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The Physics and Properties of Free-Electron 
Lasers  

Samuel Krinsky 

Brookhaven National Laboratory, Upton, NY 11973 

Abstract. We present an introduction to the operating principles of free-electron lasers, 
discussing the amplification process, and the requirements on the electron beam necessary to 
achieve desired performance. 

INTRODUCTION 

In the storage rings of synchrotron radiation facilities, the electrons are radiating 
incoherently [1,2].  Since there is no multi-particle coherence, the radiated intensity is 
linearly proportional to the number of electrons Ne.  If the electrons in a beam are 
spatially bunched on the scale of the radiation wavelength [3,4], coherent radiation 
with intensity proportional to Ne

2 will be emitted.  Since Ne can be very large, 
coherent emission offers the potential of greatly enhancing the intensity.  The 
technical challenge is to produce the required bunching on the scale of the radiation 
wavelength.  A task that increases in difficulty as the wavelength is decreased. 

To obtain coherent emission at short wavelengths, one must develop methods to 
bunch the electron beam utilizing the radiation.  One approach that has already been 
successfully applied down to the vacuum ultraviolet is the free electron laser (FEL).  
The FEL [5] is based on a resonant interaction between an electromagnetic wave and 
an electron beam traveling along the axis of an undulator magnet.  The periodic 
undulator magnetic field produces a transverse component of the electron velocity that 
couples the energy of the electron to that of the wave.  Under general conditions this 
coupling will merely result in a shifting of energy back and forth between the electron 
beam and the radiation. However, in resonance, there can be sustained energy transfer 
from the electrons to the wave.  FELs are reviewed in refs. [6-8]. 

In designing an FEL, one must decide on the type of electron accelerator to be used: 
e.g. storage ring [9], room temperature linac [10], or superconducting linac [11].  
Storage rings provide very high stability and continuous operation; however, the FEL 
action perturbs the electron beam, thus limiting performance.  The development of 
photocathode RF electron guns [12,13] has made linacs attractive as drivers for FELs.  
They can produce high peak current and small normalized emittance.  The microbunch 
pulse length in photo- injectors is typically on the order of 10 ps, and bunch 
compression can be used to reduce the pulse length down to the vicinity of 100 fs.  
The macropulse structure in room temperature linacs consists of pulse trains separated 

 



 

 
FIGURE 1.  FEL configurations:  oscillator; self-amplified spontaneous-emission; 
high-gain harmonic generation. 
 
by dead time.  Superconducting linacs can provide continuous-wave beams and very 
high stability. 

A fundamental consideration in FEL design is whether to use a high-Q optical 
cavity, or to operate the FEL as a high-gain single-pass amplifier (see Fig. 1).  An 
optical cavity has many advantages: it requires less gain per pass, simplifying the 
undulator, and it facilitates the production of narrow bandwidth output radiation.  
However, it is difficult to utilize  optical cavities at short wavelengths because one 
requires high quality mirrors resistant to radiation damage.  For this reason, present 
effort in the design of short wavelength FELs, from the VUV down to hard x-rays, is 
predominantly focused on using single pass FEL amplifiers employing long 
undulators [10].  

UNDULATOR RADIATION 

     Let us begin our discussion by considering an electron traversing an undulator 
magnet [1,2,14].  For the purposes of illustrating the basic principles, it is convenient 
for us to consider the undulator to be helical, resulting in a constant longitudinal 
velocity (along the undulator axis, z-direction) 
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Here, 2mcγ  is the electron energy and K is the magnetic strength parameter, 
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where Bw is the amplitude of the helical undulator field and ww k/2πλ =  is the 
undulator period length. 
     Consider a wave front radiated in the forward direction.  After a time interval 

*/ vwλ , the electron has passed through one additional undulator period, and a second 
wavefront emitted at this time follows the first by a time interval 
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as illustrated in Fig. 2.  In the forward direction the radiation spectrum is peaked at 
wavelength ss cT=λ , i.e. 
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FIGURE 2.  As the electron traverses successive undulator periods, additional 
radiation wavefronts are emitted.  Since the electron is traveling almost at the speed of 
light, the electron slips only slightly behind the wavefronts emitted previously.  
Therefore, the radiation wavelength is much shorter than the undulator period. 
 
     For radiation propagating at a polar angle ϑ  relative to the z-axis, the spatial 
separation of wavefronts emitted before and after an electron has traversed one period 
of the undulator is  
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In an undulator with Nw periods, the radiated pulse from one electron has a pulse 
length of swN λ .  Consequently, the line width at fixed observation angle is  
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From Eq. (6), we see that the spectral broadening due to accepting radiation in a cone 
of half-angle ϑ∆  about the forward direction is )1/()(/ 222 Ks +∆=∆ ϑγλλ .  This 
broadening will be small only if wϑϑ <∆ , where we define 
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with www NL λ= .  Angle wϑ  characterizes the central cone of the undulator radiation.  
The power per unit solid angle per unit frequency emitted in the forward direction at 

ss c λπωω /2== by an electron beam of energy γ  and current Ie traversing Nw 

periods is given by [1] (mks units, Alfven current AmpemcI oA 000,17/4 3 ≅= επ ) 
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FREE-ELECTRON LASER:  LOW-GAIN REGIME 

 
     Let us now consider an electron passing through an undulator with longitudinal and 
transverse velocities as specified in Eqs. (1) and (2).  Suppose the electron to be 
interacting with a co-propagating electromagnetic wave with electric field ( )ss ck=ω  
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The energy transfer between the electron and wave is described by [6-8] 
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where the ponderomotive phase is   
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Here, t(z) is the time of arrival of the electron at position z along the undulator axis.  
Differentiating Eq. (12), we find 
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     The condition for resonance is 
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The resonance condition requires that while traveling through one period of the 
undulator, an electron falls one radiation wavelength behind the wave, as illustrated in 
Fig. 3.  In resonance, the phase relation that exists between the electron and wave in 
one period is repeated in subsequent periods making possible a sustained energy 
transfer. 
     The resonant energy rγ  is determined by 
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FIGURE 3.  Resonance condition:  as the electron and wave propagate along the axis 
of the undulator, the electron slips one radiation wavelength behind the wave for each 
undulator period traversed. 
 



 

                   
 
FIGURE 4.  We show the longitudinal γζ , -phase space for an electron beam (a) 
initially monoenergetic and uniformly distributed in phase, and (b) after experiencing 
a small net energy loss to a co-propogating electromagnetic wave. 
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If the undulator parameters K and kw are constant, and we ignore the variation of Eo 
and φ , then the ponderomotive phase is determined by the pendulum equation 
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This is an appropriate description in the low-gain regime, when amplification of the 
wave in a single pass through the undulator is small.  For an electron beam which is 
initially monoenergetic and uniformly distributed in phase, an illustration of net 
energy loss by the electron beam to the radiation is presented in Fig. 4. 
     When the gain per pass is small, a large total gain can be achieved by placing the 
undulator between the mirrors of an optical resonator.  If the electron beam is 
comprised of a long train of bunches, with neighboring bunches space by twice the 
length of the optical cavity, the radiation can be repeatedly amplified as it interacts 
with successive bunches. 
 
   

FREE-ELECTRON LASER:  HIGH-GAIN REGIME 

 
     It is difficult to use optical cavities at short wavelengths because of the need for 
high-quality mirrors resistant to radiation damage.  Therefore, to generate short 
wavelength radiation, high-gain single pass amplifiers employing long undulators are 
of interest.  The mathematical description of high-gain amplifiers [6-8, 15-17] must 
take into account the variation of the radiation field.  High gain results from a 
collective instability leading to exponential growth of the radiated power, 
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where LG is the e- folding or gain length (see Fig. 5). 
     The mechanism leading to exponential growth is as follows:  Electrons gain or lose 
energy depending upon their phase ζ  with respect to the electromagnetic wave.  The 
resulting energy modulation of the electron beam gives rise to a spatial bunching due 
to the dispersion in the undulator (i.e. *v larger for higher-energy electrons).  The 
density modulation at the radiation wavelength then produces enhanced coherent 
emission, amplifying the radiation intensity.  The positive feedback loop is closed 
since the increase in radiation intensity enhances the energy modulation of the electron 
beam.   
     Suppose the electron beam entering the undulator is initially monoenergetic with 
energy oγ , and uniformly distributed in phase, and there exists a small coherent laser 
seed.  An illustration [7] of the evolution of the electron beam’s longitudinal phase 
space distribution and the corresponding increase of the radiation field amplitude is 
presented in Fig. 6. 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5.  The radiated power increases exponentially until the instability saturates.  
In the case of self-amplified spontaneous-emission, the amplifier starts-up from shot 
noise, and it takes about 20 power gain- lengths to reach saturation. 
      

                                  
FIGURE 6.  Evolution of the longitudinal phase space of the electron beam, initially 
monoenergetic and uniformly distributed in phase, and of the amplitude of the 
radiation field which starts at a small non-vanishing value. 
 



     As the radiation intensity increases, the “pendulum frequency,” pΩ  [Eq. (19)], 
becomes larger.  The exponential process saturates when the frequency of rotation in 
the phase space bucket becomes comparable to the growth rate: 
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Within the one-dimensional approximation, in which dependence on transverse 
coordinates is ignored, the growth rate can be written in the form, 
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where the dimensionless Pierce parameter ρ  is given by [17] 
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The scaled current J was defined in Eq. (9) and A=cross-sectional area of electron 
beam.  Using Eqs. (19), (22) and (23) in Eq. (21), one finds that the saturated radiation 
power is approximately given by 
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where Ee(GeV) is the electron energy in GeV and Ie(Amp) is the electron current in 
Amperes.  We see that the Pierce parameter determines the gain length via Eq. (22) 
and the efficiency with which the exponential gain process can extract energy from the 
electron beam and give it to the radiation via Eq. (24). 
 
 

One-Dimensional Theory 

     We shall present a brief introduction to the one-dimensional theory (neglecting 
dependence on transverse coordinates) of the FEL in the linear regime before 
saturation [15-17].  Consider the electron beam at the undulator entrance to be 
monoenergetic, oγγ = , and uniformly distributed in phase, with n1 electrons per unit 
length.  Define, 
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where )1/(2/ 22
0 Kkck wss +== γω .  Introduce the line density ≡Λ ),( τζ  the number 

of electrons per unit length, and the energy deviation ( ) oop γγτζγτζ /),(2),( −≡ , 
and write the radiated electric field in the form 
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The slowly varying complex amplitude φi
oeEE ≡  [see Eq. (10)]. 

     Let us suppose the line density, energy deviation and the electric field amplitude 
have small sinusoidal perturbations: 
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where ssq ωωω /)( −=  is the frequency detuning. We keep only terms linear in the 
perturbations.  The variation in the electron energy deviation due to the radiated 
electric field is described by Eq. (11).  Neglecting the non-resonant *

qE  term, one finds 
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The change in the density modulation resulting from the energy modulation of the 
electron beam is given by the equation of continuity [ ]0)( =∂Λ∂+∂Λ∂ ζτ p .  
Linearizing, one derives 
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The increment in the electric field driven by the density modulation is determined by 
the one-dimensional paraxial wave equation 
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where (mks units) 
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and A is the cross-sectional area of the electron beam.  Eqs. (30), (31) and (32) imply 
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with 3
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3 /2)2( ondd γρ = , the Pierce parameter introduced in Eq. (23). 

     The solution to Eq. (34) has the form 
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where the coefficients a1,a2,a3 are determined from the initial conditions 

),0(),0( qqE Λ and 0)0( =qp .  The Laplace transform parameters 321 ,, sss  are the 
solutions of the cubic dispersion relation 
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A useful approximation is 
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There are three modes: growing; decaying and oscillating; corresponding to 
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     It can now be shown that the evolution of the electric field is determined by [18-
19,23] 
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where the transfer functions are given by (m=1,2) 
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FIGURE 7.  Plot of 1)(

2)2( −zkH wq versus ρ2/q , for: (a) zkwρ2 = 0.5;  

(b) zkwρ2 = 1.0; (c) zkwρ2 = 10. For low gain (a), the interference of the three 
modes is important. In the high-gain regime (c), the growing mode dominates.   
      
In the exponential-gain regime the growing mode dominates (see Fig. 7) and  
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The power gain length, GL , has the value given in Eq. (22), and the gain bandwidth is  
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Self-Amplified Spontaneous-Emission (SASE) 

 
     In the absence of an external seed laser, 0)0( =qE , so the FEL amplifier starts up 
from the shot noise in the electron beam [18-23], 
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Here, the sum is over the electrons comprising the beam and )0(jt is the arrival time of 
the jth electron at the undulator entrance.  It follows from Eq. (39), that 
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     We can treat the arrival times )0(jt  as independent random variables.  Therefore, 

at a fixed position, zkw=τ , along the undulator, )(τqE  and its Fourier transform 
),( ζτE  are sums of independent random terms.  It follows from the Central Limit 

Theorem [24] that the probability distribution describing the spectral intensity 
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The intensity fluctuation is 100%.   
     The output intensity as a function of time exhibits spiking [25] (see Fig. 8), and the 
width of the intensity peaks are characterized by the coherence time [24,26] 

ωσπ /=cohT .  The spectral intensity also exhibits spikes (Fig. 9), and their widths 
are inversely proportional to the electron bunch duration bT . 
     Let us consider the energy in a single SASE pulse,   
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For fixed τ , the pulse can be divided up into M statistically independent time-
intervals of width Tcoh .  The fluctuation within a single coherent region is 100%, but 
the fluctuation Wσ  of the energy in the entire pulse is reduced and given by [24,26] 
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FIGURE 8.  Intensity spiking in the time-domain.  The width of the peaks is 
characterized by the SASE coherence time ωσπ /=cohT . 
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FIGURE 9.  Intensity spiking in the frequency-domain.  In the single-shot spectrum 
shown on the left, the width of the peaks is inversely proportional to the electron 
bunch duration Tb.  The average of many SASE pulses is illustrated on the right, and 
in this case the width is proportional to the gain bandwidth cohT/πσ ω =  . 
 
 
 
 



The energy per pulse is described by the gamma distribution [24], 
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     It follows from Eqs. (41) and (44) that the average output SASE power spectrum 
can be expressed in the form [20] 
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where  
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arises from the shot noise in the electron beam and ( ) InputddP ω represents an input 
laser seed.  In the case of SASE (no seed), the average output power is [18,19] 
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Psat is  the saturation power defined in Eq. (24) and cohcoh cTnN 1=  is the number of 
electrons in a coherence length.  Typically, cohN  is large, and it takes about 20 SASE 
gain lengths to reach saturation (Fig. 5). 
     The noise (within the one-dimensional approximation) amplified in SASE is the 
spontaneous undulator radiation with frequency sωω =  emitted in the first two power 

gain lengths into a cone of solid angle As /2λ about the forward direction (A being the 
cross-sectional area of the electron beam).  This follows from observing that [22] 
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which can be verified from Eqs. (9), (22) and (23). 
 
 
 
 
 



Constraints On Electron Beam Quality 

 
     To achieve high gain, the resonant condition must hold for most electrons.  This 
imposes tolerances on the energy spread and emittance.  On should note that, as 
illustrated in Fig. 2, since the electrons are traveling almost at the speed of light, the 
radiation emitted by an electron moves ahead of it by only one radiation wavelength 
for each undulator period traversed.  Therefore, an electron can influence only those 
electrons less than one slippage distance, sWN λ  in front of it.  Tolerances to assure 
desired gain restrict the properties of the electron beam within a slice shorter than one 
slippage distance.  To assure the entire electron beam contributes, tolerances must be 
imposed on the entire beam.   
     Recall from Eq. (15), that the resonance condition is 
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Suppose an electron has energy γδγγ += r .  In this case, while traversing one 

undulator period, the electron slips a distance lδλ +s  behind the wave: 
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where  
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Let us assume that in order to maintain coherent energy transfer over a section of 
undulator of length 2LG, it is necessary that 
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where wGG LN λ/2=  is the number of undulator periods in two power gain lengths.  
The significance of the tolerance imposed in Eq. (56) is that no electron will fall more 
than 90o out of phase with the wave while traversing two power gain lengths.  From 
Eqs. (55) and (56), we see that the tolerance on the energy spread is 
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Now consider an electron that has the resonant energy rγ  but which is traveling at a 
small angle ϑ  relative to the z-direction.  Since such an electron must travel a longer 
distance to traverse one undulator period, it slips a distance lδλ +s  behind the wave: 
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where 
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To assure coherent transfer of energy from the electron beam to the wave over two 
power gain lengths, we again impose the constraint of Eq. (53), resulting in the 
tolerance  
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In the special case when the horizontal and vertical emittances are equal, εεε == yx , 

and the horizontal and vertical betatron functions are equal, βββ == yx , we can 

write βεϑ /22 =  so the inequality (60) can be interpreted as a tolerance on the 
emittance [27]: 
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     Diffraction of radiation out of the electron beam can result in a reduction of gain.  
The loss of gain [28,21] should be small as long as the Rayleigh range corresponding 
to the transverse dimensions of the electron beam is long compared to the gain length.  
For a cylindrical electron beam of radius εβ=R , we can write this condition as 
 
 Gs Lk 2>εβ . (62) 
 
In order to satisfy both Eqs. (61) and (62), we should have GL2>β . Since the gain is 
larger for higher electron density, the optimum will be near GL2≅β . 
     In the linear regime before saturation, the coupled Vlasov-Maxwell equations have 
been used to derive a dispersion relation incorporating the effects of the energy spread, 



emittance, and focusing of the electron beam and the diffraction and guiding of the 
radiation.  The gain length was expressed in the scaled form1 [29]: 
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Here, the scaled current J was defined in Eq. (9), γσ is the fractional energy spread 

and βπλ β 2=  the betatron wavelength.  The scaling function G can be calculated 
very accurately [29] and the results agree with computer simulations to within 5-10%.  
This work was later extended in refs. [30-32].  The analytic determination of the gain 
length makes possible rapid computation, and facilitates FEL design optimization. 
      Let us now briefly discuss the dependence of the FEL parameters on output  
wavelength sλ .  As we reduce sλ , the required transverse emittance ε, as estimated in 

Eq. (61), decreases proportionally.  Thus, for a given normalized emittance, εγε ≡n , 
the required energy increases.  As the energy is increased, the current must also be 
increased to prevent the scaling parameter D [Eq. (64)] from becoming too small.  
Once the energy and wavelength are determined, the undulator period λw and field 
strength parameter K must be chosen to satisfy the resonance condition of Eq. (5), as 
well as certain practical and economic constraints.  In particular, as one decreases the 
period, one must also decrease the magnet gap to prevent the field strength parameter 
from becoming too small.  Therefore, the vertical aperture required for the electron 
beam, and perhaps electron beam diagnostics, limits how small the period can be 

                                                 
1     When the electron beam size is large enough and the angular spread and energy 
spread are small, the gain length given in Eq. (63) approaches the result of 1-D theory, 
Eq. (22).  In this regime, 
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The area of the electron beam A=no/n1, where no is the peak value (at R=0) of the 
number of electrons per unit vo lume and n1 is the number of electrons per unit length.  
For the parabolic transverse distribution, considered in [29], εβπ3=A  and .477.≅κ  
 



made. Also, the magnet period must not be made too long, or else the size and cost of 
the system will become unnecessarily large. 
     In this paper, we have confined our attention to the fundamental frequency. 
However, near saturation, significant intensity is produced at the low harmonics of the 
fundamental. We refer the reader to the literature to pursue this interesting subject [33-
36].  
      

Some Recent Experiments on FEL Amplifiers 
 
     In Table 1, we present some of the fundamental parameters for four proof-of-
principle SASE experiments which have been carried out over the last few years in the 
visible and vacuum ultraviolet: TTF1 at DESY [37]; LEUTL at ANL [38]; VISA at 
BNL [39]; and DUV-FEL at BNL [40].  The parameters correspond to reported 
experiments and do not necessarily represent the best or shortest wavelength 
performance achieved to-date.  In the last column, we give the parameters for the 
design of the LCLS at SLAC [10].  Saturation of the SASE process has been observed 
at 95 nm at TTF1, at 130 nm at LEUTL and 800 nm at VISA.  Agreement obtained 
between the experimental results and theory provides a firm foundation for the 
development of future x-ray facilities based on FEL amplifiers.  The key challenge is 
to produce and transport the required high-brightness electron beams.       
 
Table. 1. Parameters for FEL Projects 
 TTF1  LEUTL  VISA  DUV-FEL  LCLS 

sλ  (nm) 95 530 800 400 0.15 

eE  (MeV) 250 217 72.6 140 14,300 

wλ  (mm) 27 33 18 39 30 

K  1.2 3.1 1.26 1.1 3.7 

εγ  ( mµ ) 6 8.5 2 6 1.2 

avβ  (m) 1.2 1.4 0.27 3.2 7 

eI  (Amp) 1300 266 200 500 3400 

GL  (m) 0.67 0.57 0.17 0.68 4.7 

 
     The SASE FEL can generate high- intensity radiation with good transverse 
coherence but limited temporal coherence.  Consideration has been given to seeding 
the FEL amplifier to improve temporal coherence.  If a low power laser exists at the 
wavelength of interest, then the FEL can be used to amplify the signal to high power.  
In the cases of greatest interest, no such seed is available.  However, one can use a 
seed at a longer wavelength and carry out harmonic generation in the FEL amplifier to 
generate temporally coherent short wavelength output. A proof-of-principle 
experiment of such a high-gain harmonic-generation (HGHG) FEL was successfully 
carried out in the infrared [41].  The DUV-FEL is designed to continue investigation 
of HGHG in the visible and vacuum ultraviolet.  Another approach to seeding a short 
wavelength FEL consists of installing a monochromator after an initial section of 



undulator, and then amplifying the output in a second undulator [42].  A variant of this 
approach is the regenerative amplifier [43], in which the undulator is placed in a low-
Q optical cavity whose reflectors cons ist of a mirror and a grating.  The radiation from 
earlier bunches provide the monochromatized seed for the later bunches.   
     In SASE, the output pulse duration is determined by the density profile of the 
electron bunch.  There is a strong desire to produce radiation pulses of femtosecond 
duration, which is generally shorter than the electron bunch.  One possibility is to 
provide a short seed in an HGHG FEL.  Another approach is to put an energy chirp on 
the electron bunch - producing a frequency chirp of the output radiation.  A 
monochromator can then be used to select a short slice of the pulse [44].  
Improvement of the output of an FEL amplifier is currently an active area of research, 
and many other schemes are currently under investigation.   
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