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Abstract 

A precise estimation of the tail shape of forex returns is of critical importance for proper 
risk assessment. We improve upon the efficiency of conventional estimators that rely on a 
first order expansion of the tail shape, by using the second order expansion. Here we 
advocate a moments estimator for the second term. The paper uses both Monte Carlo 
simulations and the high frequency foreign exchange recordings collected by the Olsen 
corporation to illustrate the technique. © 1997 Elsevier Science B.V. 

1. Outliers, risk and high frequency benefits 

To int roduce the subject  we  cons ider  two problems in the analysis o f  risk. The  

board o f  a pens ion  fund has to decide  over  the m a x i m u m  percentage  o f  the 

managed  funds that can be al located to the most  r isky inves tment  categories  
(equit ies,  fore ign currency and derivat ives) .  The  quotas  are a funct ion of  the 

so lvency  and l iquidi ty  requi rements  o f  the pens ion  fund; the fund must  be able to 

pay out every  period. Specif ical ly ,  the board  is concerned  about  a single ex t remely  
nega t ive  return that wipes  out  so m u c h  capital  that the fund becomes  i l l iquid or  

insolvent .  A very  s imilar  p rob lem concerns  the al locat ion o f  upper  l imits  on open 
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positions to foreign currency dealers by the treasurers of the forex dealing room of  
an international bank. The trading limits are a function of the probabili ty p on a 
single negative return so large that the solvency of  the bank is endangered. These 
problems can be formulated in a static or dynamic fashion. In the static version the 
unconditional distribution is used and the wealth levels are updated. Accurate 
assessment of  the value of  p requires as much data as possible, because the 
extremes are rare by their very nature. The Olsen data set is thus conducive to 
estimating the values of  p accurately. 

Let X i denote the single period return on a risky investment 2 and define the 
minimum return, Xm~ n, in a single sample of  n periods as 

Zmi n = min{ X 1 . . . . .  Xn}. (1)  
i 

Suppose the management  specifies a critical loss level, s < 0, which represents 
the maximum loss that can be incurred without running into solvency problems. A 
simple way to determine the maximum allowable investment I, is to take 
I = s / ( X m i n )  assuming that gmi  n < 0. In fact this worst case analysis is imple- 
mented by some well known banks. The procedure is, however, l imited and leaves 
the associated uncertainty rather implicit. It is l imited because the focus is solely 
on the worst in sample realization, thereby neglecting the probabili ty that Xn+ ~ < 
Xmi n. It is like building a dike to the level of  the highest realized flood level, 
whereas one might want to safeguard against worse outcomes. And the procedure 
leaves implicit  the associated probabil i ty on outcomes below Xmi n. Whereas the 
management  might want to choose from probabil i ty-loss combinations (p, Xp) by 
considering the trade-off that exists between p and xp. Hence a table of (p, Xp) 
combinations could enhance the decision process. Moreover,  using the lowest 
order statistics Xmm is typically not a very reliable estimate if  the true quantile, 
Xp, associated with p = l/n, since this estimator has a very high variance. 

To remedy the two deficiencies of the simple procedure, the management  is 
asked to explicit ly impute a crash probabili ty p on outcomes worse than s. The 
level p signifies the insolvency risk the management  deems 'acceptable ' .  Presum- 
ably, this probabili ty is set very low; most l ikely it is taken to be p << l/n, i.e. far 
outside the sample. In this case one has to find ways to extrapolate the empirical  
distribution of  the minimum order statistic, in combination with some extra 
conditions, to construct a list of probabi l i ty-quant i le  combinations ( p ,  xp) such 
that 

Pr(Xmi n <_Xp} =p when p < 1/n. (2)  

Once Xp is determined, the trading limit I directly follows from I =  s/(Xp). 

2 Throughout the paper we develop the theory by assuming that X i a re  i.i.d. Nevertheless, most 
results survive under the weaker assumptions of stationarity. For the particular revelevant case of 
ARCH process, see De Haan et al. (1989). 
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Before we continue with the econometric and data aspects of  the problem, it is 
useful to point out the relation with the literature. In De Haan et al. (1994) the 
concern about extreme downside risk as formulated above is related to the Roy 
(1952) safety first criterion. A full blown portfolio selection problem for this case 
is worked out in Jansen et al. (1995) by using diversification arguments of  Arzac 
and Bawa (1977). 

One might also wonder why the management  is just  concerned about a single 
bad draw, while a series of  consecutive smaller negative returns may add up to the 
same highly negative result. The reason why this is of  lesser concern, is that 
during a more gradual decline of  the market  the exposure can be reduced in the 
meantime. If  the exposure is reduced, the loss level is reduced as well, given a 
certain return level. This is very similar to the philosophy behind the marking-to- 
market  daily settlement procedure on futures markets. In this way the clearing 
house only runs the risk on a party not being able to meet its margin call for a 
single day, rather than letting the losses accumulate until the contract expires. 
Thus it is straightforward to implement  this static risk of  loss approach in a 
dynamic fashion. 

How do we benefit from the magnificent data set made available by Olsen and 
Associates? An immediate benefit  of  the highest frequency data is the gain in 
efficiency in constructing the negative outliers. Because 

X --}-X 2 Xn_ 1 q-Xn ) 
min{ X l, X 2 . . . . .  X , _ , ,  X,} < min 2 . . . . .  -2 (3) 

the higher frequency data are more informative about the tail shape of  the return 
distribution. For example,  if  X i are stable distributed, it follows from their 
invariance under convolution that the higher frequency recordings increase the 
efficiency of  the tail shape estimators. A more detailed analysis of  this claim is 
available in Dacorogna et al. (1995). 

A less obvious but rather important gain from this data set is that its sheer size 
permits estimation methods which are just  not feasible on the typical size of  the 
more common financial data sets. In order to construct the probabili t ies or 
quantiles from Eq. (2) one relies on the limit law for the minimum. The reason is 
obvious: one does not exactly know which distribution generates the data. The 
limit law, however,  is only an approximation. In general the estimates will 
therefore be biased. In fact, it can be shown that it is optimal,  according to the 
MSE criterion, to have the bias and variance vanish at the same rate as n --+ ~.  
This rate is a non-linear function of  n and m, where m is the number of  lowest 
order statistics that are used to estimate Eq. (2). To determine the optimal number 
m in the MSE sense, one needs an estimate of  the bias. Estimating the bias is a 
nontrivial exercise, however,  because the linearity of  the estimator defies direct 
use of  a conventional procedure like the bootstrap (see e.g. Shao and Ti, 1995, p. 
14). 
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To salvage this problem Hall (1990) suggested to use subsample bootstraps. 
This idea exploits the fact that the bias is nonlinear in the sample size by 
comparing bootstrap estimates from subsamples to a full sample estimate and then 
extracting the bias if the subsamples have size n I = n ~, y < 1. In the comparison 
the true values cancel, and the bias term from the full sample estimate can be 
ignored because it has an order of magnitude smaller than the bias term from the 
subsample estimate. From this, the optimal m can be estimated. Details of  the 
subsample bootstrap procedure are given in the next section, or see Hall (1990). 

To be able to implement such a procedure one needs to construct bootstrap 
subsamples which are magnitudes smaller than the full sample. On the other hand, 
because the outliers are rare by their very nature, one needs subsamples which are 
still quite sizable. The pay-off of the Olsen and Associates data set is, that it 
allows one to sensibly exploit the subsample bootstrap method. Conventional 
financial data sets are just too small for this procedure, even though they may be 
large compared to the usual economic data sets. 

As of  today, the Hall (1990) subsample bootstrap is the only known procedure 
to determine the optimal number of order statistics m that have to be taken into 
account in Eq. (2). It was first applied in economics by Dacorogna et al. (1995). 
The method as advocated by Hall, nevertheless, still has one deficiency. It 
presumes a very particular form of the bias term. The theoretical innovation of this 
paper consists in relaxing this assumption by using a more general form. This does 
not come without a cost, because it necessitates estimating an extra parameter /3 
which determines the asymptotic behavior of the second order term of the law in 
Eq. (2) as x--* - ~ .  We employ a novel estimator of /3 that is consistent. The 
estimator is based on recent results from Danfelsson et al. (1996). Again, the large 
size of  the data set is crucial for obtaining decent estimates of /3 because the 
estimation relies on being able to separate the first and second order terms. 

2. Extremal theory 

The presentation of  the theory will be concise. An excellent reference on 
extremal theory is the book by Leadbetter et al. (1983). Estimation issues are dealt 
with in Dacorogua et al. (1995) and Dan~elsson et al. (1996). An introductory 
account is given in De Vries (1994). Without loss of  generality, this section 
considers the problem of the distribution of the maximum order statistic. We start 
from the well known fact that forex return distributions are fat tailed. Focusing on 
the upper tall by taking -X,,~,I, the class of  fat tailed distributions is characterized 
by the regular variation at infinity property 

lim = x-~  
' ~ t  1 --- F--(-~ ' (4) 
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where c~ > 0 and F(x)  is any fat tailed distribution. Under some mild extra 
conditions this class admits the following second order expansion for large x: 

F ( x )  = 1 - - a x  ~[1 +bx  ~] ,  (5) 

where a > 0, b ~,92', /3 > 0. The case /3 = 0 constitutes the expansion F(x)  = 1 - 
ax-a[1  + b log x]. As is shown in De Haan and Stadtmuller (1996), these are the 
only two second order expansions with non-trivial properties; e.g. a second order 
term like e x p ( - x )  converges uninterestingly rapidly. Note that Hall (1990) 
imposes the more stringent condition of  c~ =/3.  This covers certain distributions, 
like part of  the stable laws and the type II extreme value distribution. But it does 
not apply to e.g. the Student-t class which is often used in financial time series 
analysis. For the Student-t class the expansion in Eq. (5) is valid, though, with ce 
equal to the degrees of  freedom v and 13 = 2. 

Let p > 1/n,  but close to 1/n,  and t << l / n ,  where n is the sample size and 
p, t denote exceedance probabilities. The problem is to estimate the quantile x t by 
using the empirical counterpart of  the in sample quantile xp, By definition and 
using the expansion Eq. (5): 

p=aXp~[1  +bxp ~] and t = a x t a [ l  + b x :  ~] (6) 

Division of  p by t and rearranging gives 

( p , 1 / ~ ( l + b x ~ )  '/~ 
Xt ~--- XP~ 71  1 + bxp ~ (7) 

Ignore the second order term in Eq. (7). Estimate xp from Eq. (2) by the 
descending order statistic X(m ) i.e. X(I ) > .. .  > X(m ) >_ ...  > X(.~ for which m / n  
is closest to p. Replace p by m/n .  (The choice of  m is discussed below.) The 
extreme quantile estimator now reads: 

This estimator is still conditional on the tail shape parameter c~. 
The ce can be estimated by the Hill procedure as follows. For the largest in 

sample quantiles xq > xp, say, the second order term in Eq. (5) contributes little. 
Hence the Pareto distribution 

G(xq)  = l - a x q  ~', x q > x  v (9) 

can be used as a first order approximation to the tail of  the true distribution; recall 
Eq. (4). The maximum likelihood estimator of  a conditional on xq > xp is easily 
found from the log-density 

1 1 m-l  X( i..__~) 

m I =~1 log (10) 
-- i= X(m) ' 
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where again X(m ) is used to approximate xp and the X~g) are the empirical 
counterparts of  xq. The estimator 1 /& is named after Hill. 

A generic and long standing problem in the area is the determination of  the 
number m of  extreme values that should be used in the estimation procedures. 
Recently Hall (1990) has proposed the solution by means of a subsample 
bootstrap. We outline the idea. It is known that the estimators 2 t and 1 /& are 
asymptotically normal (see e.g. Goldie and Smith, 1987). From this the asymptotic 
mean squared error (AMSE) can be calculated. One can show that it is optimal, in 
the AMSE sense, to have the bias and variance vanish at the same rate. This 
optimal rate determines the optimal number of order statistics as 

m* =cn 2~/(213+~), c > 0  (11) 

where c depends on the parameters a, b, c~, /3. For example in case of the 
student-t class when c~ = u 

/ (  ( u2uq-1)2)] 2 t , + 2  

To determine m* empirically, one might try to minimize bootstrap estimates of  
the MSE. This method fails, however, because the estimator 1 / ~  is log-l inear  in 
the observations. The bootstrap therefore calculates the bias as essentially zero. 
This is unfortunate because the bias and variance have to disappear at the same 
rate for the AMSE to be minimal. But the bias and MSE are nonlinear in the 
sample size. Hall (1990) therefore suggested to employ subsamples of  order 
n~ = n z', 7 < 1 to calculate bootstrap estimates of 1 / a  on these subsamples and to 
calculate the mean squared deviation of  the subsample estimates from an initial 
full sample estimate 1/o~ 0. The initial estimate of c% is obtained by specifying an 
arbitrary low threshold level, say 1% of n and using Eq. (10) to estimate ~0. This 
can be further improved by iterating on the bootstrap several times. This yields a 
proper estimate of  the MSE as it comprises both a variance and a bias part. The 
bias part is retained in the subsamples bootstrap estimate because the biases of  the 
initial full sample estimate and the subsample estimate do not cancel. The former 
is of  small order in comparison to the latter due to the fact that n t < n. Hence by 
varying m 1 the subsample optimal m 7 can be estimated by minimizing the 
subsample MSE. Using Eq. (11), the full sample m* is then found from 

m* =ml* - -  (12) 
n I 

But this requires knowledge of the exponent 213/(2/3 + a) .  Hall (1990) then 
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argues that /3 = a is a plausible restriction because several known distributions 
satisfy this condition. But, examples like the Student-t, where a is the degrees of 
freedom and /3 = 2 show that this restriction needs not hold in models that are 
relevant for modelling of asset returns. Thus the restriction /3 = a makes the 
bootstrap procedure non robust. This leaves the whole subsample bootstrap 
endeavor in an awkward position, because it appears that the problem of not 
knowing rn* has been replaced by the problem of not knowing /3. We have to 
face the problem of estimating /3 3 

In Danielsson et al. (1996) it is argued that the estimation of the tail parameter 
/3 of the second order term in the expansion Eq. (5) is not straightforward. 
Nevertheless, they develop a nonlinear estimator which is consistent. The proce- 
dure is as follows. The first step is to obtain an estimate of mj* through the 
subsample bootstrap procedure of Hall (1990). It is easily seen from the arguments 
in Goldie and Smith (1987) that this yields a consistent estimate of ml* (as n ~ w) 
regardless of whether /3 = c~ or not. In the second and third steps consistent 
estimates of a and /3 are obtained from the subsamples. The estimate for 1 / a  is 
given in Eq. (10), where in theory m = m ~ -  1 so that m - ~  and 
( m / n )  213/(2~+'~) ~ 0 as n ~ ~. By using less order statistics than ml*, 1,/~ and 
is consistent, see Hall (1982, th. 2). To introduce the estimator for /3, step 3, we 
need the empirical log-moments. 

The j th  empirical log-moment is defined as follows: 

1 m - l [  X ]J.  
/~/(j) ~ /, (i) 

- 2 _ , / , O g x - ~ ,  (13 )  1 m 1 i= 1 [. (m) 

Note that Eq. (10) is the special case of Eq. (13) with j = 1. Define A to be the 
statistic: 

rT, t(1) _ ~(2)/2 if/O) 
k = (14) 

t~t(3)/3/~/(2) -- ff/(4)/4r~t(3) 

Dan~elsson et al. (1996) propose the following estimator for /3: 

/3 = ~(x/A- - 1). (15) 

Here & is the inverse of 1/6~ from the second step. In computing the ~(J), j = 1, 
2, 3, 4 where in theory m = m~* + 1 is taken. Note that there is a difference 
between the r~ (1) used here and 1 /& and from the previous step 4. It signifies that 

3 A referee gave us the interesting suggestion that the exponent 2/(2 + a //3) might be estimated 
from calculating an m~ from a second bootstrap on an even further reduced subsample size 
n 2 < n 1 < n, and using rn~/m~ to estimate the exponent. We leave for future research to investigate 
how the further sample size reduction affects the efficiency, and how this procedure compares with the 
method used in this paper. 

4 In the results presented in this paper we set m = rn *. 



248 J. Danlelsson, C.G. de Vries / Journal q#Empirical Finance 4 (1997) 241-257 

m / n  --* O, while ( m / n )  2~/~2~+~) ~ oo. With these rates, elementary integration 
shows, after linearizing the ratio, ffFJ)/jFn (.i ~), that as n ~ zc 

p l i m / j ~ - j _ . )  = - b / 3 a  j 2 ( a + / 3 ) - J .  

It is then easy to show that as m / n  ~ 0 while ( re~n)  2~/ (2~+~ ~ 

p l i m A =  - -  (16) 

and hence the estimator /3 in Eq. (15). Lastly, these subsample estimates for o~ 
and /3 are used in Eq. (12) to convert m I to m* and to estimate a by Eq. (10) 
taking m = m * .  By being able to estimate /3 and to break away from the 
restriction /3 = o~ in Eqs. (5) and (12), the estimation procedure gains in robust- 
ness. Section 3 evaluates this estimator by means of  a MonteCarlo experiment and 
it is applied to the Olsen and Associates data set. 

3. The value of large data sets 

In this section we first provide a simulation study that evaluates the Hill 
estimator 1, /~  and from Eq. (10), the second order index estimator/3 in Eq. (15), 
and the quantile estimator it in Eq. (8) with the iterated subsample bootstrap 
procedure. Finally, we apply these methods to the Olsen data set. 

3.1. Simulation study 

The distributions chosen for the Monte Carlo study were Student-t, extreme 
value type II, i.e. F ( x )  = e x p ( - x  ' )  and ARCH(l) .  The Student-t was simulated 
with respectively degrees of freedom 1, 5 and 11 and the extreme value distribu- 
tion was simulated with, respectively, degrees of  freedom 1 and 11. For both of 
these distributions the degrees of freedom equals the tail index. We also simulated 
from an ARCH(l )  process, by using normal innovations, an intercept of 0.1 in the 
variance equation and autoregressive coefficients with values 0.7 and 0.3, respec- 
tively. These values correspond to a theoretical tail index of  an ARCH process 
with values 3.17 and 8.36, respectively. The second order limit expansion Eq. (5) 
of  the stationary ARCH distribution is not known, but they are known for the 
Student-t and extreme value distributions. The theoretical /3 value for the 
Student-t is /3 = 2 and for the extreme value it is /3 = a.  On the basis of this 
second order expansion, the optimal m* can be calculated by Eq. (11). The 
parameters of  the Monte Carlo experiment are given in Table 1. The number of 
observations was set at 20,000 and each experiment was repeated 250 times. The 
results from the Monte Carlo experiments are reported in Tables 2 - 4  and box 
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Table 1 
Parameters of Monte Carlo experiment 

249 

No. of observations (n) 20,000 
No. of simulations (S) 250 
Subsample (n I ) 2000 
No. subsamples (NS) 1 O0 
Initial m value (m 0) 200 
Bootstrap iterations ( BI ) 4 

Table 2 
Iterative bootstrap, Student-q5 ) 

Iteration n o m i m * ~1  /31 ~A > 0 Exponent A 

1 4.05 39.07 81.34 3.90 0.99 80.74 0.31 2.1)9 
(0.28) (13,56) (35.60) (0.32) (0.73) (6.70) (0.11) (17.46) 

2 4.41 31.00 66.55 4.15 1.13 79.14 0.33 -3 .66  
(0.54) (17.29) (42.71) (0.51) (0.69) (6.46) (0.12) (64.11) 

3 4.58 29.43 62.63 4.23 1.18 78.37 0.33 1.27 
(0.76) (16,30) (39.48) (0.61) (0.72) (6.73) (0.12) (1.49) 

4 4.66 29.73 64.67 4.21 1.20 79.08 0.34 1.54 
(0.94) (17,15) (46.00) (0.59) (0.71) (6.53) (0.11) (3.72) 

True value 5 26 72 5 2 100 44 1.96 

Table 3 
Results, Student-t~5 ) 

c~ m * Xmax 3, 33,, A A > 0 #A > 0 (%) /3 

Mean 4.66 64.67 12.97 11.4 14.68 0.42 2.23 72 0.85 
S.E. (0.94) (46.00) (3.65) 11.53) (2.51) (14.78) (9.53) 4.55 
RMSE [1.00] [46.49] [4.05] [1.55] [3.42] [14.841 [9.5O] 4.68 
TRUE 5 72 11.18 11.18 14.01 1.96 1.96 2 

Table 4 
Tail index and quantile forecasting for simulated data 

Distribution function Tail index True q3n Quantile estimation 

S.E. RMSE q3, S.E. RMSE 

t(l)  1.01 (0.05) [0.05] 19099 19146 (5738) [5726] 
t(5) 4.66 (0.94) [1.00] 17.01 14.68 (2.51) [3.42] 
t( 11 ) 7.24 (1.52) [4.06] 6.71 7.20 (0.81 ) [0.95] 

Extreme(I) 1.00 (0.06) [0.06] 59999 62831 (19882) [20043] 
Extreme(l 1) 11.01 (0.65) [0.65] 2.72 2.72 (0.09) [0.09] 

ARCH (3.17) 3.13 (0.55) [0.55] 3.97 (0.99) 
ARCH (8.36) 6.74 (1.27) [2.06] 0.80 (0.10) 



250 J. Danielsson, C.G. de Vries / Journal of  Empirical Finance 4 (1997) 241-257 

Sludentt(1) Studentt(5) Studentl{11) 

°I 

II 
Fig. I. Box plots for alpha simulation estimates (Student-t). 

plots of  the c~ estimates are reported in Figs. 1-3 .  The box plot shows the median 
of  the data set, surrounded by a box that spans the center half of  the data set, i.e. 
from the lower to the upper quartile. The whiskers extend 1.5 times the inter-quar- 
tile range, with the values outside the whiskers denoted as outliers. 

In some samples the A statistic from Eq. (14) turned out to be negative. This is 
inherent to the usage of  a moments based procedure. When A < 0 Eq. (15) makes 
no sense. Given the stochastic nature of  /3, negative /3 's  when 0 < A < 1 are 
plausible and we use all cases where the /3 's  are negative as long as A was 
positive. 

Extreme(I) Extreme(11) 

o 

Fig. 2. Box plots for alpha simulation estimates (extreme). 
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ARCH(3.7) ARCH(8.36) 

m 
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Fig. 3. Box plots for alpha simulation estimates (ARCH). 

In Table 2 we report details of  the bootstrap procedure for the Student-t(5 ) 
simulation. Standard errors are in parenthesis. The first iteration is obtained by 
specifying the initial threshold level arbitrarily at m 0 = 1%. The estimate of  a 0 
clearly improves with the iterations, as can be seen in column 1. At the first 
iteration the value is 4.05 but it increases to 4.66 in the fourth iteration, however 
the standard error increases as well. These results are fairly typical, in that the 
estimates of  the tail index improve with iterations, but the standard error increases 
as well. The reason must be that at m* the bias and standard error are inversely 
related. In our experience, no further improvement can be expected beyond the 
fourth iterations in most cases. We report the bootstrap tail index, cr 1, in column 
four and the second order term, /31, in the fifth column. We see that both of  those 
estimates improve with iterations and are getting closer to their theoretical values. 
Only about 80 A's out of  100 are positive. 

The final result of  the simulation is reported in Table 3. The tail index estimate 
is 4.66 which has to be compared to the true value of  5. Our procedure predicts a 
value for the maximum order statistic in a sample of  20,000 as 11.4, which is 
close to the theoretical value. We regard this result as being close for the following 
reason. From the simulations the average value of  the maximum order statistic, 
Xmax, was 12.97 with standard error 3.65. The maximum order statistic is a simple 
estimate of  xj/n. But due to its large variance, it is clear that the extreme value 
method provides a considerable improvement. The out-of-sample prediction for 
the maximum order statistic on an imaginary sample of  size 60,000 is 14.68, 
compared with a theoretical value of  14.01. 

Table 4 reports summary results from simulations of  several distributions. We 
generated 250 samples of  size 20,000 for each distribution, and applied our 
procedure to the estimation of  the tail index, ~ and the out-of-sample quantiles, 
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c)3n, for an imaginary sample of  size 60,000. The a estimates for the Student-t 
improve with lower o~, the thicker the tail the better the estimates. In the case of  
the extreme value distribution, our method does quite well in estimating the tail 
index. For the ARCH distribution, we also find that the thicker the tail the better 
our method performs. For  the ARCH(~=3.17 ) we get an estimate of 3.13, but for 
A R C H ( ,  836) the estimate is only 6.74. The quantile forecasts for an imaginary 
sample of  60,000, c~3 n, or three times the original sample size, are in all cases 
close to the theoretical values, c~3,, However,  the standard error and root mean 
squared error are high, especially for the thick tailed data sets, the Student-t(1 ) and 
extreme(1 ). The theoretical quantiles are not known for the ARCH distribution. 

3.2. Olsen data set 

The Olsen data set comprises one year of  data on three forex contracts: 
y e n - D M ,  y e n / U S D  and D M / U S D .  The Olsen company continuously tapes bit 
and ask quotes; here we use logarithmic middle price quotes. These data are first 
automatically filtered by the Olsen company in order to remove data processing 
and transmission errors; a description of the type of data set is given in Muller  et 
al. (1990). The filtered data were turned into standard return data as follows, 
Single second return data were created by taking the log difference between two 
consecutive quotes and dividing by the time difference in seconds. The few quotes 
that occurred in the same second, were artificially assumed to have happened in 
two consecutive seconds. Because several authors argue that the data on a higher 
frequency than 10 min behave differently from data with a frequency of 10 min or 
less, we also constructed 10 min return data. This was done by dividing the time 
axis into equal slices of  10 min intervals. The data were the searched to see 
whether a new record was entered in an interval one minute surrounding the 
endpoints of  the 10 rain intervals. If  some were found, the quote closest to the 
exact endpoint was used to construct the 10 min return. If no new record was 
entered within the one minute interval, linear interpolation was used to construct 
an artificial 10 min return. Recalling the inequality in Eq. (3), linear interpolation 
seems an innocuous procedure for our purposes. The construction of  the 10 min 
return data corresponds to the procedure followed by the Olsen company. Descrip- 
tive statistics are given in Table 5. 

The large size of  the Olsen data set makes it especially conducive to the 
bootstrap technique. The subsample size is 10% of  the data series, or 5256 for the 
10 min data. The s 0 was initially estimated by using 1% of the highest order 
statistics, and through iteration this threshold level was improved. Because we are 
interested in large changes in the exchange rate in either direction, we analyzed the 
properties of  both lower and upper tails of the returns. The estimation results can 
be found in Table 6. The tail index estimates for either exchange rate hover around 
4 at the 10 min aggregation level but are closer to 3 at the 1 s frequency. These 
values are in line with previous work that used much lower frequency data and 
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Table 5 

Sample statistics for the Olson dataset 

253 

Data set Aggregation T Mean Variance Min Max 

Y e n - D M  10 minute 52558  - 5 .13e  - 6 2 .66e  - 7 - 0 .00678  0 . 0 0 6 6 3 0  

Y e n - D M  1 s e c o n d  158482 - 9 .88e  - 9 7 .55e  - 11 - 0 . 00062  0 . 0 0 0 4 7 0  

Y e n - U S D  10 minute 52558  - 2 .36e  - 6 3 .09e  - 7 - 0 .00842  0 .010718  

Y e n - U S D  1 s e c o n d  5 6 7 7 5 8  - 3 .03e  - 8 1.39e - 9 - 0 .00185  0 .001432  

D M - U S D  10 minute 52558  2 .78e  - 6 3 .13e  - 7 - 0 .00693  0 . 0 0 8 6 2 6  

D M - U S D  1 s e c o n d  1466945 - 1.36e - 8 1.42e - 9 - 0 .00099  0 .001373  

concluded that the fourth unconditional moment is probably just unbounded, i.e. 
ce < 4. Most of the empirical parametric work on the conditional distribution 
which proceeds by estimating an ARCH process also comes to the same conclu- 
sion. Comparing the left tail index with the right tail index, the tail shapes appear 
to be very similar, suggesting tail symmetry. We see that for the most frequently 
traded contract, DM-USD,  the tail index appears almost constant under aggrega- 
tion, while this not the case for the yen-USD or the yen-DM contracts. This may 
be due to the infrequent trading phenomenon. Linear aggregation may have 

Table 6 

Results from the Olsen dataset 

Data set 10 minute tails 1 second tails 

upper lower upper lower 

Y e n - D M  

&0 3.66 3 .56  2 .59 2.41 

~1 3 .72 3 .60 2.53 2 .39 

/3t 0 .55 0 .36  0 .56  0 .27 

* 91 78 679  686  

4 .94  4 .25 2.33 2 .24 

Y e n - U S D  

~o 3.03 3.08 2.85 2.81 

&l 2 .89 3 .14 2.83 2 .79 

/31 0 .20  0.11 2.83 2 .79 

r~ ~ 112 64 2 9 0 6  2780  

3.51 4 .40  2.89 2 .90  

D M - U S D  

&0 3.22 3 .24 3 .22 3 .22 

&j 3 .28 3 .14 3.23 3 .24 

/51 3.28 0 .23 0 .37 0.23 

ff~ * 251 114 3055 2075 

3.37 3.93 3 .44 3 .54 
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removed too many extremes, thereby artificially thinning the tail of the 10 min 
data. 

We notice that in every case there is a change from the initial tail index, s 0, to 
the final estimate, a .  In most cases this difference is not large, except for the 10 
min y e n - D M  data, where the difference is 1.28. This indicates that the threshold 
level may not matter much in many cases, but in others it can lead us astray. The 
threshold level is in every case considerably lower than the initial level of 1%. The 
iterative subsample bootstrap estimates of the second order tail shape parameter/3 
vary considerably and the distribution of /3  appears to be bi-modal. It indicates the 
difficulty of estimating second order term parameters of an Taylor expansion of a 
distribution at infinity. 

The quantile forecasts are presented in Table 7. We only present results for the 
10 min aggregated data, the results for the 1 second data are similar. For each final 
estimate of ~ we estimate quantiles, x t, associated with different probabilities, t. 
The probabilities are reported as a function of the sample size, i.e. t = ( k n )  -1 . We 
have observations on the empirical distribution function for k N 1. However our 
procedure is developed for out of sample forecasts and since the second order term 

Table 7 
Quantile forecasting. 10 minute aggregation 

k Lower tail Upper tail 

observed forecast observed forecast 

DM-USD 
0.95 0.0009 0.0012 0.0009 0.0010 
1.0 0.0069 0.0086 0.0086 0.0108 
1.5 0.0095 0.0122 
2.0 0.0103 0.0133 
2.5 0.0109 0.0142 
3.0 0.0114 0.0150 

Yen-USD 
0.95 0.0005 0.0012 0.0008 0.0011 
1.0 0.0084 0.0087 0.0107 0.0105 
1.5 0.0096 0.0118 
2.0 0.0103 0.0128 
2.5 0.0108 0.0136 
3.0 0.0112 0.0144 

Yen-DM 
0.95 0.0008 0,0012 0.0008 0.0013 
1.0 0.0068 0.0074 0.0066 0.0062 
1.5 0.0082 0.0067 
2.0 0.0087 0.0071 
2.5 0.0092 0.0075 
3.0 0.0096 0.0077 
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increases the bias as we move into the sample the quantile forecasts perform worse 
for k = 0.95 than for k = 1.0, or at the largest order statistic. 

Concentrating on the D M - U S D  contract, we see that the probability of  a 1.1% 
increase in the exchange rate during a single episode of  10 min is about one per 
year and we would expect 1.5% upward increase in the exchange during a single 
10 min interval once every three years. From the vantage point of  risk manage- 
ment, it is of  interest to compare these numbers with those of  the Yen contracts. It 
appears that the yen contracts and especially the Y e n - D M  contact, is less risky 
than the DM-dol la r  contact displaying less extravagant down and up movements. 

4. Conclusion 

In this paper we study the improvement of  conventional tail index and quantile 
estimator by incorporating an estimate of  the second order term of the tail 
expansion. The moment estimator advocated here appears to be effective when it 
is most needed, i.e. when the tail index estimate is heavily biased. There is logic 
behind this result. If  the tail index estimate is very precise, then the first order 
expansion of  the tail shape suffices. In other words, the second order term 
contributes little and is therefore difficult to estimate. 

Turning to the Olsen data set, the second order estimates indicated that the 
number of  order statistics to be used in estimating the tail index should be lower 
than the initial 1%. Nevertheless, the tail index values were hardly affected and are 
in line with previous work. On the one hand this may seem surprising given that 
the 10 min and especially the 1 s data contain so much extra noise over and above 
the noise that is absent in the more conventional and lower frequency data sets. 
This noise is e.g. caused by the idiosyncrasies of  the individual trader and makes 
these highest frequency data unfit for addressing several economic issues. But for 
the analysis of  extremes this extra noise does not appear to be a devastating vice. 
On the other hand, we have the result that the tail index is invariant under 
convolution, Feller (1971, VIII.8). This result is complementary to the central limit 
theorem. An appropriately rescaled sum of n i.i.d. Student-t variates with 3 d.f. is 
over a wide range approximately normal distributed. But this does not hold for the 
tail shape of  this sum; the tail shape remains as it was. Formally, the sum of two 
regularly varying random numbers with tail index ce, is again regularly varying 
with index ct. 

The quantile estimator seemed to perform well, in the sense that the Xl/n, 
estimates are close to the empirical quantile at t = 1 /n .  In contrast, the empirical 
quantile is not a particularly reliable estimator of  xl/, ,  and not to much should be 
made out of  this proximity. The usefulness of  the quantile estimator lies in the fact 
that it can generate out of  sample (P ,  Q) combinations. For risk management this 
means that the trade-off which exists between crash probabilities and a threshold 
return is quantified. 
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Appendix A. Computational procedures 

A. 1. Monte Carlo experiments 

The Monte Carlo experiments were implemented in C + + ,  using the N A G  
library for random number generation. Several thick tailed distributions were 
chosen with a range of  c~ and /3 values. The same general parameters were used 
in the simulation and estimation, see Table 1. Of these parameters the most 
important are the number of observations, n and the number of simulations, S. For  
each distribution we generated S independent samples with n observations each 
and estimate several parameters. The results from applying the iterative bootstrap 
procedure to the Student-t(5 ) are presented in Table 2 and the final results for the 
Student-t(5 ) are presented in Table 3. Due to space limitations we leave out 
detailed results for the other distributions and only report the alpha and quantile 
forecast estimates in Table 4 for a sample of size 3n. The true value is not known 
for the ARCH process. Other values of  interest are the initial c~ estimates, the 
bootstrap optimal number of order statistics, the /3 estimate and the number of  
order statistics used in the estimation of  c~. A box plot is used to show the range 
of the c~ estimates for each distribution. See Figs. 1-3.  

A.2. Estimation with the Olson dam set 

We used the Olsen forex data set to estimate the tail index and forecast 
quantiles. The quotes were transformed into returns by using the difference in log 
averages of  bids and asks. We transformed the data into ten minute and one 
second intervals. Summary statistics for the transformed data are reported in Table 
5. 

We applied our procedure to each data set, and present the results in Table 6. 
Results were obtained for both the lower and upper tails of the sample data. We  
only report the initial tail index estimate, c%, the bootstrap estimate of  131, the 
optimal number of order statistics, m*, and the final tail index estimate, c~. 

We used the extreme quantile estimator Eq. (8) to obtain quantile forecasts for 
a range of probabilities, for the 10 minute data set. See Table 7. The results for the 
1 second data set are similar and can be obtained from the authors. The 
probabil i t ies are represented as a multiple of the sample size, n. The number k 
indicates that we will forecast the expected maxima in a sample of size k .  n. We 
know the empirical quantile when k _< 1 and report those numbers. 
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