
ar
X

iv
:c

on
d-

m
at

/0
00

51
14

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  5
 M

ay
 2

00
0

A brief introduction to Luttinger liquids
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Abstract. I give a brief introduction to Luttinger liquids. Luttinger liquids are
paramagnetic one-dimensional metals without Landau quasi-particle excitations. The
elementary excitations are collective charge and spin modes, leading to charge-spin
separation. Correlation functions exhibit power-law behavior. All physical properties
can be calculated, e.g. by bosonization, and depend on three parameters only: the
renormalized coupling constant Kρ, and the charge and spin velocities. I also discuss
the stability of Luttinger liquids with respect to temperature, interchain coupling,
lattice effects and phonons, and list important open problems.

WHAT IS A LUTTINGER LIQUID ANYWAY?

Ordinary, three-dimensional metals are described by Fermi liquid theory. Fermi
liquid theory is about the importance of electron-electron interactions in metals. It
states that there is a 1:1-correspondence between the low-energy excitations of a
free Fermi gas, and those of an interacting electron liquid which are termed “quasi-
particles” [1]. Roughly speaking, the combination of the Pauli principle with low
excitation energy (e.g. T ≪ EF ) and the large phase space available in 3D, produces
a very dilute gas of excitations where interactions are sufficiently harmless so as to
preserve the correspondence to the free-electron excitations. Three key elements
are: (i) The elementary excitations of the Fermi liquid are quasi-particles. They
lead to a pole structure (with residue Z – the overlap of a Fermi surface electron
with free electrons) in the electronic Green’s function which can be – and has been
– observed by photoemission spectroscopy [2]. (ii) Transport is described by the
Boltzmann equation which, in favorable cases, can be quantitatively linked to the
photoemission response [2]. (iii) The low-energy physics is parameterized by a set of
Landau parameters F ℓ

s,a which contain the residual interaction effects in the angular
momentum charge and spin channels. The correlations in the electron system are
weak, although the interactions may be very strong.
Fermi liquid theory breaks down for one-dimensional (1D) metals. Technically,

this happens because some vertices Fermi liquid theory assumes finite (those involv-
ing a 2kF momentum transfer) actually diverge because of the Peierls effect. An
equivalent intuitive argument is that in 1D, perturbation theory never can work
even for arbitrarily small but finite interactions: when degenerate perturbation
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theory is applied to the coupling of the all-important electron states at the Fermi
points ±kF , it will split them and therefore remove the entire Fermi surface! A
free-electron-like metal will therefore not be stable in 1D. The underlying physical
picture is that the coupling of quasi-particles to collective excitations is small in
3D but large in 1D, no matter how small the interaction. Correlations are strong
even for weak interactions!

1D metals are described as Luttinger liquids [3,4]. A Luttinger liquid is a param-
agnetic one-dimensional metal without Landau quasi-particle excitations. “Param-
agnetic” and “metal” require that the spin and charge excitations are gapless, more
precisely with dispersions ων ≈ vν |q| (ν = ρ, σ for charge and spin). Only when this
requirement is fulfilled, a Luttinger liquid can form. The charge and spin modes
(holons and spinons) possess different excitation energies vρ 6= vσ and are bosons.
This leads to the separation of charge and spin of an electron (or hole) added to the
Fermi sea, in space-time, or q − ω-space. Charge-spin separation prohibits quasi-
particles: The pole structure of the Green’s function is changed to branch cuts, and
therefore the quasi-particle residue Z is zero. Charge-spin separation in space-time
can be nicely observed in computer simulations [5].

The bosonic nature of charge and spin excitations, together with the reduced di-
mensionality leads to a peculiar kind of short-range order at T = 0. The system is
at a (quantum) critical point, with power-law correlations, and the scaling relations
between the exponents of its correlation functions are parameterized by renormal-
ized coupling constants Kν . The individual exponents are non-universal, i.e. de-
pend on the interactions. For Luttinger liquids, Kν is the equivalent of the Landau
parameters. As an example, the momentum distribution function n(k) ∼ (kF −k)α

for k ≈ kF with α = (Kρ + K−1
ρ − 2)/4. This directly illustrates the absence of

quasi-particles: In a Fermi liquid, n(k) has a jump at kF with amplitude Z.

BOSONIZATION, OR HOW TO SOLVE THE 1D MANY-

BODY PROBLEM BY HARMONIC OSCILLATORS

The appearance of charge and spin modes as stable, elementary excitations in
1D fermion systems can be rationalized from the spectrum of allowed particle-hole
excitations. In 1D, low-energy particle-hole pairs with momenta between 0 and
2kF are not allowed, and for q → 0, the range of allowed excitations shrinks to a
one-parameter spectrum ων ≈ vν |q|, indicating stable particles (cf. Fig. 1). True
bosons are then obtained as linear combinations of these particle-hole excitations
with a definite momentum q. Most importantly, we now can rewrite any inter-
acting fermion Hamiltonian, provided its charge and spin excitations are gapless,
as a harmonic oscillator and find an operator identity allowing to express fermion
operators as functions of these bosons. This is the complete bosonization program.

For free fermions, the Hamiltonian describing the excitations out of the ground
state (the Fermi sea), a can be expressed as a bilinear in the bosons,



H =
∑

ν=ρ,σ

∑

q

vν |q|
(

b†ν,qbν,q + 1/2
)

, (1)

with vν = vF , the Fermi velocity. Both the spectrum and the multiplicities of the
states, i.e. the Hilbert space, of the fermion and boson forms are identical [3].
What happens in the presence of interactions? One possibility is that the inter-

actions open a gap in the spin and/or charge excitation spectrum. The system then
no longer is paramagnetic and/or metallic. With a charge gap, we have a 1D Mott
insulator, with a spin gap a conducting system with strong charge density wave
or superconducting correlations, and gaps in both channels imply a band insula-
tor. Luttinger liquid theory cannot be applied anymore. In the other case, charge
and spin excitations remain gapless: a Luttinger liquid is formed. Then, electron-
electrons interactions will make vσ 6= vρ 6= vF , leading to charge-spin separation.
Interactions will also renormalize the electronic compressibility and magnetic sus-
ceptibility, and the charge and spin stiffnesses, and by comparing the velocities
measuring this renormalization to vν , the correlation exponents Kν can be defined.
The Kν therefore only depend on the low-energy properties of the Hamiltonian.
Two parameters per degree of freedom, Kν and vν , completely describe the physics
of a Luttinger liquid.
From model studies, e.g. on the 1D Hubbard model [6] and related models

[4], the following picture emerges: (i) Kν = 1 describes free electrons, and Kσ =
1 is required by spin-rotation invariance. (ii) Kρ > 1 for effectively attractive
interactions, andKρ < 1 for repulsive interactions. (iii) For the 1D Hubbard model,
Kρ decreases from 1 to 1/2 as the electron repulsion U varies between 0 . . .∞. (iv)
Kρ < 1 decreases with increasing interaction range. For any finite range, there is a
characteristic minimal Kρ, which approaches zero, as the interaction range extends
to infinity. (v) vσ ≤ vF for repulsive interactions. vσ measures the magnetic
exchange J . (vi) vρ > vF for repulsive interactions, and the more so the longer the
interaction range. In the limit of unscreened Coulomb interaction, vρ → ∞, and the
charge fluctuations then become the 1D plasmons [7] with ωρ(q) ∝ |q|ln |q|. (vii)
Electron-phonon interaction decreases the vν , and most often also Kρ. Interaction

q ω 

q 

ω(q) 

-2kF 2kF 

k 

E(k) 

FIGURE 1. Particle-hole excitations in 1D (left). The spectrum of allowed excitation has no

low-energy states with 0 ≤ |q| ≤ 2kF .



with high-frequency dispersionless molecular vibrations can enhance Kρ and lead
to superconductivity [8].
To complete our bosonization program, a local fermion operator must be ex-

pressed in terms of bosons. Exact operator identities are available for the Luttinger
model [3,4] which can be summarized schematically as

Ψs(x) ∼ exp

{

i
∑

ν

∑

p

eipx(. . .)
(

bν,p + b†ν,−p

)

}

. (2)

This fermion-boson transformation turns bosonization into a useful device: all cor-
relation functions can be calculated as simple harmonic oscillator averages, repeat-
edly using the two important identities eAeB = eA+Be[A,B]/2 for [A,B] a complex
number, and 〈eA〉 = exp(〈A2〉/2) valid for harmonic oscillator expectation val-
ues. As a consequence, Luttinger liquid predictions for all physical properties can
be produced. Examples are given in the next section. [The behavior of the mo-
mentum distribution function n(k) discussed above, has been obtained from the
single-particle Green’s function 〈TΨ(xt)Ψ†(00)〉 in precisely this way].
Bosonization is an easy and transparent way to calculate the properties of Lut-

tinger liquids. However, it is not the only method. More general, and more pow-
erful is the direct application of conformal field theory to a microscopic model of
interacting fermions. For Luttinger liquids, both methods become identical, and
one might view bosonization as solid state physicist’s way of doing conformal field
theory. Also Green’s functions methods have been used successfully.

PREDICTIONS FOR EXPERIMENTS

This section summarizes some important properties of Luttinger liquids in the
form of experimental predictions. The underlying theoretical correlation functions
can be found elsewhere [4]. We discuss a single-band Luttinger liquid. For multi-
band systems, such as the metallic carbon nanotubes, the exponents differ from
those give here, but can be calculated in the same way [9].
The thermodynamics is not qualitatively different from a Fermi liquid, with

a linear-in-T specific heat (expected both for 1D fermions and bosons!), and T -
independent Pauli susceptibility and electronic compressibility

C(T ) =
1

2

(

vF
vρ

+
vF
vσ

)

γ0T , χ =
2Kσ

πvσ
, κ =

2Kρ

πvρ
. (3)

More interesting are the charge and spin correlations at wavenumber multiples of
kF which display the Kρ-dependent power laws discussed above. In the electronic
structure factor S(k) and NMR spin-lattice relaxation rate T−1

1 , they translate into

S(k) ∼ |k − 2kF |
Kρ + |k − 4kF |

4Kρ−1 , T−1
1 ∼ T + TKρ . (4)



The structure factor can be interpreted as showing fluctuations both of Peierls-type
(2kF ) and of Wigner-crystal-type (4kF ) charge density waves, and the two terms
in T−1

1 come from the q ≈ 0 and 2kF spin fluctuations. Evidence for such behavior
has been found, e.g. in TTF-TCNQ [10] for S(k), and (TMTSF )2ClO4 [11] for
T−1
1 . Transport properties depend on the scattering mechanisms assumed. If we

consider electron-electron scattering in a band with filling factor 1/n, we obtain
from the current-current correlations [12]

ρ(T ) ∼ T n2Kρ−3 , σ(ω) ∼ ωn2Kρ−5 . (5)

The second law has apparently been observed in salts based on TMTSF [13]. These
predictions ideally give information on the power-law behavior of correlations, and
on the underlying value of Kρ, which, of course, must be the same for different
experiments in any specific material.
In order to see charge-spin separation, one must perform q- and ω-resolved spec-

troscopy (or time-of-flight measurements). Photoemission spectroscopy is the first
choice because it directly probes single-particle excitations [14]. With some ap-
proximations, it measures the imaginary part of the electronic Green’s function,
and Luttinger liquid theory predicts, cf. Fig. 2 [15,16]

ρ(q, ω) =
−1

π
ImG(q + kF , ω + EF ) ∼ (ω − vσq)

α−1/2|ω − vρq|
(α−1)/2(ω + vρq)

α/2 .

(6)

One finds two dispersing singularities (with interaction dependent exponents; for
α, cf. above) which demonstrates that the electron ejected from the material is
composed out of two more elementary excitations. By q-integration, one can obtain
the density of states, N(ω) ∼ |ω|α, and by ω < 0-integration n(k). A practical
comment: the easy part is the calculation of the Green’s function in bosonization.
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FIGURE 2. Spectral functions of a Luttinger liquid. The three signals represent the holon, the

spinon, and the shadow bands (left to right). Left panel: weak/short-range interactions, α = 1/8

(Kρ = 1/2). Right panel: strong/long-range interactions, α = 1.5 (Kρ = 1/8).



The difficult part is the Fourier transformation if, e.g., the result must satisfy sum
rules. Charge-spin separation is also visible, though with different exponents, in
dynamical density and spin correlation at q ≈ 2kF [16]. They can be measured, in
principle, by EELS, inelastic neutron scattering, or Raman scattering.

STABILITY OF LUTTINGER LIQUIDS

Luttinger liquid theory crucially relies on one-dimensionality. Moreover, most of
our discussion was for T = 0, and ignored phonons, lattice effects, impurities, etc.
Are these factors detrimental to Luttinger liquids? In many cases, the answer will
depend on the scales one considers.

Finite temperature is not a problem, and the correlation functions discussed
above can be calculated for T > 0. Quite generally, however, divergences will be
cut off by T whenever T > ω, vν|q|, . . .. Also charge-spin separation will be masked
in the spectral function when (vρ − vσ)q < T [17].

Interchain tunneling will introduce 3D effects. Depending on the on-chain inter-
actions, it will either produce a crossover to a Fermi liquid (weak interactions), or to
a long-range ordered 3D insulating or superconducting phase (strong interactions)
[18]. In any event, a Luttinger liquid is unstable towards 3D coupling at low enough
temperature (scales). However, on high enough scales, it will be unaffected by 3D
coupling, and coming from there, one will encounter a crossover temperature below
which 3D correlations will build up, and 1D physics will be strongly modified. At
still lower temperature, a phase transition may take place into a long-range ordered
3D state. When going to a Fermi liquid, the crossover is gradual, and Luttinger-like
spectral functions can be observed somewhat off the Fermi energy [19].

Other sources of concern are phonons and lattice effects. Various studies of
phonons coupled to Luttinger liquids have shown that depending on details of
the electron-electron and electron-phonon interactions, a Luttinger liquid may re-
main stable, though renormalized, when phonons are added [8]. Alternatively, the
electron-phonon interaction could lead to the opening of a spin gap, and thereby
destabilize the Luttinger liquid. This situation is described by a different model
due to Luther and Emery, but the correlation functions continue to carry certain
remnants of Luttinger physics, like non-universal power laws stemming from the
gapless charges (the system remains conducting), and charge-spin separation [20].

When the crystal lattice is important (commensurate band filling), the system
may become insulating. For a 1D band insulator, Luttinger liquid physics is ex-
pected to be lost completely, although not much is known firmly [21]. More in-
teresting is the case of a Mott insulator, brought about by electronic correlations.
However even here, charge-spin separation still is seen, e.g. in photoemission both
in theory [20] and in experiments on SrCuO2 [22]. Moreover, far above the (charge
or spin) gaps, they should no longer influence the physics, and genuine Luttinger
liquid behavior is expected there.



HOW TO APPLY LUTTINGER LIQUID THEORY?

We discuss the example of the organic conductor TTF-TCNQ, starting from a
recent photoemission study [23]. Photoemission shows a valence band signal whose
dispersion is in qualitative agreement with a simple Hückel band structure, along
the 1D chains, and no dispersion perpendicular. Two discrepancies between the
data and a quasi-particle picture can be resolved in a Luttinger liquid picture: (i)
the experimental dispersions are bigger than those expected from the density of
states at the Fermi level within the Hückel band structure. (ii) The lineshapes
are anomalous in that the signal on the TTF band has a tail reaching up to EF

at all k, while it has a low-energy shoulder with little dispersion on TCNQ. Both
findings are consistent with Luttinger liquid spectral functions, with Kρ ≪ 1/2 on
TTF, and with 1/2 < Kρ < 1 on TCNQ. Also recall that Luttinger liquids show
more dispersion than Fermi liquids because of the upward renormalization of vρ by
interactions.

Is this assignment consistent with other information? It is consistent for the TTF
band. In fact, the magnetic susceptibility is rather independent of temperature
[24], and diffuse X-ray scattering observes strong 4kF density fluctuations at high
temperatures [10]. It is not consistent, however, for the TCNQ band where the
susceptibility is strongly T -dependent, with an activated shape. This can be taken
as an indication of a spin gap, and suggests that the Luther-Emery model might be
a better choice. The observation of 2kF density fluctuations on TCNQ is consistent
with both assignments, and the spectral function of the Luther-Emery model can
at least qualitatively describe the data.

Evidence for or against such hypotheses must come from further experiments.
Optics shows a far-IR pseudogap [25]. However, the consistency of the mid-IR con-
ductivity with (5) should be checked. Also notice that [26] ρ(T ) ∼ T . One might
look into the temperature dependence of the spin conductivity in view of theories
discussing the manifestation of charge-spin separation in transport properties [27].
NMR could look for the TKρ-term of Eq. (4), and Raman scattering could show
if the values of vν measured through two-particle excitations superpose to the dis-
persions of the photoemission peaks. If successful, the Luttinger liquid theory will
provide a consistent phenomenology for the low-energy properties of this material,
and will have predictive power for future experiments.

ASPECTS OF MESOSCOPIC SYSTEMS

Due to the small sample size, boundary conditions become of importance, and
may dominate the physics. As an example, for a quantum wire, the conductance is
given by Gn = 2nKρe

2/h where n is the number of conducting channels [28]. When
the wire is coupled to Fermi liquid leads, however, the interaction renormalization
is absent [29], and Gn = 2ne2/h – a boundary effect!



The influence of isolated impurities on transport, or tunneling through quantum
point contacts, is an important problem [28,30]. At higher temperatures (volt-
ages), there will be corrections to the (differential) conductance δG ∼ TKρ−1,
resp. δ(dI/dV ) ∼ V Kρ−1. With repulsive interactions and at low energy scales,
an impurity will cut the quantum wire into two segments with only a weak link
between them. In this case, the conductance, resp. differential conductance, vary

as G(T ) ∼ TK−1

ρ −1, resp. dI/dV ∼ V K−1

ρ −1. The physical origin of this effect is
the establishment of a strong Friedel oscillation around the impurity which will
increasingly backscatter the electrons at lower energy scales.
An impurity can therefore be assimilated with open boundary conditions. This

identifies the exponents just described as members of a larger class of boundary crit-
ical exponents. Quite generally, 1D interacting fermions with open boundaries and
gapless excitations form a bounded Luttinger liquid state, rather similar to ordinary
Luttinger liquids but with a different set of exponents and scaling relations [30].
The Kν are properties of the Hamiltonian, and therefore independent of boundary
conditions. The correlation functions, and their exponents, however depend on
boundary conditions.
A particularly nice experiment demonstrating this relation, has been performed

on carbon nanotubes [31]. With different preparations, it is possible to tunnel
electrons from electrodes either into the end of nanotubes, or into their bulk. In
the first case, conductance and differential conductance measure the power-laws
just described for tunneling through a weak link, while for tunneling into the bulk,
they measure the bulk density of states, described in the context of photoemission.
The exponents differ slightly from those given here because of the peculiar band
structure of the tubes and because the electrons tunnel from a Luttinger liquid
into a normal metal [9]. The remarkable result of this work is that the various
experiments can be described in terms of a single coupling constant Kρ ∼ 0.28.

OPEN QUESTIONS

The preceding discussion may suggest that one-dimensional fermions are com-
pletely understood, at least theoretically. However, many important questions re-
main open, both in theory and experiment. I now list a few of them.
One important problem relates to scales. While common folklore states that

Luttinger liquids form on energy scales between the electronic bandwidth or the
typical interaction energy, whichever is smaller, on the high-energy side, and the
3D crossover temperature on the low-energy side, it is not known with certainty if
all predicted properties can indeed be observed in that range. Can both power laws
and charge-spin separation be observed over the entire range? Some studies seem
to suggest that, in the 1D Hubbard model, the Green’s function power laws may be
restricted to smaller scales [32]. Are these ranges the same for all correlations, or
do they depend on the specific function considered? Do they depend on the specific
Hamiltonian considered, e.g. on the interaction strength and range, and how?



Concerning mesoscopic systems, only Luttinger liquids with open boundaries are
thoroughly characterized. It is conceivable that other boundary conditions (Fermi
liquid leads, boundary fields or spins, superconductors) lead to new sets of critical
exponents.
What is the spectral weight associated with Luttinger liquid physics in any given

microscopic model, or in any given experimental system? Can one measure, in
analogy to the quasi-particle residue Z in Fermi liquids, the weight of the coherent
spin and charge modes, with respect to the incoherent contributions to the Green’s
function, or to any other correlation function? How sure can we be that this weight
is sufficiently high, so that experiments (e.g. photoemission) actually see these
excitations, and not just incoherent contributions or bare high-energy excitations?
Is the high-energy physics, far from the Fermi surface, necessarily non-universal
and strongly material- (model-) dependent, as is often claimed?
In the same way, the interpretation of some experiments, e.g. photoemission,

rests crucially on the appropriateness of simple Hückel-type bandstructures. How-
ever, the materials investigated to date, are very complex, and there is no guarantee
that these methods are appropriate. There are two ways out. (i) More sophisticated
band structure methods become more performing as the computer power increases,
and should attack the complex materials of interest here [33]. (ii) One might also
look at novel structures where extremely simple 1D materials can be produced.
One example for this direction are gold wires deposited on a vicinal Si(111)5x1 sur-
face, where photoemission may have detected evidence for charge-spin separation
and Luttinger liquid behavior [34]. (iii) In mesoscopic wires, both on semiconduc-
tor and tube base, we would love to have spectroscopic experiments made feasible
which probe the dynamics of the elementary excitations beyond transport. As a
first step, the study of “noise” might provide interesting insights [35].
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