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1 Introduction

Intensive development in high-speed networks, workstations, and accompanying system software has
rendered distributed systems, particularly clusters of workstations (COWs), a sufficiently stable envi-
ronment for use as a platform for running parallel and distributed software. With these cheap and easy-
to-build systems at hand, using the many advantages of parallelism becomes a realistic option for many.
Still, in order to produce a correctly functioning and efficient distributed application, a developer has to
face some very specific difficulties with respect to synchronization, distribution and replication, which
she does not encounter in sequential-software development. It is generally recognized that these prob-
lems should be attacked in the early development stages of logical and technical design. Consequently,
classical support tools such as monitors and debuggers, and communication libraries providing basic
message-passing primitives, are of little help here, since these are generally applied much later. In-
stead, we require specific design support, in the form of methods and techniques, which, ideally, takes
an application developer from early design all the way to implementation in a seamless way.

ADL-d is a graphical design technique for the development of parallel and distributed software,
based on a model of communicating processes. ADL-d provides the techniques to systematically de-
velop an application’s (communication) structure as well as the sequential behavior of its constituents.
Within this framework, ADL-d’s primary focus is on communication modeling, exemplified by a set
of highly orthogonal communication concepts, jointly covering a wide range of patterns for commu-
nication.

Using a diagram technique called structure models, a designer models her application in terms of a
communication graph of processes, hierarchically organized using simple process decomposition fea-
tures. Our approach to communication modeling decouples communicating processes entirely in the
sense that a complete abstraction from internal process behavior can be maintained throughout struc-
ture design.

Conversely, using a second diagram technique called behavior models, the sequential behavior of
each process is modeled in total isolation from its environment. Here, focus is again on communica-
tive behavior, postponing implementation details to later development stages. The combination of an
application’s structure model and the behavior models of its processes gives a complete picture of all
its communication aspects.

Unlike many other techniques, ADL-d has a solid, formal definition for every symbol used in its
models. As a consequence, ADL-d designs are suitable for automated target code generation. More
specifically, an ADL-d design can be automatically translated into skeleton code which contains all
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Figure 1: Using ADL-d in an object-based method

necessary communication code. A developer need only fill in the details of strictly sequential code,
which is then automatically integrated with the skeleton code, resulting in an executable parallel, dis-
tributed application.

An important new feature of ADL-d is its ability to model dynamically changing communication
structures in an application, giving it the possibility to adapt to changing demands in terms of speed,
workload and robustness, or new opportunities in available resources during runtime. Surprisingly,
this aspect of design for distributed systems seems to get little attention in comparable techniques.

2 Using ADL-d

Being a general technique to model communication structures, ADL-d is not necessarily committed
to one particular design method. It goes well with traditional functional decomposition, but also with
object-identifying strategies, such as in [1, 2]. Also, its simple decomposition techniques make it suit-
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able for bottom-up as well as top-down approaches.
In Figure 1, we have illustrated how a designer can use ADL-d in a top-down application develop-

ment method. We assume that during the problem analysis phase (1), she has extracted some initial
set of process objects from the functional requirements. From then on, she uses ADL-d’s structuring
technique in the decomposition (2) of these processes, building a structure design (3) with fully spec-
ified communication semantics (4). Also, she establishes parent-child relations between processes in
the design (5). The primary notion during this stage is establishing a maximal degree of decoupling
between the processes that are identified. This is achieved by using channels, which explicitly model
the medium between communication endpoints (gates, in ADL-d) of processes.

Naturally, the above process is one of continuous refinement, which may take several iterations to
yield the desired result. Here, a designer is not required (at least, not by ADL-d) to take her entire design
from one refinement stage into another and onwards. A depth-first descent in the process hierarchy is
an alternative, as well as any scheme in between, dependent on the demands of the design method that
is followed.

The above items were all related to building the application’s structure. When a designer chooses
not to decompose a process any further, the next refinement step is specifying its behavioral semantics,
initially only with regard to communication (6). ADL-d provides a special type of state-transition dia-
grams (STDs) for this, which separate communication and computation states. Our STDs also include
actions for initiating dynamic creation of process instances.

The final refinement step in developing a process is the adding of implementation details that do
not concern communication (7). More specifically, during this step, the computation states of its STD

are filled in. The specification of the process behavior is then complete and target code for the process
can be automatically generated (8). All individual process codes together with the structure design
suffice, in principle, to automatically generate target code for a working parallel, distributed program
(9), including dynamic creation of application components.

3 The ADL-d Design Technique

ADL-d’s components are the result of careful analysis of the parallel, distributed design space. By mak-
ing orthogonal phenomena and other independencies explicit, we have been able to keep our technique
concise and manageable. This approach has led to a complete separation of communication structures
and component behavior (see also [3]). Likewise, other issues are modeled separately in ADL-d as well,
such as blocking semantics, various aspects of synchronization, data typing, and dynamic creation.

Basic Components

For an application’s communication structure, ADL-d uses only three basic notions: processes, chan-
nels, and gates. A process is a prototype for a self-contained unit of functionality (much like an object
class in object-oriented languages), recognized as such by the designer, possibly during problem anal-
ysis. A process’ communication interface consists of a set of gates, through which it sends or receives
data. These, in turn, are attached to channels which are responsible for data transfer between processes.
Figure 2 shows the graphical representations of these concepts in a so-called structure diagram. The
structure in Figure 2(a) models the typical communication pattern of a Contractor communicating data
to Worker processes to perform some job and return the result. To that end, a Contractor’s output gate
c out is attached to a channel Chan cw, which is in turn attached to a Worker’s input gate w in. Sim-
ilarly, there is a channel from the Workers to the Contractor. Notice that below a process, an integer
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Figure 2: (a) example structure diagram; (b) effect of replication factor

can be given, representing the replication factor, which indicates how many times a process is initially
replicated in an actual instance of the application. The default value is one. In Figure 2(b) we see the
effect of such a replication factor. In a running application, we will initially encounter one Contractor
instance and three Worker instances.

By using channels and gates, we can separate independent communication concepts. First of all,
gates take care of the process behavior part of communication, which concerns blocking. To this end,
each gate has a timer which is set when it is activated by its owner, indicating the amount of time
that the owner is willing to block for communication to take place. The timer can be set to any non-
negative value, including infinity. Consequently, a communicating process now has a simple view on
communication through a gate: either it succeeds within the specified time, or it fails.

Data transfer semantics is wholly captured by channels. Each channel has an associated data type
that prescribes the type of messages it can transfer. The capacity of a channel specifies how many
messages it can buffer before delivery. In the case of a capacity of zero, we have fully synchronous
communication. A channel accepts a message from an active output gate only if its capacity is not
exceeded, or if it can immediately deliver the message. With multicast channels, the specified multicast
type determines whether a message is delivered simultaneously to all processes that are attached to the
channel, or one-by-one, as soon as a process is prepared to accept the message. These types are called
postmedium and premedium multicast, respectively. An ADL-d channel always delivers messages in
the order that they were accepted, and a next message is delivered only after the delivery of the previous
one has completed. In other words, a channel acts as queue, and multicasting is totally ordered [4]. It
should be noted that ADL-d channels are non-deterministic in the sense that if multiple senders are
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active on the same channel, we can make no assumptions as to who will be served first. A similar
reasoning goes for receivers.

Process Decomposition

Hierarchical development allows a designer to look at her design at different levels of abstraction. For
this, ADL-d includes a simple decomposition technique. A process can be recursively decomposed into
a collection of communicating processes. Decomposition stops with the specification of the dynamic
behavior of the lowest level processes. When a process is decomposed, its interface, i.e. its set of gates,
is left unaffected. In other words, a developer decomposes a process completely independent of other
parts of the design.

Figure 3 illustrates ADL-d decomposition. In Figure 3(a), we have taken the Worker process from
Figure 2 and decomposed it into one Analyzer and one Calculator process, communicating over two
channels Chan ac and Chan ca. Furthermore, we have associated gate a in 1 of Analyzer with gate
w in of the original Worker process. This means that any data that was originally sent through gate
w in, is now sent through gate a in 1. Likewise, gate a out 1 has been associated with gate w out.
From a semantical point of view, Figure 3(b) shows a design that is equivalent to that of Figure 2, but
now taking the decomposition and replication of the Worker process into account.

Behavior Modeling

As a final refinement step, ADL-d uses state-transition diagrams to model the sequential behavior of
simple, i.e. non-decomposed processes. In a running application, each instance of a process prototype
behaves according to the behavior model of that prototype. In the behavior model, the emphasis is put
on communicative behavior by means of communication states, which correspond directly to one or
more of the process’ gates. Strictly sequential behavior is aggregated into one or more computation
states. We illustrate the dynamic behavior of an Analyzer process in Figure 4. From its initial state
(single ellipsis), it proceeds by blocking (the timer value for the gate is set to ∞) for input through
gate a in 1. It then analyzes incoming data and sends the result through a out 2. In case of failure, the
Analyzer terminates (double ellipsis). In case of success, it blocks for input data through gate a in 2
which it then forwards through a out 1. After that, the Analyzer returns to blocking for input through
a in 1.

High-Level Communication

Connection-oriented communication is becoming increasingly important in distributed computing [5].
For example, client–server computing is essentially based on a short-lived connection between two
processes where the requesting client holds the connection until a reply has been sent back. Likewise,
data streams are naturally modeled as an iteration of data transfers over a single connection. The basic
communication channels of ADL-d offer only unidirectional communication on a per-message basis,
without, as was explained before, designer control over the direction of messages in the case of mul-
tiple senders and receivers. As a consequence, ADL-d requires additional modeling notions to capture
connections, which it provides in the form of connection channels, and connection gates.

A connection channel is in essence an aggregation of basic ADL-d channels, which we denote as
subchannels. Two subchannels are used to control the connection, i.e. its setup and release. The others
are used for the actual message transfer. A process can use a connection channel only by passing data
through a connection gate that is attached to that channel. A connection gate is an aggregation of basic
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gates. One gate is used to send or receive a connection request; two gates are used for tearing down
the connection; and the others are used for transferring data during a connection. These concepts are
illustrated in Figure 5.

We have modeled the situation that a Contractor process can connect to one of the three replicated
Worker processes for bidirectional communication. To this end, the connection channel Chan cw in-
cludes two subchannels data 1 and data 2, shown in Figure 5(b). By sending a request through the con-
nect subchannel of Chan cw, the Contractor issues a connection request. As soon as one of the Worker
processes has accepted, a connection between the two processes is set up, involving a data 1 channel,
a data 2 channel, and the appropriate subgates of c con and w con, as illustrated in Figure 5(c). From
this moment on until disconnecting, bidirectional communication is possible.

Releasing the connection is done by sending a request through the fourth subchannel, named dis-
connect. Either of the two processes involved in an active connection can request the release of that
connection. In contrast, setting up a connection is supported in an asymmetrical client–server fashion.
This is to avoid complicated setup semantics in the case of simultaneous connection requests.

The integer annotation to a connection channel indicates how many connections between instances
on one side, and instances on the other can be maintained simultaneously.

Note that our approach of using basic ADL-d gates for connection establishment and release im-
plies that no extra notations are needed in the ADL-d STDs where connections are concerned. The old
communication states can be used here. Note also, that although we now have support for connections,
we have still maintained a clean separation between structure and behavior modeling.

4 Dynamic Creation and Replication

An application is generally much more dynamic than reflected by its design. In particular, processes
are dynamically created and destroyed, and likewise, communications are dynamically set up and bro-
ken down again. Traditional design techniques hardly provide any support for modeling this kind of
dynamic behavior. We advocate that a design technique for parallel and distributed applications cannot
lack such support.

In ADL-d, we have chosen for an approach to dynamic creation that renders a clear view on:� parent-child relations between processes� communication graph evolvement� process behavior aspects of dynamic creation
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First of all, ADL-d supports dynamic creation of simple as well as complex processes. On creation of
a process instance, an instantiation of its entire internal structure is recursively created. By default,
gates to the outside are then attached to channels exactly conform the modeled structure (cf. step three
in Figure 1). In this way, the evolvement of the communication graph during runtime remains com-
prehensible to the designer.

A runtime creation is triggered by a process instance, communicating over an output gate that is
attached to a creation channel. The channel, which is associated with a (complex) process prototype,
will then attempt to create a new instance of this prototype. Success or failure of this attempt deter-
mines success or failure of the communication over the output gate. Consequently, sending a creation
message looks to the sender just like a regular communication attempt.

In Figure 6(a), we remodel the communication structure among a Contractor and its Workers to
include a creation channel Create. Also, we set the replication factor of Worker to zero. This means,
that at application startup, no Worker instance is active (Figure 6(b)). Only after communication by
a Contractor process over Create, will a Worker instance be created, and attached according to this
structure model (Figure 6(c)). Notice that again, from the creator’s point of view, communication is
modeled by a normal output gate. Hence, we do not need any new concepts in our behavior model
notation to incorporate dynamic creation.

The standard attachment algorithm for gates of new instances, such as illustrated in Figure 6, al-
ways follows the gate attachments as modeled for their prototypes. This is well-suited for a communi-
cation pattern with Contractors and Workers, but it does not allow for the modeling of dynamic creation
of complex communication structures such as pipes, trees and grids, which are other frequently en-
countered patterns in distributed computing. Incorporating a graph rewrite grammar into ADL-d would
solve this problem, were it not for the fact that these grammars need significant skills to use them, which
is not in line with the ADL-d spirit. For this reason, we have extended ADL-d with a small construc-
tion language, in which instance structures can be built in a series of simple steps, e.g. the creation of
a channel or a process instance, and the attachment of a gate to a channel. A designer can associate a
program in this language with a creation channel in order to override the default attachment scheme,
e.g. to create a pipe of process instances and channels. A full description of the language is beyond the
scope of this article.

5 Implementation

Automated code generation has been an important objective throughout the development of ADL-d. To
achieve this, we have introduced orthogonality as much as possible and made sure that every ADL-d
concept is formally defined (the formal semantics has not been further discussed in this article). As a
result, code generation showed to be easy to accomplish, as was already exemplified by implementa-
tions of the first version of ADL. We have recently finished a small, but complete runtime system (RTS)
that again indicates the feasibility of our approach. The RTS is written in C++, and runs on a cluster of
workstations. It includes object classes for every ADL-d concept, which can be dynamically instanti-
ated and attached to each other. Communication is implemented using fairly low-level communication
primitives to gain efficiency.

The module available to a designer to express the dynamic creation of processes and channels,
offers a Prolog interface. The actual dynamic creation is established by passing messages to the rest
of the RTS.

Our implementation experiences so far have indicated that we are on the right track. However,
more research is needed, especially concerning the implementation of channel semantics. At present,
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most solutions use a centralized component, but in [6] we have shown that fully decentralized alter-
natives are feasible as well. In addition, we intend to optimize solutions that cover the most common
cases, and provide only general solutions to cover the remaining cases. In this way, we aim to improve
the efficiency of the current RTS. Translation of ADL-d designs to skeleton code that interfaces to the
RTS has shown to be almost trivial.

6 Related Work

Any design technique should provide a clear and unambiguous view on the structure and dynamics
of the final program. For parallel and distributed programs, the two basic components of a model are
its unit of execution and its communication model. As for the first, practice shows that the unit of
sequential execution is almost invariably chosen to that of a process, and that parallelism is exploited
by having several processes run simultaneously.

The communication model prescribes how processes interact. Basically, there are two paradigms:
communication is based either on shared data, or on message passing. The shared data approach is at-
tractive because the model has proven to be relatively easy to work with. Unfortunately, implementing
the model on distributed-memory systems is not easy. Much research has been conducted in the field
of distributed shared memory systems [7], but it seems that efficiency can only be achieved if we relax
the memory coherence model. This latter approach has been followed, for example, by TreadMarks [8]
and CRL [9]. Using weak coherence models puts an additional burden on the programmer. In effect,
we are relaxing the semantics of the shared memory model in favor of efficiency.

An alternative is to use message passing. The advantage of this model is that it is directly supported
by distributed-memory platforms such as networked workstations. However, a remaining drawback is
the low level of abstraction of the message-passing model, requiring more effort from program devel-
opers. In other words, compatibility is attained at the cost of development effort.

Problems seem to be alleviated if we use an object-based model, as objects naturally hide message-
passing communication through method invocation. This alternative has been advocated for long by
language designers, but how to actually incorporate parallelism and distribution into an object-based
language is still a subject of much debate (see also [10, 11]). For one, it can be argued that the syn-
chronous method invocation reduces the degree of parallelism. But perhaps more important, is that
traditional method invocation, being on the level of instances, may easily lead to an undesirably high
degree of coupling between the application’s components, and obfuscate its structure (see also [12]),
which is generally considered bad software engineering practice. Nevertheless, the feasibility of the
approach has been demonstrated, for example, by Mentat [13] and Orca [14].

A model that allows for dynamic binding, such as advocated in the ODP standard ([15]), solves the
problem of object coupling. The proposed strategy is to use an active binding object to bind objects
that are ready to communicate, which allows object behavior to be modeled without any structural
dependencies. In essence, ADL-d offers an abstraction of active binders in the form of channels, which
become the carriers of most communication semantics.

In line with our approach to communication are the models used by some other design techniques,
most notably Parse [16], but also Regis [17], and PAR-SDL [18]. The fact that these techniques were
developed independently is an indication that we are gradually reaching a consensus about communi-
cation modeling in designs for parallel and distributed programs. ADL-d distinguishes itself from the
others by its rigid orthogonal approach, which is advantageous to many aspects, such as the modeling
of dynamic creation, connection-oriented communication, and dynamic behavior. It also allows us to
automatically generate efficient implementations from a design.
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7 Conclusion

In the complex design space of parallel and distributed software, three areas of major importance are
communication structure, component behavior and structure dynamics. For a technique to significantly
contribute to the development process, we advocate that it should provide support in all three areas at
least to a level where all the specific problems of parallel and distributed software are solved. Further-
more, we advocate that, through separate techniques and notations, it should explicitly recognize the
orthogonality of these three areas, such that they can be conquered separately. ADL-d has these char-
acteristics, while maintaining a concise set of easy-to-use notations. Also, its communication model
is devised to achieve versatility in the sense that ADL-d can be used in a broad spectrum of design
methods.
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