Towards an Ontological Representation of Resistance: The Case of MRSa

Albert Goldfain¹, Lindsay G. Cowell², Barry Smith³

¹Blue Highway, Syracuse, New York

² Duke University Medical Center, Durham, North Carolina

³ University at Buffalo, Buffalo, New York

agoldfain@blue-highway.com, lgcowell@duke.edu, phismith@buffalo.edu

ICBO 2009, Buffalo, NY

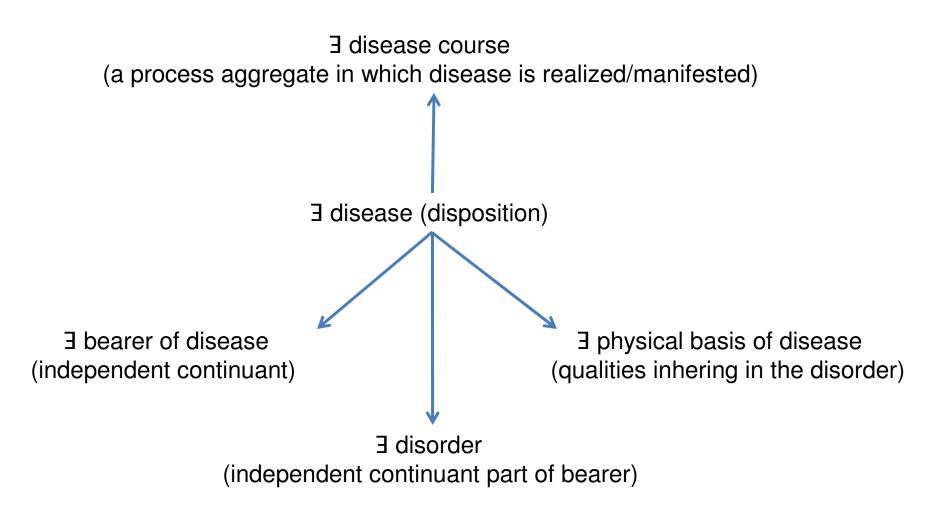
Jul 2009

: Posted 27

Nature Precedings : doi:10.1038/npre.2009.3475.1

Aims

- This work is funded by the National Institutes of Health through Grant R01 AI 77706-01
 - Immune System Biological Networks: A Case Study in Improved Data Integration & Analysis
- <u>Aim 1: Create an ontology-based representation of host-pathogen</u> <u>interactions, focusing on Staphylococcus aureus bacteremia.</u>
- Aim 2: Empirically test the ability of the ontology-based representation created in Aim 1 to improve the analysis and interpretation of clinical data.
- Aim 3. Empirically test the impact of the ontology-based representation created in Aim 1 on understanding Staphylococcus aureus pathogenesis, on identifying novel therapeutic targets, and on improving patient management.


Outline

- I. Introduction to IDO
- II. Resistance phenomena and their ontological representation
- III. Case Study: The antibiotic resistance of MRSa
- IV. Formalization into triples
- V. A definition for protective resistance
- VI. Conclusion

Infectious Disease Ontology (IDO)

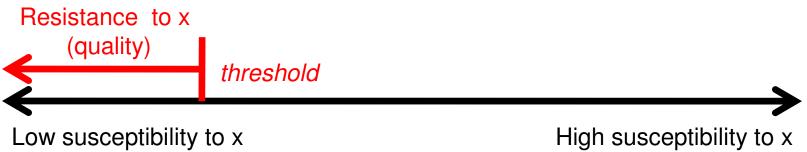
- An domain ontology extending BFO
- An interoperable part of the OBO foundry.
- Top-level IDO: A core upper ontology for the entire infectious disease domain
 - At different biological scales
 - From different disciplinary perspectives
 - ~200 terms
- IDO-extensions: A family of reference ontologies for specific diseases and pathogens (e.g., Staph aureus, Malaria, Influenza...)
- See <u>http://www.infectiousdiseaseontology.org</u> and IDO consortium invitation

Dispositional view of disease

Resistance Phenomena

- Examples:
 - Resistance of an individual to a disease
 - Resistance of a tumor to a treatment
 - Resistance of a pathogen to a drug
 - Herd immunity of an organism population to a
 - Immunity of an individual to an infectious organism
 - Resistance of certain bacteria to UV!
 <u>http://edition.cnn.com/2009/TECH/science/03/17/india.bacteria/</u>
- Resistance as a disposition
 - Different types of bearers at different biological scales
- Several ontologies/terminologies include resistance terms.

Resistance in existing terminologies

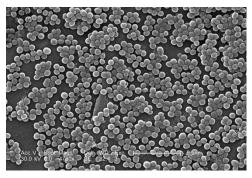

- [NCI Thesaurus: C19391] **Resistance**: Natural or acquired mechanisms, functions, activities, or processes exhibited by an organism to maintain immunity to, or to resist the effects of, an antagonistic agent, e.g., pathogenic microorganism, toxin, drug.
- Issues:
 - Circular definition: uses 'resist' in definition for resistance!
 - What is the type: mechanism? function? activity? process?
 - Restricted to organism bearer
 - Too many disjunctions to be useful

Desiderata for IDO Representation

- BFO-compatible
- Positive/active principle
 - Don't characterize resistance by what is not happening
 - Use lacks wherever necessary
- Non-proliferation of relations principle
 - don't propose a trivial relation resistant_to
 - work with OBO RO and RO-proposed relations
- Correct granularity
 - General enough to cover examples
 - Specific enough to be useful
- Pragmatic Concerns: IDO/IDO-extension terms should mirror scientific interest in resistance types.
 - Example: water-resistant walls are probably also lemonade-resistant, but we don't put 'lemonade resistance' in our ontology.

Resistance the quality vs Resistance the disposition

- Resistance disposition
 - possessed in virtue of internal physical arrangement of bearer
 - not always manifested when borne
 - realized in active processes at some physical scale
- Resistance quality
 - a sufficiently low susceptibility



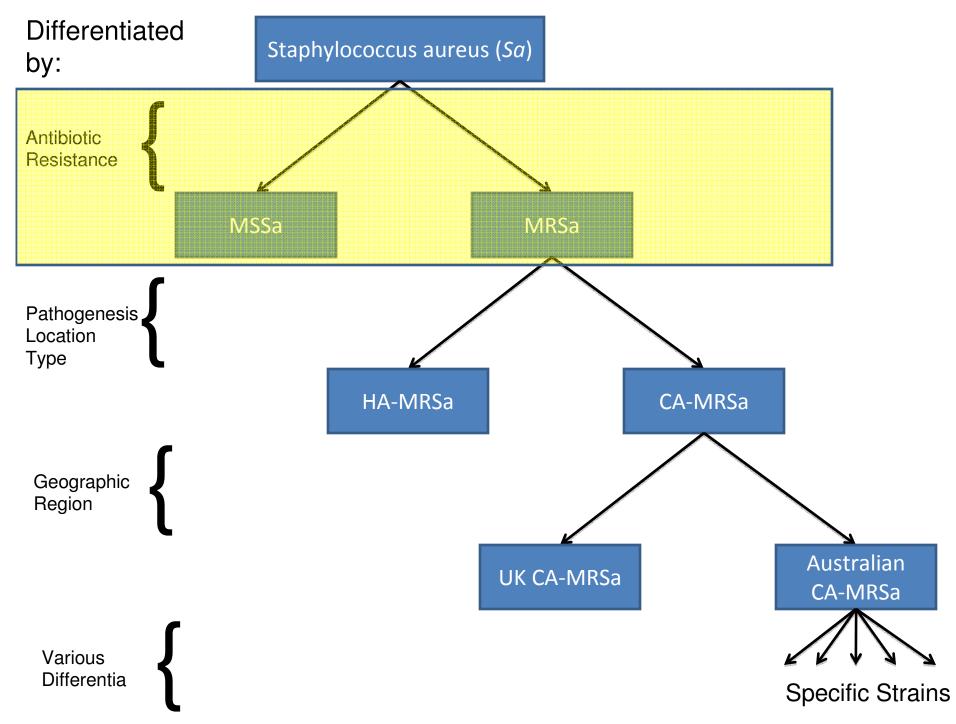
Dispositions in BFO 2.0

- BFO Disposition
 - BFO Capability: a disposition that enables its bearer to participate in certain processes.
 - BFO Function: a capability which evolved in its bearer or whose bearer was designed to have the disposition.
- Categorical Base/Ground is a BFO Quality
 - A disposition at a macroscale is usually conferred on its bearer by qualities of parts at a microscale
 - This is the utility of dispositions in reasoning
 - A chain of dispositions-in-wholes and qualities-in-parts all the way down

Case Study: MRSa

- Methicillin Resistant Staph aureus (MRSa)
 - A type of Staph aureus characterized by resistance to methicillin (and other β-lactam antibiotics).
 - As such, treatment decisions and public-health policies hinge on detecting MRSa
 - Currently: A huge problem for healthcare providers...

Source: CDC's PHIL


Our representation consists of: 1.A set of triples describing the entities involved in the resistance of MRSa to methicillin. 2.Logical inference rules a reasoner might use to *justify* the resistance.

Then use this formalization to inform a general definition for IDO

The Rise and Antibiotic Resistance in Sa

Year	Antibiotic Effectiveness
1943	Penicillin available
1947	First resistant strains reported
1960s	Switch to methicillin
1961	Methicillin-resistant strain found in Cairo
1980s	Methicillin resistance rising, vancomycin used as a last resort
1992	15% methicillin-resistant
1996	35% methicillin-resistant
2000	50% methicillin-resistant
2002	Vancomycin resistance reported

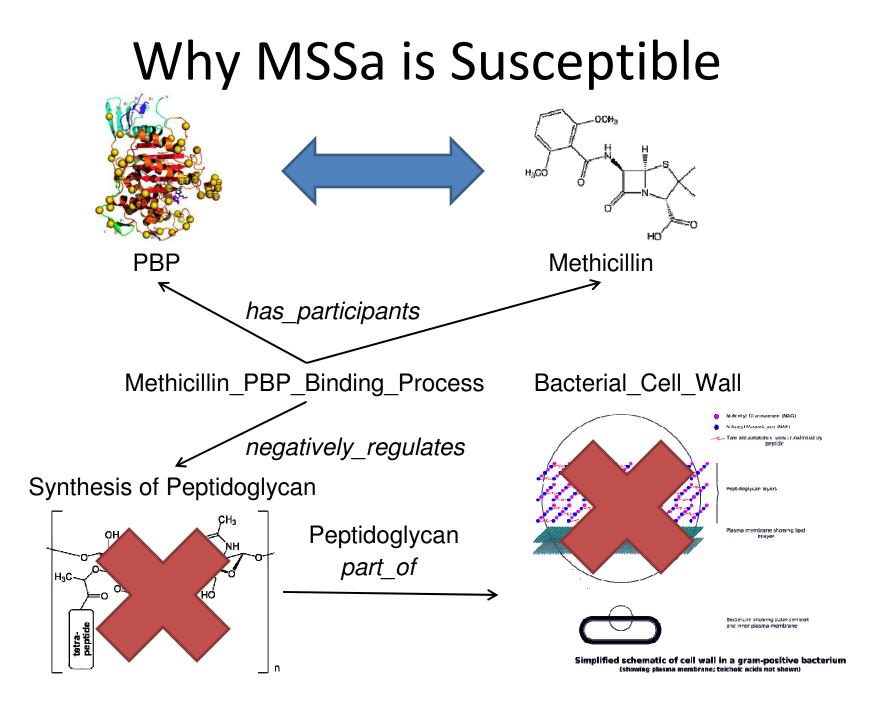
(from Knobler et al, 2003)

Formalizing MRSa Resistance

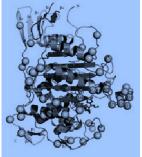
Domain

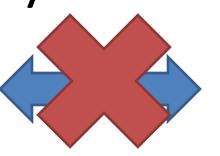
- 1. bacteria **is_a** organism
- 2. MRSa is_a bacterium
- 3. synthesis_of_peptidoglycan is_a process and has_participant Penicillin_Binding_Protein (PBP)
- 4. PBP has_function_realized_as_process synthesis_of_peptidoglycan
- 5. Bacterial_cell_wall is_location_of PBP
- 6 synthesis of pentidoglycan results in development of

Inferences


- (IR1) x is_a y & y is_a $z \rightarrow x$ is_a z
- (IR2) x has_part y & y has_part $z \rightarrow x$ has_part z
- (D1) MRSa is_a organism
- (IR3) o is_a organism & g is_a gene & o has_part g & g generically_specifies proc & proc results_in_formation_of prod & o has part locp & locp is location of prod) →
 - o has_part prod located_in locp

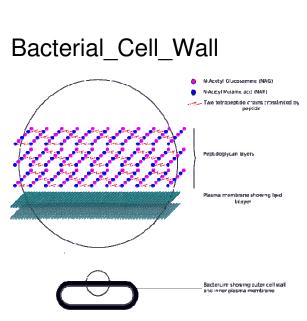
16 triples + 6 inference rules + 5 derived triples but let's look at this in pictures...


- 10. affinity_to_methicillin **disposition_of** some PBP to undergo a methicillin_PBP_binding_process that is **realized** in the presence of a methicillin.
- 11. methicillin_PBP_binding_process **negatively_regulates** synthesis_of_peptidoglycan.
- 12. PBP2a lacks affinity_to_methicillin
- 13. mecA is_a gene
- 14. MRSa has_part mecA
- *15. mecA* generically_specifies PBP2a_production
- 16. PBP2a_production results_in_formation_of PBP2a


Situations, p participates_in proce

- (D3) In the presence of methicillin, PBP2a participates_in synthesis_of_peptidoglycan.
- (IR5) In situation s, p1 participates_in proc & p1 located_in p2 & o has_part p2 → proc unfolds_in o in situation s.
- (D4) synthesis_of_peptidoglycan unfolds_in MRSa in the presence of methicillin.
- (IR6) In situation s, proc unfolds_in o & proc results_in_development_of p → p part of o in situation s
- (D5) Canonical bacterial_cell_wall **part_of** MRSa in the presence of methicillin.

Why MRSa is Resistant



PBP2a *lacks* affinity_to_methicillin

OCH₃

Methicillin

H₃CÓ

Simplified schematic of cell wall in a gram-positive bacterium (showing plasma membrane; teichok acids not shown)

IDO's Protective Resistance

• IDO: Protective resistance is a disposition that inheres in an material entity x by virtue of the fact that the entity has a part (e.g., a gene Allows for both organisms product), whi positio to and tumors ensure a physiologic response o certain degree to a potentially dam Usually a y y, or function hut to prevent the comple o nG cess mav be just a capability with the can lity to da caused by y -777 Or e.g., CCR5 mutation prevents the completion mitigati of HIV invasion of host T cell

Conclusions

- Resistance is a very *important* biological phenomenon...
 - Guiding treatment decisions
 - Public health policy
- and a very *general* phenomenon...
 - Multi-scale (gene, cell, organ, organism, population)
 - Multi-discipline (clinical, biological, epidemiological)
- Whose representation in an ontology is *non-trivial*
 - Even a particular instance of resistance requires many triples for description and inference.
 - Needs further analysis of lacking a disposition (e.g., lacking the affinity to methicillin).

Thanks!