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Abstract. Solar diameters have been measured from different ground-based instruments on different sites all around the world.
There are values dating back to three centuries ago, but the revival of interest began in the 1970s when it was claimed that a
temporal periodic modulation had been found. The interest of such measurements, pinpointed from only two decades, may not
lie in these temporal variations, but in the fact that a latitudinal heliographic dependence may exist. Such a solar shape distortion
has been deduced from the analysis of solar astrolabe data sorted by heliographic latitudes, but observational evidence has also
been obtained by means of a scanning heliometer (Pic du Midi Observatory). Latitudinal dependence implies sub-surfacic
physical mechanisms and can be explained theoretically. Thus, in spite of the fact that ground-based observations are altered
by seeing effects that may amplify or superimpose noise, it can be advanced that the solar shape is not a pure spheroid. We
present here a new theory based upon the thermal-wind equation, which explains the observed distorted solar shape. Using the
W parameter (called here asphericity-luminosity parameter), we show that large negative values (W ranging from around −0.075
up to −0.6) leading to a prolate Sun, are unlikely. The best range of W lies between around −0.075 and +0.6. Concerning
observations, only space missions (or balloon flights) will be able to reach a clear conclusion. A space mission called PICARD
is scheduled to be launched by 2008: one of its major aims is to measure these asphericities with astrometric precision.
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1. Introduction

Since a few years, the idea that the outer visible shape of
the Sun is not a perfect ellipsoid seems to be more and more
convincing. From an observational point of view, measure-
ments of high precision, recently made at the Pic du Midi
Observatory and during exceptional meteorological conditions,
have suggested a distorted outer shape (Rozelot et al. 2003a,b;
Rozelot & Lefebvre 2003). Theoretically, the free surface is re-
lated to thermodynamic effects growing from the tachocline to
the near surface. If all physical mechanisms occurring in the
sub-surfacic layers were perfectly uniform (velocity rate, mass
distribution, magnetic field...) the surface boundary of the Sun
would be a perfect spheroid solely owing to (uniform) rotation.
This is not the case, and a distorted shape is expected. Using
a shallow-water model, Dikpati & Gilman (2002) reached the
same conclusion: a deformed outer sphere represents the “free-
top” boundary of the solar fluid. In the light of these theoretical
facts, we wondered if it might not be opportune to reconsider
ground-based measurements, and instead of trying to search
for a consistency in individual data acquired on different sites
and at different epochs, to look at what could be reliable and
directly comparable.

Another intriguing point is the value of the so-called oc-
topole term (l = 4) for which the observations, either from

Send offprint requests to: J. P. Rozelot,
e-mail: jean-pierre.rozelot@obs-azur.fr

the ground or from space, do not match the theoretical value.
For example, according to Lydon & Sofia (1996), the observed
l = 4 term is greater than the theoretical one by a factor that
may reach 4 orders of magnitude. As, in any theory of figure of
rotating bodies, the outer shape is the combination of the suc-
cessive gravitational moments, for example at first order l = 2,
then l = 4, the result is that any increased value of the l = 4
term allows the upper boundary of the Sun to vary with lati-
tude. In the following, we will adopt the term “asphericities” to
describe any departures from perfect sphericity of the Sun, and
the outer visible shape of the Sun will be named “helioid”.

In the second part of this paper we will briefly recall exist-
ing ground-based observations, and we will discuss them con-
sidering only their common properties, with respect to solar lat-
itudinal variations. In the third section, we will propose a new
theory based upon the thermal wind equation, which might ex-
plain the observed distortions. In the Sect. 4, we will be able to
propose bounds on such asphericities and we will conclude by
some perspectives to obtain observations in space to decide the
issue.

2. Solar radius ground-based observations

There are many papers describing ground-based observa-
tions of the solar radius, mainly using the so-called modi-
fied Danjon astrolabe. These solar astrolabes operate now in
France (Laclare et al. 1996), Chile (Noël 2002, 2003a), Brazil
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(Reis Neto et al. 2003) and Turkey (Gölbaşi et al. 2001). These
measurements have been already analyzed and discussed, for
instance by Ribes et al. (1991), Laclare et al. (1996), Noël
(2002), Jilinski et al. (1999), Wittmann (2001), Emilio et al.
(2000) and Pap et al. (2001)1. When data from different sources
are compared over a fairly long period of time, they show
strong disparities, both in amplitude and in phase. The rea-
son, or reasons for the discrepancies have not yet been fully
explained. They might due either to technical points (variable
angle prism, CCD...), or to the atmospheric turbulence hiding
faint solar effects. It is also true that, as the amount of data
increases with time, it is possible to apply to these series in-
creasing performant data analysis techniques. The results are
sometimes impressive, leading for example to accuracies of a
few milliarcseconds (mas) in data obtained near the sea level.
The results, although frequently obtained on a patrol way, are
not always readily available (except in one case); the reason
usually advanced being the waiting for comparison with other
solar indices. A critical look afterwards at all the solar astro-
labe data remains to be taken. However, the question deserves
to be tackled, with caution: the results so far obtained from the
ground may conceal interesting features. On the other hand, as-
trometric space data are not yet available and it is clear that data
which will be obtained from spacecraft will make it possible to
give a definite answer to the question. We will return to this
point in Sect. 5.

Serious analyses have been made that render the question
of the variability of the solar radius with time a question of as-
trophysical interest. Let us mention the solar variability model
presented by Sofia & Li (2001), which permits the reconstruc-
tion of solar irradiance, and which is partially based on long-
term variations of the solar radius. One may also ask what
would be an upper bound of the radius variations, for which,
above this limit, one will be sure that an astrophysical phe-
nomenon could no more be observed. In the past, some authors
(such as Beardsley & Hill 1987) have searched in that direction,
the advance of the perihelion of Mercury being taken as a test.
Unfortunately, at that time, this test was not sensitive enough
due to the size of the errors (in the observed values of the per-
ihelion advances of planets). A third example can be found in
Rozelot & Bois (1998): they showed that the indirect signature
of the solar quadrupole moment on the Moon’s rotational mo-
tion leads to an upper limit of this gravitational l = 2 moment,
which in turn limits the variations of the solar radius to some
50 mas, a value certainly still high, but indicating that varia-
tions must exist, otherwise there would be lunar librations of
so high amplitude that they could never be observed.

It seems to us that a direct comparison of solar astrolabe
data, even through sophisticated filtering techniques, do not
solve the problem of their inconstancy. Taking into account re-
cent progress concerning physical mechanisms inside the Sun,
which lead to a distorted visual shape of the Sun, we will at-
tempt to tackle the subject in another way.

Firstly, note that solar astrolabe observers do not measure
the same diameter at the same time. This is due to the latitude

1 This list is not exhaustive; number other references can be found
in the above quoted papers.

Fig. 1. The solar limb shape variations as observed at the Pic du Midi
Observatory from September 3rd to 6th, 2001. The amplitude of the
variations does not exceed 24 mas between the highest and the lowest
point of the error bars. The overall shape of the Sun remains oblate but
a bulge is observed near the royal zones (30◦−40◦, a zone where spots
appear at the beginning of the solar cycle) followed by a depression.
After Rozelot et al. (2003b).

of the observing site and to the fact that diameters are locally
measured through the vertical. Thus, to compare data series,
one must first group them into heliographic latitude blocks.
Similarities are then clearly found. An example can be found
in Noël (2003b), where a distorted shape of the limb appears
anticorrelated with the surface effective temperature as mea-
sured by Kuhn (1988). Other techniques lead to the same con-
clusions. As mentioned in the introduction, departures from
sphericity were recently observed from the ground by means of
the scanning heliometer of the Pic du Midi Observatory (Rösch
et al. 1996) and are reported in Fig. 1 (from Rozelot et al. 2003a
or 2003b).

Inspection of the two curves given in Figs. 1 and 2 deduced
from ground-based measurements shows overall similarity
with a few discrepancies, which can be due to the measur-
ing difficulties. The main feature is a departure from a per-
fect sphere; the asphericities can be described as follows. A
bulge is visible extending from the equator up to the mid lati-
tudes, around 45◦. This bulge is followed by a depressed zone
at higher latitudes, from 60◦ to 80◦. The overall shape remains
oblate. Note that departures from a sphere were also suspected
from solar astrolabe measurements made at Calern observatory
(France) as early as 1996 (Laclare et al. 1996), and at Santiago
(Chile) by Noël (1999, 2002).

We are indeed conscious of the difficulties in measuring
such asphericities, and of the considerable errors associated
with measurements from different sites. The main source of
error is the atmospheric turbulence and the true difficulty is to
distinguish between the variations due to the atmosphere and
those of true solar origin. A more complete study of the atmo-
spheric effects on solar diameter measurements has been made
by Irbah et al. (2003) who show that the observation conditions
have more impact on the errors than on the measurements of
the diameter mean value. Even if the data are certainly affected
by the turbulence effects, it would be unlikely that rather sim-
ilar results found by different observers on different sites (and
using different techniques) would not reflect a real solar effect.
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Fig. 2. Solar limb shape variations as observed from the ground by
the solar astrolabe. The measurements were made by Reis Neto et al.
(2003) in Rio de Janeiro (Brazil). A bulge can be seen extending from
the equator to the end of the royal zones (around 45◦) followed by a
depression between 60◦−80◦ (by courtesy of Andrei, personal com-
munication, 2002; see also Reis Neto et al. 2003).

Moreover, recent theoretical progress concerning the function-
ing of the tachocline has shown that the instability of the differ-
ential rotation as a function of the effective gravity of the suc-
cessive internal stratified shells leads to latitudinal variations
of the outer shape of the Sun (Dikpati & Gilman 2001, 2002;
Lefebvre & Rozelot 2003).

Such distortions have not yet been observed from space
with any instrument (SOHO/MDI or SDS balloon measure-
ments). However, we should recall that SOHO/MDI has a res-
olution of about 2 arcsec per pixel, which is probably too low
to show such distortions (which were not searched for).

In summary, we conclude that a comparison of all data from
several techniques and from different sites indicates that a bulge
is visible on the solar surface around the royal zones (around
35◦−45◦, a zone where spots appear at the beginning of the so-
lar cycle), with a depressed zone at higher latitudes. The differ-
ence between the equatorial and polar radius remains positive.
The helioid thus has a complex shape, where departures from
the sphere probably do not exceed twenty mas, which must now
be explained.

3. A new theoretical approach to pinpoint
departures to sphericity

3.1. Preamble

Consider a single star that rotates about a fixed direction in
space, with some assigned angular velocity; the resulting shape
is an oblate figure. However, for the Sun, a slowly rotating star,
with differential rotation on the surface and at depth, the fol-
lowing questions arise: what is the geometrical shape of the
free boundary and what is the form of the surfaces upon which
the physical variables (such as pressure, density, ...) remain

constant? How do these equilibrium levels depend on the an-
gular velocity distribution?

3.2. The thermal-wind relation

For a better understanding of the question, let us first recall
the the thermal-wind equation, which can also be found also in
Gough & McIntyre (1998) and Tassoul (2000).

Let u denote the velocity of the fluid in an inertial frame of
reference, g the acceleration due to gravity, ρ the density, p the
pressure, f the viscous force per unit volume and V the gravi-
tational potential; we start with the Navier-Stokes equation

Du
Dt
= g − 1

ρ
grad(p) +

1
ρ

f (u), (1)

which reduces to

Du
Dt
+ grad(V) +

1
ρ
grad(p) = 0 (2)

under the following hypothesis:

– the Sun is an axisymmetric star, which rotates about a fixed
direction in space with some assigned angular velocity;

– the motion is steady in time;
– molecular viscosity is negligible for large-scale motion;

in this case, viscous transport (turbulence) can also be
neglected.

Introducing the classical notations (r, θ, φ) with respect to the
rotation axis, in a frame rotating with angular velocity Ω, and
cylindrical polar coordinates (s, z, φ), where z = r cos(θ) and
s = r sin(θ), we may write (es, ez, eφ) for the rotating frame in
cylindrical coordinates. Thus, the velocity u has the form

u = Ωseφ, (3)

and the hypothesis of constancy in time implies that

Du
Dt
= −Ω2ses. (4)

From Eq. (4), Eq. (2) becomes

grad(V) +
1
ρ
grad(p) −Ω2ses = 0. (5)

Taking the curl of Eq. (5), we obtain

grad
(

1
ρ

)
∧ grad(p) = grad(Ω2s) ∧ es. (6)

This last equation is the thermal wind relation, which relates
the z dependence of the angular velocity Ω to the baroclinicity
of the system. Developing Eq. (6) by choosing for convenience
cylindrical coordinates for the left member, as introduced by
Gough & McIntyre (1998), we obtain

− 1
rρ2

(
∂ρ

∂r
∂p
∂θ

)
= 2Ωs

∂Ω

∂z
, (7)

by assuming that the density ρ is independent of the
colatitude θ.
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Table 1. Empirical rotation coefficients Ωeq, Ω2 and Ω4 (in µrad/s) according to Allen (2000) and some other authors. These coefficients have
been used for the computation of our model shown in Figs. 3 and 4.

References Method Ωeq Ω2 Ω4

From tracers
Duvall (1980)

Snodgrass et al. (1990)
Supergranular pattern 2.972 –0.483 –0.360

Komm et al. (1993) Small magnetic features 2.913 –0.404 –0.422

Kosovichev (1996) Helioseismology 2.843 –0.382 –0.461

Kuiper (1972) Sunspots 2.913 –0.283 –0.269

Makarov et al. (1997) Hα line map 2.824 –0.190 –0.067

Snodgrass (1983) Magnetic field pattern 2.903 –0.483 –0.327

Wilson et al. (1996) Helioseismology 2.903 –0.484 –0.264

Deng et al. (1999) Polar magnetic elements 2.828 –0.453 –0.360

From the Doppler effect in solar lines

Snodgrass et al. (1984) Surface plasma 2.850 –0.343 –0.475

Equation (7) relates the balance of the pressure gradient
and the Coriolis force. To express this relation in temperature
instead of pressure, we assume hydrostatic equilibrium and
a perfect gas law that yields the following thermal wind
equation:

g

rT

(
∂T
∂θ

)
r

= 2Ωs

(
∂Ω

∂z

)
s

· (8)

To sum up, the balance is expressed by the zonal component
of the steady axisymmetric inviscid vorticity equation, yield-
ing an appropriately generalized “thermal-wind” (more aptly,
“thermal-shear”) equation. The thermal wind equation links the
shear of angular velocity to the latitudinal variation of the tem-
perature field T . Note that such latitudinal variations of T have
already been measured on the surface of the Sun (Kuhn 1985,
1988).

3.3. Relation with the latitudinal variation of the radius

At the surface of the Sun (namely in the photosphere), the
rotation law Ω is often described by a 3-term expansion

Ω(θ) = Ωeq + Ω2 cos2(θ) + Ω4 cos4(θ), (9)

where Ωeq is the equatorial rotation rate and Ωi, empirical co-
efficients fitting the observational data (see Table 1). These co-
efficients are often limited in latitude, to about 60◦, because
effects such as geometrical distortion, make it very difficult to
adequately measure the rotation rates at high latitudes. Schou
et al. showed that an extrapolation of such an expansion to
higher latitudes will lead to a discrepancy with helioseismic
observations (which are generally reliable to at least 75◦). On
the other hand, Deng et al. carefully measured the surface rota-
tion rate at high latitudes (55◦–85◦; see coefficients in Table 1)
and found them to be consistent with helioseismic results.

It is known from helioseismology that the surface differen-
tial rotation goes on deeper with a radial gradient of the rotation
rate ∂Ω∂r that is not null, and negative in the near-surface layers
of the convection zone. The order of magnitude of this out-
ward gradient is −5.7×10−16 m−1 s−1 at the equator. Moreover,

Corbard & Thompson (2002) have shown that in a shell of
about 0.02 R� thickness, the radial gradient, constant (but neg-
ative) from the equator up to latitude 50◦, cancels around this
latitude and reverses to higher latitudes (the values are then ex-
trapolated to the surface). Basu et al. (1999) deduced a similar
behaviour from their analysis of the splitting of high-degree f -
modes, but finding a reversal of the radial gradient in the zone
above 0.994 R�. It follows from this analysis that the radial
gradient can be neglected for our purpose (at least in this sub-
surfacic layer called the leptocline, Godier & Rozelot 2001),
which leads to

∂Ω

∂z
= − sin(θ)

r
∂Ω

∂θ
· (10)

Developing T as usual into the form T (θ) = Te+T̃ (θ), where Te

is the effective temperature at the surface of the Sun, we obtain

g

rTe

∂T̃
∂θ
≈ −2Ω sin2(θ)

∂Ω

∂θ
· (11)

Following Sofia & Endal (1980), we introduce the so-called
parameter W which links the relative variations of the solar
radius R to the relative variations of the irradiance I as

W =
dR/R
dI/I

· (12)

Bearing in mind Stefan’s law L = σT 4, we get

dR
R
= W

dI
I
= W

dL
L
≈ 4W

Te

∂T̃
∂θ

dθ. (13)

Finally, substituting Eq. (13) into Eq. (11) and introducing
R(θ) = Re + R̃(θ), where Re is the initial ellipsoid, we obtain

dR̃
dθ
≈ −8
g

WRr sin2(θ)Ω
∂Ω

∂θ
· (14)

This last equation appropriately describes the evolution of the
solar radius with colatitude θ. Integration of Eq. (14) requires
an initial step of R, which can be taken as an ellipsoid with an
initial value of ∆Ri = Req − Rpol, starting with sphericity. Then,
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Fig. 3. Theoretical solar radius variations (with reference to the polar
radius, in mas) versus heliographic latitude, in degrees. The successive
columns in the legend indicate the value of W and of the initial ∆Ri

(in mas) and, the latitude at which the maximum of each curve occurs,
repectively. Note that the estimated maximum found for each curve is
located between 30◦ and 50◦ latitude (the coefficients of the rotation
law have been taken from Snodgrass 1983).

as both absolute values of W and ∆Ri have an upper bound, the
integration can be limited to their most plausible values.

As we will see in the next section, values of W has been
taken ranging from −0.6 to +0.6. We started with ∆Ri = 1 mas,
i.e. quasi sphericity, and we stopped with ∆Ri = 22 mas, which
can be considered as an upper initial value for the initial refer-
ence ellipsoid.∆Ri = 7 mas is what would be an initial ellipsoid
if the Sun were rigidly rotating (without differential rotation)
and ∆Ri = 10 mas is one of the most plausible values. The two
other values are intermediate steps of calculations.

4. Results

4.1. Estimation of the “asphericity-luminosity
parameter W”

Today, both the absolute value and the sign of the “asphericity-
luminosity parameter W” are still badly known. Different val-
ues are available in the literature, either theoretically calculated
or measured from ground-based semi-diameter measurements,
but they are not consistent. According to different authors, the-
oretical values range from 2 × 10−4 (Spruit 1991), 5 × 10−3

(Dearborn & Blake 1980), 7.4 × 10−2 (Sofia et al. 1979), to
0.2 or 0.5 if studies that locate mechanisms are at the base of
the convective zone or in the core respectively (Gough 2001).
From the observations the absolute value of W varies from 0.85
(Rozelot 2001) to 0.2 (Picard web site).

To check our model described by Eq. (14), a first compu-
tation was made, using values of the coefficients of Eq. (9)
taken from Snodgrass (1983); these values are close to those
that Wilson et al. (1996) deduced from helioseismology. The
results obtained for the latitudinal variations of the solar ra-
dius versus the heliographic latitude are shown in Fig. 3. The
shape of the free surface clearly depends on the values of the

pair (W,∆Ri). Note that the position of the maxima obtained is
concentrated between 30◦ and 50◦ of heliographic latitude. The
first curve [0.05; 1], at the bottom of the diagram is unlikely, as
the final difference obtained between the polar and equatorial
radius is only of about 0.15 mas.

The two pairs (W = 0.5 and ∆Ri = 11 mas), (W = 0.45
and ∆Ri = 11 mas) are the most likely values: the profiles of
the outer layer are well marked, the latitudinal thickness occur-
ring near the royal zones, at latitude 40◦. The final difference
between the polar and equatorial radius is about 2 to 3 mas, the
outer global shape remaining oblate.

4.2. Theoretical solar radius variations

The model has also been tested to check if it is sensitive to
the rotation law. Different values of the (Ωeq,Ω2,Ω4) triplet
quoted in Table 1 have been used, deduced from Allen (2000)
and some other authors. The results are given in the different
graphs of Fig. 4. Except for the so-called “Hα-line map”, all
plots show a similar behaviour with a maximum occurring at
the mid-latitudes. In the case of the “Hα-line map”, the height
at which the line is formed is about 1000 km above the photo-
sphere (see Fig. 1, Floyd 2003), that is to say far from the sur-
face itself. In this case, it is not surprising to obtain a quasi el-
lipsoidal surface, for which the final ∆R is of about 7 mas (and
for a W value of about 0.5). The other graphs merely reflect the
depth at which the differential rotation takes place. It has also
been checked that results are not too much affected by using
polar tracing elements that make it possible to deduce coeffi-
cients of Eq. (9) for high latitudes (for instance, θmax = 41.4◦)
for W = 0.5 and ∆Ri = 11 mas; see below). In the following,
we will continue to use the values of Ωi taken from Snodgrass
(1983).

Figure 5 shows, plotted versus heliographic latitude, the
boundary of the free surface obtained as a function of the ini-
tial ∆Ri. This figure indicates that, for values of ∆Ri going from
sphericity to an oblateness of 10 mas, large positive values
of W yield a final prolate Sun; such a scenario can certainly
be rejected. By contrast, the two last figures (labelled 16 and
22 mas) show that negative values of W increase the initial ∆Ri

to values that are certainly never observed. Our conclusion is
that ∆Ri must lie between 7 and 12 mas and W is limited to a
range of values between −0.075 and +0.6. To explain the ob-
served heliographic variations showing a maximum at around
latitude 40◦, the best pairs are (∆Ri = 10 (Fig. 5) or 11 mas
(Fig. 3), and W = +0.6 or +0.5 respectively). The final level
has an amplitude of about 3 to 5 mas; beyond such values, the
shape becomes more and more ellipsoidal. However, note that
for ∆Ri = 10 mas, the values of W ranging from −0.075 up
to +0.6 allows a departure from a perfect ellipsoid, with more
and more marked latitudinal distortions. Figure 3 can be di-
rectly compared with the fourth graph of Fig. 5 (∆Ri = 10 mas),
the values of W ranging here from −0.6 to 0.6 instead of 0.05
to 0.6 as in the previous figure. Note, thus, that in this more re-
alistic case high negative values of W render the surface more
oblate (a difference of 20 mas between the equatorial and polar
radius is obtained for W = −0.6). It has been checked by
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Fig. 4. Theoretical solar radius variations (by reference to the polar radius, in mas) versus heliographic latitude in degrees, for different values
of the rotation rateΩ (see Table 1). The successive columns in the legend indicate the value of W and of the initial ∆Ri (in mas) and, the latitude
at which the maximum of each curve occurs, repectively (a – indicates that no maximum is obtained). The successive triplets (W,∆Ri, φmax)
have been chosen identical to these of Fig. 3. Note the similar behaviour of the curves except for the graph labelled “Hα-line map”, due to the
highest altitude at which this line is formed.

plotting the maximum of the heliographic curves (θmax) ver-
sus ∆Ri and parametrized by W (such curves can be deduced
for instance from the caption boxes of each plot of Fig. 5)
that small values of ∆Ri are associated with small values of
W. Larger values of ∆Ri yield a maximum of θmax from values
of W ranging between 0.3 and 0.6. This emphasizes the need to
properly measure the “asphericity-luminosity parameter W” in
order to discriminate between a more oblate shape (occurring at
large positive values W), knowing that prolate envelopes (large
negative values of W) have to be rejected. If such asphericities
happen in the real Sun, it seems likely that some signature of
them would be detectable.

To sum up, a pole-equator temperature difference yields a
thermal-wind effect that may explain the latitudinal variation
of the solar radius. To our knowledge, if a temperature gradient
has been already well measured (Kuhn 1985, 1988), such a re-
sult has never been studied yet for further effects on the outer
shape.

5. Conclusions and perspectives

To check whether latitudinal radius variations exist, a first order
theory was developed, based upon the thermal wind flowing
from the pole to the equator.

The main results obtained from this new theory can be sum-
marized as follows:

– 1. The pole-to-equator temperature variations may explain
observations made from the ground by different techniques
and showing small solar asphericities.

– 2. The shape of the free surface depends on the initial val-
ues of the oblateness of the reference ellipsoid, and on the
asphericity-luminosity parameter W. Their values are not
independent from each other, as some values of this pair
may lead to a prolate Sun. However, their values are upper
and lower bounded, by 7 and 22 mas for∆Ri, and by−0.075
and +0.6 for W.
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Fig. 5. Computations made with different values quoted in the literature, of the “asphericity-luminosity” coefficient W, ranging from −0.6
to +0.6 and for different initial values of ∆Ri. The legend in the box indicates these different values of W.

– 3. The bulge over the royal zone is the most marked for the
pair [∆Ri (in mas); W] = [11 ; +0.5].

– 4. For a given value of ∆Ri, this bulge is less and less marked
as W decreases from +0.6 down to −0.075.

– 5. The shape of the free surface is slightly sensitive to the val-
ues of the rotation rate, remaining globally the same, in a
very thin surface layer. This merely reflects the fact that the
markers used are the signatures of physical effects more or
less anchored in depth.

Obviously several other effects have not been taken into ac-
count that could cancel out some of these results in a real Sun.
In particular, for further calculations, it will be interesting:

– to consider the problem in two dimensions, that is to say to
depict the photosphere with a certain thickness, bearing in
mind that the differential rotation laws are both r and θ de-
pendent. Presently, the velocity rotation rates deduced from
helioseismology are not yet accurate enough just below the
surface (Di Mauro 2003) to conduct precise computations;

– to take into account the magnetic field and its pole-to-
equator migrations (this could also be applied to the theory

of figures as described by Rozelot & Lefebvre 2003). Such
advances are currently under way.

To go further, measurements from space with sufficient res-
olution are essential. The measurement of the asphericities
and the determination of the true helioid is one of the
main goals of the future microsatellite PICARD mission (see
http://smsc.cnes.fr/PICARD/Fr/, 2003), scheduled to
be launched by 2008. To be more specific, PICARD will give
the first simultaneous measurements of the solar diameter (in
four different wavelengths), the differential rotation, the irradi-
ance, the UV-flux and the low-degree helioseismologic modes.
PICARD will thus contribute to a better knowledge of the solar
machine, from the core to the surface. One of the products of
these observations will be the first space measurement of the
W ratio and its temporal evolution. Its precise value is impor-
tant to better constrain the solar models, as previously seen, and
at whatever depth considered. Finally, this parameter is one of
the keys for a better understanding of the solar forcing of the
Earth’s climate. That is also one of the reasons for which, while
awaiting the launch of PICARD, we encourage the scientific
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community to support experiments in that direction, such as
the SDS flights.
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Noël, F. 1999, A&A, 343, 1001
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