
1

The V- and W-operators in Inverse Resolutions

Shan-Hwei Nienhuys-Cheng
Department of Computer Science
Erasmus University Rotterdam
Rotterdam, Netherlands

1 Introduction

Resolutions are often used to conclude results from given clauses. In machine learning we need
sometimes to consider some given facts as results of some clauses and we want to find these clauses.
This is the backgrond of inverse resolution. Muggleton and Buntine[1] have defined V- and W-
operators for inverse resolutions in 1988. They have also implemented them in a system CIGOL.
These two operators consider two different situations for inverting resolutions. [11,12] use
flattening to find solutions of these two operators. [3,6] use term partitions to find solutions of V-
operators. A comparison of these two approaches are given in [8]. In fact, both approaches can be
considered as different ways of coding the same problems related to the trees of clauses[7]. In this
article we consider these problems in different levels. We are most interested in the first and the
second level. The fisrt level (highest) considers a clause as a set of literals. The second level
considers a clause as a disjunction of literals which we call a clausal form. The third level
applies socalled integer coding to clausal forms to find term partitions. The fourth level, also the
lowest, is the implementation of the operators. In this article we are not going to talk about the
implementation level.

Finding generalizations of clauses is important for solving problems in inverse resolutions. We
shall explain this problem in the first and second levels so that we get more insight about
generalizations and also about levels. In the second level we consider clauses as clausal forms.
Let C and D be two clausal forms. D is called a generalization of C if there is a substitution µ such
that Dµ=C. This definition is purely syntactic and unflexible. For example if C=P(a,a)∨Q(a,a),
then D1=P(x,y)∨Q(x,y) is a generalization of C and D2=Q(x,y)∨P(x,y) is not a generalization of
C. If we consider the same problem in the first level, then {P(x,y),Q(x,y)} and {Q(x,y),P(x,y)} do
not make any difference. They represent the same set which is a generalization of
{P(a,a),Q(a,a)}. Another problem can also be explained by an example. The two clausal forms
C 1=P(f(a),f(a)) and C2=P(f(a),f(a))∨ P(f(a),f(a)) represent the same clause (set form)
{P(f(a),f(a))}. The clause D=P(f(x),f(y))∨P(f(a),z) is a generalization of C2 but not of C1 in the
second level. On the other hand {P(f(x),f(y)),P(f(a),z)} is a generalization of {P(f(a),f(a))} in the
first level. For us the first level makes more sense because it has more to do with the semantic of
generalizations. On the other hand, the second level is more manipulable. The best way to
approach the problems in generalizations and inverse resolutions is first to formulate a problem
in the highest (first) level. We translate it then to problem(s) in the lower levels and solve the
problems in lower levels.

In chapter 2 we are going to define clauses (in set forms) and their corresponding clausal forms.
The V- and W-operators shall also be formulated in both forms in this chapter.

In chapter 3 we are going to introduce two order relations defined by the two ways of
generalizations which we have just talked about. The problems about order relation in the first
level can also be translated to problems about order relation in the second level.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19190788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2
In chapter 4 we define minimal proper generalizations and the supremum of clausal forms w.r.t. to
the order relation in the second level. For the results about minimal proper generalizations we
can look up in [4]. For the supremum of compatible clausal forms we need only to generalize the
results of Plotkin in [9].

In chapter 5, 6 we use the results of chapter 3, 4 to solve the problems in V-operators and W-
operators respectively.

In chapter 7 finding generalizations by using the integer coding and term partitions shall be
quickly explained. We look at the problems V- and W-operators once more by using this coding.

2 V- and W-operators

2.1 Preliminaries in the first order logic

In this article we use a language of first order logic. The constants are denoted by a, b, c, etc. The
predicates are denoted by P, Q, R, etc. and the variables are denoted by u, v, w, x, y, z, u1, etc. The
letters f, g, h, etc. are used to denote functions. A term is either simple, i.e. a constant or variable,
or compound, i.e. it has the form f(t1,...,tn) where ti is a term and f is n-ary. An atom has the form
P(t1,…,tn) where ti are terms and P is n-ary. The negation of an atom M is denoted by ~M. An
atom or the negation of an atom is called a literal. A clause is a set of literals {L1,…,Ln} where
every Li is a literal. A clause C={L1,…,Ln} can be expressed in clausal-form Li1∨Li2...∨Lim if
{Li1,…,Lim}={L1,…,Ln}. A clause is actually an equivalence class of clausal forms where two
clausal forms in the same class are composed of the same literals. If two clausal forms of the same
clause do not contain repeated literals, then one form can be achieved by permutation of literals
in the other form of the same clause. We can extend the equivalence class even further. Two
clauses are equivalent if they differ only by variable names. Thus the equivalence class of
clausal forms can be extended by using this equivalence relation in the clauses. That is to say, two
clausal forms belong to the same extened equivalent class if they represent two clauses which are
equivalent. When we deal with problems about clauses, we are often satisfied with finding one
clause as solution without considering the names of variables. Thus when we translate a problem
into clausal forms, we are also satisfied if we can find one clausal form in an extended equivalent
class.

If C is a clause and D is a clausal form to represent C, we use C≈D to denote this relation. If C
is a clause and D is a clausal form made of some literals in C, then C–D is the subset of C without
the literals in D. Unless explicitly stated, we usually assume that a clause or a clausal form does
not contain or is not written with repeated literals.

Let two clauses C1 and C2 be given and L1∈C1 and L2∈C2. If there exists a pair of substitutions
(θ1,θ2) from C1 and C2 respectively such that L1θ1=~L2θ2, then C=(C1-L1)θ1∪(C2-L2)θ2 is called
the resolvent of C1 and C2, and L1 and L2 are the literals to be resolved on. Notice that we use a
unifier (θ1,θ2) of L1 and L2 instead of using a most general unifier for the definition of resolution.
We can also express the resolution with clausal forms. Let the clause C1 be represented by L1∨C1’
and C2 be represented by L2∨C2’ where C1–C1’=L1 and C2–C2’=L2 , then C1’θ1∨C2’θ2 represents a
resolvent of C1 andC2. We call C1’θ1∨C2’θ2 also a resolvent. Notice that even if we write C1’
and C2’ not with repeated literals, C1’θ1∨C2’θ2 can contain some literal more than once.

2.2 V-operator

Let two clauses C1={L1}∪C1’ and R be given. A V-operator is an algorithm which finds clauses
C2={L2}∪C2’ such that R is a resolvent of C1 and C2 and L1 and L2 are the literals to be resolved

3
on. If L1 is a positive literal, then we say that this V-operator is an absorption. This V-operator
is complete if it can find all such C2. We can also use the clausal forms to express the V-operators.
If a clause C1 is represnted by L1∨C1’ with no repeated literals. A V-operator is then an
algorithm to construct a clause C2 represented by L2∨C2’ such that the resolvent of L1∨C1’ and
L2∨C2’, with L1, L2 the literals being resolved on, represents the clause R. Thus a V-operator is
complete if for every extend equivalence class of clausal forms of C2 we can find one such L2∨C2’.

R

1 θθ 2

C1 C2≈ C∨L1 L 2∨C21

C1 1θ ∨' C2' θ2≈

' ≈ '

The simplest situation of V-operator is when C1’ is empty. For given θ1 we have R≈C2’θ2. Thus
{~L1θ1}∪R≈~L1θ1∨C2’θ2=L2θ2∨C2’θ2=(L2∨C2’)θ2≈C2θ2.

Thus we should find C2 such that C2θ2={~L1θ1}∪R, i.e. the generalizations of {~L1θ1}∪R. If we
define an order relation by substitution, then {~L1θ1}∪R is clearly the minimum of all C2 w.r.t
the same θ1. If we have found a C2, then it is plausible that we want to find other C2 which are
higher w.r.t. this order relation, but not too high. All these questions can be translated to
questions in clausal forms. We will discuss an order relation and the minimal proper
generalizations on the clausal forms in chapter 3, 4.

2.3 W-operator

Given clauses R1, R2, aW-operator is a construction of C1, C2 and C3 and literals L1∈C1, L2∈C2
and L3∈C3 with the property that R1 is a resolvent of C1 and C2 resolved on L1 and L2 and R2 is a
resolvent of C2 and C3 resolved on L2 and L3. A W-operator is complete if for every pair (R1,R2) it
can find all such triple (C1,C2,C3) and related L1∈C1, L2∈C2 and L3∈C3. We can also formulate
this in the language of clausal forms. For given clauses R1 and R2, a W-operator constructs clausal
forms C1’, C2’, C3’, L1, L2, L3 such that there are substitutions θ1, θ2 and µ2, µ3 with the property
L1θ1=~ L2θ2 and L2µ2=~L3µ3 and that R1≈C1’θ1∨C2’θ2, R2≈C2’µ2∨C3’µ3. A W-operator for
clausal forms is complete if for every clauses R1 and R2 and solution (C1,C2,C3) with L1∈C1,
L2∈C2 and L3∈C3, defined above we can find representatives L1∨C1’, L2∨C2’, L3∨C3 ’in the
extended equivalence classes related to C1,C2, C3, respectively such that a resolvent of
L1∨C1’and L2∨C2’ represents R1 and a resolvent of L2∨ C2 and L3∨C3’represents R2’.

 C1≈L1∨C1’ C2≈L2∨C2’ C3≈ L3∨C3’

C C

RR 1 2

2 3

1 θθ
2

µ
2

µ
3

C1

R1≈C1’θ1∨C2’θ2 R2≈C2’µ2∨C3’µ3

Notice that C2’ is higher than C2’θ2 and C2’µ2 in the order relation defined by substitutions. The
last two clausal forms represent subsets of R1 and R2, respectively. Thus the best way to solve
this problem is to begin with choosing subsets of R1 and R2 and finding the clausal forms of these
two subsets. For every two such suitable clausal forms we need then to find the supremum of the

4
two clausal forms. For every C2’, there is a substitution from it to such a supremum. Thus to find
C2’ means to find more general clausal forms than such a supremum. So we treat the problem about
supremum also in chapter 4.

3 Partial order relations on clauses and clausal forms

In this chapter we define two partial order relations with respect to substitutions. The order
relation ≥ has to do with clausal forms and the order relation >= has to do with clauses. We
want to compare them and we want to translate problems related to >= to problems related to ≥.

3.1 Partial order relations defined on clauses

3.1.1 Definition. Let C, D be a given clauses. If there is a substitution µ such that Dµ=C, then we
say D>=C. D is called a generalization of C.

3.1.2 Proposition. Given clauses D with m elements, and C with n elements. If there is a
substitution µ such that C=Dµ, then m≥n.

3.1.3 Proposition. Given C={L1,L2,…,Ln} where Li≠Lj if i≠j, and D with m elements where m≥n.
If there is a substitution µ such that C=Dµ, then there is a subset D' of D with n elements such
that D'µ=C.
Proof. For every Li choose a Mi such that Li=Miµ. We have Mi≠Mj because Miµ≠Mjµ. Define
D'={M1,…,Mn}.

3.1.4 Remark. Given a clause C, there can be infinite many clauses D such that D>=C. For
example, C=P(x,x), then D1={P(x1,x2)}, D2={P(x1,x2),P(x2,x1)}, D3={P(x1,x2),P(x2,x3),P(x3,x1)},
etc. are all generalizations of C. Two Di’s are not equivalent under the definition of Plotkin[9].
Plotkin defines an equivalence relation ~ by using the concept of subsume. A clause D subsumes C if
there is a substitution µ such that C⊇Dµ. We say D~C if C subsumes D and D subsumes C, e.g.
{P(x,y)}~{P(x,y),P(z,u)}. If j>i, then Di subsumes Dj, but Dj does not subsume Di. The size of the Di
can also not be reduced. Plotkin defines reduced as follows. D is reduced if for any subset C of D
such that D~C, then D=C. We can not reduce a Di because it is impossible to find a µ such that Diµ
is a proper subset of Di. Thus for a given clause C, there is usually no way to find all the
generalizations D, not even all the reduced D. However, if we require beforehand the size of D
not exceeding certain limit, then the choice of D is finite. This shall be more clear when we come
to order relation defined on clausal forms in 3.2.

3.2 Partial order relation defined on clausal forms

3.2.1 Definition. Let D=L1∨L2...∨Ln and C=M1∨M2...∨Mn. We say D≥C if there is a substitution
µ such that Liµ=Mi for i=1,…,n. In this situation D is also called a generalization of C (in clausal
form).

3.2.2 Proposition. Let C be a clause with n literals and D={L1,L2...,Lm} be a clause with m
literals. If D>=C, then we can represent C by a clausal form of m literals, i.e. C≈M1∨M2...∨Mm
for some Mi such that (L1∨L2...∨Lm)µ=M1∨M2...∨Mm.
Proof. Suppose D={L1,…,Lm} and there is a substitution µ such that Dµ=C. Then define
Mi=Liµ∈C for i=1,…,m. The clausal form M1∨M2...∨Mm represents C.

5
3.2.3 Remark. Given a clause C with n literals. We can find all the generalizations of C with
m literals or less where m≥n in the follwing way. Consider all the clausal representations C’ of C
in m literals, i.e. C’ is the disjunction of all literals in C and C’ may contain the same literal more
than once. Then a generalization of C’ represents a generalization of C. This is finite up to
different variable names. We can use term partitions to make this statement more clear in
chapter 7.

4 Minimal proper generalizations and supremum of clausal forms

4.1 Minimal proper generalizations

4.1.1 Definition. For a clausal form C, D is called a proper generalization if D≥C but C≥D is not
true. We use D>C to denote this relation. D is called a minimal proper generalization of C if D is
a proper generalization and for any other proper generalization D’ of C we have either D’≥D or
D’ and D are incomparable.

4.1.2 We can either generalize the proofs of Reynolds[10] for literals or we use term partitions[4]
to prove that there are three kinds of minimal proer generalizations of a clausal form. For
detailed formulation of these generalizations, see [4] and also chapter 7.

Minimal proper generalizations of the first kind. We can replace some constant occurrences of
the same constant in C by a new variable to obtain a minimal proper generalization. For example,
let C=P(f(x),g(x),a,g(a)). Then

P(f(x),g(x),y,g(a)), P(f(x),g(x),y,g(y)), P(f(x),g(x),a,g(y))
are minimal generalizations of C.

Minimal proper generalizations of the second kind. Another way of finding minimal proper
generalizations is to change some occurrences of a certain variable with a new variable name. For
example, let C=P(x,f(y),g(x),g(x)). Then

P(x1,f(y),g(x),g(x)), P(x1,f(y),g(x1),g(x)), P(x,f(y),g(x1),g(x1))
are minimal generalizations.

Minimal proper generalizations of the third kind. We can construct minimal proper
generalizations by replacing some kind of compound terms with only variable as arguments by a a
new variable. For example, let C=P(f(g(x,y),h(g(x,y)),a). Then P(f(z),g(z),a) is a minimal
generalization.

It is also proved in [4,10] that if two clausal forms C and C' are given with C'>C, then we can
construct a finite sequence of clauses C0=C, C1, C2,…, Cn=C' such that Ci is minimal generalization
of Ci-1 where i=1…,n.

4.2 Supremum of clausal forms

Definition. Let S be a partially ordered set with some partial order denoted by ≥. Let T be a non-
empty subset of S. An element D∈S is supremum of T if it satisfies the following conditions

1) D≥C for any C∈T.
2) If D’≥C for any C∈T, then D’≥D.

Definition. Aword is a literal or a term. Two words arecompatible iff they are both terms or
they have the same predicate and sign. Let K be a set of words and W1,W2∈K, then W1≥W2 iff
there is a substitution µ such that W1µ=W2. (Plotkin uses ≤ instead of ≥). Let D=L1∨L2...∨Ln and

6
C=M1∨M2...∨Mm. Then C and D are called compatible if n=m and Li and Mi are compatible for
i=1,…,n.

In fact, a clausal form can be considered as a generalized word. For example, we can consider
L1∨L2...∨Ln as a term or literal in the form of ∨(L1,…,Ln). Thus a finite set of compatible clausal
forms has a supremum by generalizing the following theorem.

Theorem (Plotkin). Every non-empty, finite set K={W1,…,Wn} of words has a supremum iff all
words in the set are compatible. Furthermore, if W is a supremum of K and µi,i=1,…,n are the
substitutions such that Wµi=Wi, i=1,…,n, then

1) If t is a term in W then t is a supremum of {tµ1,…,tµn}.
2) If x, y are variables in W and xµi=yµi, i=1,…,n, then x=y.

Theorem. Every non-empty, finite set K={W1,…,Wn} of clausal forms has a supremum iff all
clausal forms in the set are compatible. Furthermore, if W is a supremum of K and µi,i=1,…,n are
the substitutions such that Wµi=Wi, i=1,…,n, then

1) If t is a word in W then t is a supremum of {tµ1,…,tµn}.
2) If x, y are variables in W and xµi=yµi, i=1,…,n, then x=y.

Example. Given W1=P(x,g(x))∨Q(x,g(f(x))) and W2=P(g(y),g(y))∨Q(g(y),z). Then the supremum
W of W1 and W2 is P(x,g(u))∨Q(x,z).

5 Completeness of V-operators

Let R and C1 be given clauses and L1∈C1, we want to find C2 such that R is a resolvent of C1 and C2
with L1 a literal to be resolved on. Let C1' be the clausal form which is the disjunction of the
literals in C1-L1 in some order. If C2 is the disjoint union of L2, C2’ (clausal form) and there are
θ1, θ2 such that L1θ1=~L2θ2, then a necessary condition to have R being a resolvent is R⊇C1’θ1 and
R⊇C2’θ2. Furthermore, C1’θ1 and C2’θ2 can have non-empty intersection. Thus C2θ2={~L1θ1}∪R’
where R’ is a subset of R which contains R–C1’θ1. Thus for fixed R’, C1’ and θ1, we consider a
clausal form C’≈R’ and we try to find generalizations of the clausal forms of ~L1θ1∨C’. We can
formulate our algorithm in the following way:

Algorithm for V-operator
(1) For given clause C1 and R where L1∈C1, consider a clausal form C1’of C1-L1.
(2) Find a substitution θ1 such that R⊇C1’θ1.
(3) Consider a subset R’ of R such that R’⊇R-C1’θ1.
(4) Find a clausal form C’ such that C’≈R’.
(5) Find a C2’ and L2 such that (L2∨C2’)θ2=~L1θ1∨C’.
(6) C2’∨L2 is a clausal form of C2.

Notice that we can write C’ in different ways, namely any literal in R’ can appear more than one
time. Suppose R’ has n elements and suppose we want to find C2 with k literals where k is
between n and a given m, i.e. m≥k≥n. Then we can write C’ in m literals in different ways by
letting different literals repeat a different number of times. This algorithm is complete in the
sense that for a given m, m≥n, we can find all C2 with k literals such that m≥k≥n.

Among all the generalizations of ~L1θ1∨C’ is ~L1θ1∨C’ the minimum. In chapter 7 we tell how
we use term partitions to find all the generalizations of clausal forms. This makes step (5) more
concrete. If we want to find generalizations systematically, we should find them by every step

7
taking minimum proper generalization. This can also be done by considering the corresponding
least higher term partitions. We are also going to explain it in chapter 7.

Example. Let C1={P(x),~Q(f(x))}, L1=P(x) and R={Q(g(y)),~Q(f(g(y)))}. There is only one θ1
possible, namely {x/g(y)}. We demonstrate only the situation where C'≈R–C1’θ1={Q(g(y))} and
C’ does not contain repeated literals, i.e.

C’∨~L1θ =Q(g(y))∨~P(g(y))
The following diagram tells what all the C2 are in this situation. For every step we take a
minimal proper generalization.

Q(g(y)) ~P(g(y))∨

Q(g(y1)) ~P(g(y))∨

Q(z) ∨ ~P(g(y)) Q(g(y1))∨ P(u)

Q(z)∨~P(v) Q(w)∨ ~P(u)

It is interesting to know the order relation between different C2 which are induced by different
θ1. In [6] it is proved by term partitions that different C2 induced by different θ1 are essential
incomparable.

6 Completeness of W-operators

The following diagram and the clauses in this diagram have the same meaning as in 2.3.

 C1≈L1∨C1’ C2≈L2∨C2’ C3≈ L3∨C3’

C C

RR 1 2

2 3

1 θθ
2

µ
2

µ
3

C1

R1≈C1’θ1∨C2’θ2 R2≈C2’µ2∨C3’µ3

Notice that C2’ is higher than C2’θ2 and C2’µ2 in the order relation defined by substitutions. The
last two compatible clausal forms represent subsets of R1 and R2, respectively. If we can find two
such clausal forms, we can construct the supremum of these two clauses. All C2’ which induce the
same C2’θ2 and C2’µ2 are higher (w.r.t. ≥) than this supremum. We summarize these facts as
follows.

1) C2’θ2 and C2’µ2 are compatible because C2’ is a generalization of both clauses.
2) Given R1 and R2 and let C2’ be a clausal form which satisfies the condition that

C2’θ2 and C2’µ2 represent subsets of R1 and R2, respectively. If we use S to denote the
supremum of C2’θ2 and C2’µ2, then C2’≥S.

8
2) For every choice of C2’θ2, a C1 can be considered as a generalization of ~L2θ2∨C’

where C' is a clausal form containing R1-C2’θ2. Similarly for C3. This part is
similar to (3)-(6) of V-operator in chapter 5.

The construction of C1, C2 and C3 is as follows. We can prove that this construction is complete,
i.e. it finds all the C2 which has less than and equal to n+1 elements for given n.

Construction of C1, C2 and C3:

(1) Given clauses R1 and R2. Consider a non-empty subset of R1 and a non-empty subset of
R2 such that these two subsets can be represented by the compatible clausal forms

C=M1∨M2…∨Mn, D=N1∨N2…∨Nn.
(2) Find the supremum S of C and D w.r.t. the order relation ≥. Let α and β be the

substitution from S to C and D, respectively.
(3) Define a literal L2.
(4) Let M=L2∨S. Find all generalizations of M. Every generalization is a C2.
(5) Let R1’ be a subset of R1 containing R1-M1∨M2…∨Mn. Let α be a an extention of α on

variables of M. α may be defined on some variables in L2 which are not S. The
generalizations defined on clausal forms representing R1’∪{~L2α} give different C1.
We can also consider a limit for the number of elements in C1 just as we do with V-
operator. Similarly, we can find C3.

(6) We can let C’ change. A triple (C1, C2, C3) is a combination of C2 from (4) and C1, C3
from (5).

(7) If there are permutations of (1,2,…,n) which is represented by (i1,…,in) and Nij and
Mi are still compatible for i=1,…,n, then we can consider a new M which is the
supremum of

M1∨M2…∨Mn, Ni1∨Ni2…∨Nin ,
Then we can again find the supremum S of these two clausal forms and the
generalizations of S. Repaet (3), (4), we can again find different C2.

(8) We can let different literals in C and D repeat and thus we have new C and D. Do
(2)-(7).

(9) If we let the subsets of R1 and R2 in (1) change, then we find all (C1, C2, C3) with C2
containing k literals where k≤ n+1.

Theorem. A W-operator defined by the above algorithm is complete.
Proof. Given C1≈L1∨C1’, C2≈L2∨C2’ and C3≈L3∨C3’. Suppose also L1θ1=~L2θ2 and L2µ2=~L3µ3
and that R1≈C1’θ1∨C2’θ2, R2≈C2’µ2∨C3’µ3. From the compatibility between C2’θ2 and C2’µ2 we
can construct the supremum S of these two clausal forms. Let α and β be the substitutions from S to
C2’θ2 and C2’µ2, repectively. Then there is a substitution ∂ from C2’ to S such that ∂α=θ2 and
∂β=µ2 because S is the supremum. We can assume S and C2’ have different variable names.
Let us consider the clausal form L2∂∨S. It is easy to see that L2∨C2’ is a generalization of L2∂∨S
because L2∂∨S=(L2∨C2’)∂. We can consider ∂ as a substitution from all variables in L2∨C2’. We
want now to find extentions α, β of α, β, respectively such that ∂α=θ2 and ∂β=µ2. We need to
prove this because we can then say L2∂=L 2 and (L2∨ C 2’)θ2=(L2∨ C 2’)∂α = (L2∨ S)α ,
(L2∨C2’)µ2=(L2∨C2’)∂β2=(L2∨S)β. Thus step (5) above makes sense.

9

β

∂

α C
2
' µ 2

C2
'

µ
2

C 2
'

L2

∨

∨

L 2∂ ∨SL 2θ2∨ L 2
µ

2

θ2

θ2S
β

∂

α
C2

'µ2

C 2
'

µ
2θ 2

C 2
' θ2

If we consider a variable x in L2 which are not in C2’, then L2∂ has made no change in this
variable. We can define xα=xθ2 . Thus ∂α=θ2. Thus L2∨C2’ can be achieved by finding a
generalization on L2∨S. C1 can be achieved by considering R1’∪{~L2α}=R1’∪{~L2∂α} where
R1’≈R1–C2’θ2. Similarly for C3.

Example. Let R1≈G(v,w)∨~F(v,u)∨~F(u,w) and R2≈G(a,c)∨~F(a,m)∨~M(m,c).
Consider G(v,w)∨~F(v,u) and G(a,c)∨~F(a,m) as the compatible clausal forms, representing
subsets of R1 and R2, respectively. The supremum S of these two clausal forms is G(v,w)∨~F(v,u)
and α={} and β={v/a,w/c,u/m}. Let us consider a literal L2=~P(u,w). The minimum
generalization of L2∨S=~P(u,w)∨G(v,w)∨~F(v,u) is itself. Let α=α and β=β . Consider
R1’={~F(u,w)} and R2’≈{~M(m,c)}. One possibility of C1 is P(u,w)∨~F(u,w). A possibility of C3 is
P(x,y)∨~M(x,y) which is a generalization of P(m,c)∨~M(m,c). The relations between different
clausal forms can be seen in the first W-diagram below. If we translate the first W-diagram into
more concrete Prolog clauses of the example[11] related to the family situation, then we have the
second the W-diagram.

P(u,w) ~F(u,w) P(x,y) ~M(x,y)

G(v,w) ~ F(v,u) ~F(u,w) G(a,c) ~F(a,m) ~M(m,c)

parent(C,B):-father(C,B) parent(C,B):-mother(C,B)grandfather(A,B):-

father(A,C),parent(C,B)

grandfather(A,B):-father(A,C),father(C,B)

grandfather(armand,celine):-father(armand,michele),
mother(michele,celine)

∨∨ ∨∨

∨ ∨ ∨ ∨

~P(u,w) G(v,w) ~F(v,u)

7 A survey of using term partitions in inversting resolutions

We have talked about the V- and W-operators on the first and second levels. The third level
uses codings of trees (or clauses) so that we can discuss the questions more concretely and clearly.

1 0
Integer codings and variable codings[7] have been used for this purpose. Term partitions[3,6] come
from integer coding and flattening[11,12] has to do with variable coding. These two ways are used
for finding generalizations of clauses and thus inverse resolutions. We are going to give a survey
of integer coding and term partition for finding generalizations here.

7.1 Term occurrences

A clause like P(f(x,h(x)),h(x)) can be considered as a labeled tree (left below). If we only consider
the structure of the tree, then we have an unlabeled tree. The nodes of an unlabeled tree can be
coded by natural number sequences (right below).

P

f

x h

x

h

x

< >

<1> <2>

<1,1> <1,2> <2,1>

<1,2,1>

The labeled tree can be expressed by a function from the unlabeled tree:
 {(P,<>), (f,<1>), (h,<2>), (x,<1,1>),

 (h,<1,2>), (x,<1,2,1>), (x,<2,1>)}.
The second coordinate of a pair is an original of the function and the first coordinate (label) is the
image of the second coordinate.

A labeled tree defined by a clause C induces a labeled tree with trees as labels. These tree
labels come from the subtrees of the original tree. For example, the right tree below is induced by
the left one. We use f(x,h(x)), etc. to denote such labels.

P

f

x h

x

h

x

P(f(x,h(x)),h(x))

f(x,h(x)) h(x)

x h(x)

x

x

We use the set of pairs which contains elements like (f(x,h(x)),<1>), (h(x),<1,2>) to code this
tree. Such a pair is called a term occurrence if the first coordinate is a term like f(x,h(x)). This
coding can be extended to clauses with more than one literal, e.g. (y,<1,2,1>) is a term occurrence
of C=P(x,f(y,z))∨~Q(x). As we know two subtrees of a tree have either no nodes in common or one
is a subtree of the other. This property can be translated directly into the coding system. For
example, f(y,z) in C=P(g(x,f(y,z))) has position <1,2> and y has position <1,2,1>. The sequence
<1,2> is a subsequence (first part) of <1,2,1>. This subsequence relationship characterizes the
subtree relationship. If p is a subsequence of q, then we use q–p to denote the rest of q after
removing p. For example, <1,2,1>–<1,2>=<1>. Consider two term occurrences (t,p) and (s,q), if q
contains p as a subsequence then q–p denotes the relative position of the subterm occurrence (s,q) in
(t,p).

2.2 Term partitions and generalizations

Finding the generalization C1=P(f(x,z),z) of the clause C=P(f(x,h(x)),h(x)) can be considered as
changing two subtrees of C by z. The subtrees of C which correspond to variables in C1 are
denoted by the following set of term occurrences

1 1
T={(x,<1,1>,(h(x),<1,2>),(h(x),<3>)}

T can be divided into two blocks of disjoint subsets which correspond with the variables x and z in
C1:

Bx={(x,<1,1>)}
Bz={(h(x),<1,2>),(h(x),<3>)}

This partition of blocks is called a term partition on C. Generally, we can define term partitions
with two properties. Firstly, the chosen set T should satisfy some minimal condition, i.e. no
second coordinates of two pairs in T have subsequence relationship. Indeed, if we intend to change
one subtree (s,p) to a variable, then we should not consider a subtree (t,q) of (s,p) also as a
candidate for a variable. Secondly, the labels in the same block should be the same because they
are the images of the same variable of a substitution from C1.

Let C be a given clause and C1 be a clause defined by the inverse of a substitution. Then there
is a term partition defined on C. On the other hand, if there is a term partition on C, then we can
define a clause C1 which is more general than C. A term partition on C induces many C1, but these
differ only by variable names. We can find all generalizations of C by considering all the term
partitions on C. Using partitions have the following advantage: a term partition is defined on a
subset of term occurrences on C and the structure of C1 is known without having to construct C1
concretely.

7.3 Order relations on term partitions

We have seen that the set of all term partitions determine all the generalizations of a clause.
For a V-operator we need to find the generalizations of clauses with the form of ~L1θ1∨C’. For a
W-operator we need to find the generalizations of the supremum of two clausal forms. Thus using
term partitions solves also the problems of V- and W-operators. Finding all the term partitions
is very much work. We have to do our work efficiently. If we have a clause C1 which is a
generalization of a clause C, we need perhaps to find a clause C2 which is one step more
generalized, i.e. C2 is a minimal proper generalization of C1. Even more, if we know C2 is a
generalization of C and it is too general, we want then to find a minimal generalization C1 of C
such that C2≥C1. If we consider the term partitions on C instead of the actual generalizations of
C, then we need to define a comaptible order relation on term partitions. The following
definitions of order relations on term partitions and related theorems can be found in [4].

Let C be a given clause and let ∏,Ω be two term partitions on C. In the following diagram one
block of ∏ is illustrated by two rectangles and one block of Ω is illustrated by two triangles.
Notice that the the relative positions of the two triangles in rectangles are the same. Notice
also that C(∏) is more general than C(Ω). The order relation in the term partitions can be
defined by comparing the relative positions of term occurrences in the blocks of the two term
partitions.

C C(Ω) C(∏)

Let us consider C=P(x,f(x,g(y,z),f(x,g(y,z))) as a concrete example. The rectangles correspond
with the block B in ∏:

B={(f(x,g(y,z)),<2>),(f(x,g(y,z)),<3>)
and the triangles correspond with the block D in Ω:

D={(g(y,z),<2,2>),(g(y,z),<3,2>)}.

1 2
The relative position of <2,2> in <2> is <2> and so is the relative position of <3,2> in <3>. The
definition of ∏≥Ω can be formulated as follows:

Definition. Let C be given clause and ∏, Ω be partitions defined on T, S, subsets of term occurrences
of C, respectively. We say ∏ is higher than or equal to Ω, denoted by ∏≥Ω, if

1) For every (s,q) in S, there is (t,p) in T such that (t,p)≥(s,q).
2) Let (t,p) be in block B of ∏ and (s,q) be in block D of Ω. If (t,p)≥(s,q) and

B={(t,p1),..,(t,pn)}, D={(s,q1),...,(s,qm)}
then m≥n and by reordering van indices, we have p1=p, q1=q and qi-pi=q-p for all
i=1,...,n.

Condition 2) can be interpreted as: D contains the set of all subterm occurrences of occurrences in B
at position q-p.

Remark. To prove the compatibility between the order relation in the term partitions on C and
in the generalizations of the clause C, we need the concept of consistent term mappings.[3,6]. This
concept is a generalization of the concept of substitutions and inverse substitutions. We can also
apply this concept of mappings and term partitions to V-operators. For a fixed θ1 we need to
consider the term partitions on the clausal form ~L1θ1∨C’ to find C2 as we have seen before. If
C1=L1, then it is proved in [6] that different C2 (under some restriction) constructed via different
θ1 (under some restriction) are incomparable. Thus the partial ordering on different ~L1θ1∨C’ for
different θ1 have essentially nothing to do with each other.

Consider the set of all partitions on a clause C. We can define the least higher partition of a
partition on this set in an analogous way as we define minimal proper generalization. The
following three least higher partitions correspond with minimal proper generalizations given in
4.1. Some examples for corresponding generalizations have also been given in 4.1.

Least higher partition of the first kind
The follwing theorem can be translated to the language of clauses as follows: by replacing some
constants in C by a new variable we obtain a minimal generalization of C.
Theorem . Let B={(a,q1),..,(a,qn)}≠φ be a set of a-occurrences in a clause C and Ω be the trivial
partition defined by variables in C. Then the partition ∏ defined by ∏=Ω∪{B} is least higher
than Ω.

Least higher partition of the second kind
Minimal generalization can be obtained by changing some occurrences of a variable to a new
variable name.
Theorem . Let Ω be the trivial partition on C and D be the block in Ω defining a variable v. If
B1 is a proper subset of D and B2=D-B1, then ∏=(Ω-{D})∪{B1,B2} is least higher than Ω.

Least higher partition of the third kind
We can construct a minimal generalization of a clause by replacing some kind of compound term
occurrences by a new variable.
Theorem . Let Ω be the trivial partition on C and t=f(v1,…,vm) such that vi≠vj if i≠j. Let
B={(t,p1),...,(t,pn)} be the set of all t-occurrences and let D1,…,Dm be the blocks defined by
v1,...,vm. If every vi-occurrence is always a subterm occurrence of such a (t,pi), then the partition
∏=(Ω-{D1,...,Dm})∪B is least higher than Ω.

Theorem . Let C be a given clause and Ω, ∏ be partitions on C such that ∏>Ω. We can find a
finite sequence of partitions Ω0, Ω1,…,Ωn such that Ω0=Ω, Ωn=∏ and Ωi+1 is least higher than
Ωi for every i.

Example. Let C, Ω and ∏ be given as below, we want to construct a sequence of partitions as in the
theorem. For simplicity, we write p instead of (t,p).

1 3
C=P(f(g(u,a,a),u)), g(u,a,a))
∏: E1={<1,1>,<2>)}, E2={<1,2>}.
Ω0=Ω: D1={<1,1,1>,<1,2>,<2,1>}, Da={<1,1,2>,<1,1,3>,<2,2>,<2,3>}. We consider
first E1.
Ω1: Because E1≥Da, let B1={<1,1,2>, <2,2>}. Then Ω1=Ω∪{B1}={B1, D1} from (1).
The constant block of Ω1 is Ba=Da-B1={<1,1,3>,<2,3>}.
Ω2: Because E1≥Ba, let B2={<1,1,3>,<2,3>}. Then Ω2=Ω1∪{B2}={B1,B2,D1} from (1).
Ω3: Compare E1 with D1, we have D1=B3∪B4 where B3={<1,1,1>,<2,1>} and

B4=D1-B3={<1,2>}. Thus Ω3=(Ω2-{D1})∪{B3,B4}={B1,B2,B3,B4} from (2).
Ω4: E1≥B1, B2, B3. The corresponding r1, r2, r3 are <2>, <3>, <1>.
Because r1'=r2'=r3'=<>, we have constructed a B5={ <1,1>,<2>} which is E1.

Thus Ω4=Ω3–{B1,B2,B3}∪{B5}={B4,B5}=∏.

8 Conclusion and future work

The problems with inverse resolutions or resolutions have to do with clauses expressed in sets of
literals. These sets are more difficult to handle and thus we use clausal forms of clauses. The
problems are first translated to clausal forms and we can then discuss clausal forms instead of sets.
Both V- and W-operators have to begin with finding generalizations of some clausal forms. The
clausal form which we have to consider in a V-operator is defined by two clauses C1, C and a
substitution from C1. For the W-operator we need to consider the supremum of two clausal forms
which represent some subclauses of given clauses R1 and R2.

From clauses to clausal forms are interpreted by us as the translation from first level to second
level. The third level has to do with the coding we choose to formulate and discuss the problems.
We can use integer coding to code the term occurrence in a clausal form. Term partition is used in
this coding to find generalizations. We can define a partial order relation in the set of all term
partitions on a clausal form. With this order relation we can talk about minimal proper
generalizations and chain of minimal proper generalizations. The fouth level over
implementation is not done in this article.

The clausal forms P(x,y)∨P(u,v) and P(x,y)∨P(x,y) are generalization of C=P(a,a)∨P(a,a).
The first represents D1={P(x,y),P(u,v)} and the second represents D2={P(x,y)}. In fact D2 is the
reduced clause[9] of D1. We are satisfied if we can find one of the two, especially D2. Suppose we
know how to find generalizations of C which represent reduced clauses, then we have much less
work. How to find clausal forms of reduced clauses should be investigated in the future.

Acknowledgement
I like to thank J. W. Nienhuys for his comments. His suggestion to look at problems on a higher
level instead of the codings makes things clearer and more structured.

References

1 Stephen Muggleton & Wray Buntine. Machine Invention of First-order Predicates by Inverting
Resolution. Proceedings of the 5th International Conference on Machine Learning, Morgan
Kaufmann, pp. 339-351, 1988.

2 Stephen Muggleton. Inductive Logic Programming. First Conference on Algorithmic Learning
Theory, Ohmsha, Tokyo, October 1990.

3 Shan-Hwei Nienhuys-Cheng. Consequent Functions and Inverse Resolutions. Report Eur-CS-
90-03, Erasmus University, Rotterdam, Netherlands, May 1990.

4 Shan-Hwei Nienhuys-Cheng. Term Partitions and Minimal Generalizations of Clauses.
Report, Eur-CS-91-01, Erasmus University, Rotterdam, Netherlands, January, 1991.

1 4
5 Shan-Hwei Nienhuys-Cheng. Flattening, Generalization of Clauses and Absorption

Algorithms. Report, Conference Benelearn, May 1991, University of Amsterdam, Amsterdam,
Netherlands.

6 Shan-Hwei Nienhuys-Cheng & Peter Flach. Consistent Term Mappings, Term partition and
Inverse Resolutions, In: Machine Learning-EWSL-91. European Working Session on Learning,
Porto, Portugal, March, 1991, Proceedings. Y. Kodratoff(Ed). Lecture notes in Artificial
Intelligence 482, Springer Verlag.

7 Shan-Hwei Nienhuys-Cheng. Codings of Trees and Generalizations by Flattening and Term
Partitions, Preprint, presented in BISFAI 91, June 1991, Israel.

8 Shan-Hwei Nienhuys-Cheng. A survey of Generalization Algorithms and Inverse Resolutions.
(to appear in the Proceedings of IJCAI-91). Workshop 8, IJCAI-91, Sidney, Australia:
Evaluation and Changing of Representation in Machine Learning, August,1991.

9 Gordon D. Plotkin. A Note on Inductive Generalisation. Machine Intelligence 5, B. Meltzer &
D. Michie (eds.), Edinburgh University Press, 1970.

10 Céline Rouveirol & Jean-Francois Puget. A Simple Solution for Inverting Resolution. EWSL-
89, Pitman, London, pp. 201-210, 1989.

11 Céline Rouveirol & Jean-Francois Puget. Beyond Inversion of Resolution. Proceedings of the
Fifth International Conference in Machine learning. Kaufman, 1990.

12 John C. Reynolds. Transformational Systems and the Algebraic Structure of Atomic Formulas.
Machine Intelligence 5, B. Meltzer & D. Michie (eds.), Edinburgh University Press, 1970.

13 J. A. Robinson. A Machine-Oriented Logic based on the Resolution Principle. Journal of the
Association for Computing Machinery, Vol 12, No. 1, 1965

14 R. Wirth. Learning by Failure to Prove. Proceedings of the third European Working Session on
Learning (EWSL 88). Pitman, 1988.

