
1

Term Partitions and
 Minimal Generalizations of Clauses

Shan-Hwei Nienhuys-Cheng
Department of Computer Science
Erasmus University, The Netherlands

Abstract Term occurrences of any clause C are determined by their positions. The set of
all term partitions defined on subsets of term occurrences of C form a partially ordered
set. This poset is isomorphic to the set of all generalizations of C. The structure of this
poset can be inferred from the term occurrences in C alone. We can apply these
constructions in this poset in machine learning.

1 Introduction

In first order logic a clause which is more general than a given clause C induces a partition on a
subset of term occurrences of C. For example, given C=P(f(g(x)),g(x),g(x)) and C1=P(f(u),g(u),v).
The variable u in C1 corresponds with the set Bu containing the first and the second g(x) in C
and the variable v corresponds with the set Bv containing the third g(x) in C. Thus the two
disjoint sets Bu, Bv form a partition on Bu∪Bv. When the author ([3],[4]) tries to improve the
algorithm of the Absorption in [2] for inverse resolution in machine learning, she observes the
following:

. We should at the begining forget resolution or inverse resolution which concerns three
clauses at the same time. Instead we should develope a general theory for finding all
clauses more general than a given clause.
. An inverse substitution from a clause induces a partition on its term occurrences. Such
partitions should be defined formally and independently from inverse substitutions. To
study more general clauses than C means to study partitions on C. We should also order
the partitions so it induces the order relation in clauses.
. To make the proofs easier and clearer, substitutions and inverse substitutions should be
generalized to new mappings (consistent term mappings).

These questions are dealt with in [3],[4], but the algorithm there is still inefficient and
undirected. In inverse resolution or other related topics we should generalize a clause to clauses
which are not too general. For example, given a clause, what are the minimal generalizations?
Given a few clauses what is their supremum ([5],[6])? Similiar questions can also be asked for
partitions on a given clause C. This article tries to solve these questions. Consider a given
clause C and all the partitions on C, we can construct the least higher partitions for a given
partition and the supremum of some partitions. The constructions and proofs use only the term
occurrences in the original clause(s).

To make this article self contained, we include also some of the results in [3],[4] here (theorem
1,3,4). Some theorems there are corollaries (corollary 1,2) of more general theorem here.
Furthermore, the proofs of the theorems in this article can be found in [5].

2 Consistent Term Mappings

In this article we use a language of first order logic. The constants are denoted by a, b, c, etc.
The predicates are denoted by P, Q, R, etc. and the variables are denoted by u, v, x, u1, etc. The
letters f, g, h, etc. are used to denote functions. A term is either simple, i.e. a constant or
variable, or compound, i.e. it has the form f(t1,...,tn) where ti is a term and f is n-ary. An atom
has the form P(t1,…,tn) where ti are terms and P is n-ary. The negation of an atom M is denoted

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19190786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

by ~M. An atom or the negation of an atom is called a literal. A clause has the form
L1∨L2...∨Ln where Li ‘s are literals.

2.1 Term occurrences

Definition. A position ([1],[5]) is a sequence of <n1,...,nj> of positive integers. Let X be a term
or a clause. We use <> to denote the position of X with respect to itself. If X=L1∨L2...∨Ln, n≥2
the position of the i-th literal is denoted by <i>. If Y is a function or a predicate and Y(t1,..,tn)
has position <p1,...,pk>, then the position of ti is <p1,.…,pk,i>. A term occurrence is a pair
(t,p) which represents the term t found in position p.

For example, y has position <1,2,1> in P(x,f(y,z))∨~Q(x) and has position <2,1> in P(x,f(y,z)).
Notice that in a clause or a term the position determines the occurrence completely. If
p=<p1,…,pk> and q=<p1,..,pk,q1,..,qj>, then we say p is a subsequence of q or q contains p,
denoted by q⊃p. This relation can also be denoted by pq'=q or q'=q-p where q'=<q1,… ,qj>. If
(t,p) and (s,q) are two term occurrences in a clause or term X and q contains p, then we can find
(s,q-p) in t. We say then (s,q) is a subterm occurrence of (t,p), denoted by (t,p)≥(s,q). Thus (t,p)
contains (s,q) iff q contains p. If p=q, then (t,p)=(s,q); if q is longer than p, then we write
(t,p)>(s,q). Notice if (t,p)≥(s,q) and (t’,p’)≥(s,q), then p⊃p’ or p’⊃p. Notice also that a
constant or a variable has the longest position specification. The set of term occurrences of C is
denoted by T(C). Although we do not use the language of trees, some properties are intuitively
clearer by thinking of clauses as trees.

2.2 Consistent term mappings

Given a clause C=P(f(g(x))). We can construct a new clause P(f(h(z))) by replacing (g(x),<1,1>)
by (h(z),<1,1>). This replacement can be described by a mapping {(g(x)/h(z),<1,1>)}. Notice
that changing g(x) to h(z) has the effect of changing f(g(x)) to f(h(z)). {(f(g(x))/f(h(z)),<1>)}
and {(g(x)/h(z)),<1,1>),f(g(x))/f(h(z)),<1>)} are also allowed. The last replaces two nested
occurrences simultaneously.

Definition. An abstract term occurrence is a pair of term and position (t,p) which is not yet
associated with a clause. For a given clause C, a mapping θ from a subset T of T(C) to a set of
abstract term occurrences is called a consistent term mapping (CTM) if the following two
conditions are satisfied:
1) If (t,p) is in T, then (t,p)θ has also position p, i.e. θ preserves positions.
2) If (t,p) and (s,q) are both in T and (t,p)≥(s,q), then (t,p)θ≥(s,q)θ, i.e. if (t,p)θ=(t',p) and
(s,q)θ=(s',q), then in position q-p of t' we find s'.

A subset T of T(C) is called minimal if for every two (t,p), (s,q) in T, neither p⊃q nor q⊃p. If a
CTM θ is defined on a minimal subset T, then we can construct a new clause by replacing (ti,pi) in
C by (ti,pi)θ. Notice that the replacings do not interfer each other.

Theorem 1. Let θ be a CTM defined on a subset T of T(C). Let Tθ be the set of images of θ. There
is a minimal subset S of T such that θ restricted to S induces a clause C' with T(C')⊇Tθ.
Proof. Let S be the subset of T which contains the shortest position specifications, i.e. (t,p)∈S
iff there is no (t',p')∈T such that (t',p')>(t,p). We use S to construct C' by replacing every (t,p)
in S by its image.

Remark. The clause C' defined in the proof above is called the clause induced by θ and we
denote it by Cθ. Notice that the inverse of a CTM θ is also a CTM. Let T be the domain of θ.
The positions and terms in Cθ can be characterized by 1)-4) as follows.

1) If (s,q)∈T(C) and if there exists no (t,p)∈T such that (t,p)≥(s,q) or (s,q)≥(t,p), then
(s,q) is in Cθ.

3

2) If (s,q)∈T(C) and there is a (t,p)∈T such that (s,q)≥(t,p) and there is no (t’,p’)∈T such
that (t’,p’)>(s,q), then the q-th term is defined in Cθ and it can be found by replacing all
subterm occurrences of (s,q) from T simultaneously by their images.
3) If (s,q)∈T(C) and (t,p),(t’,p’)∈T such that (t,p)≥(s,q)≥(t’,p’), then q is defined on Cθ.
The q-th term in Cθ is the subterm occurrence of (t,p)θ in position q-p.
4) Suppose (t,p)∈T and (t,p)θ=(t’,p) and there exists no (s,q)∈T such that (t,p)>(s,q). If
t’ has a subterm s' in q', then (s',pq') is defined in Cθ. The position pq’ may not be
defined on C.

Notice also if (s,q)∈T(C) and there is a (t,p)∈T such that (t,p)>(s,q) and there is no (t’,p’)∈T
such that (s,q)≥(t’,p’), then the position q may not be defined in Cθ.

The following theorem gives a criterium when two clauses are the same.
Theorem 2. If θ is a CTM defined on T, a subset of T(C), and if T' is a subset of T(C) that
satisfies the following conditions:

1) for any (t,p)∈T, there is a (s,q) in T' such that (s,q)≥(t,p).
2) every (s,q)∈T' has one of the following two properties:

. it contains a subterm occurrence from T, i.e. there is a (t,p)∈T such that (s,q)≥(t,p);

. there is no (t,p)∈T such that (s,q)≥(t,p) or (t,p)≥(s,q).
Then q is a position defined in Cθ. If we define a CTM θ with domain T' by (s,q)θ=the q-th term
of Cθ, then Cθ=Cθ.

2.3 Substitutions and inverse substitutions

Let C be a clause. A substitution θ from C is a CTM defined on the set of all variable occurrences
of C such that if (v,p)θ=(t,p) and (v,q)θ=(s,q), then t=s. Notice that a substitution has a
minimal domain. A substitution induces a mapping defined on all variables, i.e. if
(t,p)=(v,p)θ, then t is defined as the image of v. We use also θ to denote this mapping. If there
is a substitution θ from C to C', i.e if C'=Cθ, then we write C≥C'. If there is a substitution from C
to C' and there is no substitution from C' to C, then we say C>C' and C is a generalization of C'.
A substitution θ can be denoted by {v1/t1,…,vn/tn}if viθ=ti. We may omit vi/vi. If θ is a

substitution, then its inverse θ−1 is called an inverse substitution. We can also define inverse
substitution without first having a substitution. A CTM µ defined on a subset T of T(C) is an
inverse substitution iff the following conditions are satisfied: the domain T is minimal; the
images are variable occurrences; if (t,p)µ=(v,p) and (s,q)µ=(v,q), then s=t; for every variable
occurrence (v,q) of C, there is a (t,p) in T such that (t,p)≥(v,q). The last condition guarantees
that the inverse of µ is a substitution. A substitution θ can be extended to a CTM θ which has
all T(C) as domain. Such a θ is called maximal extension of θ. For an inverse substitution µ
defined on a subset T of T(C), there is also a maximal extension µ. If (t,p)≥(s,q) where (s,q) is in
the domain of µ, we define (t,p)µ=(t',p) by replacing all subterm occurrences of (t,p) which are
in the domain of µ by their images. A term occurrence (t,p), which does not contain any subterm
occurrence from the domain of µ and is not a subterm occurrence of any element in the domain of
µ, is also in the domain of the extention µ and (t,p)µ=(t,p). Notice that both θ and µ satisfy
the conditions of theorem 2, thus they induce the same clause as the original CTM. There are
also other CTM's with the same property.

Corollary 1. Let µ be a substitution from C and µ be the maximal extension of µ defined on
T(C). If θ is the restriction of µ to a subset T of T(C) and for every variable occurrence (v,q) in
T(C), there is a (t,p) in T such that (t,p)≥(v,q), then θ induces also Cµ, i.e. Cµ=Cθ.

Corollary 2. Let µ be an inverse substitution from C and µ be the maximal extension of µ. Let θ
be a CTM which is the restriction of µ to a subset T of T(C) and for every (s,q) in the domain of µ
there is a (t,p) in T such that (t,p)≥(s,q), then Cµ=Cθ.

3 Term partitions and comparisons of partitions

4

Definition. Let C be a given clause. A subset T of T(C) is admissible if it satisfies the following
conditions:

1) T is minimal.
2) If (w,q) is an variable occurrence in C, then there is a (t,p) in T such that (t,p)≥(w,q).

A term partition ∏ (or simply a partition on C) is a partition {B1,B2,...,Bk} of an admissible set
T such that every block Bi contains only occurrences of one term. T is also denoted by dom(∏).

If we have an inverse substitution µ then we can consider a term partition ∏ which is defined
on the domain of µ: a block Bv in ∏ is defined as the set of inverse images of a variable v.
Notice that a term partition induces also a inverse substitution. It is possible to define more
inverse substitutions from one term partition, then the two clauses induced by the same
partition are equivalent, i.e. they differ only by variable names. Thus we use C(∏) to denote
one of such induced clauses. We want to define a partial ordering ≥ in partitions on C such that
∏≥Ω iff C(∏)≥C(Ω). If C1≥C2, then for every (w,q) variable in C2, there must be an (v,p) in C1
such that (v,p)σ contains (w,q) as subterm. In this situation w has relative position q-p in
(v,p)σ. If there is also (v,p') in C1, then (v,p')σ contains also a variable w in the position q-
p(=q'-p'). We try to translate such concepts to relations between partitions. For example,

C=P(f(g(h(x),y))),g(h(x),y),k(a,h(x)))
C2=P(f(g(w,y)),g(w,y),k(a,w))
C1=P(f(u),u,v)

To find C2, we need the following partition Ω:
D1={(h(x),<1,1,1>),(h(x),<2,1>),(h(x),<3,2>)}, D1/w;
D2={(y,<1,1,2>),(y,<2,2>)},D2/y

To find C1, we need the following partition ∏:
B1={(g(h(x),y),<1,1>),(g(h(x),y),<2>)}, B1/u;
B2={(k(a,h(x)),<3>)}, B2/v.

Define (u,<1,1>)σ=(g(w,y),<1,1>) and (u,<2>)σ=(g(w,y),<2>) and (v,<3>)σ=(k(a,w),<3>).
The first two elements in D1 are related to B1 . For (h(x),<1,1,1>) in D1 there is
(g(h(x),y),<1,1>) in B1 containing it as subterm in position <1> and for (h(x),<2,1>) in D1 there
is (g(h(x),y),<2>) in B1 containing it as subterm in position <1>. This is also the position of w
in vσ. For (h(x),<3,2>) in D1 there is (k(a,h(x)),<3>) in B2 containing it as subterm in position
<2>. This is also the position of w in vσ.

Definition. Let C be given clause and ∏, Ω be partitions defined on T, S, subsets of T(C),
respectively. We say ∏≥Ω, ∏ is higher than Ω, if

1) For every (s,q) in S, there is (t,p) in T such that (t,p)≥(s,q).
2) Let (t,p) be in block B of ∏ and (s,q) be in block D of Ω. If (t,p)≥(s,q) and

B={(t,p1),..,(t,pn)}, D={(s,q1),...,(s,qm)}
then m≥n and by reordering van indices, we have p1=p, q1=q and qi-pi=q-p for all
i=1,...,n.

Condition 2) can be interpreted as: D contains the set of all subterm occurrences of occurrences in
B at position q-p. If two subsets B and D of T(C) have this relation, we say B≥D.

Theorem 3. Let ∏ and Ω be two term partitions on C. Then ∏≥Ω iff every D of Ω is a disjoint
union of D1,… , Dk such that for every Dj there is a unique Bj in ∏ such that Bj≥Dj and
|Bj|=|Dj|, i.e. the number of elements in Bj and Dj are the same. The way to divide a block D
which satisfies this condition is also unique.
Proof. Let (s,q1) be in D. There is a (t,p1) in T such that (t,p1)≥(s,q1) according to 1). According
to 2) there is a relationship between the the elements in B1={(t,p1),…,(t,pn)} and a subset
D1={(s,q1),…,(s,qn)} of D which satisfy qi-pi=q1-p1 for i=1,...,n.

Remark. Let ∏≥Ω be two partitions on C. Then
1) If (s,q)∈dom(Ω), then there is a unique (t,p)∈dom(∏) such that (t,p)≥(s,q).

5

2) If (t,p)∈dom(∏) and (s,q)∈dom(Ω), then (s,q)>(t,p) is not possible.
3) If B contains term occurrences without variable subterms, then there might not exist a
D in Ω such that B≥D.
4) To compensate 3) and also for the convenience of the following section, we can define
for a constant a, the constant block Da w.r.t. Ω as follows:

Da={(a,q)∈T(C)|there exists no (t,p)∈dom(Ω) such that (t,p)≥(a,q)}
Let us call extension of Ω as Ω extended by such non-empty constant blocks. In fact, every
constant or variable occurrence of C is a subterm of an occurrence in a block in the
extension. For every block B in ∏, there is a block D in the extension of Ω such that B≥D.
If we replace Ω and ∏ in the above theorem by the extensions of Ω and ∏, respectively,
then the theorem holds too.
5) Notice that if ∏≥Ω and Ω≥∏, then ∏=Ω. Thus we say ∏>Ω if ∏≥Ω and ∏≠Ω.

Theorem 4. Let C be a given clause. Let ∂ and µ be two inverse substitutions which induce term
partitions ∏ and Ω on C. If there is a substitution θ from C∂ to Cµ, then ∏≥Ω.

We use an example to show how the proof of the following theorem works. Let C=P(f(g(x)),
C(∏)=P(u) and ∂ be the inverse substitution from C to C(∏). Let C(Ω)=P(f(w)) and let µ be the
inverse substitution from C to C(Ω). Let µ be also the maximal extension of µ and ∂-1 be the
substitution from C(∏) to C which is the inverse of ∂. The composition of ∂-1: u → f(g(x)) and µ:
f(g(x)) → f(w) defines σ: u → f(w). This CTM induces a clause and we can prove it is just C(Ω)
by using corollary 2. That means σ is the substitution which we are looking for.

T(C)

T(C(∏)) T(C(Ω))
σ

µ∂
-1

P(u)

P(f(g(x))

P(f(w))σ

∂
-1 µ

Theorem 5. Let ∏ and Ω be two term partitionson C. If ∏≥Ω, then C(∏)≥C(Ω).

4 More about ordering relations among partitions

4.1 Partitions induced by partitions

Let ∏ and Ω be partitions on a clause C and ∏≥Ω. Then there is a partition ∏' on C(Ω) which
induces also C(∏) because C(∏)≥C(Ω). If µ is the inverse substitution from C to C(Ω) and µ is
the maximal extention of µ, then a block is in ∏' iff it is the image set of a block in ∏ under µ.

Theorem 6. Let Ω be a partition on a clause C. There is a one to one correspondence which
preserves order relations between the partitions on C(Ω) and the partitions on C which are
higher than or equal to Ω. If ∏' is on C(Ω) and it corresponds with ∏ on C, then C(∏)=C(∏').

4.2 Minimal generalizations and least higher partitions

Definition. Let C1, C2 be given clauses and C2>C1. We call C2 is a minimal generalization of
C1 if for any other C3 with C3>C1 we have C3≥C2 or C3 and C2 are incomparable. Consider the
set of all partitions on a clause C. We can define the least higher partition of a partition in
analogous way.

If C1=C(∏1), then finding a minimal generalization C2 correspond with a partition ∏2 which
is least higher than ∏1. Reynolds[6] and Plotkin[5] have proved some properties about the

6

lattice structure of atomic formulas and Reynolds[6] has claimed the existence of a total chain
of atomic formulas from C' to C when C'≥C. He has stated only two kinds of minimal
generalizations without mentioning the minimal generalizations by changing constants into
variables. This corresponds to the least higher partitions of the first kind below. Thus his
total chain C'>C1>C2>…>Cn>C is not complete. Furthermore, he builds the chain from C' to C
instead of from C to C' and he needs always the concrete clause Ci to build Ci+1. We build an
ascending chain of partitions on a given clause and we do not have to construct the Ci 's or the
partitions on Ci 's concretely. All the proofs can also be done by considering C alone.

Least higher partition of the first kind
The follwing theorem can be translated to the language of clauses as follows: by replacing some
constants in C by a new variable we obtain a minimal generalization of C. For example,
P(f(x),g(x),y,f(a)), P(f(x),g(x),y,f(y)) are minimal generalization of P(f(x),g(x),a,f(a)). .
Theorem 7. Let B={(a,q1),..,(a,qn)}≠φ be a set of a-occurrences in a clause C and Ω be the
trivial partition defined by variables in C. Then the partition ∏ defined by ∏=Ω∪{B} is least
higher than Ω.

Least higher partition of the second kind
Minimal generalization can be obtained by changing some occurrences of a variable to a new
variable name. For example, P(x1 ,f(y),g(x),g(x)) is a minimal generalization of
P(x,f(y),g(x),g(x)).
Theorem 8. Let Ω be the trivial partition on C and D be the block in Ω defining a variable v.
If B1 is a proper subset of D and B2=D-B1, then ∏=(Ω-{D})∪{B1,B2} is least higher than Ω.

Least higher partition of the third kind
We can construct a minimal generalization of a clause by replacing some kind of compound term
occurrences by a new variable. For example, P(f(z),h(z),a) is a minimal generalization of
P(f(g(x,y),h(g(x,y)),a). .
Theorem 9. Let Ω be the trivial partition on C and t=f(v1,…,vm) such that vi≠vj if i≠j. Let
B={(t,p1),...,(t,pn)} be the set of all t-occurrences and let D1,…,Dm be the blocks defined by
v1,...,vm. If every vi-occurrence is always a subterm occurrence of such a (t,pi), then the
partition ∏=(Ω-{D1,...,Dm})∪B is least higher than Ω.

According to the theorems above we can construct a sequence of clauses C, C1, C2,…, Cn such that
Ci+1 is a minimal generalization of Ci. This process has the disadvantage that every step is
based on a new clause which we have just constructed. We need thus the following corollary
and theorem 10.

Corollary 3. Consider a partition Ω on C.
(a) Let Ba be a non-empty subset of a constant block w.r.t. Ω. Then Ω1=Ω∪{Ba} is least higher
than Ω.
(b) Let D be a block in Ω and D=B1∪B2 where B1,B2≠φ. Then Ω1=(Ω-{D})∪{B1,B2} is least
higher than Ω.
(c) Suppose D1,…, Dk are blocks in Ω which satisfiy the following conditions:

1) If (t,p),(t,q)∈ D i, where p=(p1,…,pn-1,pn) and q=(q1,…,qm), then pn=qm .
Furthermore, if p’=(p1,…,pn-1) and q'=(q1,…,qm-1), then p’ and q’ are positions of the
same term. If Bi is the set of all such p’,q’, etc. , these conditions imply that Di is the
set of all subterm occurrences of elements in Bi in the same position.
2) Bi=Bj for all i, j=1,…,k. Let B be used to denote these Bi's, then the term in B has
only k arguments.

Then Ω1=(Ω-{D1,…,Dk})∪{B} is least higher than Ω.

7

Theorem 10. Let C be a given clause and Ω, ∏ be partitions on C such that ∏>Ω. We can find
a finite sequence of partitions Ω0, Ω1,…,Ωn such that Ω0=Ω, Ωn=∏ and Ωi+1 is least higher
than Ωi for every i.
Construction. We choose first a block E={(t,p1),…,(t,pn)} in ∏ and then construct Ωi's in the
following way:
(1) If (t,p1)≥(a,q1) where (a,q1) is from a constant block Da w.r.t. Ω, then there are
(a,q2) ,…,(a,qn) in Da such that (t,pi)≥(a,qi) and qi-pi= q 1-p1 for i=2,…,n. Define
Ba={(a,q1),...,(a,qn)} and Ω1=Ω∪Ba. Ω1 is then least higher than Ω and a constant block w.r.t
Ω1 is either Da-Ba or some other constant block w.r.t Ω. We continue this process until every
constant in t has been considered and we come to Ωk.
(2) Compare the blocks in Ωk and E. Suppose D={(s,q1),…,(s,qn),(s,qn+1)…} in Ωk, E≥D such
that qi-pi=qj-pj for i, j=1,…, n. Let B1={(s,q1),…,(s,qn)} and B2=D-B1. Define Ωk+1=(Ωk-
{D})∪{B1,B2}, then Ωk+1 is least higher than Ωk. We can continue this process until in Ωm
where there is no block D, E≥D such that D has more elements than E.
(3) Let D1,…,Dk be all the blocks in Ωm such that E≥Di. Di is actually the set of all subterm
occurrences on a position, i.e. there is a ri for every i, such that

Di={(si,p1ri),…,(si,piri)}.
We choose one i such that ri is the longest. Suppose r1 is the longest and r1≠<>. Let r1' be the
subsequence of r1 which is one number less than r1, then p1r1',..,pnr1' are all occurrences of the
same term. We define a new block

B={(s1',p1r1'),…,(s1',pnr1')}.
Then our new partition is Ωm+1=(Ωm-{D1,...,Dj)∪B if B≥D1, D2,…,Dj (i.e. r1’=r2’=..=rj’). We
go on with same process until we we notice E self is a block in such Ωk. Now we choose another
block than E in ∏ and repeat (1), (2), (3). We are ready when every block is processed in the
way above.

Example. Let C, Ω and ∏ be given as below, we want to construct a sequence of partitions as in
the theorem. For simplicity, we write p instead of (t,p).

C=P(f(g(u,a,a),u)), g(u,a,a))
∏: E1={<1,1>,<2>)}, E2={<1,2>}.
Ω0=Ω: D1={<1,1,1>,<1,2>,<2,1>}, Da={<1,1,2>,<1,1,3>,<2,2>,<2,3>}. We consider
first E1.
Ω1: Because E1≥Da, let B1={<1,1,2>, <2,2>}. Then Ω1=Ω∪{B1}={B1, D1} from (1). The
constant block of Ω1 is Ba=Da-B1={<1,1,3>,<2,3>}.
Ω2: Because E1≥Ba, let B2={<1,1,3>,<2,3>}. Then Ω2=Ω1∪{B2}={B1,B2,D1} from (1).
Ω3: Compare E1 with D1, we have D1=B3∪B4 where B3={<1,1,1>,<2,1>} and

B4=D1-B3={<1,2>}. Thus Ω3=(Ω2-{D1})∪{B3,B4}={B1,B2,B3,B4} from (2).
Ω4: E1≥B1, B2, B3. The corresponding r1, r2, r3 are <2>, <3>, <1>.
Because r1'=r2'=r3'=<>, we have constructed a B5={ <1,1>,<2>} which is E1.

Thus Ω4=Ω3-{B1,B2,B3}∪{B5}={B4,B5}=∏.

4.3 Supremum of partitions

Definition. Consider all the partitions on C. A partition ∏ is called supremum of partitions
Ω1 and Ω2 if ∏≥Ω1, ∏≥Ω2 and for any partition ∑ which satisfies ∑≥Ω1,∑≥Ω2, we have ∑≥∏.

Theorem 11. Let C be a given clause and Ω1 and Ω2 be partitions on C, we can construct the
supremum ∏ of Ω1 and Ω2 on C.
Construction. We perform the following steps:
(1) Construct V=dom(∑) as follows.

V={p∈dom(Ω1)∪dom(Ω2)|there exists no q∈dom(Ω1)∪dom(Ω2)
 such that q is shorter than p}

(2) If p∈V∩B where B is a block in Ω1, construct a block E for ∏ which contains p as follows.

8

To begin with E should be a subset of V∩B. Thus consider a p'∈V∩B and determine if p'∈E. If
for every D, a block in Ω2 which contains an element q∈D with q⊃p, there is also a q'∈D such
that q'⊃p' and q-p=q'-p', and furthermore, for every D', a block in Ω2 which contains an
element q'∈D' with q'⊃p', there is a q∈D' such that q⊃p and q-p=q'-p, then we add p' to E. If
we have considered all elements in V∩B, then we have a new block E for ∑. The same way can
be used for constructing a block containing an element in V∩dom(Ω2).

5 Application

Muggleton and Buntine[2] have introduced absorption of inverse resolution for machine
learning: given a literal C1 and a clause C, how to find a C2 such that C becomes the resolvent
of C1 and C2. The improved algorithm in [3],[4] constructs a substitution θ1 from C1 and then all
partitions on C∨~C1θ1. They induce C2's such that C2θ2=C∨~C1θ1 for some θ2. We can even
prove that two C2’s which are based on different θ1 are incomparable (under certain not too
restricted conditions). Thus first investigating partitions w.r.t. one θ1 and then another is a
systematic approach. However, these constructions of partitions on C∨~C1θ1 is not efficient
and directed. We want for example to generalize C2 one step every time or we want to find a
supremum for two different C2’s. The constructions in this article help us to solve such problems.

References

1 Stephen Muggleton. Inductive Logic Programming. First Conference on Algorithmic
Learning Theory, Ohmsha, Tokyo, October 1990.

2 Stephen Muggleton & Wray Buntine. Machine Invention of First-order Predicates by
Inverting Resolution. Proceedings of the 5th International Conference on Machine Learning,
Morgan Kaufmann, pp. 339-351, 1988.

3 Shan-Hwei Nienhuys-Cheng. Consequent Functions and Inverse Resolutions. Report Eur-
CS-90-03, Erasmus University, Rotterdam, Netherlands, May 1990.

4 Shan-Hwei Nienhuys-Cheng, Peter Flach. Consistent Term Mappings, Term Partitions and
Inverse Resolutions, to appear in proceedings of EWSL-91, March, 1991, Portugal.

5 Shan-Hwei Nienhuys-Cheng. Term partitions and minimal generalizations of clauses
Report, Erasmus University, Rotterdam, Netherlands, January, 1991.

6 Gordon D. Plotkin. A Note on Inductive Generalisation. Machine Intelligence 5, B. Meltzer
& D. Michie (eds.), Edinburgh University Press, 1970.

7 John C. Reynolds. Transformational Systems and the Algebraic Structure of Atomic
Formulas. Machine Intelligence 5, B. Meltzer & D. Michie (eds.), Edinburgh University
Press, 1970.

