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Reasoning the Fast and Frugal Way: Models of Bounded Rationality 

Gerd Gigerenzer and Daniel G. Goldstein 
Max Planck Institute for Psychological Research and University of Chicago 

Humans and animals make inferences about the world under limited time and knowledge. In con- 
trast, many models of rational inference treat the mind as a Laplacean Demon, equipped with un- 
limited time, knowledge, and computational might. Following H. Simon's notion of satisficing, the 
authors have proposed a family of algorithms based on a simple psychological mechanism: one- 
reason decision making. These fast and frugal algorithms violate fundamental tenets of classical 
rationality: They neither look up nor integrate all information. By computer simulation, the authors 
held a competition between the satisficing "Take The Best" algorithm and various "rational" infer- 
ence procedures (e.g., multiple regression). The Take The Best algorithm matched or outperformed 
all competitors in inferential speed and accuracy. This result is an existence proof that cognitive 
mechanisms capable of successful performance in the real world do not need to satisfy the classical 
norms of rational inference. 

Organisms make inductive inferences. Darwin ( 1872/1965 ) 
observed that people use facial cues, such as eyes that waver and 
lids that hang low, to infer a person's guilt. Male toads, roaming 
through swamps at night, use the pitch of a rival's croak to infer 
its size when deciding whether to fight (Krebs & Davies, 1987). 
Stock brokers must make fast decisions about which of several 
stocks to trade or invest when only limited information is avail- 
able. The list goes on. Inductive inferences are typically based 
on uncertain cues: The eyes can deceive, and so can a tiny toad 
with a deep croak in the darkness. 

How does an organism make inferences about unknown as- 
pects of the environment? There are three directions in which 
to look for an answer. From Pierre Laplace to George Boole to 
Jean Piaget, many scholars have defended the now classical view 
that the laws of human inference are the laws of probability and 
statistics (and to a lesser degree logic, which does not deal as 
easily with uncertainty). Indeed, the Enlightenment probabi- 
lists derived the laws of probability from what they believed to 
be the laws of human reasoning (Daston, 1988). Following this 
time-honored tradition, much contemporary research in psy- 
chology, behavioral ecology, and economics assumes standard 
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statistical tools to be the normative and descriptive models of 
inference and decision making. Multiple regression, for in- 
stance, is both the economist's universal tool (McCloskey, 
1985 ) and a model of inductive inference in multiple-cue learn- 
ing (Hammond, 1990) and clinical judgment (B. Brehmer, 
1994); Bayes's theorem is a model of how animals infer the 
presence of predators or prey (Stephens & Krebs, 1986) as well 
as of human reasoning and memory (Anderson, 1990). This 
Enlightenment view that probability theory and human reason- 
ing are two sides of the same coin crumbled in the early nine- 
teenth century but has remained strong in psychology and 
economics. 

In the past 25 years, this stronghold came under attack by 
proponents of the heuristics and biases program, who con- 
cluded that human inference is systematically biased and error 
prone, suggesting that the laws of inference are quick-and-dirty 
heuristics and not the laws of probability (Kahneman, Slovic, & 
Tversky, 1982). This second perspective appears diametrically 
opposed to the classical rationality of the Enlightenment, but 
this appearance is misleading. It has retained the normative 
kernel of the classical view. For example, a discrepancy between 
the dictates of classical rationality and actual reasoning is what 
defines a reasoning error in this program. Both views accept the 
laws of probability and statistics as normative, but they disagree 
about whether humans can stand up to these norms. 

Many experiments have been conducted to test the validity of 
these two views, identifying a host of conditions under which 
the human mind appears more rational or irrational. But most 
of this work has dealt with simple situations, such as Bayesian 
inference with binary hypotheses, one single piece of binary 
data, and all the necessary information conveniently laid out 
for the participant (Gigerenzer & Hoffrage, 1995). In many 
real-world situations, however, there are multiple pieces of in- 
formation, which are not independent, but redundant. Here, 
Bayes's theorem and other "rational" algorithms quickly be- 
come mathematically complex and computationally intracta- 
ble, at least for ordinary human minds. These situations make 
neither of the two views look promising. If one would apply the 
classical view to such complex real-world environments, this 
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would suggest that the mind is a supercalculator like a Lapla- 
cean Demon (Wimsatt, 1976 )---carrying around the collected 
works of  Kolmogoroff, Fisher, or Neyman--and simply needs a 
memory jog, like the slave in Plato's Meno. On the other hand, 
the heuristics-and-biases view of  human irrationality would 
lead us to believe that humans are hopelessly lost in the face of  
real-world complexity, given their supposed inability to reason 
according to the canon of  classical rationality, even in simple 
laboratory experiments. 

There is a third way to look at inference, focusing on the psy- 
chological and ecological rather than on logic and probability 
theory. This view questions classical rationality as a universal 
norm and thereby questions the very definition of  "good" rea- 
soning on which both the Enlightenment and the heuristics- 
and-biases views were built. Herbert Simon, possibly the best- 
known proponent of this third view, proposed looking for 
models of  bounded rationality instead of  classical rationality. 
Simon (1956, 1982) argued that information-processing sys- 
tems typically need to satisfice rather than optimize. Satisficing, 
a blend of sufficing and satisfying, is a word of  Scottish origin, 
which Simon uses to characterize algorithms that successfully 
deal with conditions of  limited time, knowledge, or computa- 
tional capacities. His concept of satisficing postulates, for in- 
stance, that an organism would choose the first object (a mate, 
perhaps) that satisfies its aspiration level--instead of  the intrac- 
table sequence of  taking the time to survey all possible alterna- 
tives, estimating probabilities and utilities for the possible out- 
comes associated with each alternative, calculating expected 
utilities, and choosing the alternative that scores highest. 

Let us stress that Simon's notion of  bounded rationality has 
two sides, one cognitive and one ecological. As early as in Ad- 
ministrative Behavior ( 1945 ), he emphasized the cognitive lim- 
itations of  real minds as opposed to the omniscient Laplacean 
Demons of  classical rationality. As early as in his Psychological 
Review article titled "Rational Choice and the Structure of the 
Environment" (1956), Simon emphasized that minds are 
adapted to real-world environments. The two go in tandem: 
"Human rational behavior is shaped by a scissors whose two 
blades are the structure of  task environments and the computa- 
tional capabilities of  the actor" (Simon, 1990, p. 7). For the 
most part, however, theories of human inference have focused 
exclusively on the cognitive side, equating the notion of  
bounded rationality with the statement that humans are limited 
information processors, period. In a Procrustean-bed fashion, 
bounded rationality became almost synonymous with heuris- 
tics and biases, thus paradoxically reassuring classical rational- 
ity as the normative standard for both biases and bounded ra- 
tionality (for a discussion of  this confusion see Lopes, 1992). 
Simon's insight that the minds of  living systems should be un- 
derstood relative to the environment in which they evolved, 
rather than to the tenets of  classical rationality, has had little 
impact so far in research on human inference. Simple psycho- 
logical algorithms that were observed in human inference, rea- 
soning, or decision making were often discredited without a fair 
trial, because they looked so stupid by the norms of  classical 
rationality. For instance, when Keeney and Raiffa (1993) dis- 
cussed the lexicographic ordering procedure they had observed 
in practice--a procedure related to the class of  satisficing algo- 
rithms we propose in this article--they concluded that this pro- 
cedure "is naively simple" and "will rarely pass a test of 

'reasonableness' " (p .  78 ). They did not report such a test. We 
shall. 

Initially, the concept of  bounded rationality was only vaguely 
defined, often as that which is not classical economics, and one 
could "fit a lot of  things into it by foresight and hindsight," as 
Simon ( 1992, p. 18) himself put it. We wish to do more than 
oppose the Laplacean Demon view. We strive to come up with 
something positive that could replace this unrealistic view of  
mind. What are these simple, intelligent algorithms capable of 
making near-optimal inferences? How fast and how accurate are 
they? In this article, we propose a class of  models that exhibit 
bounded rationality in both of  Simon's senses. These satisficing 
algorithms operate with simple psychological principles that 
satisfy the constraints of  limited time, knowledge, and compu- 
tational might, rather than those of  classical rationality. At the 
same time, they are designe d to be fast and frugal without a 
significant loss of inferential accuracy, because the algorithms 
can exploit the structure of  environments. 

The article is organized as follows. We begin by describing the 
task the cognitive algorithms are designed to address, the basic 
algorithm itself, and the real-world environment on which the 
performance of  the algorithm will be tested. Next, we report on 
a competition in which a satisficing algorithm competes with 
"rational" algorithms in making inferences about a real-world 
environment. The "rational" algorithms start with an advan- 
tage: They use more time, information, and computational 
might to make inferences. Finally, we study variants of  the sati- 
sficing algorithm that make faster inferences and get by with 
even less knowledge. 

The  Task 

We deal with inferential tasks in which a choice must be made 
between two alternatives on a quantitative dimension. Consider 
the following example: 

Which city has a larger population? (a) Hamburg (b) Cologne. 

Two-alternative-choice tasks occur in various contexts in which 
inferences need to be made with limited time and knowledge, 
such as in decision making and risk assessment during driving 
(e.g., exit the highway now or stay on ); treatment-allocation de- 
cisions (e.g., who to treat first in the emergency room: the 80- 
year-old heart attack victim or the 16-year-old car accident 
victim); and financial decisions (e.g., whether to buy or sell in 
the trading pit). Inference concerning population demograph- 
ics, such as city populations of  the past, present, and future 
(e.g., Brown & Siegler, 1993), is of  importance to people work- 
ing in urban planning, industrial development, and marketing. 
Population demographics, which is better understood than, say, 
the stock market, will serve us later as a "drosophila" environ- 
ment that allows us to analyze the behavior of satisficing 
algorithms. 

We study two-alternative-choice tasks in situations where a 
person has to make an inference based solely on knowledge re- 
trieved from memory. We refer to this as inference from mem- 
ory as opposed to inference from givens. Inference from mem- 
ory involves search in declarative knowledge and has been in- 
vestigated in studies of, inter alia, confidence in general 
knowledge (e.g., Juslin, 1994; Sniezek & Buckley, 1993); the 
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effect of repetition on belief (e.g., Hertwig, Gigerenzer, & 
Hoffrage, in press); hindsight bias (e.g., Fischhoff, 1977); quan- 
titative estimates of  area and population of nations (Brown & 
Siegler, 1993); and autobiographic memory of time 
(Huttenlocher, Hedges, & Prohaska, 1988). Studies of infer- 
ence from givens, on the other hand, involve making inferences 
from information presented by an experimenter (e.g., Ham- 
mond, Hursch, & Todd, 1964). In the tradition of  Ebbinghaus's 
nonsense syllables, attempts are often made here to prevent in- 
dividual knowledge from impacting on the results by using 
problems about hypothetical referents instead of  actual ones. 
For instance, in celebrated judgment and decision-making 
tasks, such as the "cab" problem and the "Linda" problem, all 
the relevant information is provided by the experimenter, and 
individual knowledge about cabs and hit-and-run accidents, or 
feminist bank tellers, is considered of no relevance (Gigerenzer 
& Murray, 1987). As a consequence, limited knowledge or in- 
dividual differences in knowledge play a small role in inference 
from givens. In contrast, the satisflcing algorithms proposed in 
this article perform inference from memory, they use limited 
knowledge as input, and as we will show, they can actually profit 
from a lack of knowledge. 

Assume that a person does not know or cannot deduce the 
answer to the Hamburg-Cologne question but needs to make 
an inductive inference from related real-world knowledge. How 
is this inference derived? How can we predict choice (Hamburg 
or Cologne) from a person's state of  knowledge? 

T h e o r y  

The cognitive algorithms we propose are realizations of  a 
framework for modeling inferences from memory, the theory 
of probabilistic mental models (PMM theory; see Gigerenzer, 
1993; Gigerenzer, Hoffrage, & Kleinb61ting, 1991 ). The theory 
of probabilistic mental models assumes that inferences about 
unknown states of the world are based on probability cues 
(Brunswik, 1955). The theory relates three visions: (a) Induc- 
tive inference needs to be studied with respect to natural envi- 
ronments, as emphasized by Brunswik and Simon; (b)  induc- 
tive inference is carried out by satisficing algorithms, as empha- 
sized by Simon; and (c) inductive inferences are based on 
frequencies of  events in a reference class, as proposed by Rei- 
chenbach and other frequentist statisticians. The theory of  
probabilistic mental models accounts for choice and confi- 
dence, but only choice is addressed in this article. 

The major thrust of  the theory is that it replaces the canon of 
classical rationality with simple, plausible psychological mech- 
anisms of inference--mechanisms that a mind can actually 
carry out under limited time and knowledge and that could have 
possibly arisen through evolution. Most traditional models of 
inference, from linear multiple regression models to Bayesian 
models to neural networks, try to find some optimal integration 
of all information available: Every bit of information is taken 
into account, weighted, and combined in a computationally ex- 
pensive way. The family of  algorithms in PMM theory does not 
implement this classical ideal. Search in memory for relevant 
information is reduced to a minimum, and there is no integra- 
tion (but rather a substitution) of  pieces of  information. These 
satisficing algorithms dispense with the fiction of  the omni- 
scient Laplacean Demon, who has all the time and knowledge 

Figure 1. Illustration of bounded search through limited knowledge. 
Objects a, b, and c are recognized; object dis not. Cue values are posi- 
tive (+) or negative ( - ) ;  missing knowledge is shown by question 
marks. Cues are ordered according to their validities. To infer whether 
a > b, the Take The Best algorithm looks up only the cue values in the 
shaded space; to infer whether b > c, search is bounded to the dotted 
space. The other cue values are not looked up. 

to search for all relevant information, to compute the weights 
and covariances, and then to integrate all this information into 
an inference. 

Limited Knowledge 

A PMM is an inductive device that uses limited knowledge to 
make fast inferences. Different from mental models of  syllo- 
gisms and deductive inference (Johnson-Laird, 1983), which 
focus on the logical task of  truth preservation and where knowl- 
edge is irrelevant (except for the meaning of  connectives and 
other logical terms),  PMMs perform intelligent guesses about 
unknown features of  the world, based on uncertain indicators. 
To make an inference about which of two objects, a or b, has a 
higher value, knowledge about a reference class R is searched, 
with a, b E R. In our example, knowledge about the reference 
class "cities in Germany" could be searched. The knowledge 
consists of  probability cues Ci ( i  = 1 , . . . ,  n), and the cue values 
ai and bi of  the objects for the i th cue. For instance, when mak- 
ing inferences about populations of  German cities, the fact that 
a city has a professional soccer team in the major league 
(Bundesliga) may come to a person's mind as a potential cue. 
That is, when considering pairs of  German cities, if one city has 
a soccer team in the major league and the other does not, then 
the city with the team is likely, but not certain, to have the larger 
population. 

Limited knowledge means that the matrix of  objects by cues 
has missing entries (i.e., objects, cues, or cue values may be 
unknown). Figure 1 models the limited knowledge of a person. 
She has heard of  three German cities, a, b, and c, but not of 
d (represented by three positive and one negative recognition 
values). She knows some facts (cue values) about these cities 
with respect to five binary cues. For a binary cue, there are two 
cue values, positive (e.g., the city has a soccer team) or negative 
(it does not).  Positive refers to a cue value that signals a higher 
value on the target variable (e.g., having a soccer team is corre- 
lated with high population). Unknown cue values are shown by 
a question mark. Because she has never heard of  d, all cue val- 
ues for object d are, by definition, unknown. 

People rarely know all information on which an inference 
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could be based, that is, knowledge is limited. We model limited 
knowledge in two respects: A person can have (a)  incomplete 
knowledge of the objects in the reference class (e.g., she recog- 
nizes only some of  the cities ), (b)  limited knowledge of  the cue 
values (facts about cities), or (c) both. For instance, a person 
who does not know all of  the cities with soccer teams may know 
some cities with positive cue values (e.g., Munich and Hamburg 
certainly have teams),  many with negative cue values ( e.g., Hei- 
delberg and Potsdam certainly do not have teams),  and several 
cities for which cue values will not be known. 

The Take The Best Algorithm 

The first satisficing algorithm presented is called the Take 
The Best algorithm, because its policy is "take the best, ignore 
the rest"  It is the basic algorithm in the PMM framework. Vari- 
ants that work faster or with less knowledge are described later. 
We explain the steps of the Take The Best algorithm for binary 
cues (the algorithm can be easily generalized to many valued 
cues), using Figure 1 for illustration. 

The Take The Best algorithm assumes a subjective rank order 
of  cues according to their validities (as in Figure 1 ). We call the 
highest ranking cue (that discriminates between the two 
alternatives) the best cue. The algorithm is shown in the form 
of  a flow diagram in Figure 2. 

Figure 3. Discrimination rule. A cue discriminates between two al- 
ternatives if one has a positive cue value and the other does not. The 
four discriminating cases are shaded. 

1 is asked to infer which of city a and city d has more inhabi- 
tants, the inference will be city a,  because the person has never 
heard of  city d before. 

Step 2: Search for Cue Values 

For the two objects, retrieve the cue values of  the highest 
ranking cue from memory. 

Step 1: Recognition Principle 

The recognition principle is invoked when the mere recogni- 
tion of  an object is a predictor of  the target variable (e.g., 
population). The recognition principle states the following: If 
only one of  the two objects is recognized, then choose the rec- 
ognized object. If neither of the two objects is recognized, then 
choose randomly between them. If both of the objects are rec- 
ognized, then proceed to Step 2. 

Example: I fa  person in the knowledge state shown in Figure 

Start 

Choose the ] 
I alternative [ 
to which the I 
cue points J 

I Choose the 
best cue I 

+ 

No ~ Y e s  

Figure 2. Flow diagram of the Take The Best algorithm. 

Step 3." Discrimination Rule 

Decide whether the cue discriminates. The cue is said to dis- 
criminate between two objects if one has a positive cue value 
and the other does not. The four shaded knowledge states in 
Figure 3 are those in which a cue discriminates. 

Step 4: Cue-Substitution Principle 

If the cue discriminates, then stop searching for cue values. If 
the cue does not discriminate, go back to Step 2 and continue 
with the next cue until a cue that discriminates is found. 

Step 5: Maximizing Rule for Choice 

Choose the object with the positive cue value. If no cue dis- 
criminates, then choose randomly. 

Examples: Suppose the task is judging which of city a or b is 
larger (Figure 1). Both cities are recognized (Step 1 ), and 
search for the best cue results with a positive and a negative cue 
value for Cue 1 (Step 2). The cue discriminates (Step 3), and 
search is terminated (Step 4). The person makes the inference 
that city a is larger (Step 5 ). 

Suppose now the task is judging which of city b or e is larger. 
Both cities are recognized (Step 1 ), and search for the cue val- 
ues cue results in negative cue value on object b for Cue 1, but 
the corresponding cue value for object e is unknown (Step 2). 
The cue does not discriminate (Step 3 ), so search is continued 
(Step 4). Search for the next cue results with positive and a 
negative cue values for Cue 2 (Step 2). This cue discriminates 
(Step 3), and search is terminated (Step 4). The person makes 
the inference that city b is larger (Step 5 ). 

The features of this algorithm are (a)  search extends through 
only a portion of  the total knowledge in memory (as shown by 
the shaded and dotted parts of Figure 1 ) and is stopped imme- 
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diately when the first discriminating cue is found, (b)  the algo- 
rithm does not at tempt to integrate information but uses cue 
substitution instead, and (c) the total amount of  information 
processed is contingent on each task (pair of objects) and varies 
in a predictable way among individuals with different knowl- 
edge. This fast and computationally simple algorithm is a model 
of bounded rationality rather than of classical rationality. There 
is a close parallel with Simon's concept of  "satisficing": The 
Take The Best algorithm stops search after the first discriminat- 
ing cue is found, just as Simon's satisficing algorithm stops 
search after the first option that meets an aspiration level. 

The algorithm is hardly a standard statistical tool for induc- 
tive inference: It does not use all available information, it is non- 
compensatory and nonlinear, and variants of  it can violate tran- 
sitivity. Thus, it differs from standard linear tools for inference 
such as multiple regression, as well as from nonlinear neural 
networks that are compensatory in nature. The Take The Best 
algorithm is noncompensatory because only the best discrimi- 
nating cue determines the inference or decision; no combina- 
tion of other cue values can override this decision. In this way, 
the algorithm does not conform to the classical economic view 
of  human behavior (e.g., Becker, 1976), where, under the as- 
sumption that all aspects can be reduced to one dimension (e.g., 
money), there exists always a trade-offbetween commodities or 
pieces of  information. That is, the algorithm violates the Archi- 
median axiom, which implies that for any multidimensional 
object a (a j ,  a2 . . . . .  a~) preferred to b (bl ,  b2 . . . . .  b~), where 
al dominates b~, this preference can be reversed by taking 
multiples of any one or a combination of b2, b3 . . . . .  bn. As we 
discuss, variants of  this algorithm also violate transitivity, one 
of the cornerstones of  classical rationality (McClennen, 1990). 

Empir ica l  Evidence  

Despite their flagrant violation of the traditional standards of 
rationality, the Take The Best algorithm and other models from 
the framework of  PMM theory have been successful in integrat- 
ing various striking phenomena in inference from memory and 
predicting novel phenomena, such as the confidence-frequency 
effect (Gigerenzer et al., 1991) and the less-is-more effect 
(Goldstein, 1994; Goldstein & Gigerenzer, 1996). The theory 
of  probabilistic mental models seems to be the only existing 
process theory of the overconfidence bias that successfully pre- 
dicts conditions under which overestimation occurs, disappears, 
and inverts to underestimation (Gigerenzer, 1993; Gigerenzer 
et al., 1991; Juslin, 1993, 1994; Juslin, Winman, & Persson, 
t995; but see Griffin & Tversk); 1992). Similarly, the theory 
predicts when the hard-easy effect occurs, disappears, and in- 
vertswpredictions that have been experimentally confirmed by 
Hoffrage (1994) and by Juslin ( 1993 ). The Take The Best algo- 
rithm explains also why the popular confirmation-bias expla- 
nation of the overconfidence bias (Koriat, Lichtenstein, & 
Fischhoff, 1980) is not supported by experimental data 
(Gigerenzer et al., 1991, pp. 521-522 ). 

Unlike earlier accounts of these striking phenomena in con- 
fidence and choice, the algorithms in the PMM framework al- 
low for predictions of choice based on each individual's knowl- 
edge. Goldstein and Gigerenzer (1996) showed that the recog- 
nition principle predicted individual participants" choices in 
about 90% to 100% of all cases, even when participants were 

taught information that suggested doing otherwise (negative 
cue values for the recognized objects). Among the evidence for 
the empirical validity of  the Take-The-Best algorithm are the 
tests of a bold prediction, the less-is-more effect, which postu- 
lates conditions under which people with little knowledge make 
better inferences than those who know more. This surprising 
prediction has been experimentally confirmed. For instance, 
U.S. students make slightly more correct inferences about Ger- 
man city populations ( about which they know little) than about 
U.S. cities, and vice versa for German students (Gigerenzer, 
1993; Goldstein 1994; Goldstein & Gigerenzer, 1995; Hoffrage, 
1994). The theory of probabilistic mental models has been ap- 
plied to other situations in which inferences have to be made 
under limited time and knowledge, such as rumor-based stock 
market trading (DiFonzo, 1994). A general review of  the theory 
and its evidence is presented in McClelland and Bolger (1994). 

The reader familiar with the original algorithm presented in 
Gigerenzer et al. ( 1991 ) will have noticed that we simplified the 
discrimination rule.~ In the present version, search is already 
terminated if one object has a positive cue value and the other 
does not, whereas in the earlier version, search was terminated 
only when one object had a positive value and the other a nega- 
tive one (cf. Figure 3 in Gigerenzer et al. with Figure 3 in this 
article). This change follows empirical evidence that partici- 
pants tend to use this faster, simpler discrimination rule 
(Hoffrage, 1994). 

This article does not attempt to provide further empirical ev- 
idence. For the moment, we assume that the model is descrip- 
tively valid and investigate how accurate this satisficing algo- 
rithm is in drawing inferences about unknown aspects of  a 
real-world environment. Can an algorithm based on simple 
psychological principles that violate the norms of classical ra- 
tionality make a fair number of  accurate inferences? 

The  E n v i r o n m e n t  

We tested the performance of the Take The Best algorithm on 
how accurately it made inferences about a real-world environ- 
ment. The environment was the set of  all cities in Germany 
with more than 100,000 inhabitants (83 cities after German 
reunification), with population as the target variable. The 
model of  the environment consisted of  9 binary ecological cues 
and the actual 9 × 83 cue values. The full model of the environ- 
ment is shown in the Appendix. 

Each cue has an associated validity, which is indicative of its 
predictive power. The ecological validity of a cue is the relative 
frequency with which the cue correctly predicts the target, de- 
fined with respect to the reference class (e.g., all German cities 
with more than 100,000 inhabitants). For instance, if one 
checks all pairs in which one city has a soccer team but the other 
city does not, one finds that in 87% of these cases, the city with 
the team also has the higher population. This value is the eco- 
logical validity of  the soccer team cue. The validity vi of  the ith 
cue is 

v, = p[ t (a)  > t (b)  l ai is positive and b~ is negative ], 

Also, we now use the term discrimination rule instead of activation 
rule. 
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Table 1 
Cues, Ecological Validities, and Discrimination Rates 

Ecological Discrimination 
Cue validity rate 

National capital (Is the city the 
national capital?) 1.00 .02 

Exposition site (Was the city once an 
exposition site?) .91 .25 

Soccer team (Does the city have a team 
in the major league?) .87 .30 

Intercity train (Is the city on the 
Intercity line?) .78 .38 

State capital (Is the city a state capital?) .77 .30 
License plate (Is the abbreviation only 

one letter long?) .75 .34 
University (Is the city home to a 

university?) .71 .51 
Industrial belt (Is the city in the 

industrial belt?) .56. .30 
East Germany (Was the city formerly 

in East Germany?) .51 .27 

where t(a) and t(b) are the values of  objects a and b on the 
target variable t and p is a probability measured as a relative 
frequency in R .  

The ecological validity o f  the nine cues ranged over the whole 
spectrum: from .51 (only slightly better than chance)  to 1.0 
(certainty) ,  as shown in Table 1. A cue with a high ecological 
validity, however, is not  often useful i f  its discr iminat ion rate is 
small. 

Table i shows also the discrimination rates for each cue. The 
discr iminat ion rate o f  a cue is the relative frequency with which 
the cue discriminates between any two objects from the refer- 
ence class. The discr iminat ion rate is a function o f  the distribu- 
tion o f  the cue values and the number  N of  objects in the refer- 
ence class. Let  the relative frequencies of  the positive and nega- 
tive cue values be x and y, respectively. Then the discr iminat ion 
rate d~ of  the i th  cue is 

2xiyi 
4 =  1' 

1 - - - -  

N 

as an elementary calculation shows. Thus, i f  N is very large, 
the discr iminat ion rate is approximately 2xiyi .2 The larger the 
ecological validity of  a cue, the better the inference. The larger 
the discr iminat ion rate, the more often a cue can be used to 
make an inference. In the present environment,  ecological va- 
lidities and discrimination rates are negatively correlated. The 
redundancy of  cues in the environment ,  as measured by pair- 
wise correlations between cues, ranges between - . 2 5  and .54, 
with an average absolute value of .  19. 3 

T h e  C o m p e t i t i o n  

The question of  how well a satisficing algori thm performs in 
a real-world envi ronment  has rarely been posed in research on 
inductive inference. The present simulations seem to be the first 
to test how well simple satisficing algorithms do compared  with 
standard integration algorithms, which require more knowl- 

edge, time, and computat ional  power. This question is impor-  
tant for Simon's  postulated link between the cognitive and the 
ecological: If  the simple psychological principles in satisficing 
algori thms are tuned to ecological structures, these algorithms 
should not fail outright. We propose a competi t ion between var- 
ious inferential algorithms. The contest will go to the algori thm 
that scores the highest proport ion o f  correct inferences in the 
shortest time. 

Simulating Limited Knowledge 

We simulated people with varying degrees of  knowledge 
about cities in Germany. Limited knowledge can take two 
forms. One is l imited recognition o f  objects in the reference 
class. The other is l imited knowledge about the cue values o f  
recognized objects. To model  l imited recognition knowledge, 
we simulated people who recognized between 0 and 83 German  
cities. To model  l imited knowledge of  cue values, we simulated 
6 basic classes o f  people, who knew 0%, 10%, 20%, 50%, 75%, 
or 100% of  the cue values associated with the objects they rec- 
ognized. Combining the two sources of  l imited knowledge re- 
sulted in 6 x 84 types of  people, each having different degrees 
and kinds o f  l imited knowledge. Within each type o f  people, we 
created 500 simulated individuals, who differed randomly from 
one another in the particular objects and cue values they knew. 
All objects and cue values known were determined randomly 
within the appropriate constraints, that is, a certain number  o f  
objects known, a certain total percentage o f  cue values known, 
and the validity o f  the recognition principle (as explained in the 
following paragraph).  

The simulation needed to be realistic in the sense that the 
simulated people could invoke the recognition principle. There- 
fore, the sets o f  cities the simulated people knew had to be care- 
fully chosen so that the recognized cities were larger than the 
unrecognized ones a certain percentage o f  the time. We per- 
formed a survey to get an empir ical  estimate o f  the actual co- 

2 For instance, if N = 2 and one cue value is positive and the other 
negative (xr = Yr = .5), dr = 1.0. If Nincreases, with xr and Yi held 
constant, then dr decreases and converges to 2xr Yr. 

3 There are various other measures of redundancy besides pairwise 
correlation. The important point is that whatever measure of redun- 
dancy one uses, the resultant value does not have the same meaning 
for all algorithms. For instance, all that counts for the Take The Best 
algorithm is what proportion of correct inferences the second cue adds 
to the first in the cases where the first cue does not discriminate, how 
much the third cue adds to the first two in the cases where they do not 
discriminate, and so on. If a cue discriminates, search is terminated, 
and the degree of redundancy in the cues that were not included in 
the search is irrelevant. Integration algorithms, in contrast, integrate all 
information and, thus, always work with the total redundancy in the 
environment (or knowledge base). For instance, when deciding among 
objects a, b, c, and d in  Figure 1, the cue values of Cues 3, 4, and 5 do 
not matter from the point of view of the Take The Best algorithm 
(because search is terminated before reaching Cue 3). However, the 
values of Cues 3, 4, and 5 affect the redundancy of the ecological system, 
from the point of view of all integration algorithms. The lesson is that 
the degree of redundancy in an environment depends on the kind of 
algorithm that operates on the environment. One needs to be cautious 
in interpreting measures of redundancy without reference to an 
algorithm. 
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variation between recognition of cities and city populations. Let 
us define the validity c~ of the recognition principle to be the 
probability; in a reference class, that one object has a greater 
value on the target variable than another, in the cases where the 
one object is recognized and the other is not: 

a = p[ t (a) > t (b) t a, is positive and b, is negative ], 

where t(a) and t(b) are the values of objects a and b on the 
target variable t, a, and br are the recognition values of a and b, 
and p is a probability measured as a relative frequency in R. 

In a pilot study of 26 undergraduates at the University of Chi- 
cago, we found that the cities they recognized (within the 83 
largest in Germany) were larger than the cities they did not rec- 
ognize in about 80% of all possible comparisons. We incorpo- 
rated this value into our simulations by choosing sets of cities 
(for each knowledge state, i.e., for each number of cities 
recognized) where the known cities were larger than the un- 
known cities in about 80% of all cases. Thus, the cities known 
by the simulated individuals had the same relationship between 
recognition and population as did those of the human individu- 
als. Let us first look at the performance of the Take The Best 
algorithm. 

Testing the Take The Best Algorithm ~ 

We tested how well individuals using the Take The Best algo- 
rithm did at answering real-world questions such as, Which city 
has more inhabitants: (a) Heidelberg or (b) Bonn? Each of the 
500 simulated individuals in each of the 6 X 84 types was tested 
on the exhaustive set of 3,403 city pairs, resulting in a total of 
500 x 6 X 84 x 3,403 tests, that is, about 858 million. 

The curves in Figure 4 show the average proportion of correct 
inferences for each proportion of objects and cue values known. 
The x axis represents the number of cities recognized, and the y 
axis shows the proportion of correct inferences that the Take 
The Best algorithm drew. Each of the 6 x 84 points that make 
up the six curves is an average proportion of correct inferences 
taken from 500 simulated individuals, who each made 3,403 
inferences. 

When the proportion of cities recognized was zero, the pro- 
portion of correct inferences was at chance level (.5). When up 
to half of all cities were recognized, performance increased at 
all levels of knowledge about cue values. The maximum per- 
centage of correct inferences was around 77%. The striking re- 
sult was that this maximum was not achieved when individuals 
knew all cue values of all cities, but rather when they knew less. 
This result shows the ability of the algorithm to exploit limited 
knowledge, that is, to do best when not everything is known. 
Thus, the Take The Best algorithm produces the less-is-more 
effect. At any level of limited knowledge of cue values, learning 
more German cities will eventually cause a decrease in propor- 
tion correct. Take, for instance, the curve where 75% of the cue 
values were known and the point where the simulated partici- 
pants recognized about 60 German cities. If these individuals 
learned about the remaining German cities, their proportion 
correct would decrease. The rationale behind the less-is-more 
effect is the recognition principle, and it can be understood best 
from the curve that reflects 0% of total cue values known. Here, 
all decisions are made on the basis of the recognition principle, 
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Figure 4. Correct inferences about the population of German cities 
(two-alternative-choice tasks) by the Take The Best algorithm. Infer- 
ences are based on actual information about the 83 largest cities and 
nine cues for population (see the Appendix). Limited knowledge of the 
simulated individuals is varied across two dimensions: (a) the number 
of cities recognized (x axis ) and (b) the percentage of cue values known 
(the six curves). 

or by guessing. On this curve, the recognition principle comes 
into play most when half of the cities are known, so it takes 
on an inverted-U shape. When half the cities are known, the 
recognition principle can be activated most often, that is, for 
roughly 50% of the questions. Because we set the recognition 
validity in advance, 80% of these inferences will be correct. In 
the remaining half of the questions, when recognition cannot 
be used (either both cities are recognized or both cities are 
unrecognized), then the organism is forced to guess and only 
50% of the guesses will be correct. Using the 80% effective rec- 
ognition validity half of the time and guessing the other half of 
the time, the organism scores 65% correct, which is the peak of 
the bottom curve. The mode of this curve moves to the right 
with increasing knowledge about cue values. Note that even 
when a person knows everything, all cue values of all cities, 
there are states of limited knowledge in which the person would 
make more accurate inferences. We are not going to discuss 
the conditions of this counterintuitive effect and the supporting 
experimental evidence here (see Goldstein & Gigerenzer, 
1996). Our focus is on how much better integration algorithms 
can do in making inferences. 

Integration Algorithms 

We asked several colleagues in the fields of statistics and eco- 
nomics to devise decision algorithms that would do better than 
the Take The Best algorithm. The five integration algorithms 
we simulated and pitted against the Take The Best algorithm in 
a competition were among those suggested by our colleagues. 



REASONING THE FAST AND FRUGAL WAY 657 

These competitors include "proper" and "improper" linear 
models (Dawes, 1979; Lovie & Lovie, 1986). These algorithms, 
in contrast to the Take The Best algorithm, embody two classi- 
cal principles of  rational inference: (a) complete search--they 
use all available information (cue values ) - - and  (b)  complete 
integration--they combine all these pieces of  information into 
a single value. In short, we refer in this article to algorithms 
that satisfy these principles as "rational" (in quotation marks) 
algorithms. 

Contestant  1: Tallying 

Let us start with a simple integration algorithm: tallying of 
positive evidence (Goldstein, 1994). In this algorithm, the 
number of  positive cue values for each object is tallied across all 
cues (i = 1 , . . . ,  n), and the object with the largest number 
of  positive cue values is chosen. Integration algorithms are not 
based (at least explicitly) on the recognition principle. For this 
reason, and to make the integration algorithms as strong as pos- 
sible, we allow all the integration algorithms to make use of rec- 
ognition information (the positive and negative recognition val- 
ues, see Figure 1 ). Integration algorithms treat recognition as 
a cue, like the nine ecological cues in Table 1. That is, in the 
competition, the number of  cues (n)  is thus equal to 10 
(because recognition is included). The decision criterion for 
tallying is the following: 

If  ~ a~ > b~, then choose city a. 
i=1  i=1  

n n 

If ~ ai < ~, bi, then choose city b. 
i=1  iffil 

If ~ ai = bi, then guess. 
i= l  i=l  

The assignments of ai and b~ are the following: 

1 if the ith cue value is positive 

a~, b~ = 0 if the ith cue value is negative 

0 if the ith cue value is unknown. 

Let us compare cities a and b, from Figure 1. By tallying the 
positive cue values, a would score 2 points and b would score 3. 
Thus, tallying would choose b to be the larger, in opposition to 
the Take The Best algorithm, which would infer that a is larger. 
Variants of tallying, such as the frequency-of-good-features 
heuristic, have been discussed in the decision literature (Alba & 
Marmorstein, 1987; Payne, Bettman, & Johnson, 1993). 

Contestant  2. Weighted Tallying 

Tallying treats all cues alike, independent of cue validity. 
Weighted tallying of  positive evidence is identical with tallying, 
except that it weights each cue according to its ecological valid- 
ity, vt. The ecological validities of  the cues appear in Table 1. 
We set the validity of  the recognition cue to .8, which is the 
empirical average determined by the pilot study. The decision 
rule is as follows: 

If Z aivi > ~, bivi, then choose city a. 
i=1  i=1  

If ~ aivi < bivi, then choose city b. 
i=1  i=1  

If ~ aivi = bivi, then guess. 
i=1  i=1  

Note that weighted tallying needs more information than either 
tallying or the Take The Best algorithm, namely, quantitative 
information about ecological validities. In the simulation, we 
provided the real ecological validities to give this algorithm a 
good chance. 

Calling again on the comparison of  objects a and b from Fig- 
ure 1, let us assume that the validities would be .8 for recogni- 
tion and .9, .8, .7, .6, .51 for Cues 1 through 5. Weighted tallying 
would thus assign 1.7 points to a and 2.3 points to b. Thus, 
weighted tallying would also choose b to be the larger. 

Both tallying algorithms treat negative information and miss- 
ing information identically. That is, they consider only positive 
evidence. The following algorithms distinguish between nega- 
tive and missing information and integrate both positive and 
negative in formation. 

Contestant  3. Unit- Weight L inear  Mode l  

The unit-weight linear model is a special case of the equal- 
weight linear model (Huber, 1989) and has been advocated as a 
good approximation of  weighted linear models (Dawes, 1979; 
Einhorn & Hogarth, 1975). The decision criterion for unit- 
weight integration is the same as for tallying, only the assign- 
ment ofa~ and bi differs: 

1 if the ith cue value is positive 

ai ,  b~ = - 1  if the ith cue value is negative 

0 if the ith cue value is unknown. 

Comparing objects a and b from Figure 1 would involve as- 
signing 1.0 points to a and 1.0 points to b and, thus, choosing 
randomly. This simple linear model corresponds to Model 2 in 
Einhorn and Hogarth ( 1975, p. 177 ) with the weight parameter 
set equal to 1. 

Contestant  4: Weighted L inear  Mode l  

This model is like the unit-weight linear model except that 
the values ofai  and bi are multiplied by their respective ecolog- 
ical validities. The decision criterion is the same as with 
weighted tallying. The weighted linear model (or some variant 
of it) is often viewed as an optimal rule for preferential choice, 
under the idealization of  independent dimensions or cues (e.g., 
Keeney & Raiffa, 1993; Payne et al., 1993). Comparing objects 
a and b from Figure 1 would involve assigning 1.0 points to a 
and 0.8 points to b and, thus, choosing a to be the larger. 

Contestant  5: Mul t ip le  Regression 

The weighted linear model reflects the different validities of  
the cues, but not the dependencies between cues. Multiple re- 
gression creates weights that reflect the covariances between 
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predictors or cues and is commonly seen as an "optimal" way 
to integrate various pieces of information into an estimate (e.g., 
Brunswik, 1955; Hammond, 1966). Neural networks using the 
delta rule determine their "optimal" weights by the same prin- 
ciples as multiple regression does (Stone, 1986). The delta rule 
carries out the equivalent of a multiple linear regression from 
the input patterns to the targets. 

The weights for the multiple regression could simply be cal- 
culated from the full information about the nine. ecological 
cues, as given in the Appendix. To make multiple regression an 
even stronger competitor, we also provided information about 
which cities the simulated individuals recognized. Thus, the 
multiple regression used nine ecological cues and the recogni- 
tion cue to generate its weights. Because the weights for the rec- 
ognition cue depend on which cities are recognized, we calcu- 
lated 6 × 500 × 84 sets of weights: one for each simulated indi- 
vidual. Unlike any of the other algorithms, regression had 
access to the actual city populations (even for those cities not 
recognized by the hypothetical person) in the calculation of the 
weights. 4 During the quiz, each simulated person used the set of 
weights provided to it by multiple regression to estimate the 
populations of the cities in the comparison. 

There was a missing-values problem in computing these 6 X 
84 × 500 sets of regression coefficients, because most simulated 
individuals did not know certain cue values, for instance, the 
cue values of the cities they did not recognize. We strengthened 
the performance of multiple regression by substituting un- 
known cue values with the average of the cue values the person 
knew for the given cue. 5 This was done both in creating the 
weights and in using these weights to estimate populations. Un- 
like traditional procedures where weights are estimated from 
one half of the data, and inferences based on these weights are 
made for the other half, the regression algorithm had access to 
all the information in the Appendix (except, of course, the un- 
known cue values)--more information than was given to any 
of the competitors. In the competition, multiple regression and, 
to a lesser degree, the weighted linear model approximate the 
ideal of the Laplacean Demon. 

Results 

Speed 

The Take The Best algorithm is designed to enable quick de- 
cision making. Compared with the integration algorithms, how 
much faster does it draw inferences, measured by the amount 
of information searched in memory? For instance, in Figure 
1, the Take The Best algorithm would look up four cue values 
(including the recognition cue values) to infer that a is larger 
than b. None of the integration algorithms use limited search; 
thus, they always look up all cue values. 

Figure 5 shows the amount of cue values retrieved from 
memory by the Take The Best algorithm for various levels of 
limited knowledge. The Take The Best algorithm reduces 
search in memory considerably. Depending on the knowledge 
state, this algorithm needed to search for between 2 (the num- 
ber of recognition values) and 20 (the maximum possible cue 
values: Each city has nine cue values and one recognition 
value). For instance, when a person recognized half of the cities 
and knew 50% of their cue values, then, on average, only about 

4 cue values (that is, one fifth of all possible) are searched for. 
The average across all simulated participants was 5.9, which was 
less than a third of all available cue values. 

Accuracy 

Given that it searches only for a limited amount of informa- 
tion, how accurate is the Take The Best algorithm, compared 
with the integration algorithms? We ran the competition for all 
states of limited knowledge shown in Figure 4. We first report 
the results of the competition in the case where each algorithm 
achieved its best performance: When 100% of the cue values 
were known. Figure 6 shows the results of the simulations, car- 
ried out in the same way as those in Figure 4. 

To our surprise, the Take The Best algorithm drew as many 
correct inferences as any of the other algorithms, and more than 
some. The curves for Take The Best, multiple regression, 
weighted tallying, and tallying are so similar that there are only 
slight differences among them. Weighted tallying performed 
about as well as tallying, and the unit-weight linear model per- 
formed about as well as the weighted linear model--demon- 
strating that the previous finding that weights may be chosen in 
a fairly arbitrary manner, as long as they have the correct sign 
( Dawes, 1979), is generalizable to tallying. The two integration 
algorithms that make use of both positive and negative infor- 
mation, unit-weight and weighted linear models, made consid- 
erably fewer correct inferences. By looking at the lower-left and 
upper-right corners of Figure 6, one can see that all competitors 
do equally well with a complete lack of knowledge or with com- 
plete knowledge. They differ when knowledge is limited. Note 
that some algorithms can make more correct inferences when 
they do not have complete knowledge: a demonstration of the 
less-is-more effect mentioned earlier. 

What was the result of the competition across all levels of 
limited knowledge? Table 2 shows the result for each level of 
limited knowledge of cue values, averaged across all levels of 
recognition knowledge. (Table 2 reports also the performance 
of two variants of the Take The Best algorithm, which we dis- 
cuss later: the Minimalist and the Take The Last algorithm.) 
The values in the 100% column of Table 2 are the values in 
Figure 6 averaged across all levels of recognition. The Take The 
Best algorithm made as many correct inferences as one of the 
competitors (weighted tallying) and more than the others. Be- 
cause it was also the fastest, we judged the competition goes to 
the Take The Best algorithm as the highest performing, overall. 

To our knowledge, this is the first time that it has been dem- 
onstrated that a satisficing algorithm, that is, the Take The Best 
algorithm, can draw as many correct inferences about a real- 

4 We cannot claim that these integration algorithms are the best ones, 
nor can we know a priori which small variations will succeed in our 
bumpy real-world environment. An example: During the proof stage of 
this article we learned that regressing on the ranks of the cities does 
slightly better than regressing on the city populations. The key issue is 
what are the structures of environments in which particular algorithms 
and variants thrive. 

5 If no single cue value was known for a given cue, the missing values 
were substituted by .5. This value was chosen because it is the midpoint 
of 0 and 1, which are the values used to stand for negative and positive 
cue values, respectively. 
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Table 2 
Results of  the Competition: Average Proportion 
of  Correct Inferences 

Percentage of cue values known 

Algorithm 10 20 50 75 100 Average 

Take The Best .621 .635 .663 .678 .691 .658 
Weighted tallying .621 .635 .663 .679 .693 .658 
Regression .625 .635 .657 .674 .694 .657 
Tallying .620 .633 .659 .676 .691 .656 
Weightedlinear model .623 .627 .623 .619 .625 .623 
Unit-weight linear model .621 .622 .621 .620 .622 .621 

Minimalist .619 .631 .650 .661 .674 .647 
Take The Last .619 .630 .646 .658 .675 .645 

Note. Values are rounded; averages are computed from the unrounded 
values. Bottom two algorithms are variants of the Take The Best algo- 
rithm. 

world environment as integration algorithms, across all states 
of limited knowledge. The dictates of classical rationality would 
have led one to expect the integration algorithms to do substan- 
tially better than the satisficing algorithm. 

Two results of the simulation can be derived analytically. First 
and most obvious is that if knowledge about objects is zero, 
then all algorithms perform at a chance level. Second, and less 
obvious, is that if all objects and cue values are known, then 
tallying produces as many correct inferences as the unit-weight 
linear model. This is because, under complete knowledge, the 
score under the tallying algorithm is an increasing linear func- 
tion of the score arrived at in the unit-weight linear model. 6 
The equivalence between tallying and unit-weight linear models 
under complete knowledge is an important result. It is known 
that unit-weight linear models can sometimes perform about as 
well as proper linear models (i.e., models with weights that are 
chosen in an optimal way, such as in multiple regression; see 
Dawes, 1979). The equivalence implies that under complete 
knowledge, merely counting pieces of positive evidence can 
work as well as proper linear models. This result clarifies one 
condition under which searching only for positive evidence, a 
strategy that has sometimes been labeled confirmation bias or 
positive test strategy, can be a reasonable and efficient inferen- 
tial strategy (Klayman & Ha, 1987; Tweney & Walker, 1990). 

Why do the unit-weight and weighted linear models perform 
markedly worse under limited knowledge of objects? The rea- 
son is the simple and bold recognition principle. Algorithms 
that do not exploit the recognition principle in environments 
where recognition is strongly correlated with the target variable 
pay the price of a considerable number of wrong inferences. The 
unit-weight and weighted linear models use recognition infor- 
mation and integrate it with all other information but do not 
follow the recognition principle, that is, they sometimes choose 
unrecognized cities over recognized ones. Why is this? In the 
environment, there are more negative cue values than positive 
ones (see the Appendix), and most cities have more negative 
cue values than positive ones. From this it follows that when a 
recognized object is compared with an unrecognized object, the 
(weighted) sum of cue values of the recognized object will often 
be smaller than that of the unrecognized object (which is - 1 for 

the unit-weight model and - .8  for the weighted linear model). 
Here the unit-weight and weighted linear models often make 
the inference that the unrecognized object is the larger one, due 
to the overwhelming negative evidence for the recognized ob- 
ject. Such inferences contradict the recognition principle. Tal- 
lying algorithms, in contrast, have the recognition principle 
built in implicitly. Because tallying algorithms ignore negative 
information, the tally for an unrecognized object is always 0 
and, thus, is always smaller than the tally for a recognized ob- 
ject, which is at least 1 (for tallying, or .8 for weighted tallying, 
due to the positive value on the recognition cue). Thus, tallying 
algorithms always arrive at the inference that a recognized ob- 
ject is larger than an unrecognized one. 

Note that this explanation of the different performances puts 
the full weight in a psychological principle (the recognition 
principle) explicit in the Take The Best algorithm, as opposed 
to the statistical issue of how to find optimal weights in a linear 
function. To test this explanation, we reran the simulations for 
the unit-weight and weighted linear models under the same con- 
ditions but replacing the recognition cue with the recognition 
principle. The simulation showed that the recognition principle 
accounts for all the difference. 

Can  Satisficing Algor i thms Get  by Wi th  Even Less 
T ime  and  Knowledge? 

The Take The Best algorithm produced a surprisingly high 
proportion of correct inferences, compared with more compu- 
tationally expensive integration algorithms. Making correct in- 
ferences despite limited knowledge is an important adaptive 
feature of an algorithm, but being right is not the only thing 
that counts. In many situations, time is limited, and acting fast 
can be as important as being correct. For instance, if you are 
driving on an unfamiliar highway and you have to decide in an 
instant what to do when the road forks, your problem is not 
necessarily making the best choice, but simply making a quick 
choice. Pressure to be quick is also characteristic for certain 
types of verbal interactions, such as press conferences, in which 
a fast answer indicates competence, or commercial interactions, 
such as having telephone service installed, where the customer 
has to decide in a few minutes which of a dozen calling features 
to purchase. These situations entail the dual constraints of lim- 
ited knowledge and limited time. The Take The Best algorithm 
is already faster than any of the integration algorithms, because 
it performs only a limited search and does not need to compute 
weighted sums of cue values. Can it be made even faster? It can, 
if search is guided by the recency of cues in memory rather than 
by cue validity. 

The Take The Last  Algori thm 

The Take The Last algorithm first tries the cue that discrimi- 
nated the last time. If this cue does not discriminate, the algo- 

6 The proof for this is as follows. The tallying score t for a given object 
is the number n ÷ of positive cue values, as defined above. The score u 
for the unit weight linear model is n + - n-,  where n- is the number of 
negative cue values. Under complete knowledge, n = n + + n-, where n 
is the number of cues. Thus, t = n + , and u = n + - n-.  Because n- = n 
- n 4, by substitution into the formula for u, we find that u = n + - ( n - 
n +) = 2t - n. 
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rithm then tries the cue that discriminated the time before last, 
and so on. The algorithm differs from the Take The Best algo- 
rithm in Step 2, which is now reformulated as Step 2': 

Step 2': Search for the Cue Values of the 
Most Recent Cue 

For the two objects, retrieve the cue values of the cue used 
most recently. If it is the first judgment and there is no discrim- 
ination record available, retrieve the cue values of a randomly 
chosen cue. 

Thus, in Step 4, the algorithm goes back to Step 2'. Variants 
of this search principle have been studied as the "Einstellung 
effect" in the water jar  experiments (Luchins & Luchins, 
1994), where the solution strategy of  the most recently solved 
problem is tried first on the subsequent problem. This effect 
has also been noted in physicians' generation of diagnoses for 
clinical cases (Weber, B6ckenholt, Hilton, & Wallace, 1993 ). 

This algorithm does not need a rank order of  cues according 
to their validities; all that needs to be known is the direction 
in which a cue points. Knowledge about the rank order of  cue 
validities is replaced by a memory of which cues were last used. 
Note that such a record can be built up independently of any 
knowledge about the structure of  an environment and neither 
needs, nor uses, any feedback about whether inferences are 
right or wrong. 

The Minimalist Algorithm 

Can reasonably accurate inferences be achieved with even 
less knowledge? What we call the Minimalist algorithm needs 
neither information about the rank ordering of  cue validities 
nor the discrimination history of  the cues. In its ignorance, the 
algorithm picks cues in a random order. The algorithm differs 
from the Take The Best algorithm in Step 2, which is now re- 
formulated as Step 2": 

Step 2": Random Search 

For the two objects, retrieve the cue values of  a randomly 
chosen cue. 

The Minimalist algorithm does not necessarily speed up 
search, but it tries to get by with even less knowledge than any 
other algorithm. 

Results 

Speed 

How fast are the fast algorithms? The simulations showed 
that for each of  the two variant algorithms, the relationship be- 
tween amount of  knowledge and the number of cue values 
looked up had the same form as for the Take The Best algorithm 
(Figure 5). That is, unlike the integration algorithms, the 
curves are concave and the number of cues searched for is max- 
imal when knowledge of  cue values is lowest. The average num- 
ber of cue values looked up was lowest for the Take The Last 
algorithm (5.29) followed by the Minimalist algorithm (5.64) 
and the Take The Best algorithm (5.91). As knowledge be- 
comes more and more limited (on both dimensions: recogni- 
tion and cue values known), the difference in speed becomes 

smaller and smaller. The reason why the Minimalist algorithm 
looks up fewer cue values than the Take The Best algorithm is 
that cue validities and cue discrimination rates are negatively 
correlated (Table 1 ); therefore, randomly chosen cues tend to 
have larger discrimination rates than cues chosen by cue 
validity. 

Accuracy 

What is the price to be paid for speeding up search or reduc- 
ing the knowledge of cue orderings and discrimination histories 
to nothing? We tested the performance of the two algorithms on 
the same environment as all other algorithms. Figure 7 shows 
the proportion of correct inferences that the Minimalist algo- 
rithm achieved. For comparison, the performance of  the Take 
The Best algorithm with 100% of  cue values known is indicated 
by a dotted line. Note that the Minimalist algorithm performed 
surprisingly well. The maximum difference appeared when 
knowledge was complete and all cities were recognized. In these 
circumstances, the Minimalist algorithm did about 4 percent- 
age points worse than the Take The Best algorithm. On average, 
the proportion of correct inferences was only 1.1 percentage 
points less than the best algorithms in the competition (Ta- 
ble 2). 

The performance of the Take The Last algorithm is similar to 
Figure 7, and the average number of  correct inferences is shown 
in Table 2. The Take The Last algorithm was faster but scored 
slightly less than the Minimalist algorithm. The Take The Last 
algorithm has an interesting ability, which fooled us in an earlier 
series of tests, where we used a systematic (as opposed to a ran- 
dom) method for presenting the test pairs, starting with the 
largest city and pairing it with all others, and so on. An integra- 
tion algorithm such as multiple regression cannot "find out" 
that it is being tested in this systematic way, and its inferences 
are accordingly independent of the sequence of  presentation. 
However, the Take The Last algorithm found out and won this 
first round of the competition, outperforming the other com- 
petitors by some 10 percentage points. How did it exploit sys- 
tematic testing? Recall that it tries, first, the cue that discrimi- 
nated the last time. If this cue does not discriminate, it proceeds 
with the cue that discriminated the time before, and so on. In 
doing so, when testing is systematic in the way described, it 
tends to find, for each city that is being paired with all smaller 
ones, the group of  cues for which the larger city has a positive 
value. Trying these cues first increases the chances of  finding a 
discriminating cue that points in the right direction (toward the 
larger city). We learned our lesson and reran the whole compe- 
tition with randomly ordered of  pairs of  cities. 

Discuss ion  

The competition showed a surprising result: The Take The 
Best algorithm drew as many correct inferences about un- 
known features of a real-world environment as any of  the inte- 
gration algorithms, and more than some of them. Two further 
simplifications of  the a lgor i thm-- the Take The Last algorithm 
(replacing knowledge about the rank orders of  cue validities by 
a memory of the discrimination history of  cues) and the Mini- 
malist algorithm (dispensing with both) showed a compara- 
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Figure 7. Performance of the Minimalist algorithm. For comparison, the performance of the Take The 
Best algorithm (TTB) is shown as a dotted line, for the case in which 100% of cue values are known, 

tively small loss in correct inferences, and only when knowledge 
about cue values was high. 

To the best of our knowledge, this is the first inference com- 
petition between satisficing and "rational" algorithms in a real- 
world environment. The result is of importance for encouraging 
research that focuses on the power of simple psychological 
mechanisms, that is, on the design and testing of satisficing al- 
gorithms. The result is also of importance as an existence proof 
that cognitive algorithms capable of successful performance in 
a real-world environment do not need to satisfy the classical 
norms of rational inference. The classical norms may be suffi- 
cient but are not necessary for good inference in real 
environments. 

Cognitive Algorithms That Satisfice 

In this section, we discuss the fundamental psychological 
mechanism postulated by the PMM family of algorithms: one- 
reason decision making. We discuss how this mechanism ex- 
ploits the structure of environments in making fast inferences 
that differ from those arising from standard models of rational 
reasoning. 

One-Reason Decision Making 

What we call one-reason decision making is a specific form of 
satisficing. The inference, or decision, is based on a single, good 
reason. There is no compensation between cues. One-reason 
decision making is probably the most challenging feature of the 

PMM family of algorithms. As we mentioned before, it is a de- 
sign feature of an algorithm that is not present in those models 
that depict human inference as an optimal integration of all in- 
formation available (implying that all information has been 
looked up in the first place), including linear multiple regres- 
sion and nonlinear neural networks. One-reason decision mak- 
ing means that each choice is based exclusively on one reason 
(i.e., cue), but this reason may be different from decision to 
decision. This allows for highly context-sensitive modeling of 
choice. One-reason decision making is not compensatory. Com- 
pensation is, after all, the cornerstone of classical rationality, 
assuming that all commodities can be compared and everything 
has its price. Compensation assumes commensurability. How- 
ever, human minds do not trade everything, some things are 
supposed to be without a price (Elster, 1979). For instance, ifa 
person must choose between two actions that might help him or 
her get out of deep financial trouble, and one involves killing 
someone, then no amount of money or other benefits might 
compensate for the prospect of bloody hands. He or she takes 
the action that does not involve killing a person, whatever other 
differences exist between the two options. More generally, hier- 
archies of ethical and moral values are often noncompensatory: 
True friendship, military honors, and doctorates are supposed 
to be without a price. 

Noncompensatory inference algorithms--such as lexico- 
graphic, conjunctive, and disjunctive rules--have been dis- 
cussed in the literature, and some empirical evidence has been 
reported (e.g., Einhorn, 1970; Fishburn, 1988). The closest rel- 
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ative to the PMM family of  satisficing algorithms is the lexico- 
graphic rule. The largest evidence for lexicographic processes 
seems to come from studies on decision under risk (for a recent 
summary, see Lopes, 1995). However, despite empirical evi- 
dence, noncompensatory lexicographic algorithms have often 
been dismissed at face value because they violate the tenets of 
classical rationality (Keeney & Raiffa, 1993; Lovie & Lovie, 
1986). The PMM family is both more general and more specific 
than the lexicographic rule. It is more general because only the 
Take The Best algorithm uses a lexicographic procedure in 
which cues are ordered according to their validity, whereas the 
variant algorithms do not. It is more specific, because several 
other psychological principles are integrated with the lexico- 
graphic rule in the Take The Best algorithm, such as the recog- 
nition principle and the rules for confidence judgment (which 
are not dealt with in this article; see Gigerenzer et al., 1991 ). 

Serious models that comprise noncompensatory inferences 
are hard to find. One of  the few examples is in Breiman, Fried- 
man, Olshen, and Stone ( 1993 ), who reported a simple, non- 
compensatory algorithm with only 3 binary, ordered cues, 
which classified heart attack patients into high- and low-risk 
groups and was more accurate than standard statistical classi- 
fication methods that used up to 19 variables. The practical rel- 
evance of  this noncompensatory classification algorithm is ob- 
vious: In the emergency room, the physician can quickly obtain 
the measures on one, two, or three variables and does not need 
to perform any computations because there is no integration. 
This group of  statisticians constructed satisficing algorithms 
that approach the task of classification (and estimation) much 
like the Take The Best algorithm handles two-alternative 
choice. Relevance theory (Sperber, Cara, & Girotto, 1995 ) pos- 
tulates that people generate consequences from rules according 
to accessibility and stop this process when expectations of rele- 
vance are met. Although relevance theory has not been as for- 
malized, we see its stopping rule as parallel to that of  the Take 
The Best algorithm. Finally, optimality theory (Legendre, Ray- 
mond, & Smolensky, 1993; Prince & Smolensky, 1991) pro- 
poses that hierarchical noncompensation explains how the 
grammar of a language determines which structural description 
of an input best satisfies well-formedness constraints. Optimal- 
ity theory (which is actually a satisficing theory) applies the 
same inferential principles as PMM theory to phonology and 
morphology. 

Recognition Principle 

The recognition principle is a version of  one-reason decision 
making that exploits a lack of  knowledge. The very fact that 
one does not know is used to make accurate inferences. The 
recognition principle is an intuitively plausible principle that 
seems not to have been used until now in models of  bounded 
rationality. However, it has long been used to good advantage by 
humans and other animals. For instance, advertisement tech- 
niques as recently used by Benetton put all effort into making 
sure that every customer recognizes the brand name, with no 
effort made to inform about the product itself. The idea behind 
this is that recognition is a strong force in customers' choices. 
One of  our dear (and well-read) colleagues, after seeing a draft 
of  this article, explained to us how he makes inferences about 
which books are worth acquiring. If  he finds a book about a 

great topic but does not recognize the name of the author, he 
makes the inference that it is probably not worth buying. If, 
after an inspection of  the references, he does not recognize most 
of  the names, he concludes the book is not even worth reading. 
The recognition principle is also known as one of the rules that 
guide food preferences in animals. For instance, rats choose the 
food that they recognize having eaten before (or having smelled 
on the breath of fellow rats) and avoid novel foods (Gallistel, 
Brown, Carey, Gelman, & Keil, 1991 ). 

The empirical validity of  the recognition principle for infer- 
ences about unknown city populations, as used in the present 
simulations, can be directly tested in several ways. First, partic- 
ipants are presented pairs of cities, among them critical pairs in 
which one city is recognized and the other unrecognized, and 
their task is to infer which one has more inhabitants. The rec- 
ognition principle predicts the recognized city. In our empirical 
tests, participants followed the recognition principle in roughly 
90% to 100% of  all cases (Goldstein, 1994; Goldstein & Giger- 
enzer, 1996). Second, participants are taught a cue, its ecologi- 
cal validity, and the cue values for some of  the objects (such as 
whether a city has a soccer team or not).  Subsequently, they are 
tested on critical pairs of  cities, one recognized and one unrec- 
ognized, where the recognized city has a negative cue value 
(which indicates lower population). The second test is a harder 
test for the recognition principle than the first one and can be 
made even harder by using more cues with negative cue values 
for the recognized object, and by other means. Tests of  the sec- 
ond kind hax;e been performed, and participants still followed 
the recognition principle more than 90% of  the time, providing 
evidence for its empirical validity (Goldstein, 1994; Goldstein 
& Gigerenzer, 1996). 

The recognition principle is a useful heuristic in domains 
where recognition is a predictor of  a target variable, such as 
whether a food contains a toxic substance. In cases where rec- 
ognition does not predict the target, the PMM algorithms can 
still perform the inference, but without the recognition princi- 
ple (i.e., Step 1 is canceled). 

Limited Search 

Both one-reason decision making and the recognition princi- 
ple realize limited search by defining stopping points. Integra- 
tion algorithms, in contrast, do not provide any model of  stop- 
ping points and implicitly assume exhaustive search (although 
they may provide rules for tossing out some of  the variables in 
a lengthy regression equation). Stopping rules are crucial for 
modeling inference under limited time, as in Simon's examples 
of satisficing, where search among alternatives terminates when 
a certain aspiration level is met. 

Nonlinearity 

Linearity is a mathematically convenient tool that has domi- 
nated the theory of  rational choice since its inception in the 
mid-seventeenth century (Gigerenzer et al., 1989). The as- 
sumption is that the various components of  an alternative add 
up independently to its overall estimate or utility. In contrast, 
nonlinear inference does not operate by computing linear sums 
of  (weighted) cue values. Nonlinear inference has many variet- 
ies, including simple principles such as in the conjunctive and 
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disjunctive algorithms (Einhorn, 1970) and highly complex 
ones such as in nonlinear multiple regression and neural net- 
works. The Take The Best algorithm and its variants belong to 
the family of simple nonlinear models. One advantage of simple 
nonlinear models is transparency; every step in the PMM algo- 
rithms can be followed through, unlike fully connected neural 
networks with numerous hidden units and other free 
parameters. 

Our competition revealed that the unit-weight and weighted 
versions of the linear models lead to about equal performance, 
consistent with the finding that the choice of weights, provided 
the sign is correct, does often not matter much (Dawes, 1979). 
In real-world domains, such as in the prediction of sudden in- 
fant death from a linear combination of eight variables 
(Carpenter, Gardner, McWeeny & Emery, 1977), the weights 
can be varied across a broad range without decreasing predic- 
tive accuracy: a phenomenon known as the "fiat maximum 
effect" (Lovie & Lovie, 1986; von Winterfeldt & Edwards, 
1982). The competition in addition, showed that the fiat maxi- 
mum effect extends to tallying, with unit-weight and weighted 
tallying performing about equally well. The performance of the 
Take The Best algorithm showed that the fiat maximum can 
extend beyond linear models: Inferences based solely on the best 
cue can be as accurate as any weighted or unit-weight linear 
combination ofaU cues. 

Most research in psychology and economics has preferred 
linear models for description, prediction, and prescription 
(Edwards, 1954, 1962; Lopes, 1994; von Winterfeldt & Ed- 
wards, 1982). Historically, linear models such as analysis of 
variance and multiple regression originated as tools for data 
analysis in psychological laboratories and were subsequently 
projected by means of the "tools-to-theories heuristic" into the- 
ories of mind (Gigerenzer, 1991 ). The sufficiently good fit of 
linear models in many judgment studies has been interpreted 
that humans in fact might combine cues in a linear fashion. 
However, whether this can be taken to mean that humans actu- 
ally use linear models is controversial (Hammond & Summers, 
1965; Hammond & Wascoe, 1980). For instance, within a cer- 
tain range, data generated from the (nonlinear) law of falling 
bodies can be fitted well by a linear regression. For the data in 
the Appendix, a multiple linear regression resulted in R 2 = .87, 
which means that a linear combination of the cues can predict 
the target variable quite well. But the simpler, nonlinear, Take 
The Best algorithm could match this performance. Thus, good 
fit of a linear model does not rule out simpler models of 
inference. 

Shepard (1967) reviewed the empirical evidence for the 
claim that humans integrate information by linear models. He 
distinguished between the perceptual transformation of raw 
sensory inputs into conceptual objects and properties and the 
subsequent inference based on conceptual knowledge. He con- 
cluded that the perceptual analysis integrates the responses of 
the vast number of receptive elements into concepts and prop- 
erties by complex nonlinear rules but once this is done, "there 
is little evidence that they can in turn be juggled and recom- 
bined with anything like this facility" (Shepard, 1967, p. 263 ). 
Although our minds can take account of a host of different fac- 
tors, and although we can remember and report doing so, "it is 
seldom more than one or two that we consider at any one time" 
(Shepard, 1967, p. 267). In Shepard's view, there is little evi- 
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Figure 8. Limited knowledge and a stricter discrimination rule can 
produce intransitive inferences. 

dence for integration, linear or otherwise, in what we term in- 
ferences from memory--even without constraints of limited 
time and knowledge. A further kind of evidence does not sup- 
port linear integration as a model of memory-based inference. 
People often have great difiiculties in handling correlations be- 
tween cues (e.g., Armelius & Armelius, 1974), whereas inte- 
gration models such as multiple regression need to handle in- 
tercorrelations. To summarize, for memory-based inference, 
there seems to be little empirical evidence for the view of the 
mind as a Laplacean Demon equipped with the computational 
powers to perform multiple regressions. But this need not be 
taken as bad news. The beauty of the nonlinear satisficing algo- 
rithms is that they can match the Demon's performance with 
less searching, less knowledge, and less computational might. 

Intransitivity 

Transitivity is a cornerstone of classical rationality. It is one 
of the few tenets that the Anglo-American school of Ramsey 
and Savage shares with the competing Franco-European school 
of AUais (Fishburn, 1991 ). If we prefer a to b and b to c, then 
we should also prefer a to c. The linear algorithms in our com- 
petition always produce transitive inferences (except for ties, 
where the algorithm randomly guessed), and city populations 
are, in fact, transitive. The PMM family of algorithms includes 
algorithms that do not violate transitivity (such as the Take The 
Best algorithm), and others that do (e.g., the Minimalist 
algorithm). The Minimalist algorithm randomly selects a cue 
on which to base the inference, therefore intransitivities can re- 
suit. Table 2 shows that in spite of these intransitivities, overall 
performance of the algorithm is only about 1 percentage point 
lower than that of the best transitive algorithms and a few per- 
centage points better than some transitive algorithms. 

An organism that used the Take The Best algorithm with a 
stricter discrimination rule (actually, the original version found 
in Gigerenzer et al., 1991 ) could also be forced into making 
intransitive inferences. The stricter discrimination rule is that 
search is only terminated when one positive and one negative 
cue value (but not one positive and one unknown cue value) 
are encountered. Figure 8 illustrates a state of knowledge in 
which this stricter discrimination rule gives the result that a 
dominates b, b dominates c, and c dominates a.7 

7 Note that missing knowledge is necessary for intransitivities to oc- 
cur. If all cue values are known, no intransitive inferences can possibly 
result. The algorithm with the stricter discrimination rule allows precise 
predictions about the occurrence of intransitivitics over the course of 
knowledge acquisition. For instance, imagine a person whose knowl- 
edge is described by Figure 8, except that she does not know the value 
of Cue 2 for object c. This person would make no intransitive judgments 
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Biological systems, for instance, can exhibit systematic in- 
transitivities based on incommensurability between two sys- 
tems on one dimension (Gilpin, 1975; Lewontin, 1968 ). Imag- 
ine three species: a,  b, and c. Species a inhabits both water and 
land; species b inhabits both water and air. Therefor e, the two 
only compete in water, where species a defeats species b. Species 
c inhabits land and air, so it only competes with b in the air, 
where it is defeated by b. Finally, when a and c meet, it is only 
on land, and here, c is in its element and defeats a. A linear 
model that estimates some value for the combative strength of  
each species independently of  the species with which it is com- 
peting would fail to capture this nontransitive cycle. 

Inferences Without Estimation 

Einhorn and Hogarth ( i975)  noted that in the unit-weight 
model "there is essentially no estimation involved in its use" (p. 
177), except for the sign of the unit weight. A similar result 
holds for the algorithms reported here. The Take The Best algo- 
rithm does not need to estimate regression weights, it only 
needs to estimate a rank ordering of  ecological validities. The 
Take The Last and the Minimalist algorithms involve essen- 
tially no estimation (except for the sign of  the cues). The fact 
that there is no estimation problem has an important conse- 
quence: An organism can use as many cues as it has experi- 
enced, without being concerned about whether the size of the 
sample experienced is sufficiently large to generate reliable esti- 
mates of  weights. 

Cue Redundancy and Performance 

Einhorn and Hogarth (1975) suggested that unit-weight 
models can be expected to perform approximately as well as 
proper linear models when (a)  R 2 from the regression model is 
in the moderate or low range (around .5 or smaller) and (b)  
predictors (cues) are correlated. Are these two criteria neces- 
sary, sufficient, or both to explain the performance of  the Take 
The Best algorithm? The Take The Best algorithm and its vari- 
ants certainly can exploit cue redundancy: If  cues are highly 
correlated, one cue can do the job. 

We have already seen that in the present environment, R z = 
.87, which is in the high rather than the moderate nr lnw range. 
As mentioned earlier, the pairwise correlations between the 
nine ecological cues ranged between - .25  and .54, with an ab- 
solute average value of  .19. Thus, despite a high R 2 and only 
moderate-to-small correlation between cues, the satisficing al- 
gorithms performed quite successfully. Their excellent perfor- 
mance in the competition can be explained only partially by cue 
redundancy, because the cues were only moderately correlated. 
High cue redundancy, thus, does seem sufficient but is not nec- 

comparing objects a, b, and c. If she were to learn that object c had a 
negative cue value for Cue 2, she would produce an intransitive judg- 
ment. If she learned one piece more, namely, the value of Cue 1 for 
object c, then she would no longer produce an intransitive judgment. 
The prediction is that transitive judgments should turn into intransitive 
ones and back, during learning. Thus, intransitivities do not simply de- 
pend on the amount of limited knowledge but also on what knowledge 
is missing. 

essary for the successful performance of the satisficing 
algorithms. 

A New Perspective on the Lens Model 

Ecological theorists such as Brunswik (1955) emphasized 
that the cognitive system is designed to find many pathways to 
the world, substituting missing cues by whatever cues happen to 
be available. Brunswik labeled this ability vicarious functioning, 
in which he saw the most fundamental principle of  a science of  
perception and cognition. His proposal to model this adaptive 
process by linear multiple regression has inspired a long tradi- 
tion of neo-Brunswikian research (B. Brehmer, 1994; Ham- 
mond, 1990), although the empirical evidence for mental 
multiple regression is still controversial (e.g., A. Brehmer & B. 
Brehmer, 1988). However, vicarious functioning need not be 
equated with linear regression. The PMM family of algorithms 
provides an alternative, nonadditive model of  vicarious func- 
tioning, in which cue substitution operates without integration. 
This gives a new perspective of  Brunswik's lens model. In a one- 
reason decision making lens, the first discriminating cue that 
passes through inhibits any other rays passing through and de- 
termines judgment. Noncompensatory vicarious functioning is 
consistent with some of  Brunswik's original examples, such as 
the substitution of  behaviors in Hull's habit-family hierarchy, 
and the alternative manifestation of symptoms according to the 
psychoanalytic writings of  Frenkel-Brunswik (see Gigerenzer & 
Murray, 1987, chap. 3). 

It has been reported sometimes that teachers, physicians, and 
other professionals claim that they use seven or so criteria to 
make judgments (e.g., when grading papers or making a differ- 
ential diagnosis) but that experimental tests showed that they 
in fact often used only one criterion (Shepard, 1967). At first 
glance, this seems to indicate that those professionals make out- 
rageous claims. But it need not be. If experts' vicarious func- 
tioning works according to the PMM algorithms, then they are 
correct in saying that they use many predictors, but the decision 
is made by only one at any time. 

What Counts as Good Reasoning? 

Much of  the research on reasoning in the last decades has 
assumed that sound reasoning can be reduced to principles of  
internal consistency, such as additivity of  probabilities, confor- 
mity to truth-table logic, and transitivity. For instance, research 
on the Wason selection task, the "Linda" problem, and the 
"cab" problem has evaluated reasoning almost exclusively by 
some measure of internal consistency (Gigerenzer, 1995, 
1996a). Cognitive algorithms, however, need to meet more im- 
portant constraints than internal consistency: (a)  They need to 
be psychologically plausible, (b)  they need to be fast, and (c) 
they need to make accurate inferences in real-world environ- 
ments. In real time and real environments, the possibility that 
an algorithm (e.g., the Minimalist algorithm) can make intran- 
sitive inferences does not mean that it will make them all the 
time or that this feature of the algorithm will significantly hurt 
its accuracy. What we have not addressed in this article are con- 
straints on human reasoning that emerge from the fact that 
Homo sapiens is a social animal (Gigerenzer, 1996b). For in- 
stance, some choices (e.g., who to treat first in an emergency 
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room) need to be justified (Tetlock, 1992 ). Going with the sin- 
gle best reason, the strategy of the Take The Best algorithm, has 
an immediate appeal for justification and can be more convinc- 
ing and certainly easier to communicate than some complicated 
weighting of cues. 

Further  Research  

Among the questions that need to be addressed in future re- 
search are the following. First, how can we generalize the pres- 
ent satisficing algorithm from two-alternative-choice tasks to 
other inferential tasks, such as classification and estimation? 
The reported success of the classification and regression tree 
models (Breiman et al., 1993 ), which use a form of one-reason 
decision making, is an encouraging sign that what we have 
shown here for two-alternative-choice tasks might be generaliz- 
able. Second, what is the structure of real-world environments 
that allows simple algorithms to perform so well? We need to 
develop a conceptual language that can capture important as- 
pects of the structure of environments that simple cognitive al- 
gorithms can exploit. The traditional proposal for understand- 
ing the structure of environments in terms of ecological validi- 
ties defined as linear correlations (Brunswik, 1955 ) may not be 
adequate, as the power of the nonlinear satisficing algorithms 
suggests. 

Can R e a s o n i n g  B e  R a t i o n a l  a n d  Psychological? 

At the beginning of this article, we pointed out the common 
opposition between the rational and the psychological, which 
emerged in the nineteenth century after the breakdown of the 
classical interpretation of probability (Gigerenzer et al., 1989). 
Since then, rational inference is commonly reduced to logic and 
probability theory, and psychological explanations are called on 
when things go wrong. This division of labor is, in a nutshell, 
the basis on which much of the current research on judgment 
under uncertainty is built. As one economist from the Massa- 
chusetts Institute of Technology put it, "either reasoning is ra- 
tional or it's psychological" (Gigerenzer, 1994). Can not rea- 
soning be both rational and psychological? 

We believe that after 40 years of toying with the notion of 
bounded rationality, it is time to overcome the opposition be- 
tween the rational and the psychological and to reunite the two. 
The PMM family of cognitive algorithms provides precise 
models that attempt to do so. They differ from the Enlighten- 
ment's unified view of the rational and psychological, in that 
they focus on simple psychological mechanisms that operate 
under constraints of limited time and knowledge and are sup- 
ported by empirical evidence. The single most important result 
in this article is that simple psychological mechanisms can yield 
about as many (or more) correct inferences in less time than 
standard statistical linear models that embody classical proper- 
ties of rational inference. The demonstration that a fast and fru- 
gal satisficing algorithm won the competition defeats the wide- 
spread view that only "rational" algorithms can be accurate. 
Models of inference do not have to forsake accuracy for sim- 
plicity. The mind can have it both ways. 
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Appendix 

The Environment 

S o c c e r  S t a t e  F o r m e r  E a s t  I n d u s t r i a l  L i c e n c e  I n t e r c i t y  E x p o s i t i o n  N a t i o n a l  

C i t y  P o p u l a t i o n  t e a m  c a p i t a l  G e r m a n y  b e l t  p l a t e  t r a i n l i n e  s i t e  c a p i t a l  U n i v e r s i t y  

B e r l i n  3 , 4 3 3 , 6 9 5  - + - - + + + + + 

H a m b u r g  1 , 6 5 2 , 3 6 3  + + - - - + + - + 

M u n i c h  1 , 2 2 9 , 0 2 6  + + - - + + + - + 

C o l o g n e  9 5 3 , 5 5 1  + - - - + + + - + 

F r a n k f u r t  6 4 4 , 8 6 5  + - - - + + + - + 

E s s e n  6 2 6 , 9 7 3  - - - + + + + - + 

D o r t m u n d  5 9 9 , 0 5 5  + - - + - + + - + 

S t u t t g a r t  5 7 9 , 9 8 8  + + - - + + + - + 

D i J s s e l d o r f  5 7 5 , 7 9 4  - + - - + + + - + 

B r e m e n  5 5 1 , 2 1 9  + + - - - + - - + 

D u i s b u r g  5 3 5 , 4 4 7  - - - + - + - - + 

H a n n o v e r  5 1 3 , 0 1 0  - + - - + + + - + 

L e i p z i g  5 1 1 , 0 7 9  - - + - + + + - + 

N u r e m b e r g  4 9 3 , 6 9 2  + - - - + + + - + 

D r e s d e n  4 9 0 , 5 7 1  + - *  + - - + - - + 

B o c h u m  3 9 6 , 4 8 6  + - - + - + - - + 

W u p p e r t a l  3 8 3 , 6 6 0  - - - + + + - - + 

B i e l e f e l d  3 1 9 , 0 3 7  . . . . .  + - - + 

M a n n h e i m  3 1 0 , 4 1 1  . . . . .  + - - + 

H a l l e  3 1 0 , 2 3 4  - - + - - + - - - 

C h e m n i t z  2 9 4 , 2 4 4  - - + - + . . . .  

G e l s e n k i r c h e n  2 9 3 , 7 1 4  + - - + - + - - - 

B o n n  2 9 2 , 2 3 4  . . . .  + - - + 

M a g d e b u r g  2 7 8 , 8 0 7  - + + - - + - - - 

K a r l s r u h e  2 7 5 , 0 6 1  + . . . .  + - - - 

W i e s b a d e n  2 6 0 , 3 0 1  - + - - - + - - - 

M f i n s t e r  2 5 9 , 4 3 8  . . . . .  + - - + 

M 6 n c h e n g l a d b a c h  2 5 9 , 4 3 6  + . . . . . . . .  

B r a u n s c h w e i g  2 5 8 , 8 3 3  . . . . .  + - - + 

A u g s b u r g  2 5 6 , 8 7 7  . . . .  + + - - + 

R o s t o c k  2 4 8 , 0 8 8  - - + - - + - - - 

K i e l  2 4 5 , 5 6 7  - + - - - + - - + 

K r e f e l d  2 4 4 , 0 2 0  - *  . . . . . . . .  

A a c h e n  2 4 1 , 9 6 1  . . . . .  + - - + 

O b e r h a u s e n  2 2 3 , 8 4 0  - - - + - + - - - 

L / i b e c k  2 1 4 , 7 5 8  . . . . .  + - - - 

H a g e n  2 1 4 , 4 4 9  - - - + - + - - - 

E r f u r t  2 0 8 , 9 8 9  - + + - - + - - - 

K a s s e l  1 9 4 , 2 6 8  . . . . .  + - - + 

S a a r b r i J c k e n  1 9 1 , 6 9 4  + + - - - + + - + 
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S o c c e r  S t a t e  F o r m e r  E a s t  I n d u s t r i a l  L i c e n c e  I n t e r c i t y  E x p o s i t i o n  N a t i o n a l  

C i t y  P o p u l a t i o n  t e a m  c a p i t a l  G e r m a n y  b e l t  p l a t e  t r a i n l i n e  s i t e  c a p i t a l  U n i v e r s i t y  

F r e i b u r g  1 9 1 , 0 2 9  . . . . . .  + - - + 

H a m m  1 7 9 , 6 3 9  - - - + - + - - - 

M a i n z  1 7 9 , 4 8 6  - + - - - + - - + 

H e r n e  1 7 8 , 1 3 2  - - - + . . . . .  

M / i l h e i m  1 7 7 , 6 8 1  - - - + . . . . .  

S o l i n g e n  1 6 5 , 4 0 1  . . . . . .  + - - - 

O s n a b r i i c k  1 6 3 , 1 6 8  . . . . .  + - - + 

L u d w i g s h a f e n  1 6 2 , 1 7 3  . . . . .  + - - - 

L e v e r k u s e n  1 6 0 , 9 1 9  + . . . . . . . .  

N e u s s  1 4 7 , 0 1 9  . . . . . . . . .  

O l d e n b u r g  1 4 3 , 1 3 1  . . . . .  + - - + 

P o t s d a m  1 3 9 , 7 9 4  - + + - + + - - - 

D a r m s t a d t  1 3 8 , 9 2 0  . . . . .  + - - + 

H e i d e l b e r g  1 3 6 , 7 9 6  . . . . .  + - - + 

B r e m e r h a v e n  1 3 0 , 4 4 6  . . . . .  + - - - 

G e r a  1 2 9 , 0 3 7  - - + - + + - - - 

W o l f s b u r g  1 2 8 , 5 1 0  . . . . . . . . .  

W i i r z b u r g  1 2 7 , 7 7 7  . . . . .  + - - + 

S c h w e r i n  1 2 7 , 4 4 7  - + + - - + - - - 

C o t t b u s  1 2 5 , 8 9 1  - - + . . . . . .  

R e c k l i n g h a u s e n  1 2 5 , 0 6 0  - - - + - + - - - 

R e m s c h e i d  1 2 3 , 1 5 5  . . . . . . . . .  

G S t t i n g e n  1 2 1 , 8 3 1  . . . . .  + - - + 

R e g e n s b u r g  1 2 1 , 6 9 1  . . . .  + + - - + 

P a d e r b o r n  1 2 0 , 6 8 0  . . . . . . . . .  + 

B o t t r o p  1 1 8 , 9 3 6  - - - + . . . . .  

H e i l b r o n n  1 1 5 , 8 4 3  . . . . . . . . .  

O f f e n b a c h  1 1 4 , 9 9 2  . . . . . .  + - - 

Z w i c k a u  1 1 4 , 6 3 6  - - + - + . . . .  

S a l z g i t t e r  1 1 4 , 3 5 5  . . . . . . . . .  

P f o r z h e i m  1 1 2 , 9 4 4  . . . . .  + - - - 

U l m  1 1 0 , 5 2 9  . . . . .  + - - + 

S i e g e n  1 0 9 , 1 7 4  . . . . . . . .  + 

K o b l e n z  1 0 8 , 7 3 3  . . . . .  + - - + 

J e n a  1 0 5 , 5 1 8  - - + - + + - - + 

l n g o l s t a d t  1 0 5 , 4 8 9  . . . . .  + - - - 

W i t t e n  1 0 5 , 4 0 3  - - - + . . . . .  

H i l d e s h e i m  1 0 5 , 2 9 1  . . . . .  + - - + 

M o e r s  1 0 4 , 5 9 5  - - - + . . . . .  

B e r g i s c h  G l a d b a c h  1 0 4 , 0 3 7  . . . . . . . . .  

R e u t l i n g e n  1 0 3 , 6 8 7  . . . . . . . . .  

F i i r t h  1 0 3 , 3 6 2  . . . . .  + - - - 

E r l a n g e n  1 0 2 , 4 4 0  . . . . .  + - - + 

Note. C i t y  p o p u l a t i o n s  w e r e  t a k e n  f r o m  Fischer Welt Almanach ( 1 9 9 3 ) .  

* T h e  t w o  s t a r r e d  m i n u s  v a l u e s  a r e ,  i n  r e a l i t y ,  p l u s  v a l u e s .  B e c a u s e  o f  t r a n s c r i p t i o n  e r r o r s ,  w e  r a n  a l l  s i m u l a t i o n s  w i t h  t h e s e  t w o  m i n u s  v a l u e s .  T h e s e  

d o  n o t  a f f e c t  t h e  r a n k  o r d e r  o f  c u e  v a l i d i t i e s ,  s h o u l d  n o t  h a v e  a n y  n o t i c e a b l e  e f f e c t  o n  t h e  r e s u l t s ,  a n d  a r e  i r r e l e v a n t  f o r  o u r  t h e o r e t i c a l  a r g u m e n t .  

R e c e i v e d  M a y  2 0 ,  1 9 9 5  

R e v i s i o n  r e c e i v e d  D e c e m b e r  4 ,  1 9 9 5  

A c c e p t e d  D e c e m b e r  8 ,  1 9 9 5  • 


