Using lidar remote sensing and support vector machines to classify fire disturbance legacies in a Florida oak scrub landscape

James J. Angelo, Brean W. Duncan, John F. Weishampel University of Central Florida, Orlando, FL August 2009

The Extended Keystone Hypothesis

- Terrestrial ecosystems are organized by a small set of ecological processes (Holling 1992, Ecological Monographs 62:447-502)
- "Contagious disturbance processes" dominate at the mesoscale

Florida Oak Scrub

Requires frequent burning to maintain physiognomy

Remote Sensing of Fire Legacies

Study Objectives

 Determine the effectiveness of using lidar data to predict time since fire (TSF)

 Estimate the amount of "ground-truth" data necessary to achieve satisfactory accuracy

KSC/MINWR Study Area

Lidar Data Processing

Height Bin	# of Returns		
>15 m	0		
15-14 m	0		
14-13 m	0		
12-13 m	0		
11-12 m	0		
10-11 m	0		
9-10 m	12		
8-9 m	27		
7-8 m	29		
6-7 m	8		
5-6 m	8		
4-5 m	13		
3-4 m	7		
2-3 m	3		
1-2 m	6		
0-1 m	55		

Support Vector Machines (SVMs)

Used to address the "curse of dimensionality" in the most challenging classification problems

Additional Data Processing

Holling (1992): contagious disturbance processes create pattern at mesoscale

Used "moving window" to average the number of lidar returns over various distances

Additional Data Processing

Holling (1992): contagious disturbance processes create pattern at mesoscale

Used "moving window" to average the number of lidar returns over various distances

Five-Fold Cross-Validation

Partition dataset into 5 equal-sized "folds":

Train	Train	Train	Train	Test
Train	Train	Train	Test	Train
Train	Train	Test	Train	Train
Train	Test	Train	Train	Train
Test	Train	Train	Train	Train

Average the error rates on the Test data to estimate the prediction error

Support Vector Machine Accuracy

Estimating Size of Training Set

Generated 1000 stratified random samples representing 5%, 10%, 15%, 20%, and 25% of full dataset

Trained SVM and k-NN classifiers on each sample and then tested on remaining dataset

Created 95% confidence intervals for proportion correct and Kappa coefficient

Estimating Size of Training Set

Summary and Conclusions

As predicted by the Extended Keystone Hypothesis, fire creates distinct 3-D patterns in oak scrub vegetation

- Discrete-return lidar can be used with SVMs to classify these patterns with very high accuracy
- SVMs may require training sets comprising only 10% of study area to achieve >95% accuracy

Management Implications

Fire is crucial to the health of Florida oak scrub habitat

 Lidar remote sensing may allow rapid, landscape-scale assessment of fire legacies

Acknowledgments

- Strategic Environmental Research and Development Program (SERDP)
- NCALM: Michael Sartori, Sidney Schofield, & Ramesh L. Shrestha
- **KSC/MINWR**: Don Doerr & the NASA security team, USFWS
- **Dynamac Corporation**: Dave Breininger, Geoffrey Carter, & Donna Oddy
- UCF: Ross Hinkle, Reed Noss, Pedro Quintana-Ascencio, & the Biology Graduate Student Association

