) increases at intermediate fre-
quencies. However, the increase in power may not be only due to the increase
in heritability. The proportion of maximum disequilibrium also increased with
an increased QTL frequency (Tabs. I and II) which may have resulted in an
increased power. Abecasis et al. [1] found that the power to detect LD increased
as the trait allele frequency increased but the power was maximum when the
trait locus and marker allele frequencies were similar. Luo et al. [21] compared
regression, ANOVA, and maximum-likelihood analyses to detect LD between
a marker locus and QTL in samples from a random mating population. They
found that, given the genetic variance explained by a trait locus, the power of
regression and ANOVA tests is relatively independent from the allele frequency.
They also suggested that the regression model is the preferred test as far as the
power is concerned.

Mapping power using MST markers was higher than when using SNP. Power
is expected to increase as the number of marker alleles increases because larger
degrees of freedom are expected under the multiple marker allele model [21].
The great advantage, of course, of single nucleotide polymorphisms is that they
are much more abundant than highly polymorphic markers like microsatellites.
This result was based on a single marker analysis. The problem of the low
information content of SNP markers will be reduced when haplotypes are
analysed rather than each marker individually.

The empirical variances of significance levels (P-values) for association
between MST markers and the QTL are given in Figure 5A. The variance
increased as the distance from the QTL increased, except for very small
frequencies where it was consistently high. Variation in P-values among five



526
J.M

.A
bdallah

etal.

Table IV. The power (%) to map a QTL within a specified distance using multiallelic (MST) and biallelic (SNP) markers in the linkage
equilibrium (LE) simulation scenario. The base population (G0) was simulated assuming the linkage equilibrium with a QTL frequency
of 0.2. The results are from generation 200 (G200).

Distance
(cM)

Marker
type

QTL
effect

QTL frequency (P)

0 < P < 0.1 0.1 < P < 0.15 0.15 < P < 0.2 0.2 < P < 0.3 P > 0.3

0.5 MST 1.0 56.1 81.5 84.4 86.2 89.7

0.5 34.2 64.4 68.6 76.3 83.3

0.25 16.0 30.9 32.6 41.5 50.1

SNP 1.0 36.6 54.4 61.2 67.6 70.5

0.5 23.8 41.2 51.9 59.4 65.0

0.25 16.6 20.8 28.9 32.9 40.0

1.0 MST 1.0 72.5 92.4 95.1 97.4 97.4

0.5 49.0 79.3 83.0 89.9 93.0

0.25 28.8 43.3 46.1 58.3 64.2

SNP 1.0 54.1 76.3 83.2 85.0 88.4

0.5 37.9 59.3 72.3 78.1 81.5

0.25 28.6 36.7 45.8 47.3 58.7

1.5 MST 1.0 81.8 96.2 97.4 98.8 99.0

0.5 59.5 85.3 89.4 94.5 96.7

0.25 37.1 51.4 56.8 67.6 73.0

SNP 1.0 65.1 85.5 90.6 92.2 93.8

0.5 48.9 70.9 81.1 86.2 88.0

0.25 39.0 49.4 58.4 59.4 69.4
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Figure 5. (A) Variances of P-values as functions of marker distance and QTL fre-
quency in G200 in the LD (linkage disequilibrium) scenario using multiallelic markers.
(B) Variation in P-values (on −log scale) among five replicates with a QTL frequency
> 0.2. QTL effect = 1 sd. The horizontal line in B corresponds to a P-value = 0.05.
Note that because of the −log scale, the values above the line are significant at a 5%
level.

independent random replicates is also shown in Figure 5B as a function of
genetic distance for QTL frequency > 0.20. It is interesting to realise that
not only the expected power of LD mapping increases with intermediate QTL
frequencies, it will also be less risky (less variable). In turn, the variability
increases with distance, making the pattern of P-values hard to interpret. The
risk of finding a spurious significant value increases as we move away from
the QTL.
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So far we presented results when the length of the chromosomal region
was 3 cM. For the sake of completeness, we also present a simulated 18 cM
region with a QTL and 40 multiallelic marker loci (30 markers as before and
an additional 10 markers with 1.5 cM spacing). Simulations were carried
out under the LD scenario with a QTL effect of 1 sd. Levels of LD further
decreased beyond 3 cM (results not shown). More importantly, the percent-
age of replicates at which maximum disequilibrium and significant P-values
occurred for markers within 0.5, 1.0, and 1.5 cM, were very similar to the case
where only the 3 cM region was used. In fact, a maximum disequilibrium
occurred very rarely beyond 3 cM (less than 5% for a QTL frequency < 0.05
and less than 0.5% for a QTL frequency > 0.05). In more than 96% of the
replicates the most significant association was with a marker within 3 cM from
the QTL. This reinforces the popular idea that LD may not be useful in genome
scans for QTL but can be useful in fine-scale mapping using a dense marker
map. In practice, linkage analysis can be used in genome-wide scans as a
first step to narrow the position of the QTL to a few centimorgans and then
linkage disequilibrium can be used to fine map the QTL [24]. In a simulation
study, Kruglyak [18] concluded that a useful level of linkage disequilibrium is
unlikely to extend beyond an average distance of 3 kb in human populations.
In a more recent study, Hall et al. [7] found significant evidence for LD in
the Afrikaners extending over a 6-cM range but LD decayed significantly
beyond 3 cM distances in the other populations they examined. In domestic
animal populations, Farnir et al. [4] and McRae [23] reported that high levels
of LD extend over tens of centimorgans. However, in both studies, LD was
frequently observed between unlinked markers. Thus, it is not clear from
their results whether LD can be used for fine mapping in these populations
but, certainly, there is a great need of assessing the extent of LD in livestock
selected populations.

3.3. Effect of population size

In the previous simulations we considered a population size of 500 individu-
als. We also simulated a population of 200 individuals as in the LD scenario
with a QTL effect of 1 sd using MST markers. Mean values of LD were
higher for a population of 200 than a size of 500 individuals. This was as
expected because genetic drift is higher in the smaller population. However,
the percentage of replicates at which maximum disequilibrium between QTL
and markers occurred within 0.5, 1.0, and 1.5 cM from the QTL, was lower
for the population of 200. This was likely due to the higher variation in LD
in the smaller population. The difference was larger with D′ than with r2.
For example, for QTL frequency > 0.20, the percentage of replicates that
maximum LD occurred with markers within 1 cM was 81.1 for D′ and 87.8
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for r2 for Ne of 200 individuals compared to 97.7 for both D′ and r2 for the
Ne of 500 individuals. The power to detect association with markers within
a specified distance decreased by 5 to 20% for Ne of 200 compared to Ne of
500 individuals. This is not surprising because the power of regression tests
depends on the sample size.

3.4. Effect of selection and admixture

So far, we have considered a random mating natural population where LD
is influenced by recombination, mutation, and drift. Other historical events
that have important effects on LD include selection and admixture. Selection
is particularly important in domestic animal and plant populations. Selection
for an improved phenotype of the quantitative trait is expected to increase the
frequency of the QTL but, at the same time, decreases the effective population
size. Thus, in the light of the previous results, selection is expected to increase
the power of association mapping particularly for low frequent trait alleles,
provided that the effective population size is not too small.

Admixture or migration of individuals between populations of differing
allele frequencies creates a linkage disequilibrium that may extend over large
distances [38]. Admixture is often considered a liability in LD mapping [15].
This is because population stratification caused by admixture can lead to spuri-
ous associations between markers and unlinked loci [26,29]. To account for
population stratification, researchers often use family-based tests such as the
transmission-disequilibrium test (TDT) by Spielman et al., [32], at the expense
of decreasing power.

To assess the effect of admixture we simulated a population of 500 indi-
viduals as in the LD scenario using 40 MST markers in a chromosome region
of 18 cM. We then allowed 1% of the individuals to migrate each generation
into this population from another population in the LE scenario with a QTL
frequency of 0.20 in the base population. Thus both populations differed in the
QTL frequency and in their history. The results from these simulations provided
no evidence for spurious associations beyond 3 cM. For low frequency classes,
the frequency of maximum disequilibrium was even higher for markers close
to the putative QTL than in the case with no admixture. For example the
frequency of maximum D′ within 1 cM was 72% with admixture and 65.4%
without admixture for a QTL frequency < 0.05. The results were very similar
in both cases for QTL frequency > 0.10. The same trends were found for the
power of the association test. Note that this migration model is different from
the usual model in human genetics; here we considered a continuous migration
between populations such as that occurring when, e.g., a breeder regularly
imports foreign animals. Human population studies rather tend to consider
populations where admixture occurred only once.
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4. CONCLUSIONS

The simulation results presented in this study showed that on average, LD
decreased as a function of recombination distance. However, LD measures had
high variability and were influenced by gene frequency. Due to this variability
it is not unlikely to find high LD with the more distanced markers from the
QTL but rarely beyond 3 cM from the gene locus of interest for Ne of 500.

The power to detect a significant association between QTL and nearby
markers depends on the heritability of the QTL as well as on the amount of
LD. The power of LD mapping using regression analysis is satisfactory when
the QTL frequency is intermediate and its effect is large. More powerful,
multilocus approaches may be required to map QTL with small heritability.
Our results suggest that, in single marker analysis, multiallelic markers may be
more useful than biallelic markers in LD mapping of quantitative trait loci.

One important observation from the results presented herein is that although
maximum disequilibrium occurred with the closest marker more frequently
than with any other marker, the presence of high LD between the QTL and
nearby markers does not necessarily mean significant P-values. In real life,
analysis is usually based on one replicate of data and it is not surprising to find
significant association with the more distant markers. This is because of the
high variability in LD which for much of it, may not reflect recombination at
all [25].
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