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1 IntroductionRecently, there have been many interior point algorithms developed for semide�nite programming(SDP), see for example [1, 2, 5, 9, 11, 13, 17]. These algorithms di�er in their choices of scalingmatrix, the size of the central path neighborhoods, and stepsize rules, among others. In particular,the algorithms of Kojima-Shida-Hara [5] and Nesterov-Todd [11] are based on the primal-dualscaling and they both can be viewed as extensions of the predictor-corrector method for linearprogramming [8]. It has been shown [4, 6, 11, 13, 17] that these algorithms for SDP retain manyimportant properties of the interior point algorithms for linear programming including polynomialcomplexity. For an overview of SDP and its applications, we refer to Vanderberghe and Boyd [15].However, there exists considerable di�culty in extending one key property of the predictor-corrector method for linear programming to the interior point algorithms for SDP. This is theproperty of quadratic convergence of the duality gap (see [16] for a proof of the LCP case). Insome sense, the need for superlinear convergence in solving SDP is more pronounced than that forthe linear programming case. This is because for SDP there cannot exist any �nite terminationprocedures as in the case of linear programming. Indeed, the recent papers of Kojima-Shida-Shidoh[4] and Potra-Sheng [12] are both focused on the issue of superlinear convergence for solving SDP.In particular, the latter reference provided a su�cient condition for the superlinear convergence ofan infeasible path following algorithm, while the former reference [4] established the superlinearconvergence of their algorithm [5] under certain key assumptions. These assumptions are: (1) SDPis nondegenerate in the sense that the Jacobian matrix of its KKT system is nonsingular; (2) SDPhas a strictly complementary optimal solution; (3) the iterates converge tangentially to the centralpath in the sense that the size of the central path neighborhood in which the iterates reside musttend to zero. Among these three assumptions for superlinear convergence, (2) is inevitable since itis needed even in the case of LCP (see [16]). Assumption (3) is needed to ensure the duality gapis reduced superlinearly after each predictor step for all points in the central path neighborhood.In the reference [4], an example was given which showed that, without the tangential convergenceassumption, the duality gap is reduced only linearly after one predictor step for certain points inthe central path neighborhood.Our goal in this paper is to establish the superlinear convergence of a symmetric path followingalgorithm for SDP under the only assumptions of (2) and (3) (i.e., without the nondegeneracyassumption). In particular, we consider the primal-dual path following algorithm of Nesterov-Todd [11] (later discovered independently by Sturm and Zhang [13] using a V -space notion). Inthis paper we adopt the framework of [13] since it greatly facilitates the subsequent analysis. Weshow that this symmetric primal-dual path following algorithm has an order of convergence thatis asymptotically quadratic (i.e., sub-quadratic). Indeed, for any given constant positive integer r,1



the algorithm can be set so that the duality gap decreases superlinearly with order 21+2�2r after onepredictor (a�ne scaling) step followed by (at most) r corrector steps. The cornerstone in our bidto establish this superlinear convergence result is a bound on the distance from any point on thecentral path to the optimal solution set (see Section 3). Speci�cally, it is shown that, under thestrict complementarity assumption, the primal-dual central path converges to the analytic centerof the optimal solution set, and that the distance to this analytic center from any point on thecentral path can be bounded above by the duality gap. These properties of the central path arealgorithm-independent and are likely to be useful in the analysis of other interior point algorithmsfor SDP.The organization of this paper is as follows. At the end of this section, we describe some basicnotation to be used in this paper. In Section 2, we will discuss some fundamental backgroundnotions, and we will make two assumptions concerning the solution set of the SDP. In Section 3we will analyze the limiting behavior of the primal-dual central path. In Section 4, the notionof V -space for SDP is reviewed and a path following algorithm in the spirit of [13] is introduced.The superlinear convergence of this algorithm is established in Section 5. Finally, some concludingremarks are given in Section 6.Notation. The space of symmetric n�n matrices will be denoted S. Given X and Y in <n�n,the standard inner product is de�ned byX � Y = tr XTY;where tr (�) denotes the trace of a matrix. The notation X ? Y denotes orthogonality in the sensethat X � Y = 0. The Euclidean norm and its associated operator norm, viz. the spectral norm,are both denoted by k�k. The Frobenius norm of X is kXkF = pX �X. If X 2 S is positive(semi-) de�nite, we write (X � 0) X � 0. The cone of positive semi-de�nite matrices is denotedby S+ and the cone of positive de�nite matrices is S++. The identity matrix is denoted by I. Weuse the standard \big O" and \small o" notation. In particular, w(�) = O(�) with � > 0 meansthat there is a positive constant �, possibly dependent on problem data but independent of �, suchthat w(�) � �� for all �; w(�) = o(�) for � ! 0 means that lim�!0 w(�)=� = 0. Moreover, wewrite w(�) = �(�) whenever we have both w(�) = O(�) and � = O(w(�)). For a positive de�nitematrix, we use \O" and \�" to denote the order of all its eigenvalues. Hence, for W (�) 2 S++,the notation W (�) = �(�) signi�es the existence of � > 0 such that1�I � 1�W (�) � �I; for all � > 0:
2



2 Problem formulationA semide�nite programming (SDP) problem is given asminimize C �Xsubject to A(i) �X = bi; for i = 1; 2; . . . ;m, (P)X � 0where C 2 S, A(1); A(2); . . . ; A(m) 2 S and b 2 <m. The decision variable is X 2 S. Thecorresponding dual program can be formulated asmaximize bTysubject to Z = C � mXi=1 yiA(i); (D)Z � 0:Denote the feasible sets of (P) and (D) by FP and FD respectively, i.e.FP := fX 2 S : A(i) �X = bi; i = 1; 2; . . . ;m; X � 0g;and FD := fZ 2 S : mXi=1 yiA(i) + Z = C for some y 2 <m; Z � 0g:We make the following assumptions throughout this paper.Assumption 1 There exist positive de�nite solutions X 2 FP and Z 2 FD for (P) and (D)respectively.Assumption 2 There exists a pair of strictly complementary primal-dual optimal solutions for (P)and (D). Speci�cally, there exists (X�; Z�) 2 FP �FD such that( X�Z� = 0;X� + Z� � 0:Since X�Z� = Z�X� = 0, we can diagonalize X� and Z� simultaneously. Therefore, by applyingan orthonormal transformation to the problem data if necessary, we can assume without loss ofgenerality that X�, Z� are both diagonal and of the formX� = " �B 00 0 # ; Z� = " 0 00 �N # ; (2:1)3



where �B := diag(�1; :::; �K), �N := diag(�K+1; :::; �n) for some integer 0 � K � n and somepositive scalars �i > 0, i = 1; 2; :::; n. Here the subscripts B and N signify the \basic" and\nonbasic" subspaces (following the terminology of linear programming). Throughout this paper,the decomposition of any n � n matrix X is always made with respect to the above partition Band N . In fact, we shall adhere to the following notation throughout:X = " XB XUXTU XN # ;so XU will always denote the o�-diagonal block of X with size K � (n�K), etc.Notice that X 2 FP is an optimal solution to (P) if and only if XZ� = 0. Hence, by Assump-tion 2, the primal optimal solution set can be written asF�P := fX 2 FP : XU = 0 and XN = 0g:Analogously, the dual optimal solution set is given byF�D := fZ 2 FD : ZU = 0 and ZB = 0g:Given � 2 <++, the pair (X;Z) 2 FP �FD is said to be the �-center (X(�); Z(�)) if and onlyif XZ = �I: (2:2)We refer to [5, 14] for a proof of the existence and uniqueness of �-centers. The central path of theproblem (P) is the curve f(X(�); Z(�)) : � > 0g:To be consistent with the above de�nition of the central path, we de�ne the analytic center ofF�P as the unique solution Xa of the system8>>>><>>>>: XaBZB = I;mXi=1 yiA(i)B + ZB = 0;Xa 2 F�P and ZB � 0: (2:3)In a similar fashion, we de�ne the analytic center of F�D as the unique solution Za of the system8>>><>>>: XNZaN = I;A(i)N �XN = 0; i = 1; 2; . . . ;m;XN � 0 and Za 2 F�D:4



3 Properties of the central pathThe notion of central path plays a fundamental role in the development of interior point methodsfor linear programming. In this section, we shall study the analytic properties of the central pathin the context of semide�nite programming. These properties will be used in Section 5 where weperform convergence analysis of a predictor-corrector algorithm for SDP.For linear programming (i.e., A(i)'s and C are diagonal), it is known that the central pathcurve converges: (X(�); Z(�)) ! (Xa; Za), as � ! 0, with (Xa; Za) being the analytic center ofthe primal and dual optimal solution sets F�P and F�D respectively ([7]). It is also known for linearprogramming that the central path does not approach (Xa; Za) tangentially to the optimal solutionset, viz. it is shown in [10] thatkX(�) �Xak+ kZ(�)� Zak = O(�):In the following we shall extend these result to the semide�nite programs (P) and (D).The following lemma shows that the setf(X(�); Z(�)) : 0 < � < 1gis bounded.Lemma 3.1 For any � > 0 there holdskX(�)k + kZ(�)k = O(1 + �)Proof. We have n�+ n = X(�) � Z(�) +X(1) � Z(1)= X(1) � Z(�) + Z(1) �X(�);where we used the property (X(�)�X(1)) ? (Z(�)�Z(1)) in the second equality. Since X(1) � 0and Z(1) � 0, we havekX(�)k+ kZ(�)k = O(X(1) � Z(�) + Z(1) �X(�)) = O(1 + �): Q.E.D.It follows from Lemma 3.1 that the central path has a limit point. We will now show thatany limit point of the central path f(X(�); Z(�))g is a strictly complementary optimal primal-dualpair. 5



Lemma 3.2 For any � 2 (0; 1) there holdsXB(�) = �(1); XN (�) = �(�); XN (�)�XU (�)TXB(�)�1XU (�) = �(�)ZB(�) = �(�); ZN (�) = �(1); ZB(�)� ZU (�)ZN (�)�1ZU (�)T = �(�):Hence, any limit point of f(X(�); Z(�))g as �! 0 is a pair of strictly complementary primal-dualoptimal solutions of (P) and (D).Proof. Let 0 < � < 1. For notational convenience, we will use X and Z to denote the matricesX(�) and Z(�). Let (X�; Z�) be the pair of strictly complementary primal-dual optimal solutionspostulated by Assumption 2. Since A(i) � (X �X�) = 0, i = 1; :::;m, and Z �Z� 2 SpanfA(i); i =1; :::;mg, it follows that (X �X�) ? (Z � Z�). Therefore, we have0 = (X �X�) � (Z � Z�)= X � Z �X � Z� �X� � Z= tr (�I �XZ� �X�Z)= n�� KXi=1 �iZii � nXi=K+1�iXii;where the last step follows from (2.1). Since �i > 0 for all i and Xii � 0 and Zii � 0 (by thepositive semide�niteness of X and Z), we obtain( Zii = O(�); i = 1; :::;K;Xii = O(�); i = K + 1; :::; n:Since X � 0, Z � 0, it follows that XN = O(�); ZB = O(�): (3:1)From X � 0 and Z � 0 we obtainXN �XTUX�1B XU � 0; ZB � ZUZ�1N ZTU � 0:Now consider the identitieslog detX = log detXB + log det(XN �XTUX�1B XU );log detZ = log detZN + log det(ZB � ZUZ�1N ZTU ):Since detX detZ = det(�I) = �n, it follows that log detX + log detZ = n log� andlog detXB + log det� 1�(XN �XTUX�1B XU )�+ log detZN + log det� 1�(ZB � ZUZ�1N ZTU )� = 0:6



By the estimates (3.1) and using Lemma 3.1, we see thatXB = O(1); 1�(XN �XTUX�1B XU ) = O(1); ZN = O(1); 1�(ZB � ZUZ�1N ZTU ) = O(1):Therefore each of the four logarithm terms in the preceding equation are bounded from above as�! 0. Since these four terms sum to zero, we must haveXB = �(1); 1�(XN �XTUX�1B XU ) = �(1);ZN = �(1); 1�(ZB � ZUZ�1N ZTU ) = �(1):Together with (3.1), this implies XN = �(�); ZB = �(�):This completes the proof of the lemma. Q.E.D.Lemma 3.2 provides a precise result on the order of the eigenvalues of XB(�);XN (�); ZB(�)and ZN (�). We will now prove a preliminary result on the order of the o�-diagonal blocks XU (�)and ZU (�).Lemma 3.3 For � 2 (0; 1), there holdskXU (�)k = �(kZU (�)k);�XU (�) � ZU (�) = �(kXU (�)k2); (3.2)kXU (�)k = o(p�); kZU (�)k = o(p�); as �! 0:Proof.By the central path de�nition, we have�I = " XB(�) XU (�)XU (�)T XN (�) #" ZB(�) ZU (�)ZU (�)T ZN (�) # :Expanding the right-hand side and comparing the upper-right corner of the above identity, we have0 = XB(�)ZU (�) +XU (�)ZN (�); (3:3)or equivalently, ZU (�) = �XB(�)�1XU (�)ZN (�):Using XB(�) = �(1) and ZN (�) = �(1) (see Lemma 3.2), this implies thatkZU (�)k = �(kXU (�)k):7



This proves the �rst part of the lemma.We now prove (3.2). Let f(X(�k); Z(�k)) : k = 1; 2; :::g be an arbitrary convergent sequenceof the central path with �k ! 0. By Lemma 3.2, the limit of this sequence satis�es strict comple-mentarity. Let (X�; Z�) denote this limit point so thatX� = limk!1X(�k); Z� = limk!1Z(�k):As before, we assume without loss of generality that X� and Z� are diagonal. In addition, since(3.2) holds trivially when kXU (�k)k = 0, we thus assume kXU (�k)k > 0 for all k.First, we divide both sides of (3.3) by kXU (�k)k and let k !1 to obtain0 = X�BZ1U +X1U Z�N ;where X1U and Z1U are de�ned byX1U := limk!1 XU (�k)kXU (�k)k ; Z1U := limk!1 ZU (�k)kXU (�k)k : (3:4)(If the above limits do not exist, then we de�ne X1U and Z1U to be any two limit points of thecorresponding sequences.) Since X�B and Z�N are both positive diagonal matrices, it follows thatthe nonzero entries of the matrices X1U , Z1U must have opposite signs. By kX1U k = 1, we concludethat X1U � Z1U < 0: (3:5)This establishes (3.2) along the sequence f(X(�k); Z(�k)) : k = 1; 2; :::g. Since this sequence isarbitrary, we see (3.2) holds.It remains to establish the last part of the lemma. Once again, we consider an arbitraryconvergent sequence f(X(�k); Z(�k)) : k = 1; 2; :::g on the central path with �k ! 0; we continueto use the same notation X�, Z�, X1U , Z1U de�ned above. Since kZU (�k)k = �(kXU (�k)k), weonly need to show kXU (�k)k = o(p�k) . Assume this is not the case. Using Lemma 3.2 andpassing onto a subsequence if necessary, we have kXU (�k)k2 = �(�k) for all k. Since (X(�k) �X�) ? (Z(�k)� Z�), we have0 = (XB(�k)�X�B) � ZB(�k) + 2XU (�k) � ZU (�k)+XN (�k) � (ZN (�k)� Z�N ):Dividing both sides of this equation by kXU (�k)k2 and taking limit yields0 = 2X1U � Z1U+ limk!1�(XB(�k)�X�B) � ZB(�k)kXU (�k)k2 + XN (�k)kXU (�k)k2 � (ZN (�k)� Z�N )� :8



Since kXU (�k)k2 = �(�k) and ZB(�k) = �(�k), XN (�k) = �(�k) (cf. Lemma 3.2), it followsZB(�k)kXU (�k)k2 = �(1); XN (�k)kXU (�k)k2 = �(1):Therefore, the limit in the preceding equation equals zero, implyingX1U � Z1U = 0:But this contradicts (3.5), so we must havekXU (�k)k = o(p�k):The proof is complete. Q.E.D.We now use Lemma 3.2 and Lemma 3.3 to prove that the central path f(X(�); Z(�)) : � > 0gconverges to (Xa; Za), and to estimate the rate at which it converges to this limit.Lemma 3.4 The primal-dual central path f(X(�); Z(�)) : � > 0g converges to the analytic centers(Xa; Za) of F�P and F�D respectively. Moreover, if we let�(�) := kXU (�)kp� ;then kXB(�)�XaBk = O((�(�) +p�)2); kZN (�)� ZaNk = O((�(�) +p�)2):Proof. Suppose 0 < � < 1. By expanding X(�)Z(�) = �I and comparing the upper-left block,we obtain �IB = XB(�)ZB(�) +XU (�)ZU (�)T :Pre-multiplying both sides with (�XB)�1 yieldsX�1B = 1�ZB(�) + 1�X�1B XU (�)ZU (�)T : (3:6)Let J be an index set of minimal cardinality such thatSpanfA(i)B : i 2 J g = SpanfA(i)B : i = 1; 2; . . . ;mg:As Z�B = 0, it follows from the dual feasibility and (3.6) that1�ZB(�) = Xi2J �i(�)A(i)B ; for some scalars �i(�)= X�1B � 1�X�1B XU (�)ZU (�)T : (3.7)9



Now consider the following nonlinear system of equations:8><>: X�1B �Xi2J �iA(i)B = 0;A(i)B �XB = bi; i 2 J : (3:8)By (2.3), we know that XaB is a solution of (3.8) for some �ai ; i 2 J . Using the linear independenceof the matrices A(i)B , i 2 J and using the fact that XaB is positive de�nite, it can be checked thatthe Jacobian (with respect to the variables XB and �i, i 2 J ) of the nonlinear system (3.8) isnonsingular at the solution XaB , �ai , i 2 J . Hence we can apply the classical inverse functiontheorem to the above nonlinear system at the point: XB = XaB , �i = �ai ; i 2 J , to obtainkXB(�)�XaBk = O kX�1B �Xi2J �iA(i)B k+Xi2J jA(i)B �XB(�)� bij! : (3:9)By (3.7) we have X�1B �Xi2J �iA(i)B  =  1�X�1B XU (�)ZU (�)T = �(�(�)2) (3:10)and from X(�) 2 FP we obtain���A(i)B �XB(�)� bi��� = ���2A(i)U �XU (�) +A(i)N �XN (�)���= O (�(�)p�+ �) ; for i 2 J :Combining this with (3.9) and (3.10) yieldskXB(�)�XaBk = O((�(�) +p�)2):It can be shown with an analogous argument thatkZN (�)� ZaNk = O((�(�) +p�)2):The proof is complete. Q.E.D.Lemma 3.4 only provides a rough sketch of the convergence behavior of the central path as�! 0. Our goal is to characterize this convergence behavior more precisely.Theorem 3.1 Let � 2 (0; 1). There holdsXB(�) = �(1); ZN (�) = �(1); XN (�) = �(�); ZB(�) = �(�); (3:11)and kX(�)�Xak = O(�); kZ(�)� Zak = O(�): (3:12)10



Proof. The estimate (3.11) is already known from Lemma 3.2, so we only need to prove (3.12).By Lemma 3.3 and Lemma 3.4, it is su�cient to show thatkXU (�)k = O(�):Suppose to the contrary that there exists a sequencef(X(�k); Z(�k)) : k = 1; 2; :::gwith kXU (�k)k > 0 for all k and limk!1 �kkXU (�k)k = 0:To simplify notations, we introduce�xB(1) := limk!1 �kkXU (�k)k2 (XB(�k)�XaB): (3:13)(By virtue of Lemma 3.4, we can assume the above limit exists because otherwise we can alwayspass onto a convergent subsequence.) From Lemma 3.3 it follows thatlimk!1 �kkXU (�k)k2 (X(�k)�Xa) = " �xB(1) 00 0 # :Since for each Z 2 FD we have(X(�k)�Xa) ? (Z � Za) for k = 1; 2; . . .it follows �xB(1) � ZB = �xB(1) � (ZB � ZaB) = 0:We know from Lemma 3.2 that ZB(�k) = �(�k) so that the above relation implieslimk!1 (XB(�k)�XaB) � ZB(�k)kXU (�k)k2 = 0: (3:14)Analogously, it can be shown thatlimk!1 XN (�k) � (ZN (�k)� ZaN )kXU (�k)k2 = 0: (3:15)As (X(�k)�Xa) ? (Z(�k)� Za), we have from (3.14) and (3.15) that0 = limk!1 (X(�k)�Xa) � (Z(�k)� Za)kXU (�k)k2= limk!1 2XU (�k) � ZU (�k)kXU (�k)k2 ;11



which clearly contradicts (3.2). The proof is complete. Q.E.D.Theorem 3.1 characterizes completely the limiting behavior of the primal-dual central path as� ! 0. We point out that this limiting behavior was well understood in the context of linearprogramming and the monotone horizontal linear complementarity problem, see Megiddo [7] andMonteiro and Tsuchiya [10] respectively. Notice that under a Nondegeneracy Assumption (i.e.,the Jacobian of the nonlinear system (2.2) is nonsingular at (Xa; Za)), the estimates (3.12) followimmediately from the application of the classical inverse function theorem. Thus, the real con-tribution of Theorem 3.1 lies in establishing these estimates in the absence of the nondegeneracyassumption.It is known that in the case of linear programming the proof of quadratic convergence ofpredictor-corrector interior point algorithms required an error bound result of Ho�man. This errorbound states that the distance from any vector x 2 <n to a polyhedral set P := fx : Ax � ag canbe bounded in terms of the \amount of constraint violation" at x, namely k[Ax� a]+k, where [�]+denotes the positive part of a vector. More precisely, Ho�man's error bound ([3]) states that thereexists some constant � > 0 such thatdist(x;P) � �k[Ax� a]+k; 8x 2 <n:Unfortunately, this error bound no longer holds for linear systems over the cone of positive semidef-inite matrices (see the example below). In fact, much of the di�culty in the local analysis of interiorpoint algorithms for SDP can be attributed to this lack of Ho�man's error bound result (see theanalysis of [4, 12]). Speci�cally, without such error bound result, it is di�cult to estimate thedistance from the current iterates to the optimal solution set. In essence, what we have establishedin Theorem 3.1 is an error bound result along the central path. In other words, although Ho�mantype error bound cannot hold over the entire feasible set of (P), it nevertheless still holds true onthe restricted region \near the central path". One consequence of this restriction to the centralpath is that we will need to require the iterates stay \su�ciently close" to the central path in orderto establish the superlinear convergence of the algorithm. Such a requirement on the iterates wascalled \tangential convergence to the optimal solution set" by Kojima et. al. [4]. Notice thatthe analysis in this reference required the additional nondegeneracy assumption to establish theirsuperlinear convergence result. In contrast, this assumption is no longer needed in our analysisbecause Theorem 3.1 holds without the nondegeneracy assumption.Example. Consider the following linear system over the cone of positive semide�nite matrices in<2�2: X11 = 0; X22 = 1; X = " X11 X12X21 X22 # � 0:12



Clearly, there is exactly one solution X� to the above linear system, namelyX� := " 0 00 1 # :For each � > 0, consider the matrix X(�) := " �2 �� 1 # :Clearly, X(�) � 0. The amount of constraint violation is equal to �2. However, the distancekX(�) �X�kF = �(�). Thus, there cannot exist some �xed � > 0 such that kX(�) �X�k � ��2,for all � > 0. Instead, we have in this case kX(�) �X�k � � jX11(�)j1=2; that is, the error boundholds with an exponent of 1=2.4 A polynomial predictor-corrector algorithmWe begin by summarizing some of the results on V -space path following for SDP that were obtainedin [13].Let (X;Z) 2 FP �FD with X � 0; Z � 0. Then, there exists a unique positive de�nite matrixD 2 S++ such that ([13, Lemma 2.1]) X = DZD: (4:1)Let L be such that LLT = D; (4:2)and let V := LTZL. It follows that V = L�1XL�T = LTZL:The quantity �(X;Z) := I � 1�L�1XZLFserves as a centrality measure, with � := X �Z=n. It is easy to see that the central path is the set ofsolutions (X;Z) with �(X;Z) = 0 or, equivalently, those solutions for which V = p�I. Moreover,we have (1 + �(X;Z))I � 1�V 2 � (1� �(X;Z))I: (4:3)In V -space path following, we want to drive the V -iterates towards the origin by Newton's method,in such a way that the iterates reside in a cone around the identity matrix. Before stating theNewton equation, we need to introduce the linear space A(L),A(L) := SpanfLTA(i)L : i = 1; 2; . . . ;mg13



and its orthoplement in SA?(L) := f�X 2 S : (LTA(i)L) ��X = 0 for i = 1; 2; . . . ;mg:A Newton direction for obtaining a (�)-center, for some  2 [0; 1], is the solution (�X;�Z) ofthe following system of linear equations ([13], equation (17)):8<: �X +D�ZD = �Z�1 �X�X 2 A?(I); �Z 2 A(I): (4:4)For  = 0, we denote the solution of (4.4) by (�Xp;�Zp), the predictor direction. For  = 1, thesolution is denoted by (�Xc;�Zc), the corrector direction. If we let� �X := L�1�XL�T ; � �Z := LT�ZL;then we can rewrite (4.4) as 8<: � �X +� �Z = �V �1 � V� �X 2 A?(L); � �Z 2 A(L):It follows from orthogonality that� �Xp2F + � �Zp2F = kV k2 = n�: (4:5)The corrector direction does not change the duality gap,(X +�Xc) � (Z +�Zc) = X � Z; (4:6)whereas (X + t�Xp) � (Z + t�Zp) = (1� t)X � Z; (4:7)for any t 2 <, see equation (16) of [13].
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Algorithm SDPGiven (X0; Z0) 2 FP �FD with �(X0; Z0) � 14 .Parameter � � (X0 � Z0)=n and positive integer r.Let k = 0.REPEAT (main iteration)Let X = Xk; Z = Zk and �k = X � Z=n.Predictor: compute (�Xp;�Zp) from (4.4) with  = 0.Compute the largest step tk such that for all 0 � t � tk there holds�(X + t�Xp; Z + t�Zp) � 1=2and�(X + t�Xp; Z + t�Zp) � ((1 � t)�k=�)2�r .Let X 0 := X + tk�Xp; Z 0 := Z + tk�Zp and �k = min(14 ; (1� tk)�k=�).Corrector:FOR i = 1 to r DOLet X = X 0; Z = Z 0.IF �(X;Z) � �k THEN exit loop.Compute (�Xc;�Zc) from (4.4) with  = 1.Set X 0 = X +�Xc; Z 0 = Z +�Zc.END FORXk+1 = X 0; Zk+1 = Z 0Set k = k + 1.UNTIL convergence.Interestingly, each corrector step reduces �(�; �) at a quadratic rate as stated in the followingresult:Lemma 4.1 If �(X;Z) � 12 then�(X +�Xc; Z +�Zc) � �(X;Z)2:Proof. It follows from Lemma 4.5 in [13] thatX +�Xc � 0; Z +�Zc � 0:Hence, the desired result is an immediate consequence of Lemma 4.4 in [13]. Q.E.D.15



Also, it follows from (4.6), (4.7) and Lemma 4.1 that for any k > 1�(Xk; Zk) � �k�1� (1� tk�1)�k�1=�= �k=� = O(�k): (4.8)Furthermore, if �k = 1=4, then only one corrector step (i.e., r = 1) is needed to recenter the iterate(see [13]). In other words, the iterations of Algorithm SDP are identical to that of the primal-dualpredictor-corrector algorithm of [13], for all k with�k� � 14 :We can therefore conclude from Theorem 5.2 in [13] that the algorithm yields ��k � �4 for �k =O(pn log(�0=�)). Thus, we have the following polynomial complexity result.Theorem 4.1 For each 0 < � < (X0 � Z0)=n, Algorithm SDP will generate an iterate (Xk; Zk) 2FP �FD with Xk � Zk � � in at most O(pn log(�0=�)) predictor-corrector steps.In addition to having polynomial complexity, Algorithm SDP also possesses a superlinear rateof convergence. We prove this in the next section.5 Convergence analysisWe begin by establishing the global convergence of Algorithm SDP. Notice that Algorithm SDPchooses the predictor step length tk to be the largest step such that for all 0 � t � tk there holds�(X + t�Xp; Z + t�Zp) � min�12 ; ((1 � t)�=�)2�r� : (5:1)It was shown in [13] (equation (21) therein) that(1� t)�(X + t�Xp; Z + t�Zp) � (1� t)�(X;Z) + t2 � �Xp��ZpF =�: (5:2)Combining (5.1) and (5.2), we can easily establish the global convergence of Algorithm SDP.Theorem 5.1 There holds limk!1�k = 0;i.e. Algorithm SDP is globally convergent. 16



Proof. Due to (4.7), �0; �1; . . . is a monotone decreasing sequence. Hence, the sequence has alimit. Suppose contrary to the statement of the lemma that�1 = limk!1�k; �1 > 0: (5:3)Then, we obtain from (4.5), (5.1) and (5.2) that tk = �(1). Together with (4.7) this implies that1� �k+1�k = �(1), which contradicts (5.3). Q.E.D.Next we proceed to establish the superlinear convergence of Algorithm SDP. In light of (4.7),we only need to show that the predictor step length tk approaches to 1. Hence we are led to boundtk from below. For this purpose, we note from (5.2) that, for t 2 (0; 1),�(X + t�Xp; Z + t�Zp) � �(X;Z) + 11� t � �Xp� �ZpF =�: (5:4)Thus, if we can properly bound � �Xp� �ZpF , then we will obtain a lower bound on the predictorstep length tk.To begin, let us consider L� with L�LT� = 1p�X(�):Remark that p�I = L�1� X(�)L�T� = LT�Z(�)L�:Now de�ne the predictor direction starting from the solution (X(�); Z(�)) on the central path asfollows: 8<: �X̂p(�) +�Ẑp(�) = �p�I;�X̂p(�) 2 A?(L�); �Ẑp(�) 2 A(L�):Let (X̂a; Ẑa) be the analytic center of the optimal solution set in the L�-transformed space,X̂a := L�1� XaL�T� ; Ẑa := LT�ZaL�:We will show in Lemma 5.1 below that �X̂p(�) is close to the optimal step X̂a �p�I for small �.We will bound the di�erence between �X̂p(�) and � �Xp afterwards.Lemma 5.1 There holdsp�I +�X̂p(�)� X̂a+ p�I +�Ẑp(�)� Ẑa = O(�3=2):
17



Proof. Since X̂aẐa = L�1� XaZaL� = 0;it follows (p�I � X̂a)(p�I � Ẑa) = (p�I � Ẑa)(p�I � X̂a):Therefore, the matrix (p�I � X̂a)(p�I � Ẑa), or equivalently, the matrixL�1� (X(�) �Xa)(Z(�)� Za)L�;is symmetric. By the property of F -norm, we obtain(p�I � X̂a)(p�I � Ẑa)F = L�1� (X(�)�Xa)(Z(�)� Za)L�F= k(X(�)�Xa)(Z(�)� Za)kF= O(�2); (5.5)where the last step follows from Theorem 3.1. Now since X̂aẐa = 0 and �X̂p(�)+�Ẑp(�) = �p�I,we have (X̂a �p�I)(Ẑa �p�I) = �I �p�(X̂a + Ẑa)= p�(p�I +�X̂p(�)� X̂a)+p�(p�I +�Ẑp(�)� Ẑa):As p�I +�X̂p(�)� X̂a 2 A?(L�); p�I +�Ẑp(�)� Ẑa 2 A(L�);it follows that p�I +�X̂p(�)� X̂a2F + p�I +�Ẑp(�)� Ẑa2F= 1� (X̂a �p�I)(Ẑa �p�I)2F = O(�3);where last step is due to (5.5). This proves the lemma. Q.E.D.Lemma 5.1 applies only to (�X̂p(�);�Ẑp(�)), namely the predictor directions for the pointslocated exactly on the central path. What we need is a similar bound for (� �Xp;� �Zp) (obtainedat points close to the central path). This leads us to bound the di�erence �X̂p(�)�� �Xp. Indeed,our next goal is to show (Lemma 5.5) that�X̂p(�)�� �XpF = O(p��(X;Z)):We prove this bound by a sequence of lemmas. Let D be given by (4.1) and de�ne�D := L�1� DL�T� ;18



so that �D = I if X = X(�) and Z = Z(�). Choose L byL := L� �D1=2;and notice that indeed LLT = D, as stipulated by (4.2).Lemma 5.2 Suppose �(X;Z) � 12 . There holdsL�1(X(�) �X)L�T+ LT (Z(�)� Z)L = O(p��(X;Z)):Proof. Let �x(�) := L�1(X(�) �X)L�T ; �z(�) := LT (Z(�)� Z)L:Clearly, �x(�) and �z(�) are symmetric and �x(�) ? �z(�). Let � denote the smallest eigenvalueof �x(�) + �z(�), i.e. � = argmaxf�� : �x(�) + �z(�) � ��Ig:Since X � Z = X(�) � Z(�) = n�, we havetr (Z(X(�)�X) +X(Z(�)� Z)) = tr ((X(�) �X)Z +X(Z(�)� Z))= �tr ((X(�) �X)(Z(�)� Z))� tr XZ + tr X(�)Z(�)= 0;where the last step follows from (X(�)�X) ? (Z(�)�Z). Recall that V = L�1XL�T = LTZL.Consider tr (V (�x(�) + �z(�))) = tr (LTZ(X(�)�X)L�T + L�1X(Z(�)� Z)L)= tr (Z(X(�) �X) +X(Z(�)� Z))= 0:By (4.3), the matrix V is symmetric positive de�nite and V = �(1). Diagonalize the symmetricmatrix �x(�) + �z(�) = QT�Q and consider0 = tr (V (�x(�) + �z(�))) = tr (V QT�Q) = tr (QVQT�):Since QVQT = �(1), the diagonal entries of QVQT must be �(1). Therefore, the precedingequation implies that the diagonal matrix � must have a nonpositive eigenvalue and that its diagonalentries are of same order of magnitude. In other words, � � 0 and k�k = O(j�j). This furtherimplies k�x(�) + �z(�)k = O(j�j): (5:6)19



By the de�nition of the central path, we have�I = (V +�x(�))(V +�z(�))= �V + �x(�) + �z(�)2 + �x(�)��z(�)2 ��V + �x(�) + �z(�)2 � �x(�)��z(�)2 � :Now using the fact that the above matrix is symmetric, it follows that�I = �V + �x(�) + �z(�)2 �2 � 14 (�x(�)��z(�))2and therefore, V + �x(�) + �z(�)2 � p�I:Using (4.3), we obtain j�j = O(p��(X;Z)):Combining this with (5.6) and using the fact that �x(�) ? �z(�), we havek�x(�)k+ k�z(�)k = O(j�j) = O(p��(X;Z)): Q.E.D.Lemma 5.3 Suppose �(X;Z) � 1=2. Then there holds �D � I = O(�(X;Z)):Proof. Notice that L�1� XL�T� = p�I + L�1� (X �X(�))L�T�and LT�ZL� = p�I + LT� (Z � Z(�))L�:Now using L�1� XL�T� = �D(LT�ZL�) �D;we have, by pre- and post-multiplying the above two equations with �D�1=2 and rearranging terms,p�( �D�1 � �D) = L�1(X(�) �X)L�T + LT (Z � Z(�))L:Together with Lemma 5.2, this implies �D = �(1) and �D � I = O(�(X;Z)):20



The lemma is proved. Q.E.D.Now, let �X̂p := �D1=2� �Xp �D1=2; �Ẑp := �D�1=2��Zp �D�1=2:Notice that (�X̂p;�Ẑp) 2 A?(L�)�A(L�).Lemma 5.4 We have �X̂p �� �Xp+ �Ẑp �� �Zp = O(p��(X;Z)):Proof. We have�X̂p = �D1=2� �Xp �D1=2 = � �Xp + ( �D1=2 � I)� �Xp �D1=2 +� �Xp( �D1=2 � I):Now using Lemma 5.3 and (4.5), we see that�X̂p �� �Xp = O(p��(X;Z)):It can be shown in an analogous way that�Ẑp �� �Zp = O(p��(X;Z)): Q.E.D.Now we are ready to bound the di�erence between �X̂p(�) and � �Xp.Lemma 5.5 Suppose �(X;Z) � 1=2. We have�X̂p(�)�� �Xp+ �Ẑp(�)�� �Zp = O(p��(X;Z)):Proof. By de�nition of the predictor directions, we have�X̂p(�) + �Ẑp(�) = �p�Iand � �Xp +� �Zp = �V:Combining these two relations yields�X̂p(�)��X̂p +�Ẑp(�)��Ẑp = V �p�I +� �Xp ��X̂p +� �Zp ��Ẑp:21



Now using Lemma 5.4 and using the fact thatkV �p�Ik = k(V +p�I)�1(V 2 � �I)k � p��(X;Z);we obtain �X̂p(�)��X̂p +�Ẑp(�)��Ẑp = O(p��(X;Z)):Since (�X̂p(�) � �X̂p) ? (�Ẑp(�) � �Ẑp), the lemma follows from the above relation, afterapplying Lemma 5.4 once more. Q.E.D.Combining (5.5), Lemma 5.1 and Lemma 5.5 we can now estimate the order of � �Xp� �Zp,and hence, using (5.4), we can estimate the predictor step length tk.Lemma 5.6 We have � �Xp� �Zp = O(�(�+ �(X;Z))):Proof. Combining Lemma 5.5 with Lemma 5.1, we havep�I +� �Xp � X̂a+ p�I +� �Zp � Ẑa = O(p�(�+ �(X;Z))); (5:7)so that, using (4.5), p�I � X̂a+ p�I � Ẑa = O(p�): (5:8)Moreover, � �Xp� �Zp = (X̂a �p�I)(Ẑa �p�I) + (X̂a �p�I)(p�I +� �Zp � Ẑa)+(p�I +� �Xp � X̂a)� �Zp:Applying (5.5), (5.7), (5.8) and (4.5) to the above relation yields� �Xp� �Zp = O(�(�+ �(X;Z))): Q.E.D.Theorem 5.2 The iterates (Xk; Zk) generated by Algorithm SDP converge to (Xa; Za) superlin-early with order 2=(1 + 2�r). The duality gap �k converges to zero at the same rate.Proof. From (5.4) we see that for any t � 0 satisfying�k�1 + � �Xp� �ZpF =�k � (1� t)((1 � t)�k=�)2�r ;22



there holds �(X + t�Xp; Z + t�Zp) � ((1� t)�=�)1=2r :This implies using (4.8) and Lemma 5.6 that(1� tk)1+2�r � (�k�1 + � �Xp� �ZpF =�k)(�k=�)�2�r= O(�1�2�rk );so that �k+1 = (1� tk)�k = O(�2=(1+2�r)k ):This shows that the duality gap converges to zero superlinearly with order 2=(1 + 2�r). It remainsto prove that the iterates converge to the analytic center with the same order. Notice thatkXk �X(�k)kF � kLTLk � kL�1(Xk �X(�k))L�T kF : (5:9)However, using the de�nition of F-norm and applying Lemma 5.3,kLTLkF = kLLT kF = kL�k �DLT�kkF = O(kL�kLT�kkF ):Recall that L�kLT�k = 1p�kX(�k) by de�nition, so that using Lemma 3.1,kLTLkF = O( 1p�k ): (5:10)Combining (5.9) and (5.10) with Lemma 5.2, we havekXk �X(�k)kF = O( 1p�k kL�1(Xk �X(�k))L�T kF ) = O(�(Xk; Zk)) = O(�k):Hence, we obtain from Theorem 3.1 thatkXk �XakF = O(�k):Similarly, it can be shown that kZk � ZakF = O(�k):This shows that the iterates converge to the analytic center R-superlinearly, with the same orderas �k converges to zero. Q.E.D.6 ConclusionsWe have shown the global and superlinear convergence of the predictor-corrector algorithm SDP,assuming only the existence of a strictly complementary solution pair. The local convergence anal-ysis is based on Theorem 3.1, which states that kX(�)�Xak+ kZ(�)�Zak = O(�). By enforcing23
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