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Decision Boundaries in One-Dimensional Categorization 

Michael L. Kalish and John K. Kruschke 
Indiana University Bloomington 

Decision-boundary theories of categorization are often difficult to distinguish from exemplar- 
based theories of categorization. The authors developed a version of the decision-boundary 
theory, called the single-cutoff model, that can be distinguished from the exemplar theory. The 
authors present 2 experiments that test this decision-boundary model. The results of both 
experiments point strongly to the absence of single cutoffs in most participants, and no 
participant displayed use of the optimal boundary. The range of nonoptimal solutions shown 
by individual participants was accounted for by an exemplar-based adaptive-learning model. 
When combined with the results of previous research, this suggests that a comprehensive 
model of categorization must involve both rules and exemplars, and possibly other 
representations as well. 

In this article, we contrast decision-boundary and exem- 
plar-based models of categorization. The decision-boundary 
model of categorization (Ashby & Gott, 1988; Ashby & 
Perrin, 1988; Ashby & Townsend, 1986) holds that people 
make category membership judgments by evaluating a rule 
that is based on the dimensional values of a test stimulus. As 
an example, with a one-dimensional stimulus a single-cutoff 
rule could be, "If  the stimulus is larger than value X, then it 
is a member of Category A; otherwise it is a member of 
Category B." For multidimensional stimuli, the rule may 
have no simple verbal gloss, but it can still be described by a 
decision boundary that is a function of the stimulus dimen- 
sions. Additionally, it it not necessary to refer to the actual 
dimensions of the stimulus in the rule--a different function 
can be used as a basis for discrimination, such as the relative 
likelihood of a stimulus coming from each category (Ashby 
& Townsend, 1986; Nosofsky & Smith, 1992). 

The decision-boundary theory also assumes that category 
membership decisions are made on an all-or-none basis, 
rather than on a graded probabilistic basis (Ashby & Lee, 
1992). Given a stimulus with multiple dimensions, the 
observer computes the value of the discriminant function. If 
the function value is greater than a threshold value, the 
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stimulus is assigned a particular category label. Of course, 
people generally do not respond absolutely deterministically 
in categorization tasks. Probabilistic responding, the decision- 
boundary model claims, occurs because perceptual noise 
sometimes makes a stimulus appear as though it is on the 
opposite side of the boundary and because errors in memory 
make the precise value of the threshold uncertain (Ashby & 
Lee, 1993; Ashby & Maddox, 1992, 1993). 

In contrast, exemplar models propose different representa- 
tions and decision processes (e.g., Nosofsky, 1986). In an 
exemplar model, when items are presented, each is stored in 
memory as a point in multidimensional space. When a test 
stimulus is presented for categorization, its similarity to each 
item in memory is computed. The relative similarity of the 
test item to members of the different categories is entered 
into a probabilistic decision function. The result of this 
computation is that category membership is decided in a 
graded fashion. 

Thus, decision-boundary and exemplar models differ in 
two ways. One difference is the assumption of what 
representations are used during categorization; the exemplar 
model assumes only the storage of all exemplars, whereas 
the decision-boundary model assumes the storage of a 
decision boundary and a discriminant function. The leading 
decision-boundary theory (the general recognition theory, 
GRT) also allows that individual exemplars might be 
represented, but denies that they are accessed during catego- 
rization (Ashby, 1992; Ashby & Townsend, 1986; Maddox 
& Ashby, 1993). The other difference is the type of decision 
rule the models use. Decision-boundary models are typified 
by deterministic rules, whereas exemplar models use a 
graded probabilistic rule. Distinguishing between these 
models has proved difficult, as the two make formally 
identical predictions under a number of assumptions (Ashby 
& Maddox, 1993; Nosofsky & Smith, 1992) and make very 
similar predictions in many experimental conditions (Estes, 
1992). For example, even Nosofsky's (1986) classic data 
from nonnormally distributed categories could be well fit by 
a likelihood-based decision-boundary theory. 

Support for decision-boundary models falls into two 
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primary classes: those experiments that show deterministic 
responding and those that show a lack of access for 
individual exemplars. In experiments by Maddox and Ashby 
(1993), the extent to which responses were deterministic 
was measured by finding the slope of the response surfaces 
of individual participants. A response surface is the function 
that describes the probability of giving a particular category 
label to a stimulus given its dimensional values. The 
response surface is to be contrasted with the posterior 
probability of the category, given the stimulus that is the 
actual probability that a stimulus is a member of a given 
category. In Maddox and Ashby's (1993) study, participants 
were asked to decide the category membership of stimuli 
drawn from overlapping Gaussian distributions. When Mad- 
dox and Ashby measured the gradient of the response 
surface across the decision boundary (i.e., the slope of the 
line tangent to the surface at the decision boundary), they 
found it to be steeper than the gradient of the posteriors. This 
runs counter to the predictions of exemplar models, which 
often are construed to predict a response surface congruent 
with the posterior probability of category membership, or a 
probability-matching result. Thus, the conclusion was that 
responding was deterministic. Deterministic responding, as 
defined above, has been observed when participants were 
instructed to select criterial stimulus values for segregating 
two Gaussian distributions (Healy & Kubovy, 1981; Kubovy 
& Healy, 1977). 

An additional prediction of the boundary-based approach 
is that exemplar-based information (such as the distribution 
of exemplars within categories), although possibly retained, 
is not used in categorization (Thomas, 1997; Thomas & 
Townsend, 1993). Thomas first trained participants to dis- 
criminate categories composed of highly correlated two- 
dimensional stimuli. Once the participants were able to 
reliably categorize the stimuli, showing that they had 
learned about the intracategory correlations, they were given 
a new task. Participants were presented with a stimulus that 
contained only one of the two relevant dimensions, along 
with the label of the category to which the stimulus 
belonged. Participants were then asked to select a value for 
the missing dimension. Many of the participants gave the 
mean value of the missing dimension, rather than the value 
that would have been expected given the strong intracat- 
egory correlation of stimulus dimensions. These results 
suggest that participants could not recall the intracategory 
structure they had exploited so well in learning the discrimi- 
nation. This is consistent with the representational assump- 
tion of the decision-boundary model, in which only the 
decision boundary is retrieved from memory, and the 
information that leads to its adoption (in this case, the 
intracategory correlations) is not accessible. 

Neither of these two lines of research is free of difficulties, 
however. The steepness of response surface gradients is 
potentially misleading. Response probabifities may have a 
steeper gradient than the posterior probability of category 
membership for at least two reasons. Either responses are 
deterministic on the basis of noisy perceptual processes as 
Maddox and Ashby (1993) suggested, or responses are 
probabilistic on the basis of the posterior probabilities. As 

long as response probabilities are a function of, rather than 
identical to, the posteriors, the exemplar model's prediction 
of probability matching cannot be dismissed. Maddox and 
Ashby developed a deterministic exemplar model that 
handled the steep response functions they found. 

Similarly, Brooks and his colleagues (Allen & Brooks, 
1991; Regehr & Brooks, 1993) have shown exemplar effects 
in rule use that contradict the forgetting seen by Thomas 
(1997). Moreover, only a subset of the participants in 
Thomas's study did not remember intracategory exemplar 
correlations. Anderson and Fincham (1996) also showed that 
people can use correlations learned during categorization to 
make predictions. However, an exemplar model did not fit 
their data well, especially when extrapolating the cor- 
relation. This points out the possibility of individual differ- 
ences in the relative weighting of boundaries and exemp- 
lars, perhaps requiting a hybrid model of categorization 
(Kruschke & Erickson, 1994; Vandierendonck, 1995). 

Much of the difficulty in distinguishing the exemplar and 
decision-boundary models is methodological. In experi- 
ments with a small number of discrete stimuli, the precise 
placement of the optimal decision boundary is often unde- 
fined. To define the optimal boundary, continuous distribu- 
tions are necessary. However, in experiments with just two 
Ganssian-dislributed categories, it is difficult to distinguish 
decision-boundary models from exemplar-based models. 
Both classes of models predict that stimuli near the equiprob- 
ability contour (the curve marking the set of stimuli that has 
an equal likelihood of belonging to each category) will be 
mislabeled approximately half the time and that mislabeling 
will diminish logistically with distance from that contour. 
Exemplar models make this prediction because responses 
are taken to be a monotonic function of the posteriors. 
Decision-boundary models made the same prediction be- 
cause of both (a) the assumed shape of noise distributions 
that interact with deterministic responding, and (b) the effect 
that evolution has had in preparing people to cope with 
approximately Gaussian categories (Ashby & Gott, 1988). It 
has been shown (e.g., Ashby, 1992) that if the perceiver is 
responding deterministically in the absence of perceptual noise 
but with a chosen criterion that is itself subject to random 
L a p ~ o u t e d  noise, then the exemplar and decision- 
boundary models have an isomorphic functional form, as long as 
the categories are formed by Gaussian distributions. 

The use of the normal distribution for categorization 
experiments thus makes discrimination of the exemplar and 
decision-boundary models extremely difficult, if not impos- 
sible. Normally distributed exemplars may characterize 
natural categories, and the assumption that all categories are 
composed of normal distributions may constrain our range 
of available decision boundaries (Ashby & Gott, 1988; 
Ashby & Maddox, 1993), but because of the problems 
described above, the use of normally distributed exemplars 
in categorization experiments must be reconsidered. 

One way to generate contrasting predictions from the 
exemplar and decision-boundary models is to use categories 
composed of mixtures of Gaussians (McKinley & Nosofsky, 
1995). A mixture distribution is one that is made up of two or 
more simple distributions added together. McKinley and 
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Nosofsky (1995) composed each of their two categories by 
adding together two Gaussians, each with low variance on 
one dimension and high variance on the other. The two 
Gaussians were chosen so that the high-variance dimension 
of one was the low-variance dimension of the other, and thus 
each mixture was L shaped. The optimal decision boundary 
in this case was cubic, rather than quadratic, which is the 
boundary one would observe if people were constrained to 
assume that the categories were each normally distributed. 
Participants were trained with the mixture distributions, and 
their final response surfaces were compared with the predic- 
tions of the normal-distribution decision-boundary model. 
The results showed that participants were not limited to 
linear or quadratic decision boundaries, as this boundary 
model requires. In contrast, the observed cubic response 
surfaces were well described by an exemplar model. 

An alternative approach to distinguishing the decision- 
boundary and exemplar models is to alter, not the form of the 
discriminant function, but the shape of the posterior probabil- 
ity distribution to make it very different from the one that 
would occur as the result of the combination of a decision 
boundary and perceptual noise. In principle, any two non- 
Gaussian distributions will have a ratio that is not logisti- 
cally distributed. In practice, however, the posteriors must 
diverge significantly from the logistic for the difference to be 
detected by an experiment. One way to make the posteriors 
diverge greatly from the logistic is to change the qualitative 
form of the ratio of category distributions. Although the ratio 
of two Gaussians is always either increasing or decreasing, 
the ratio of overlapping uniform distributions with unequal 
variance has an extended plateau; it is in essence a two-step 
function (as shown in Figure 1) instead of a one-step 
function like the logistic. 

The Single-Cutoff Model  

The simple verbal rule presented at the beginning of the 
article was a single-cutoff rule. The GRT predicts, more 
generally, that as long as one category (A) is more likely 
than the other (B), then the decision maker will always 
respond "A." Criterial or perceptual noise will cause the 
decision maker to sometimes choose the less likely category 
as a response. In the decision-boundary model, the probabil- 
ity of response "A" given stimulus s is formally 
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Figure 1. Two overlapping, uniform frequency distributions of 
different variance, used in Experiment 1. A: The frequency with 
which different-length stimuli were presented as members of 
Category A (solid line) and Category B (dashed line). At the 
extreme left, between stimulus lengths of 20 and 40 pixels, all 
stimuli were presented as members of Category A. In the overlap- 
ping region, from lengths of 40 to 80 pixels, both categories were 
possible, but stimuli were presented as members of Category A 
60% of the time. At the extreme fight, from stimulus lengths of 80 
to 130 pixels, all stimuli were presented as members of Category B. 
B: How the uniform distributions led to a plateau of posterior 
probabilities. P = probability. 

1 if k(s) > c + noise 
P(Response = A ls) = 0 otherwise, (1) 

where k(s) is the value of the discriminant function for 
stimulus s, and c is the decision criterion. 

The predictions of the decision-boundary model in dis- 
criminating overlapping uniform distributions depend largely 
on the nature of the discriminant function (k). For P(R = 
A Is) to increase with increasing s, k must be monotonically 
increasing. The log of the ratio of the likelihoods of 
Gaussians is one obvious choice for k and may reflect the 
basic nature of the environment. However, if k is the log 
ratio of the likelihoods of two overlapping uniform distribu- 
tions, then a two-step response surface will result, but 

response probabilities will be undefined outside the range of 
the distributions. In one dimension, it is plausible to assume 
that k is just the psychological magnitude of the stimulus s, 
rather than being a likelihood ratio. The value of c then 
becomes the psychological magnitude above which stimuli 
are labeled "A" and below which stimuli are labeled "B." 
This model, the single-cutoff model, predicts a one-step 
response surface (as shown in Figure 1) regardless of the 
densities of the two categories being discriminated. The 
single-cutoff model incorporates a number of different restricted 
versions of the GRT, while preserving the basic intuition of what 
constitutes a rule in a simple categorization problem. 

On the other hand, if people encode and retain all category 
exemplars equally, then the exemplar model can predict a 
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form of matching in which there will be a plateau in the 
response probabilities. 

Exper iment  1: Over lapping Uni fo rm Distributions 

Participants were trained to distinguish two one-dimen- 
sional, overlapping, uniformly distributed categories (Figure 
1). Previous research on one-dimensional categorization 
behavior (Busemeyer & Myung, 1992; Healy & Kubovy, 
1981; Kubovy & Healy, 1977) has clearly shown that people 
can learn to respond as if they are using a decision boundary. 
The use of normal distributions in earlier research makes 
distinguishing exemplar and decision-boundary models dif- 
ficult. In addition, conclusions about the psychological 
mechanisms responsible for the observed behavior in such 
studies were compromised by the averaging of response 
probabilities across subjects. For these reasons, uniform 
distributions were used in the present experiment to form the 
categories being learned, and the responses of each partici- 
pant were considered individually. If  participants used a 
single cutoff, then they should produce a response surface 
with a steeply sloped sigmoid shape, the gradient of which 
reflects only criterial and perhaps perceptual noise. If, 
instead, participants produced a two-step response surface or 
a response surface too shallow to be reasonably attributed to 
criterial noise, then the single-cutoff decision-boundary 
model is potentially disconfirmed. 

Method 

Participants. Forty-two Indiana University undergraduate stu- 
dents volunteered as part of a psychology course requirement. 

Apparatus. Stimuli were presented on a video graphics array 
(VGA) resolution monitor by a PC-type computer. Each participant 
sat before a computer in an individual, sound dampened, dimly lit, 
ventilated cubicle. Responses were entered on a standard keyboard. 

Procedure. Participants first read instructions indicating that 
they would be making probabilistic decisions (i.e., that they could 
never be completely accurate except by chance) about two kinds 
(categories) of stimuli that varied on only one dimension. 

On each trial, a single horizontal rectangle, 20 pixels (each pixel 
was approximately 1.24 mm square) high and filled with a 
high-contrast blue color, was presented in a central screen location, 
subject to a random horizontal offset of between 0 and 25 pixels. 
Below the rectangle, a response prompt directed participants to 
indicate their classification judgment by pressing either the K or the 
S key on the keyboard. The computer provided corrective feedback 
after each trial. If the participant did not respond within 30 s, a 
message appeared on the screen instructing the participant to go 
faster, and if the response occurred within 50 ms of the presentation 
of the stimulus, the participant was warned to wait until the 
stimulus was presented to make a response. 

Of the two categories, A and B, Category A was made up of 
rectangles drawn from a uniform distribution ranging in length 
from 20 to 80 pixels in increments of 2 pixels, and Category B was 
a uniform distribution of rectangles ranging in length from 40 to 
130 pixels, also in increments of 2 pixels (see Figure 1). In every 
block of 180 trials, each of the 30 Category A stimuli appeared 
three times, and each of the 45 Category B stimuli appeared twice. 
Thus, stimuli in the overlapping region (between 40 and 80 pixels 
in length) were presented as Category A stimuli 60% of the time 
and as Category B stimuli 40% of the time. 

Each participant completed four blocks of trials, each with a 
random ordering of trials. The name (K or S) given to each category 
was chosen randomly for each participant. 

Results 

The data from each participant's last training block were 
analyzed individually. The goal of the analysis was to 
determine the shape of the individual response surfaces. To 
that end, we used a nested model procedure to determine the 
best fitting empirical response surface. The most complex 
model surface that we considered allowed for two sigmoidal 
changes in response probabilities (two steps), each with 
independent slopes and locations, with the changeover 
occurring at a freely fitted response level. An example of this 
sort of surface is shown in Figure 2; the surface represents a 
form of probability matching in which participants produce 
probabilistic responses through part of  the range of overlap 
of the two categories. The two-step model has three distinct 
features. Responses are nearly deterministic at either end of 
the stimulus scale, whereas responses in an area near the 
region of category overlap are made with a fixed probability. 
The transition from deterministic to probabilistic responding 
is assumed to be graded. 

The first simplification of the two-step model is a one-step 
model in which participants are taken to switch from 
labeling stimuli as "Category A" to labeling stimuli as 
"Category B" without an intervening probabilistic response 
region. Both the point at which this switch occurs and the 
rate at which it occurs are free to vary in the general one-step 
model. These parameters are roughly coincident with the 
criterion and cdterial noise parameters of the decision- 
boundary model. The simplest model tested is a one-step 
model in which the criterion is fixed to be the optimal 
criterion. This corresponds to the performance of an optimal 
categorizer operating under the influence of noise. 

We chose to formalize the two-step model as a sigmoidal 
mixture of two sigmoids. The model begins with the step 
from deterministic "Category A" responding to probabilistic 
responding: 

(1  - s )  

stepl(x) = s -~ 1 + exp[gl(x - x0] (2) 

where s is the probability of responding "A" in the region of 
category overlap, Xl is the threshold of the sigmoid, and gl is 
the gain that determines the steepness of  the sigmoid. The 
step from probabilistic responding to deterministic "B"  
responding is given by the following sigmoid: 

$ 

step2(x) = 1 + exl~g2[x - (x2)]}' (3) 

where x2 and g2 are the threshold and gain of the sigrnoid, 
respectively. 

Finally, the two sigmoids are joined by the function 
1 

mix(x) = 1 + exp[g3(x - xl + dr ) ] '  (4) 
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Figure 2. The composition of the general two-step model. A: For Equation 2, the step from 
deterministic "A" responding to probabilistic responding. B: For Equation 3, the step from 
probabilistie responding to deterministic "B" responding. C: For Equation 4, the function that 
determines the relative roles of the first two steps. D: For Equation 5, the two-step model of response 
probabilities. P = probability. 

where dT is the distance from the threshold of the first 
sigmoid to the threshold of the mixing sigmoid, and g3 is the 
gain. The mixing sigmoid is used to create a single response 
surface: 

P(resp = A l x  ) = mix(x)stepl(x ) + [1 - mix(x)]step2(x). (5) 

The full two-step model has seven free parameters 
(summarized in Table 1). By setting a number of the 
parameters appropriately, this two-step model can be re- 
duced to a one-step sigmoid. In particular, if s = .5, g3 = 0, 
g2 = gl, and x2 = x~, so that step2 = stepl, then the response 
surface will be determined by the parameters of stepl alone. 

Table 1 
Models Used in Describing the Results o f  Experiment 1 

Model Fixed parameters Free parameters 

Optimal one step g3 = 0, g2 = gl, xl = x2 = 80, gl 
dr = 0, s = .5 

Free threshold one step g3 = 0, g2 = gl, x2 = xl, s = .5 xl, gl 
Two step none gl, g2, g3, Xl, x2, dT, s 

Note. gl, g2, and g3 = gains that determine the steepness of the sigmoid; xl and x2 = thresholds of 
the sigmoid; art = distance from the first sigmoid to the mixing sigmoid; s = probability of 
responding "A" in the region of overlap. 
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The one-step model can be further constrained such that the 
threshold is fixed at the statistically optimal criterion 
(xl = 80). The three models are summarized in Table 1. The 
full two-step model along with both the one-step model with 
free gain (gl) and criterion (xl) and the one-step model with 
the optimal criterion (Xl = 80) were fit to each participant's 
data. 

The stimulus range was divided into 17 bins, with 
midpoints and frequency indicated in Table 2. Thus, each 
participant's data consisted of a 17 × 2 frequency table, 
corresponding to the 17 stimulus bins and the 2 response 
categories. The marginal frequency of each bin was fixed by 
the experimental design, so there were 17 degrees of 
freedom in the data (minus the number of free parameters in 
each model). 

The fit of each model to each participant's data was 
measured with the likelihood statistic: 

34 Ri 
G 2 = ~ R i  log ~ r , '  

i=1 i 

where R is the number of observed responses in each cell, 
and Pr is the number of responses the model predicts. The 
parameters of the models were optimized with a gradient 
descent method. 

The optimized models were tested for goodness of fit by a 
Monte Carlo method. Neither a Pearson chi-square test nor 
Hosmer and Lemeshow's (1989) test could be used because 
the observed frequencies of one or the other response were 
zero in too many adjacent cells. The predicted response 
probabilities derived from the model were used to generate 
100,000 independent participants. The likelihood statistic 
(G 2) was computed for each participant, and a sampling 
distribution created. The likelihood statistic value for the 
actual participant for whom the model was created was then 
compared with the mean of the sampling distribution. Table 
3 shows the fits of the models to participants' data and the 
critical value of the statistic at the empirically determined 
p = .05 confidence level. 

Table 2 
Bins Used for Modeling the Results of Both Experiments 

Midpoints 

Experiment 1 Experiment 2 

24 73 11 61 
34 77 15 65 
41 84 19 69 
45 94 23 73 
49 104 27 77 
53 114 41 91 
57 124 45 95 
61 49 99 
65 53 101 
69 57 107 

Note. In Experiment 1, the first two bins contained 15 stimuli 
each, whereas the remaining bins contained 10 stimuli each. In 
Experiment 2, each bin contained 8 observations. 

Table 3 
Results of the Monte Carlo Simulation for Sigmoid Models 
in Experiment I 

Optimal threshold General threshold Two step 

Partici- Observed Critical Observed Critical Observed Critical 
pant value value value value value value 

1 12.07 19.83 9.13 21.01 6.84 19.44 
2 32.13 29 .47  2 5 . 4 7  3 2 . 3 3  17 .11  34.61 
3 54.03 33 .63  2 5 . 0 1  2 6 . 8 4  18 .01  27.13 
4 41.75 23.78 9.17 28.78 7.73 27.62 
5 64.11 2 7 . 1 8  11 .13  25.84 7.63 20.82 
6 37.11 3 1 . 4 9  2 0 . 0 7  2 6 . 0 6  14 .38  23.77 
7 32.58 2 9 . 3 7  16 .43  2 5 . 8 3  12 .08  21.89 
8 41.67 28 .57  21.34 2 4 . 2 6  16 .62  23.49 
9 25.13 3 3 . 2 7  19 .37  26.64 7.47 26.17 

10 58.83 3 1 . 2 3  18 .01  2 7 . 4 2  11.11 21.69 
11 87.01 24.72 9.57 20.55 5.05 17.99 
12 68.79 2 8 . 3 7  1 8 . 6 6  2 5 . 4 5  10 .27  22.31 
13 48.85 36 .93  2 4 . 7 4  28.05 8.67 24.49 
14 71.04 3 2 . 0 0  18 .37  2 2 . 6 3  1 6 . 8 9  27.07 
15 45.77 2 3 . 6 7  1 8 . 4 9  2 5 . 3 5  10 .08  24.19 
16 65.03 2 8 . 1 8  18 .91  2 6 . 3 2  1 4 . 7 9  23.80 
17 123.75 31 .71  10.48 22.13 9.84 21.27 
18 74.12 3 1 . 7 0  11 .26  30.30 8.02 22.03 
19 58.22 3 0 . 1 2  15 .49  2 5 . 3 1  11 .12  20.17 
20 24.28 26.74 13 .89  22.26 9.50 29.54 
21 66.98 33 .95  11 .60  21.28 6.15 25.84 
22 49.44 27.99 2 0 . 6 2  2 9 . 8 2  1 4 . 0 6  24.30 
23 36.70 31.66 17 .52  30.80 17 .42  26.62 
24 101.40 2 5 . 5 9  17 .15  2 4 . 5 2  1 0 . 5 0  17.71 
25 18.11 34.60 15 .94  2 6 . 0 7  1 3 . 0 9  32.39 
26 59.74 28.00 11 .51  24.52 8.22 22.39 
27 69.99 29 .65  1 7 . 7 4  2 8 . 1 3  1 2 . 3 0  25.91 
28 43.59 31.10 9.29 29.40 8.18 23.17 
29 68.46 2 7 . 6 8  15 .28  30.53 8.79 27.44 
30 69.29 33 .76  49.66 2 5 . 4 7  3 2 . 7 2  28.01 
31 45.84 30 .38  14 .81  2 5 . 7 5  1 3 . 6 4  30.00 
32 53.93 23.92 16 .15  23.45 9.40 34.07 
33 43.52 24.30 13 .57  22.99 7.88 24.26 
34 107.50  3 0 . 9 9  1 5 . 9 2  29.04 8.29 20.55 
35 55.06 29 .25  2 2 . 0 7  3 0 . 1 2  15 .14  29.36 
36 38.44 27 .25  1 7 . 8 6  3 0 . 7 8  13 .76  24.40 
37 56.26 26 .43  2 4 . 7 6  2 9 . 1 4  2 0 . 7 9  30.15 
38 55.65 2 9 . 7 0  1 7 . 5 6  3 0 . 5 3  1 3 . 0 6  24.79 
39 85.72 2 4 . 8 9  10 .86  20.90 9.67 21.83 
40 87.72 26 .75  16 .83  2 2 . 7 2  1 2 . 6 0  24.48 
41 16.83 2 2 . 9 3  15 .56  26.06 9.17 28.08 
42 31.99 2 9 . 1 7  17 .01  29.08 9.84 26.81 

Out of 42 participants, only 1 (Participant 30) could not be 
fit by the two-step model, because of extreme variability in 
response probabilities. Both the the general one-step model 
and the two-step model could fit all the remaining partici- 
pants, of whom only 5 (Participants 1, 9, 20, 25, and 41) 
could be fit by the optimal-threshold model. 

The gains of the best fitting one-step models were 
inspected to determine the steepness of the response sur- 
faces. Gains ranged from 0.036 to 0.190, with a mean of 
0.100 and a standard deviation of 0.038. These gains can be 
compared with those predicted by a deterministic response 
rule, under certain assumptions. If we assume, as Ashby 
(1992) did, that high-contrast self-terminated displays create 
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zero perceptual noise and that perceived length scales 
linearly with actual length, then we can compare the gain of 
the best fitting sigmoid, 

1 
P(resp ""IX) = 1 + exp[-g(x  + a ) ] '  

with the gain that would be caused by criterial noise alone, 

1 
P(resp A Ix) = 1 + exp[ ( -x  + a)/~]" 

The standard deviation of the criterial noise, tr, is equal to 
one over the fitted gain, 1/-g. Thus, the minimum and 
maximum criterial noise, as estimated from the gains of the 
best fitting single sigmoid model, are 5.26 and 27.78 pixels 
(6.8 and 36.1 ram), respectively. Even this minimum value is 
easily discriminated, and the maximum one represents an 
extremely high level of noise. 

Although testing the goodness of fit of each single model 
required the Monte Carlo technique, testing the difference in 
fit between models did not. Nested models can be compared 
simply by comparing the difference between the fit of the 
model that has more free parameters (q) and the fit of the 
model that has fewer parameters (p), by using the following 
formula: 

= - 2 ( G 2 q  - 

The fits of the optimal-threshold and general one-step 
models were compared for the 5 participants for whom the 
optimal-threshold model provided a statistically unreject- 
able description. For 4 participants (Participants 1, 9, 20, and 
25) the general one-step model fit significantly better than 
the model with a threshold at the optimal location. The 
remaining participant (Participant 41) was not better fit by 
the free-threshold model, ×2(4, N = 180) = 2.53, p > .1, 
because the participant produced an extremely shallow 
response function. However, this participant, along with 18 
of the remaining 41 participants, was significantly better fit 
by the two-step model. 

Overall then, 23 participants showed one-step response 
functions with nonoptimal thresholds, as determined by the 
lack of improvement in fit provided by the addition of a 
second step in the response function. The responses of a 
typical participant from this group are shown in Figure 3. 
The response functions of these participants had slopes too 
shallow to be accounted for by perceptual noise. Another 18 
participants showed response functions that were more 
complex than simply one step, as was evidenced by the 
superiority of the two-step model. Figure 4 shows the 
responses of 4 typical members of this group of participants. 
Not every member of this group showed responses that had a 
visually identifiable plateau. Finally, even the complete 
two-step model was unable to adequately describe the 
responses of 1 participant who thus could not be fit by any 
model in this class. 
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Figure 3. Results for Participant 11 in Experiment 1. This 
participant was fit best by the general one-step model. The graph 
shows the proportion of responses for Category A as a function of 
stimulus size. Within the overlap region from 40 to 80 pixels, the 
true proportion of Category A stimuli was .6. 

Discussion 

The message of these results is that no participant 
produced a response surface clearly compatible with any 
version of the decision-boundary model in which perceivers 
use single-cutoff decision rules, such as would result from 
the use of any strictly increasing discriminant function. 
Although the majority of participants were indeed well 
described by a single sigrnoid, the slopes of their response 
surfaces were generally extremely shallow. This could be 
due to very high levels of criterial noise, but in the absence 
of a compelling explanation for such noise--such as a 
theory of criterion change during learning--these data argue 
against a deterministic response selection mechanism. In- 
stead, the shallow sigmoid likely results from probabilistic 
responding throughout the range of overlap of the two 
categories, reflecting the slow change from one determinis- 
tic region to the next. 

It is also of interest to note that only 1 participant showed 
a criterion that was above the optimal threshold, and no 
participant had a criterion below the region of overlap. In 
untrained participants, thresholds would be placed randomly 
across the range of stimuli. The lack of thresholds outside 
the overlap region suggests that participants were not simply 
guessing about each stimulus in the last block of trials. 
Rather, participants might have been sensitive to the loca- 
tions of the boundaries between the overlapping and deter- 
ministic ranges, and may not have used this knowledge 
optimally. 

A number of participants produced rates of probabilistic 
responding in the overlapping range that were consistent 
with a two-step model. These participants showed sensitiv- 
ity to both the beginning and end of the probabilistic range, 
information that would not be available to an individual who 
had access only to a single criterion value or a summary 
description of the two categories as Ganssian distributions. 
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Figure 4. Results for Participants 2, 9, 13, and 42 in Experiment 1. These participants were fit best 
by the two-step model. A and B show the proportion of responses for Category A as a function of 
stimulus size. Within the overlap region from 40 to 80 pixels, the true proportion of Category A 
stimuli was .6. 

The finding of nonoptimal thresholds, shallow sigmoids, 
and level probabilistic response regions all argue against the 
notion that responses were due simply to the selection of a 
noisy threshold of a steep monotonic discriminant function. 

Experiment 2: Training With Overlapping Skewed 
Distributions and Testing Without Feedback 

The interpretation of the results of the first experiment 
depended on an analysis of the last training block. It is 
possible that participants were still adjusting their responses 
during that block, and if so the nested modeling would be 
thrown into question for the following reason. Notice that 
the measure of fit used to find the best model for each 
participant assumes the independence of each observation. 
Because participants were receiving corrective feedback 
during their final block, this assumption might not be 
justified. Further, the decision-boundary model assumes that 
responses are generated on the basis of a stationary decision 
boundary. A decision-boundary model that used corrective 
feedback to change the location of the boundary could very 

well produce shallow response surfaces, such as those seen 
in Experiment 1. To control for these possibilities, in 
Experiment 2 participants were given a transfer block of 
trials following the training trials; there was no feedback 
during the transfer phase. In addition, whereas in Experi- 
ment 1 the categories overlapped only by 40 pixels and 
differed in probability by a factor of only one half within that 
range, in Experiment 2 the range of overlap was increased. If  
participants were probability matching, then this extended 
range would make it easier to discriminate two-step from 
shallow one-step response surfaces. The ratio of the two 
categories within that region also was increased to encour- 
age use of a single criterion point, giving the decision- 
boundary model a better chance of success. 

Me~od 

Participants. Forty-seven students participated for partial credit 
in an introductory psychology course at Indiana University. 

Design and procedure. Two categories (A and B) were defined. 
Category A was composed of filled rectangles drawn from two 
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adjoining uniform distributions, as shown in Figure 5. The first, 
A-only region ranged from 10 pixels (13 mm) to 19 pixels in 
increments of 1 pixel, and the second, overlap region ranged from 
20 to 92 pixels in increments of 8 pixels. Category B was also 
defined by two distributions: The first was uniform from 20 to 92 
pixels in increments of 8 pixels, and the second was uniform from 
100 to 120 pixels (124 mm to 149 mm) in increments of 1 pixel. 

There were 120 trials in each of five blocks. In every block, each 
of the 10 stimuli from the A-only region was displayed twice, each 
of the 10 stimuli from the overlap region was shown four times, and 
each of the 30 stimuli from Category B was shown twice. Thus, 
there were 60 stimuli from each category shown in every block, and 
the rate of Category A to Category B stimuli between 20 and 92 
pixels (the region of overlap) was 2:1. 

The instructions were the same as in Experiment 1. The only 
other change was the addition of a transfer phase at the end of the 
training trials. Transfer stimuli were bars ranging from 10 to 28, 40 
to 78, and 90 to 108 pixels in 2-pixel intervals. Each of the 80 test 
stimuli was presented twice, for a total of 160 transfer trials. 
Transfer trials had no corrective feedback. 

A 

E 

tL 

B 

I I  

! 
o. 

.03 

.02 

.01 

0 - -  
10 20 

1 

.67 

0 
10 20 

Category A 
Category B - - 

I . . . . . . . . . . . .  

100 

Stimulus Length (pixels) 

Stimulus Length (pixels) 

120 

100 120 

Figure 5. Category distributions used in Experiment 2. A and B 
show the probability (P) of Category A (solid line) and Category B 
(dashed line) as a function of stimulus length. At the extreme left, 
between stimulus lengths of 10 and 20 pixels, only Category A was 
possible. In the overlapping region, from lengths of 20 to 100 
pixels, both categories were possible, with Category A occurring 
67% of the time. At the extreme fight, from stimulus lengths of 100 
to 120 pixels, only Category B was possible. 

Results and Discussion 

The same models as in Experiment 1 were tested, with the 
optimal-threshold one-step model having a threshold at 100 
instead of 80 pixels. Models were fit to the 160 trials in the 
transfer block. Trials were again binned according to 
stimulus length. There were 20 bins, each with 8 trials. The 
bins are shown in Table 2. 

Following Monte Carlo simulation of the models, only 1 
out of the 47 participants (Participant 25, whose responses 
were nondeterminisfic at the extremes of the stimulus range) 
could not be described by the two-step model. Observed and 
critical values of the likelihood test statistic are shown in 
Table 4. Only 1 participant's data were adequately described 
by the optimal-threshold model, although they were signifi- 
cantly better described by the free-threshold model. This 
participant (Participant 13) barely produced any change in 
response probabilities across stimulus lengths and produced 
highly variable response probabilities. 

Comparison between models, based on differences in 
model fit, revealed that all of the remaining 45 participants 
were better fit by the general-threshold one-step model than 
by the optimal-threshold model. Of the 45 participants, 18 
were fit better still by the two-step model. 

Figure 6 shows a typical one-step participant (37), and 
Figure 7 shows 4 typical two-step participants. 

The criterial noise necessary to account for the best fitting 
single sigmoid models was calculated for each participant, 
as in Experiment 1. The best fitting gains ranged from 0.021 
to 0.276, with a mean of 0.121 and a standard deviation of 0.063. 
Ttfis eqoates to criterial noise standard deviations ranging from 
3.62 pixels (4.7 mm) to 47.62 pixels (61.9 mm). 

It appears, therefore, that participants were largely unable 
to select a criterial stimulus value and to respond determinis- 
ticaily on its basis. Instead, responses tended to be probabi- 
listic over the entire range in which the two categories 
overlapped (often rising rather than showing a sustained 
plateau per se). On the other hand, 6 participants (22, 24, 31, 
33, 37, and 40) were fit by one-step models with relatively 
high gains (greater than .2 i.e., with criterial noise standard 
deviations of less than 7 mm). These participants did seem to 
pick criterion values. None of these models had a criterion close 
to the optimal one, however, as indicated by the improvement 
given by the free-threshold model. As in Experiment 1, all 
observed thresholds were within the overlap region. 

These results again point to a discrepancy between the 
participants' responses and the predictions of the single- 
cutoff decision-boundary model. Participants showed changes 
in response probabilities at both ends of the probabilistic 
region, indicating sensitivity to changing contingencies 
rather than simple storage of a single decision criterion. 
Although evidence for two-step response surfaces is rela- 
tively weak, the evidence against a one-step surface (the 
single-cutoff model's prediction) is strong. 

Exempla r  Model  

Decision-boundary theory is based on the selection and 
application of a criterion. Observers are supposed to handle 
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Table 4 
Observed and Critical Values of G a for the Results 
of Experiment 2 

Partici- Optimal threshold General threshold Two step 

pant Observed Critical Observed Critical Observed Critical 

1 42.74 3 4 . 2 9  1 2 . 6 0  20.06 9.30 20.86 
2 39.88 3 5 . 2 0  2 1 . 5 7  3 4 . 5 5  14 .61  28.84 
3 91.08 3 0 . 7 4  19 .13  2 3 . 7 7  1 3 . 7 4  22.40 
4 68.72 38 .85  11 .65  37.28 4.00 31.11 
5 96.25 31 .48  2 2 . 1 5  21.05 7.35 19.44 
6 60.82 2 6 . 7 9  2 1 . 9 9  2 7 . 9 6  1 4 . 8 9  24.54 
7 51.50 33 .23  13 .91  15.28 3.04 13.87 
8 72.66 35 .47  18 .43  3 1 . 3 2  15 .11  29.73 
9 99.96 38 .85  1 5 . 4 2  2 9 . 3 4  11 .08  29.78 

10 84.66 32.85 9.54 29.66 5.13 21.09 
11 84.04 31 .03  2 3 . 9 2  2 5 . 5 5  17 .27  22.45 
12 61.26 28 .48  2 0 . 8 8  2 8 . 6 7  1 5 . 7 4  30.29 
13 33.22 38 .85  2 8 . 7 3  3 2 . 5 4  2 6 . 1 3  31.34 
14 112.86 33 .61  2 0 . 0 2  2 9 . 4 5  12 .15  27.45 
15 52.91 2 8 . 2 8  1 0 . 1 4  28.80 6.43 24.59 
16 122 .44  3 3 . 4 2  12 .38  20.01 6.47 23.12 
18 54.20 3 3 . 7 6  17 .41  2 9 . 2 5  1 4 . 8 0  27.53 
19 48.80 33 .17  15 .73  21.77 9.63 22.30 
20 78.90 3 0 . 7 6  14 .52  23.00 11 .76  28.09 
21 54.60 29 .57  10 .09  21.07 7.17 18.54 
22 143 .94  36.68 4.62 14.11 3.54 13.02 
23 64.04 35 .25  49.99 2 5 . 8 5  2 3 . 4 2  29.18 
24 48.14 30.09 2.95 11.83 1.62 12.92 
25 43.29 30 .82  2 4 . 7 8  2 1 . 2 1  2 0 . 0 9  19.32 
26 59.30 28 .11  31.64 2 8 . 6 6  1 6 . 9 2  33.32 
27 70.41 29 .91  19 .63  2 7 . 2 7  16 .58  24.93 
28 44.70 2 5 . 1 2  16 .65  27.57 9.33 28.03 
29 53.35 3 3 . 7 2  16 .23  35.39 8.70 26.25 
30 33.66 29.94 10 .65  21.58 8.36 24.07 
31 148.38  33.92 4.37 14.33 2.28 11.38 
32 84.36 33.47 3.43 21.61 2.40 19.20 
33 112.73 33.79 6.97 17.98 2.17 15.43 
34 59.63 32 .21  18 .43  2 3 . 9 9  13 .23  21.47 
35 98.47 3 5 . 2 7  17 .24  2 0 . 2 3  11 .95  17.89 
36 74.67 2 9 . 9 0  2 1 . 4 5  2 2 . 1 8  12 .97  22.56 
37 67.34 32.53 5.48 13.03 4.15 12.74 
38 43.55 28 .45  2 5 . 0 5  20.24 9.08 19.00 
39 73.97 35.58 5.51 17.47 2.69 20.18 
40 31.59 23.33 6.53 14.59 5.08 10.20 
41 103 .12  3 0 . 0 7  17 .31  2 9 . 7 0  11 .07  22.12 
42 22.20 11.98 7.17 11.88 6.86 16.10 
43 57.50 32 .97  13 .88  29.39 9.01 36.18 
44 73.46 38 .85  18 .45  2 7 . 0 8  1 7 . 6 0  34.82 
45 57.03 3 9 . 3 0  2 2 . 4 0  31.95 9.92 27.41 
46 93.44 3 0 . 1 5  15 .53  25.38 8.76 24.92 
47 45.57 3 0 . 2 6  19 .73  2 5 . 8 5  14 .25  21.61 

Note. G 2 is the likelihood test statistic. 

base rates optimally (Maddox, 1995). This is not to suggest 
that observers estimate base rates accurately, but that their 
estimates are used optimally. In the experiments here, this 
would mean that participants would respond "A" determin- 
isticaUy whenever it was perceived as being more likely to 
be correct, and otherwise would switch to deterministic "B" 
responding. But to the extent that participants can be 
described as using single criteria at all, the criteria are not 
placed optimally and, in addition, the transition from "A" to 
"B" responses covers a wide range of physical stimulus 

values. The success of the two-step model showed that some 
participants were producing stable, probabilistic responding 
when faced with nondeterministic stimulus-category map- 
pings. Both of these results suggest that some process other than, 
or in addition to, decision boundaries must have been at work. 

There are a number of mechanisms that might be involved 
in one-dimensional categorization besides single perceptual 
thresholds. Participants might have been using prototypes, 
ideal values, or decision regions. They might have been 
estimating the densities of the two category distributions, 
computing the ratio of likelihoods, and comparing that value 
to a (very) noisy criterion. It is also possible that participants 
were storing individual exemplars in memory and consult- 
ing those stored exemplars when making their responses. 
ALCOVE (Kruschke, 1992), a connectionist implementa- 
tion of an exemplar model with error-driven learning, has 
been successful in explaining the results of a wide range of 
categorization experiments (Choi, McDaniel, & Busemeyer, 
1993; Kruschke, 1992, 1993; Nosofsky, Gluck, Palmeri, 
McKinley, & Glauthier, 1994; Nosofsky & K_ruschke, 1992; 
Nosofsky, Kruschke, & McKinley, 1992). Whereas the 
experiments presented here were designed to test the single- 
cutoff model, they were not necessarily optimal for testing 
ALCOVE. Nonetheless, the ability of an exemplar model to 
fit these data is still of interest. 

The ALCOVE formalism of exemplar-based learning, as 
used here, has three free parameters. Each exemplar represen- 
tation has a specificity, c, which governs the extent to which 
nearby stimuli activate the representation. The exemplar 
representations have modifiable connections to a node that 
represents the perceived category. Those connections are 
changed with a characteristic learning rate, k. Finally, the 
perceived category representation is used in a graded fashion 
to map onto response probabilities. That mapping is con- 
trolled by a scaling parameter, t b, which determines the 
extent to which the most active category dominates choice 
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Figure 6. Results for Participant 37 in Experiment 2. This 
participant was fit best by the general one-step model. The graph 
shows the proportion of responses for Category A as a function of 
stimulus size. Within the overlap region from 20 to 100 pixels, the 
true proportion of Category A stimuli was .67. 
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Figure 7. Results for Participants 16, 7, 26, and 46 in Experiment 2. These participants were fit best 
by the two-step model. A and B show the proportion of responses for Category A as a function of 
stimulus length. Within the overlap region from 20 to 100 pixels, the true proportion of Category A 
stimuli was .67. 

120 

120 

probabilities. Because stimuli vary on only one dimension, 
the original fourth parameter of ALCOVE, which governs 
the allocation of attention between stimulus dimensions, is 
not relevant here. 

Formally, the activation of exemplar (or hidden) unit j is 
given by 

a~ a = e x p ( - c l h j  - ai"[), (6) 

where hj is the location of the exemplar unit in psychological 
space and a in is the location of the stimulus in the same 
space, and where c is the specificity constant. 

Category node activation is then a weighted sum of 
exemplar node activations: 

a~ ut= ~_dWk~ d. ( 7 )  

J 

The weights (w~) are modifiable by 

A W k j  = h ( t k  - -  _ o u t x _ h i d  
u k ) u j  , (8) 

where h is the learning rate and tk is the "humble" teacher 
value, defined as 

out • max(+ 1, a k ) if the stimulus is in category k 

tk mill(0, a~ at) otherwise. (9) 

The actual response probabilities predicted by the model 
are derived from the category node activations. The probabil- 
ity of responding "Category A" is given by an exponentiated 
version of the Luce choice rule: 

exp(~ba~ t) 

P(A) = exp(~ba~ ut ) + exp(gba~ ut) (10) 

where dp is the scaling parameter. 
ALCOVE was fit to both data sets with a simulated 

annealing procedure, and the resulting models were then 
tested with the Monte Carlo method described above. The fit 
of ALCOVE was computed using the likelihood metric. 
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Fit to Experiment 1 

The exemplar units for ALCOVE comprised a covering 
map from 0 to 148 pixels with a unit placed every 2 pixels, 
providing one unit for each possible exemplar. Data were put 
into 17 bins, as in the initial analysis (Table 2). ALCOVE 
was able to fit the data of all 42 participants. The fits are 
shown in Table 5. Even Participant 39, who was not fit by 
any sigrnoid model, was well fit by ALCOVE. Direct 
comparison of the fits of ALCOVE and the one- and 
two-step logistic models is in principle possible with a 
penalized error metric, such as the Akaike information 
criterion (AIC). However, in this case use of the AIC would 
be misleading. Although the AIC is a measure of relative 
goodness of fit, we are not arguing that ALCOVE is 

Table 5 
Results of the Monte Carlo Simulation for the ALCOVE 
Model in Experiment 1 

Expected Critical 
Participant Observed (p = .5) (p = .05) 

1 12.85 11.57 18.29 
2 19.91 19.00 31.48 
3 24.11 17.26 25.50 
4 11.97 18.44 31.79 
5 16.70 17.88 27.92 
6 20.28 18.69 27.02 
7 13.88 16.97 23.82 
8 17.03 15.20 20.90 
9 7.49 13.68 17.30 

10 18.57 12.95 19.22 
11 14.59 16.45 26.69 
12 23.66 17.36 26.24 
13 12.95 17.92 24.79 
14 12.71 15.51 29.06 
15 10.16 17.13 24.06 
16 21.85 17.87 29.76 
17 9.62 13.69 20.71 
18 8.86 14.95 21.77 
19 11.05 17.71 29.90 
20 13.88 18.56 26.19 
21 10.59 13.12 22.03 
22 20.09 15.90 20.30 
23 12.78 18.86 27.32 
24 5.91 10.37 20.77 
25 14.12 19.19 26.09 
26 13.05 15.84 24.36 
27 14.55 17.66 26.20 
28 9.66 17.48 22.73 
29 6.93 12.63 15.88 
30 14.69 18.44 24.06 
31 13.35 18.92 30.70 
32 18.86 18.96 23.88 
33 9.84 12.48 23.26 
34 23.35 17.33 24.86 
35 13.27 18.69 28.39 
36 16.85 17.93 28.12 
37 19.46 16.82 24.71 
38 18.07 17.66 25.03 
39 12.82 15.72 21.27 
40 17.03 13.30 21.50 
41 17.42 18.02 26.08 
42 15.65 16.04 25.92 

necessarily a better model in all cases. The fit of ALCOVE to 
these data is indicative of the extent to which exemplar- 
based representations need to be considered in conjunction 
with other representations in category learning. These data 
do not reject an exemplar-only model, although they do 
reject one sort of rule-only model--at  least for some 
participants. 

Fit to Experiment 2 

The covering map consisted of exemplar nodes placed at 
every pixel, from 10 to 119 pixels, giving one exemplar for 
each possible exemplar. The data were again put in bins, as 
in the earlier analysis (Table 2). ALCOVE fit all but 
Participants 20 and 23. Participant 20 had a noisy transition 
from "A" to "B"  responding, which ALCOVE could not 
match, whereas Participant 23 showed a clear transition from 
"A" to "B" responding but made several "B" responses to 
extreme Category A stimuli, which ALCOVE could not account 
for. Fits for all participants are shown in Table 6. 

The categories used in this experiment wj~re chosen to 
provide a large sample of responses to stimuli within the 
probabilistic region. The results from the experiment showed, 
however, that participants had large individual differences in 
their response surfaces. This might suggest that different 
participants used different strategies to distinguish the 
categories. In fact, however, with its fixed exemplar-based 
representations, ALCOVE was able to fit all of the different 
kinds of observed response patterns. 

Four participants in particular are good illustrations of the 
range of responses ALCOVE was able to predict. Participant 
9 from Experiment 1 and Participants 22, 40, and 32 from 
Experiment 2 (shown in Figure 8) produced (a) a two-step 
response profile, (b) a sharp response transition near the left 
of the probabilistic region, (c) a sharp response transition 
near the fight of the probabilistic region, and (d) a gradual 
transition across the region, respectively. Parameters and fits 
for those participants are shown in Table 7. These values 
differ in cases by an order of magnitude or more, and show 
that an exemplar model such as ALCOVE can capture large 
individual differences. 

Although ALCOVE can capture the individual differences 
seen in these data, this should not give the impression that it 
can account for any possible response surface. Because it is 
an exemplar model, it would have great difficulty fitting a 
response surface with a response plateau below that of the 
true probabilities throughout the overlap region. For ex- 
ample, if the true probability of Category A is .6 in the 
overlap region, but some participant showed a response 
plateau of .4, then ALCOVE would fail to fit that participant. 
Conversely, that same participant would be easily fit by the 
two-step logistic model or a hypothetical two-boundary 
model. In fact, a decision-boundary model based on partici- 
pants' likelihood estimates might be able to fit any observed 
response function, as long as the likelihood estimates can be 
fit freely from the data. The exemplar model provides a 
parsimonious way of accounting for most of the participants' 
responses; this does not mean it provides a complete, or even 
the most accurate, account. 
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Table 6 
Results of the Monte Carlo Simulation for the ALCOVE 
Model in Experiment 2 

Expected Critical 
Participant Observed (p = .5) (p = .05) 

1 12.45 13.54 23.80 
2 17.47 22.08 34.78 
3 14.92 17.12 27.85 
4 24.00 20.33 32.45 
5 12.61 14.45 22.02 
6 16.23 19.12 24.15 
7 14.95 11.35 18.95 
8 16.77 19.90 25.03 
9 14.94 20.87 27.31 

10 16.99 18.83 33.39 
11 24.10 18.33 26.83 
12 20.76 21.67 29.68 
13 29.61 22.05 37.26 
14 20.16 16.25 22.60 
15 14.40 19.66 32.50 
16 9.04 10.91 14.14 
18 18.76 22.04 29.07 
19 14.73 14.68 18.30 
20 26.29 14.07 22.81 
21 16.42 12.78 21.80 
22 3.99 8.19 15.02 
23 25.73 19.09 23.28 
24 3.79 8.75 16.18 
25 24.27 17.38 27.62 
26 21.59 21.53 33.08 
27 24.37 19.99 27.33 
28 15.05 16.71 24.29 
29 16.61 22.30 30.69 
30 15.32 17.56 27.33 
31 12.88 11.93 22.61 
32 3.29 12.35 20.25 
33 16.44 10.65 21.06 
34 22.65 16.82 23.18 
35 17.53 12.99 20,79 
36 20.01 17.60 24.75 
37 8.66 12.41 18.93 
38 11.86 10.37 16.58 
39 4.34 10.27 17.36 
40 8.03 8.31 17.52 
41 12.83 17.98 24.45 
42 10.43 15.60 21.87 
43 12.35 21.61 31.22 
44 18.04 22.05 32.83 
45 23.94 17.54 30.32 
46 16.89 14.53 22.73 
47 17.10 19.37 26.29 

General  Discussion 

By responding probabilistically to stimuli of indetermi- 
nate category origin, participants showed a sensitivity to the 
relative likelihood of category membership. This sensitivity 
has been established for many years by numerous experi- 
ments involving partial reinforcement, in the context of both 
discrimination and categorization (Brunswik, 1941, 1956; 
Grant, Hake, & Horseth, 1951). The results of the experi- 
ments presented here suggest that this same sensitivity may 
play a role in classifications of overlapping categories. These 

experiments do not imply that decision boundaries play no 
role in classification of overlapping categories. Rather, 
simple rules alone cannot provide a complete description. 
For that, it might be necessary to consider the role of 
individual exemplars in memory, learning mechanisms for 
the boundary, or both. 

F~xemplar and decision-boundary models make similar 
predictions in a large number of experimental conditions. 
Much of the data taken to support the exemplar model can 
also be interpreted within the decision-boundary framework. 
The exemplar model seems to give a more convincing 
account of performance with complex categories (McKinley 
& Nosofsky, 1995), although Maddox and Ashby (1993) 
showed that a decision-boundary model could fit data from 
discrimination of nonnormally distributed categories better 
than a deterministic exemplar model could. In the simple 
experiments presented here, there is further evidence separat- 
ing the exemplar model from a class of decision-boundary 
models. Many of the participants were not fit by a single- 
cutoff model, but an exemplar model, ALCOVE, was able to 
fit the data of almost every participant. For the general 
decision-boundary model to fit all of these same data, 
qualitative differences would have to exist in different 
participants. Some participants would have to assume nor- 
mal distributions, and others would have to assume uniform 
distributions. The precise nature of the distributional assump- 
tions and constraints on the facilities of participants to 
estimate the parameters of their chosen distributions are 
beyond the scope of this article to determine. Although these 
experiments were not designed to test the exemplar model as 
rigorously as the single-cutoff decision-boundary model, 
these results still mark the differences between these two 
models of categorization. 

What is it about the models that makes them different? 
There are three basic areas in which ALCOVE and the 
decision-boundary model differ, which we discuss in turn. 

Adaptive Learning 

ALCOVE is adaptive, with its internal parameters ad- 
justed to the degree to which there is error in categorization. 
In contrast, the decision boundary is adjusted constantly to 
fit the statistics of the training data so that at all times, the 
boundary is (or ought to be) the optimal one given the 
training data. This distinction is not an in-principle one. It is 
possible to imagine algorithms for updating the decision 
boundary based on mismatches between the model's re- 
sponses and the training data (e.g., Busemeyer & Myung, 
1992). If  this strategy were followed, then some of the 
results of this experiment (especially the finding that individu- 
als showed probabilistic responding over wide ranges of 
stimuli) could be handled by a decision-boundary model. 
However, those participants best fit by a two-step function in 
these experiments and those described by nonquadratic 
discriminant functions in other experiments (Kalish, in 
press; McKinley & Nosofsky, 1995) would require different, 
substantial revisions to the model. 



DECISION BOUNDARIES 1375 

A 

| 

o 

Q.  

.6 

# 

Ob~ 
AL~ 

i i i 

20 40 80 

Observed 
ALCOVE 

i 

130 

B 
u) 
¢D 

O 
Q. 

cc 

o 

t~ 
.o 
o 
t -  
O 

o 
O. 
o 

D.  

.67 ~ t  

I I  I 
10 20 100 

i 

120 

C 

t -  
O 

e r "  

O 

¢D 

.o 
o 
t -  
O "V:: 
& 
2 

O. 

.67 

i i i 
10 20 100 

D 
g 

g 
I£ 

"6 e- 
.o 

2 
0 . .  

i 

120 

.67 

i i 
10 20 

Stimulus Length (pixels) Stimulus Length (pixels) 

Figure 8. Four representative participants from the two experiments. A: Participant 9 from 
Experiment I with a two-step response surface. B-D: Participants 22, 40, and 32 from Experiment 2 
showing, respectively, a sharp change from "B" to "A" occurring near the left side of the 
probabilistic region, a sharp transition near the right side of the probabilistic region, and a gradual 
transition across the entire region. ALCOVE fits all four of these response-surface types. 

i i 

100 120 

Extrapolation 

The experiments presented here and in most other studies 
test interpolation, in which participants make responses to 
stimuli lying within the outer limits of those seen during 
training. Performance on extrapolation, however, is pre- 
dicted to be quite different by the two models. Exemplar 
models, including ALCOVE, tend to predict that as the 

Table 7 
Parameters and Fits of ALCOVE for 4 Representative 
Participants of the Two Experiments 

Learning 
Experiment Participant ~b rate Specificity G 2 

1 9 4.383 0.080 0.067 7.50 
2 22 25.059 0.005 0.002 3.97 
2 40 3.518 0.028 0.019 7.00 
2 32 5.864 0.025 0.021 3.28 

Note. ~b = the scaling parameter; G 2 = the likelihood test 
statistic. 

distance from the training stimuli increases, the categorical 
preferences tend to weaken. Thus, very extreme stimuli do 
not always receive the same, deterministic responses that 
less extreme stimuli might. A decision-boundary model, on 
the other hand, would predict that responses should become 
absolutely deterministic and very rapid for distant stimuli, as 
there would be no chance of perceptual noise bringing the 
perceived stimulus to the opposite side of the boundary 
(Ashby & Lee, 1993; Busemeyer, DeLosh, Choi, & Mc- 
Daniel, 1992; DeLosh, Busemeyer, & McDaniel, 1997). 
Evaluation of exemplar models in extrapolation tasks has 
tended to show that they do not fit the data very well 
(Anderson & Fincham, 1996; Busemeyer et al., 1992; 
DeLosh et al., 1997; Erickson & Kruschke, in press). 

Exceptions 

Exceptions are individual stimuli of one category that are 
surrounded by stimuli from another category. Decision- 
boundary models do not naturally handle exceptions. When 
limits are placed on the form of the boundary---even very 
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weak limits such as that the boundary should be continuous-- 
the model is prevented from accommodating the exceptions. 
In contrast, exemplar models can easily cope with excep- 
tions (Krusehke & Erickson, 1994; Nosofsky, Palmed, & 
McKinley, 1993). In fact, the ALCOVE formalism can 
sometimes handle exceptions too well, relative to instances 
of the rule. For example, Kruschke and Erickson (1994) 
reported that when people are trained to discriminate 
categories, most of whose members can be divided by a 
one-dimensional rule with several remaining exceptions, 
some people learn the rule instances faster than they learn 
the exceptions. To accommodate this result, Kruschke and 
Erickson proposed a hybrid model in which rule-based and 
exemplar-based representations competed to categorize each 
stimulus. 

It is clear that exemplars, summary representations, and 
rules all differ (albeit sometimes only subtly) in the way they 
can be used to make categorical judgments. Although these 
experiments did rule out a single-cutoff rule-only model of 
categorization, they did not, of themselves, require a hybrid 
approach. However, although the exemplar-only model 
(ALCOVE) did fit most of the participants' responses and 
although there are rule-only models that can fit each 
individual participant's responses, the qualitative differences 
among participants might be indicative of the operation of 
two competing categorization strategies. Some participants 
may have been responding on the basis of perceived 
similarity of the target stimulus with the stored members of 
each category, whereas others might have been actively 
searching for a single criterial stimulus value. A comprehen- 
sive model of category learning might need to include both 
decision boundaries and exemplar representations. 
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