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ABSTRACT We present a denotational continuation semantics for Prolog with cut. First a uniform

language B is studied, which captures the control flow aspects of Prolog. The denotational semantics

for B is proven equivalent to a transition system based operational semantics. The congruence proof

relies on the representation of the operational semantics as a chain of approximations and on a con-

venient induction principle. Finally, we interpret the abstract language B such that we obtain

equivalent denotational and operational models for Prolog itself.

Section 1 Introduction

In the nice textbook of Lloyd [Ll] the cut, available in all Prolog-systems, is described as a

controversial control facility. The cut, added to the Horn clause logic for efficiency reasons,

affects the completeness of the refutation procedure. Therefore the standard declarative

semantics using Herbrand models does not adequately capture the computational aspects of

the Prolog-language. In the present paper we study the Prolog-cut operator in a sequential

environment augmented with backtracking. Our aim is to provide a denotational semantics

for Prolog with cut and to prove this semantics equivalent to an operational one.

First of all we separate the “logic programming” details (such as most general unifiers

and renaming indices) in Prolog from the specification of the flow of control, (e.g. backtrack-

ing, the cut operator). This is achieved by extracting the uniform language B from Prolog -

uniform in the sense of [BKMOZ] - which contains only the latter issues. Fitting within the

“Logic Programming without Logic” approach, ([Ba2]), our denotational model developed

for the abstract backtracking language has enough flexibility for further elaboration to a non-

uniform denotational model of Prolog itself. Moreover, the equivalence of this denotational

semantics and an operational semantics for Prolog is a straightforward generalization for the

congruence proof of B.

Secondly, our denotational semantics uses continuations. This has several advantages

over earlier semantics which (essentially) are based on a direct approach. (See [Br] for a dis-

cussion on the relative merits of continuations vs. direct semantics.) We arrive at a concise

set of semantical equations in which there is no need for coding up the states using cut flags
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or special tokens (as in [JM], [DM], [Vi]). Moreover, since operational semantics must con-

tain (syntactical) continuations, congruence of the two semantics can be established much

more elegantly.

Our final contribution can be found in the equivalence proof itself. The equivalence

proof does not split - as usual - into O ⊆ D and D ⊆ O. Rather, both the operational and deno-

tational semantics are represented as least upperbounds of chains and we prove equality of

the approximating elements. (See also [KR], [BM] where - although not made explicit - in

the setting of complete metric spaces operational and denotational semantics can be

represented as limits of Cauchy sequences.)

The denotational semantics makes use of a fixed point construction with respect to

environments. The environment transformation is a continuous operator on a cpo and as such

it possesses a least fixed point. Alternatively, iterating this transformation from the bottom-

environment yields a chain having the denotational semantics as its least upperbound. The

operational semantics is based on a transition system. We shall define an ordering on transi-

tion systems such that the transition system underlying the operational semantics can also be

obtained as a least upperbound. These transition systems are induced by subsets of confi-

gurations with a bound on the nesting of procedure calls. By allowing a deeper nesting of

calls we obtain a better approximation of the operational semantics. Moreover, the k-th

operational approximation will correspond with the k-th denotational one.

At the level of the approximating transition systems the principle of Noetherian induc-

tion holds, providing us with a convenient tool for comparing the two semantics. In fact we

prove equivalence of an intermediate semantics (having both denotational and operational

ingredients) on the one hand and the approximations of the denotational and operational

semantics on the other by induction on the (finite) length of maximal transition sequences.

Related work on the denotational semantics of Prolog with cut includes [JM]a, [DM]a,

[Vi]a. Jones and Mycroft present a direct Scott-Strachey style denotational semantics. They

do not compare this semantics with an operational one. Instead, correctness of their seman-

tics comes from its systematic construction. In [Vi]a also a direct denotational model is

developed and additionally proven correct with respect to a transition based operational

meaning. The proof is rather involved, since the cut is modeled by a special token (as in

[JM]a). The semantics of Debray & Mishra is a mixture of a direct and continuation seman-

tics. They (need to) have sequences of answers substitutions together with cut flags in their

semantics. The denotational semantics is related to an operational one. However, it is not

clear to us what makes their equivalence proof work. (In particular we do not understand the

proof of theorem 4.1, case 5 in [DM]a.) The semantics mentioned above all denote a program

by a sequence of substitutions. In the present paper we only deliver the first one. This does

not give rise to loss of generality, since our semantics allows extension to streams of substitu-

tions, (as in [Vi]a). We have chosen not to do so for reasons of space and clarity of the

presentation.
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The remainder of this paper, in which we present a continuation semantics for an

abstract backtracking language B and for Prolog with cut, is organized as follows. Section 2

introduces the notion of transition system, which is used in section 3 to formulate the opera-

tional semantics for B. Section 4 is devoted to the denotational semantics for B. The correct-

ness of this denotational semantics with respect to the operational one is established in sec-

tion 5. In section 6 we change our point of view from imperative to logic programming. The

denotational and operational semantics of the previous sections are interpreted and extended

to handle Prolog. Some concluding remarks are made in section 7.

Section 2 Deterministic Transition Systems

In this section we introduce the notion of transition system, ([Pl], [BMOZ]). For reasons of

space we restrict ourselves to deterministic transition systems, which already suit our pur-

poses. Collections of transition systems are turned into a cpo such that associating a valua-

tion to a transition system becomes a continuous operation.

(2.1) DEFINITION A deterministic transition system T is a seven tuple 〈 C , I , F , Ω , D , α , S 〉

where the set of configurations C is the disjoint union of I, F and {Ω}, I is a set of internal

configurations, F is a set of final configurations, Ω is the undefined configuration, D is a

domain of values, α: F → D is a valuation assigning a value to each final configuration and S

is a deterministic step- or transition-relation, i.e. a partial function S: C →part C with

dom(S) ⊆ I.

Next we show how to extend the valuation α on final configurations to a valuation αT on

arbitrary configurations of a transition system T.

(2.2) DEFINITION Let T = 〈 C , I , F , Ω , D , α , S 〉 be a deterministic transition system. Denote

by D⊥ the flat cpo generated by D with least element ⊥. We associate with T a mapping αT:

C → D⊥ defined as the least function in C → D⊥ such that αT(Ω) = ⊥, αT(c) = α(c ) if c ∈ F,

αT(c) = αT(c ′) if (c,c ′) ∈ S and αT(c) = ⊥ otherwise.

Fix sets I and F of internal and final configurations, respectively. Fix an undefined con-

figuration Ω, a domain of values D, a valuation function α : F → D and put C = I ∪ F ∪ {Ω}.

Let TS = { 〈 C , I , F , Ω , D , α , S 〉 4 S : C →part C with dom(S) ⊆ I } denote the collection of all

deterministic transition systems with configurations in C, internal configurations in I, final

configurations in F, undefined configuration Ω, domain of values D and valuation function α.

In TS we identify a transition system with its transition-relation. (In particular we may write

T(c) and c →T c ′ rather than S(c) or (c, c ′) ∈ S for a transition system T with step-relation S.)
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We consider the set of configurations as a flat cpo with ordering ≤C and least element

Ω. This induces an ordering ≤TS on TS as follows: T 1 ≤TS T 2 ⇔ dom(T 1 ) ⊆ dom(T 2 ) &

∀c ∈ dom(T 1 ): T 1 (c) ≤C T 2 (c). We have that TS is a cpo when ordered by ≤TS . (The

nowhere defined transition system ∅ is the least element of TS; for a chain 〈Tk〉k in TS the

transition system T with dom(T) = ∪k dom(Tk) and T(c) = lubk Tk(c) acts as least upperbound.)

Moreover, the operation λT.αT: TS → C → D⊥ that assigns to a transition system the valuation

it induces, is continuous with respect to ≤TS . (See [Vi]a.)

REMARK Let I 0 ⊆ I 1 ⊆ . . . be an infinite sequence of subsets of internal configurations

such that I = ∪k Ik . Put Ck = Ik ∪ F ∪ {Ω}. Then we can construct for each T ∈ TS a chain of

approximations 〈Tk〉k of T in TS, where Tk is defined as the least deterministic transition sys-

tem such that Tk(c) = T(c) if c ∈ Ik , T(c) ∈ Ck, and Tk(c) = Ω if c ∈ Ik , T(c) is defined but

T(c) ∈| Ck. Then it follows from the above that T = lubk Tk in TS. Tk is called the restriction of

T to Ik since only configurations in Ik act as left-hand side. Note also that only configurations

in Ck act as right-hand side.

We shall use this observation in the congruence proof of the operational and denota-

tional semantics.

Section 3 Operational Semantics of B

In this section we introduce the abstract backtracking language B and present an operational

semantics based on a deterministic transition system. B can be regarded as a uniform version

of Prolog with cut. For a program d | s in B, the declaration d will induce a transition system

→d while the statement s induces (given a state) an initial configuration. The operational

semantics then is the value of the final configuration (if it exists) of the maximal transition

sequence with respect to →d starting from the initial configuration with respect to s.

(3.1) DEFINITION Fix a set of actions Action and a set of procedure names Proc. We define

the set of elementary statements EStat = { a, fail, ! , s 1 or s 2, x 4 a ∈ Action, si ∈ Stat, x ∈ Proc },

the set of statements Stat = { e 1 ; .. ; er 4 r ∈ IN, ei ∈ EStat } and the set of declarations Decl =

{ x 1←s 1 : .. : xr←sr 4 r ∈ IN, xi ∈ Proc, si ∈ Stat, i ≠ j ⇒ xi ≠ xj }. The backtracking language B is

defined by B = { d | s 4 d ∈ Decl, s ∈ Stat }.

So an elementary statement is either an action in Action, the failure statement fail, a

PROLOG-like cut ! , an alternative composition s 1 or s 2 or a procedure call x. A statement is

a - possibly empty - sequential composition of elementary statements. The empty statement

is denoted by ε. A declaration is a list of procedure definitions for different procedures
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names. Programs are made up from a declaration and a program body, i.e. a statement.

We let a range over Action, x over Proc, e over EStat, s over Stat and d over Decl. We

write x←s ∈ d if x←s = xi←si (for some i) or if s = fail otherwise.

EXAMPLE Consider the context-free language L generated by the grammar X → YZ ,

Y → aYa 4 bYb 4 a , Z → cZ 4 c . L consists of palindromes over { a, b} with a in the middle,

followed by an arbitrary but positive number of c’s. A parser for L is implemented by the B-

program d | s where d = x ← y ; z : y ← a; y ; a or (b ; y ; b or a) : z ← c ; z or c and s = x ; eoi. Intui-

tively, the actions a, b and c succeed if the corresponding symbol is currently read. Other-

wise the actions fail and cause a backtrack to possible (stacked) alternatives with their own

local states (i.e. their own tape head positions). Analogously, the action eoi succeeds if the

whole input is scanned yet and fails otherwise.

It is clear that once the palindrome part is recognized the alternative rules concerning

the nonterminal Y do not have to be stacked any more. The cut ! gives a mechanism to dis-

card of these alternatives dynamically, in that it throws away all alternatives that have been

generated since the body of the procedure have been entered containing this ! -operator.

Note that we have been careful to attempt to match the longest palindrome over a and b.

Thus, here we can speed up the rejection of certain input if we map X → YZ on x ← y ; ! ; z

rather than on x ← y ; z. We return to this example later.

Next we give an operational semantics to our backtracking language B. Let d ∈ Decl.

The internal configurations of the transition system →d associated with d are stacks. Each

frame on a stack represents an alternative for the execution of some initial goal, i.e. state-

ment. As such a frame consists of a generalized statement and a local state. The state can be

thought of holding the values of the variables for a particular alternative. The generalized

statement is composed from ordinary statements supplied with additional information con-

cerning the cut: Each component in a generalized statement corresponds with a (nested) pro-

cedure call. The left-most component is the body being evaluated at the moment, i.e. the

most deeply nested one. Since executing a cut amounts to restoring the backtrack stack as it

was at the moment of procedure entry, we attach to a statement a stack (or pointer), that con-

stitutes (points to) the substack of the alternatives that should remain open after a cut in the

statement is executed. We call this stack the dump stack of the statement, cf. [JM]a. (The

requirement for dump stacks being substack of (point into) the backtrack stack below the

frame is not only for implementation reasons, but also of technical (mathematical) conveni-

ence later. See the proof of lemma 5.5.)

(3.2) DEFINITION Fix a set Σ of states. Define the set of generalized statements by GStat =

{ 〈s 1 , D 1〉 : .. : 〈sr , Dr〉 4 r ∈ IN, si ∈ Stat, Di ∈ Stack, i < j ⇒ Di ≥ss Dj }, γ denotes the empty gen-

eralized statement, the set of frames by Frame = { [ g,σ ] 4 g ∈ GStat, σ ∈ Σ } and the set of
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stacks by Stack = { F 1 : .. : Fr 4 r ∈ IN, Fi = [ 〈s 1 , D 1〉 : .. : 〈sq , Dq〉, σ ] ∈ Frame such that

Fi +1 : .. : Fr ≥ss Dj } (with S ≥ss S ′ ⇔ S ′ is a substack of S). Let Conf = Stack ∪ Σ ∪ {Ω} be the

set of configurations.

Fix an action interpretation I : Action → Σ →part Σ, that reflects the effect of the execution

of an action on a state. (The language B gains flexibility if actions are allowed to succeed in

the one state, while failing in another as is illustrated in the example. Hence we model

failure as partiality.) Let TS be the collection of all deterministic transition system with con-

figurations in Conf, internal configurations in Stack, final configurations in Σ, undefined confi-

guration Ω, domain of values Σ, valuation α : Σ → Σ with α(σ) = σ. We distinguish δ ∈ Σ that

will denote unsuccessful termination.

(3.3) DEFINITION Let d ∈ Decl. d induces a deterministic transition system in TS with as

step-relation the smallest subset of Conf × Conf such that

(i) Ε →d δ

(ii) [ γ , σ ]:S →d σ

(iii) [ 〈ε , D〉:g , σ ]:S →d [ g , σ ]:S

(iv) [ 〈a ; s , D〉:g , σ ]:S →d [ 〈s , D〉:g , σ′ ]:S if σ′ = I(a)(σ) exists

[ 〈a ; s , D〉:g , σ ]:S →d S otherwise

(v) [ 〈fail; s , D〉:g , σ ]:S →d S

(vi) [ 〈! ; s , D〉:g , σ ]:S →d [ 〈s , D〉:g , σ ]:D

(vii) [ 〈x ′; s , D〉:g , σ ]:S →d [ 〈s ′,S〉:〈s , D〉:g , σ ]:S if x←s ∈ d

(viii) [ 〈(s 1 or s 2) ; s , D〉:g , σ ]:S → F 1 : F 2 : S where Fi = [ 〈si; s , D〉:g , σ ] ( i = 1, 2 )

We comment briefly on each of the above transitions (more precisely transition

schemes).

(i) The empty stack, denoted by Ε, has no alternatives left to be tried. Hence the com-

putation terminates unsuccessfully yielding δ.

(ii) If the top frame contains the empty generalized statement, denoted by γ, the compu-

tation terminates successfully. The local state σ of the frame is delivered as result.

(iii) If the left-most component of a generalized statement has become empty (the pro-

cedure call or initial statement has terminated), i.e. has format 〈ε , D〉, the statement-

dump stack pair is deleted from the frame. The computation continues with the

remaining generalized statement.

(iv) In case an action a in the top frame has become active, the action interpretation I is

consulted for the effect of a in σ. If I(a)(σ) is defined the state is transformed

accordingly. If I(a)(σ) is not defined the frame fails and is popped of the stack.

(v) Execution of fail amounts to failure of the current alternative. Hence the top frame

is popped of the backtrack stack. Control is transferred to the new top frame.
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(vi) The transition concerning the cut represents removal of alternatives; the top frame

continues its execution. Since the dump stack D is a substack of the backtrack stack

S, replacing the backtrack stack by the current dump stack indeed amounts - in gen-

eral - to deletion of frames, i.e. of alternatives. (Note that the right-hand stack is

well-formed by definition of GStat.)

(vii) A call initiates body replacement. The body is looked up in the declaration d and

becomes the active component of the generalized statement in the top frame. This

component has its own dump stack, which is (a pointer to) the backtrack stack at call

time.

(viii) Execution of an alternative composition yield two new frames: an active frame

corresponding to the left component of the or-construct and a suspended frame

corresponding to the right component.

(3.4) DEFINITION The operational semantics O: B → Σ → Σ⊥ for the backtrack language B is

defined by O(d | s)(σ) = αd( [ 〈 s,Ε 〉,σ ] ) where αd : Conf → Σ⊥ is the valuation associated with

the deterministic transition system induced by d.

EXAMPLE (Continued) Consider the declaration d = x ← y ; ! ; z : y ← a; y ; a or

(b; y ; b or a) : z ← c ; z or c. Let us calculate as illustration of the definitions parts of the tran-

sition sequence for the statement x ; eoi in state ababad $. (Here the state reflects the input

buffer. $ represents acceptance; all other states represent rejection.) The interpretation of the

actions a, b, c and eoi is as described previously: for α ∈ { a, b, c } we assume I(α)(αw) = w,

I(α) is undefined otherwise and I(eoi)($) = $, I(eoi) fails, i.e. is undefined, otherwise. Note

ababad ∈| L.

[ < x ; eoi222 , Ε > , ababad$ ]

( 1) →
[ < y ; ! ; z , Ε >:< eoi222 , Ε > , ababad$ ]

( 2) →
[ < a ; y ; a or22 ( b ; y ; b or22 a ) , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , ababad$ ]

( 3) →
[ < a ; y ; a , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , ababad$ ]

[ < b ; y ; b or22 a , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , ababad$ ]

( 4) →
[ < y ; a , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , babad$ ]

[ < b ; y ; b or22 a , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , ababad$ ]

→
· · ·

→
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[ < ε , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , d$ ]

[ < a , #1 >:< a, Ε >:< ! ; z , Ε >:< eoi222 , Ε > , babad$ ]

[ < b ; y ; b or22 a , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , ababad$ ]

(5) →
[ < ! ; z , Ε >:< eoi222 , Ε > , d$ ]

[ < a , #1 >:< a, Ε >:< ! ; z , Ε >:< eoi222 , Ε > , babad$ ]

[ < b ; y ; b or22 a , Ε >:< ! ; z , Ε >:< eoi222 , Ε > , ababad$ ]

(6) →
[ < z , Ε >:< eoi222 , Ε > , d$ ]

→
· · ·

→
δ

where #1 denotes a pointer into the appropriate substack. Transitions (1) and (2) follow the

scheme of 3.3(vii), and create new components in the generalized statements. Transition (3)

shows how the alternatives are distributed according to 3.3.(viii). Since the action a succeeds

in state ababad $, yielding babad $, the first clause of 3.3(iv) is applicable at transition (4). At

transition (5) the procedure call for y has terminated. The corresponding component is

deleted. At transition (6) one can see the effect of evaluation of the cut: execution of the cut

amounts to removal of the two lowest frames.

Section 4 Denotational Semantics for B

One of the claims of this paper is that a more natural denotational semantics for Prolog can be

defined when using continuations instead of direct semantics. This section and the next one

will provide a justification of this claim. In this section we shall establish a concise set of

semantic equations in which there will be no need for “alien” components in our states like

the cut indicators in [JM]a, [DM]a and [Vi]a. The next section will feature a straightforward

equivalence proof, to be contrasted with [DM]a, [Vi]a.

By now a standard approach has been established for defining a denotational semantics

of a sequential procedural language. Cf. [MS], [St], [Ba1], [Te2]. We show that a semantics

of B in this section and Prolog in section 6 can also be given along these lines. Standard

semantics uses environments and continuations.

Environments are needed because the denotation [[ s ]]s of a statement s depends

amongst others on the meaning of the procedure names occurring in s. Therefore the function

[[ d ]]s takes an environment η ∈ Env as a parameter which defines the meaning of all
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procedure names.

The flow of control will be described using continuations. For languages like PASCAL,

where flow of control is not very intricate, a denotation [[ s ]]s needs only one continuation as

a parameter. Languages containing backtrack constructs, like SNOBOL4, are best described

using two continuations, cf. [Te1], [Te2]a. In order to capture the effects of the cut operator

yet another continuation will be needed. (As is observed independently by M. Felleisen in

[Wi], p. 273.) In order to explain how these continuations will be used we introduce them

one after another. First we shall discuss the PASCAL-subset of B, i.e. B without or , fail and

cut ! . Thereafter we shall examine the SNOBOL4-subset of B, introducing the or and fail

constructs, and finally we shall explain how all three continuations are used in describing full

B. (In section 6 we interpret the language B and its semantics to arrive at a denotational and

operational semantics for Prolog with cut.)

In order to understand the essence of continuation semantics, consider a substatement s

that is part of a statement s ′ (in the PASCAL-fragment of B). The denotation [[ s ]]s will be a

function that will, in the end, deliver an answer in Σ⊥ . This answer is not the result of execut-

ing s alone, but the result of evaluating the whole statement s ′ of which s is a substatement.

Therefore the result does not only depend on an environment η and an initial state σ, it also

depends on a denotation ξ of the remainder of the statement, to be executed once evaluation

of s has terminated. This leads to the following functionality of [[ d ]]s : Env → Cont → Σ

→ Σ⊥ . Here Cont = Σ → Σ⊥ since the future ξ of a computation will in the end yield an

answer, but this answer depends on an intermediate state, viz. the result of evaluating s alone.

A typical clause in our semantics up till now, describing the composition operator “ ; ”, will

be [[ e ; s ]]s ηξσ = [[ e ]]e η{[[ s ]]s ηξ}σ, which says that the answer obtained by executing e ; s

before ξ will be equal to the answer resulting from execution of e before { execution of s

before ξ }.

The next stage is to introduce backtracking in the language by adding the constructs or

and fail (and by allowing actions to fail). Describing the flow of control is more complicated

now. The problem is that the notion “future of the computation” is not that obvious any

more. Evaluation of a statement s can terminate for two reasons now. The first one, success-

ful termination, is similar to the situation we had before. In this case the future of the compu-

tation is realized by executing the remainder of the statement textually following s. But now

it is also possible that evaluation of s terminates in failure, e.g. by executing a fail statement.

Now the rest of the computation is determined by backtracking to the alternatives built up

through execution of or -statements in earlier stages of the computation. Such a doubly

edged future can best be captured by two continuations, a success continuation ξ ∈ SCont and

a failure continuation φ ∈ FCont. So now [[ d ]]s has a new functionality: [[ d ]]s : Env → SCont

→ FCont → Σ → Σ⊥. The meaning [[ s ]]s ηξφσ of s will depend on ξ, denoting the rest of

the statement following s, and on φ, which is a denotation of the stack of alternatives built up
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in the past. FCont is best understood by investigating the meaning of the or construct:

[[ s 1 or s 2 ]]s ηξφσ = [[ s 1 ]]s ηξφ′σ. This says that executing s 1 or s 2 amounts to executing s 1

with a new failure continuation φ′ describing what will happen if s 1 terminates in failure. In

that case s 2 should be executed, and only if this also ends in failure the computation should

proceed as indicated by the original failure continuation φ. Hence we have that φ′ equals

[[ s 2 ]]s ηξφσ. Combining all this we obtain that [[ s 1 or s 2 ]]s ηξφσ = [[ s 1 ]]s ηξ{[[ s 2 ]]s ηξφ}σ.

Apparently we have FCont = Σ⊥ . As far as the structure of SCont is concerned, it must be

realized that the answer obtained from evaluation of the rest of the statement s ′ does not only

depend on the intermediate state resulting from the evaluation of s but also on the alternatives

built up by executing s ′ up to and including s. For it can very well happen that evaluation of

the rest of the statement will terminate in failure. We therefore have SCont =

FCont → Σ → Σ⊥ . We notice that the meaning of the fail statement is straightforward. The

answer is the one provided by the failure continuation: [[ fail ]]e ηξφσ = φ. This is also the case

if an action a does not succeed in a state σ, i.e. [[ a ]]e ηξφσ = φ if I(a)(σ) is undefined, (where

I is the fixed action interpretation). If a does succeed the state is transformed according to I

and the failure continuation and new state are passed to the success continuation ξ. So

[[ a ]]e ηξφσ = ξφσ′ if σ′ = I(a)(σ) exists.

The only construct of full B that we did not take into account up to now is the cut opera-

tor ! . This statement resembles the dummy statement because it does not affect the state.

There is a side effect however, since a number of alternatives is thrown away. To be more

precise, evaluation of ! discards the alternatives which have been generated since the pro-

cedure body in which the ! occurs has been entered. For our semantics this means that

evaluation of ! amounts to applying the success continuation to the original state (this is the

dummy statement aspect), but also to a new failure continuation. This new failure continua-

tion φ′ is in fact an old one, namely the failure continuation which was in effect on entry of

the procedure body in which the ! occurs. A natural way to obtain this old continuation,

which we will call the cut continuation κ ∈ CCont in the sequel, is to provide it as an argument

of the meaning function [[ d ]]s . We finally arrive at the functionality [[ d ]]s : Stat → Env →

SCont → FCont → CCont → Σ → Σ⊥ , with FCont = CCont = Σ⊥ . The denotation of ! can now

be given by [[ ! ]]e ηξφκσ = ξκκσ. On entry of a procedure body a new cut continuation has

been established. The meaning of a procedure call is straightforward. We have [[ x ]]e ηξφκσ

= ηxξφκσ, i.e. the arguments ξ, φ, κ and σ are passed to the meaning ηx of x in the environ-

ment η. The real work is performed in the definition of the environment η, which should be

derived from the declaration d in the program. We want η to be a fixed point such that η x,

the meaning of the procedure name x is given by η xξφκσ = [[ s ]]s η{λφ
3

κ
3

.ξφ
3

κ}φφσ if x←s ∈ d.

Two effects can be noticed here. First of all a new cut continuation, viz. the failure continua-

tion φ, is “passed”, secondly on (successful) termination of s the old cut continuation should

be restored and this is captured by passing {λφ
3

κ
3

.ξφ
3

κ} instead of ξ to the body s.
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We now give the semantics of B. We first give the domains: the set of failure continua-

tions FCont = Σ⊥ , the set of cut continuations CCont = Σ⊥ , the set of success continuations

SCont = FCont → CCont → Σ → Σ⊥ and the set of environments Env = Proc → SCont → FCont

→ CCont → Σ → Σ⊥. We denote by σ, φ, κ, ξ and η typical elements of Σ, FCont, CCont, SCont

and Env, respectively.

(4.1) DEFINITION

(i) [[ d ]]e : EStat → Env → SCont → FCont → CCont → Σ → Σ⊥

[[ a ]]e ηξφκσ = ξφκσ′ if σ′ = I(a)(σ) exists

[[ a ]]e ηξφκσ = φ otherwise

[[ fail ]]e ηξφκσ = φ

[[ ! ]]e ηξφκσ = ξκκσ

[[ s 1 or s 2 ]]e ηξφκσ = [[ s 1 ]]s ηξ{[[ s 2 ]]s ηξφκσ}κσ

[[ x ]]e ηξφκσ = η xξφκσ

(ii) [[ d ]]s : Stat → Env → SCont → FCont → CCont → Σ → Σ⊥

[[ ε ]]s ηξφκσ = ξφκσ

[[ e ; s ]]s ηξφκσ = [[ e ]]e η{[[ s ]]s ηξ}φκσ

(iii) Φ : Decl → Env → Env

Φ dη xξφκσ = [[ s ]]s η{λφ
3

κ
3

.ξφ
3

κ}φφσ if x←s ∈ d

(iv) [[ d ]]B : B → Σ → Σ⊥

[[ d | s ]]B σ = [[ s ]]s ηdξ0 φ0 κ0 σ

where ηd is the least fixed point of Φ(d), ξ0 = λφκσ.σ and φ0 = κ0 = δ.

The above semantics, using a fixed point construction, is well defined according to the

following lemma which can be established by simultaneous induction.

(4.2) LEMMA [[ d ]]e , [[ d ]]s and Φ are continuous in η. 5

REMARK The least fixed point ηd defined in 4.1(iv) can be obtained as the least upper-

bound of a chain of iterations 〈ηd, i〉i, with ηd, i defined by ηd, 0 = λ xξφκσ.⊥ and ηd, i+1 =

Φ(d)(ηd, i). From the continuity of [[ d ]]s we have [[ s ]]s ηd = lubi [[ s ]]s ηd, i.

We conclude this section with a few remarks on the similarity of the operational seman-

tics from the previous section and the denotational semantics of this one. There is a natural

correspondence between components of a configuration and the parameters of the denotation

of a statement. We compare the answer resulting from evaluation of an elementary statement

e and the value obtained from a configuration in which e is about to be executed:

[[ e ]]e ηξφκσ vs. [〈e ; s , D〉 : g, σ]:S . Here ξ is a denotation of the statements to be executed

once e has terminated successfully. So ξ corresponds to the statement s followed by the
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statements in the generalized statement g. The failure continuation φ is the denotational

counterpart of the backtrack stack S, the cut continuation κ corresponds to the dump stack D.

It is to be expected that if the correspondence is set up as above, the resulting answers should

be the same. This will be formalized in the next section and is pivotal to the equivalence

proof given there.

Section 5 Equivalence of O and D

In this section we prove the equivalence of the operational and denotational semantics, thus

justifying the definition of the latter one.

(5.1) THEOREM For all d | s ∈B: [[ d | s ]]B = O(d | s).

In order to prove theorem 5.1 we use the cpo-structure on the collection of transition

systems TS and the continuity of the statement evaluator [[ d ]]s . According to the remark at

the end of section 2 and the remark following lemma 4.2 we have that both the operational

and denotational semantics can be represented as the limit of a chain. Hence, equivalence of

the two semantics is proven if we can establish that the approximations in the chains are pair-

wise equal.

To be more specific: Let d | s ∈B and σ ∈ Σ. Let →d and αd be the deterministic transi-

tion system in TS and associated valuation induced by d, respectively. Let Stack0 ⊆ Stack1 ⊆
. . . be a certain sequence of subsets of Stack such that Stack = ∪i Stacki (to be defined later).

Each subset Stacki defines an approximation →d, i of →d , viz. the restriction of →d to

Stacki. Let αd, i be the valuation associated with →d, i . Then we have on the one hand

O(d | s)(σ) = lubi αd, i( [〈s,Ε〉,σ] ). On the other hand we have that the least fixed point ηd of

Φ(d) can be written as ηd = lubi ηd, i where ηd, i is the i-th iteration of λ xξφκσ.⊥ by Φ(d). So

[[ d | s ]]B σ = lubi [[ s ]]s ηd, iξ0 φ0 κ0 σ (with ξ0 , φ0 , κ0 as defined in definition 4.1(iv)). Hence

we are done if αd, i( [〈s,Ε〉,σ] ) = [[ s ]]s ηd, iξ0 φ0 κ0 σ for all i.

However, in order to prove equality of αd, i([〈s,Ε〉,σ]) and [[ s ]]s ηd, iξ0 φ0 κ0 σ we need a

stronger result. To this end we construct an intercedent between αd, i and [[ d ]]s : We define a

(denotational) function [[ d ]]C on (operational) configurations with parameters d and i and

show that for all configurations C we have that the value αd, i(C) equals [[ C ]]C di. The desired

result then follows from [[ s ]]s ηd, iξ0 φ0 κ0 σ = [[ [〈s,Ε〉,σ] ]]C di which can be checked by rou-

tine. Also the equality of [[ d ]]C and αd, i will be easy to check once the appropriate tool is

available.

Having outlined the strategy for the equivalence proof we continue with the definition

of the intermediate function [[ d ]]C . First we have to specify the subsets of configurations
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Stacki. The environment ηd, i, being the i-th iteration of the bottom-environment, yields the

right answer in x provided the call of x leads to at most i −1 nested inner calls. This depth of

nesting can be controlled in our operational semantics as well. Each component 〈si , Di〉 in a

generalized statement g corresponds to a (nested) procedure call. The depth of nesting in g =

〈s 1 , D 1〉 : .. : 〈sr , Dr〉 therefore equals r.

(5.2) DEFINITION Let GStati = { g ∈ GStat 4 || g || ≤ i } where || g || = r for g = 〈s 1 , D 1〉 : .. : 〈sr , Dr〉,

Framei = { [ g, σ] ∈ Frame 4 g ∈ GStati } and Stacki = { F 1 : .. : Fr ∈ Stack 4 Fj ∈ Framei }.

Although for g = 〈s 1 , D 1〉 : .. : 〈sr , Dr〉 we do not require Dj ∈ Stacki, this is the case if

[ g, σ]:S ∈ Stacki since [ g, σ]:S ∈ Stack implies that Dj is a substack of S.

Next we define the intermediate function [[ d ]]C . Given a stack S the definition of

[[ d ]]C can only be elaborated further if S ∈ Stacki. Otherwise the value ⊥ is returned. Intui-

tively ⊥ expresses uncertainty about the value of the configuration. So ⊥ will be delivered if

the elaboration asks for a chain of nested calls of length exceeding i.

(5.3) DEFINITION

(i) [[ d ]]C : Conf → Decl → IN → Σ⊥

[[ S ]]C di = [[ S ]]S di, [[ σ ]]C di = σ, [[ Ω ]]C di = ⊥

(ii) [[ d ]]S : Stack → Decl → IN → Σ⊥

[[ Ε ]]S di = δ, [[ F :S ]]S di = [[ F ]]F di{[[ S ]]S di} if F :S ∈ Stacki,

[[ S ]]S di = ⊥ if S ∈| Stacki

(iii) [[ d ]]F : Frame → Decl → IN → FCont → Σ⊥

[[ [ g, σ] ]]F diφ = [[ g ]]g diφσ

(iv) [[ d ]]g : GStat → Decl → IN → FCont → Σ → Σ⊥

[[ γ ]]g diφσ = σ, [[ 〈s , D〉:g ]]g diφσ = [[ s ]]s ηd, i,g{λφ
3

κ
3

.[[ g ]]g diφ
3

}φ{[[ D ]]S di}σ

where ηd, i,g = ηd, j with j = i –· (|| g ||+1) where || 〈s 1 , D 1〉 : .. : 〈sr , Dr〉|| = r

[[ 〈s , D〉:g ]]g di should yield the right answer only if this can be obtained with less than i

nested calls. Now g is responsible for a nesting depth || g ||. So the whole generalized state-

ment 〈s , D〉:g has a chain of || g ||+1 nested calls already. This means that ηd, i,g should allow

less then i –· ( || g ||+1 ) calls. (Here –· denotes the monus, i.e. subtraction in IN.)

The desired property of the function [[ d ]]C is stated in the next lemma. Recall that αd, i

is the valuation of the transition system →d, i which is the restriction of →d to Stacki. So no

transition is defined for stacks S not in Stacki, hence αd, i( S ) = ⊥.

(5.4) LEMMA For all d ∈ Decl and i ∈ IN we have [[ d ]]C di = αd, i .
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Anticipating to the proof of lemma 5.4 at the end of this section, we can obtain from it

the equivalence of the operational and denotational semantics. Note the decomposition of

both O and D, i.e. of αd and [[ s ]]s ηd into lubi αd, i and lubi [[ s ]]s ηd, i, respectively.

PROOF (of theorem 5.1) Let σ ∈ Σ. [[ d | s ]]B σ = [[ s ]]s ηdξ0 φ0 κ0 σ (by definition) =

lubi [[ s ]]s ηd, iξ0 φ0 κ0 σ (by continuity of [[ d ]]s ) = lubi [[ [〈s,Ε〉,σ] ]]S di (straightforward) =

lubi αd, i([〈s,Ε〉,σ]) (by the lemma) = αd([〈s,Ε〉,σ]) (by continuity of λT.αT) = O(d | s)(σ) (by

definition). 5

The sequel of this section is devoted to the proof of 5.4. First we establish Noetherian-

ity of the restrictions of →d to Stacki, i.e. the absence of infinite transition sequences with

respect to →d, i . This supplies us with an induction principle that we shall use in the proof of

the lemma.

(5.5) LEMMA Let d ∈ Decl, i ∈ IN and →d, i be the restriction of →d to Stacki. Then we have

that →d, i is Noetherian.

PROOF We construct a suitable weight-function for the internal configurations in dom( →d, i ),

i.e. for stacks in Stacki. Define a complexity measure on statements as follows: c(a) = c(fail)

= c( ! ) = c(x) = 1, c (s 1 or s 2) = 1+c(s 1 )+c(s 2 ) and c(e 1;..;er) = 1+c(e 1)+..+c(er). To

g = 〈s 1 , D 1〉 : .. : 〈sr , Dr〉 in GStati and [ g, σ] in Framei we assign as weight the ordinal w(g) =

w([ g, σ]) = ωi · c(sr)+..+ωi −r +1 · c(s 1 ). (This defines in fact a reversed lexicographical ordering

on GStati and Framei, where we have a bounded number of components in a generalized state-

ment, induced by the complexity measure c.)

Consider the stack S = F 1 : .. : Fr in Stacki. Choose ordinals α1 < .. < αk and natural

numbers n 1, ..,nk such that there are exactly ni frames among F 1, .., Fr of weight αi and

n 1+..+nk = r. Assign to S the ordinal w(S) = ωαk · nk+..+ωα1 · n 1. We leave it to the reader to

verify that for S,S ′ ∈ Stacki such that S →d, i S ′, it holds that w(S) > w(S ′). (Note the require-

ment for dump stacks with respect to the cut-rule. See the remark following definition 5.2.)

Since ω1 is well-ordered we derive immediately that there is no infinite transition sequence

for the system →d, i . That is →d, i is Noetherian. 5

We have taken the idea of using ordinals, viz. Cantor normal forms, in the context of

Noetherianity of transition (reduction) systems from [Kl]. We appreciate the flexibility of

this method as opposed to coding within (sequences of) natural numbers.

We proceed with the proof of the equality [[ d ]]C di = αd, i (*) . First we notice that this

holds for final configurations σ ∈ Σ, for the undefined configurations Ω, and for internal confi-

gurations that admit no transition, i.e. stacks not in Stacki.

We shall prove that (*) is also satisfied by internal configurations that do admit a
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transition, i.e. stacks in Stacki. For this we observe that given the above it suffices to prove: if

C →d, i C ′ and (*) holds for C ′ then (*) holds for C too, by virtue of the Noetherianity of the

transition system →d, i . (This is the principle of Noetherian induction, although in our -

deterministic - case it specializes to induction on the length of the maximal transition

sequence (which is finite) out of a configuration. See e.g. [Hu].) By definition of the valua-

tion αd, i we have αd, i(C) = αd, i(C ′) provided C →d, i C ′. So we only need to show: if C →d, i C ′

then [[ C ]]C di = [[ C ′ ]]C di.

PROOF (of lemma 5.4) Let d ∈ Decl, i ∈ IN and C,C ′ ∈ Conf such that C →d, i C ′. Note

C ∈ Stacki. It suffices to show by structural induction on C: [[ C ]]S di = [[ C ′ ]]C di.

We only treat case (vi) of definition 3.3: C = [ 〈x ′;s , D〉:g,σ ]:S. Say x ′←s ′ ∈ d. We dis-

tinguish two subcases: Subcase (a): || 〈x ′; s , D〉:g || = i. Then we have C ′ = Ω and || g || = i−1.

[[ [ 〈x ′;s , D〉:g,σ ]:S ]]S di

= [[ x ′ ]]e ηd, i,g{ [[ s ]]s ηd, i,g{λφκ.[[ g ]]g diφ} }{[[ S ]]S di}{[[ D ]]S di}σ

= ηd, i,g x ′{ [[ s ]]s ηd, i,g{λφκ.[[ g ]]g diφ} }{[[ S ]]S di}{[[ D ]]S di}σ

= ηd, 0 x ′{ [[ s ]]s ηd, i,g{λφκ.[[ g ]]g diφ} }{[[ S ]]S di}{[[ D ]]S di}σ

= ⊥

= [[ Ω ]]C di.

Subcase (b): || 〈x ′; s , D〉:g || < i. Then we have C ′ = [ 〈s ′,S〉:〈s , D〉:g,σ ]:S and || g || < i −1.

[[ [ 〈x ′;s , D〉:g,σ ]:S ]]S di

= ηd, i,gx ′{ [[ s ]]s ηd, i,g{λφκ.[[ g ]]g diφ} }{[[ S ]]S di}{[[ D ]]S di}σ

= Φ dηd, i –1, g x ′{ [[ s ]]s ηd, i,g{λφκ.[[ g ]]g diφ} }{[[ S ]]S di}{[[ D ]]S di}σ

= [[ s ′ ]]s ηd, i –1, gξ
3
{[[ S ]]S di}{[[ S ]]S di}σ

where ξ
3

= λφ
3

κ
3

.[[ s ]]s ηd, i,g{λφκ.[[ g ]]g diφ}φ
3

{[[ D ]]C di}

= [[ s ′ ]]s ηd, i,〈s , D〉:g{λφ
3

κ
3

.[[ 〈s , D〉:g ]]g diφ
3

}{[[ S ]]S di}{[[ S ]]S di}σ

= [[ [ 〈s ′,S〉:〈s , D〉:g,σ ]:S ]]S di

The other cases are similar, (easier) and omitted here. 5

Having proved lemma 5.4 the congruence proof of the operational and denotational

semantics for B is completed. In the next section we modify both this operational and deno-

tational semantics in order to give meaning to Prolog with cut.

Section 6 Interpretation of B into Prolog

At the moment Prolog ([CKRP]) is probably the most important programming language

featuring backtracking. It can be viewed as Horn clause logic with a left-most depth-first

computation rule. Nevertheless Prolog contains execution oriented constructs, e.g. the cut,

that makes the standard declarative semantics, that associates to a set of clauses its least
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Herbrand model ([AE], [EK]), less satisfactorily. Although dating from the early seventies,

it has lasted until 1984 before a denotational semantics for Prolog was presented, viz. [JM]a,

that gave account to the behavioral aspects of the language. More recently other (denota-

tional) semantics based on several approaches have appeared, e.g. [DM]a, [Vi]a. (See also

[Fi], [Fr], [AB], [BW].)

Our work on the backtracking language B in the previous sections makes yet another

semantics easily available: we can interpret the abstract or uniform statements, declarations

and states such that: a set of Prolog-clauses can be regarded as a declaration, a Prolog-goal

corresponds with a statement in the abstract language, while a substitution can be viewed as a

state. (After all this is not surprising since we designed B as an abstraction of Prolog.)

This can be done similarly for the operational semantics. Moreover, the interpretation

or de-uniformization is done in such a way that the equivalence proof remains valid (after

adaptation to minor technicalities). Having factorized the work for a Prolog-semantics in a

control flow component (the abstract language B) and a logical component (the interpretation

of B towards Prolog) we obtain presently a congruence proof for the denotational and opera-

tional semantics almost for free. Stated otherwise, we have an instance of the “Algorithm =

Logic + Control” paradigm ([Kw]) at the meta level. (In fact, several semantics of logic pro-

gramming languages can be considered as generalizations of established models for impera-

tive languages with respect to the control; the extensions made are concerned with the partic-

ular logic component. Cf. [GCLS], [Kk], [Ba2]a. See in particular [BK] for a related

approach in the setting of Concurrent Prolog.)

Unfortunately there is a price to pay for our two pass approach, albeit just a syntactical

one. Since we restrict procedure names in B to have just one procedure body, we can con-

sider clauses with pairwise different head predicates only. We feel free to do so, because this

is by no means a computational restriction in the presence of the explicit or-construct and

actions interpreted as unifications. (One can use a so called homogeneous form for clauses,

as in [EY], and “or” together clauses with the same head predicate.)

Next we define our variant of the Prolog-language. (Note the similarity with the defini-

tion of the language B in section 3.)

(6.1) DEFINITION Let F be a collection of function symbols, V a collection of variables and R

a collection of predicate letters. Let Term denote the collection of terms generated by F over

V. Define the set of atomic goals AGoal = { t 1 = t 2, fail, ! , G 1 or G 2, R(t 1, .., tk) 4 ti ∈ Term,

Gi ∈ Goal, R ∈R of arity k }, the set of goals Goal = { A 1&..&Ar 4 r ∈ IN, Ai ∈ AGoal }, true is the

empty goal, the set of Prolog-programs Prog = { A 1←G 1:..:Ar←Gr 4 r ∈ IN, Ai = Ri(t
→

i) ∈ AGoal,

i ≠ j ⇒ Ri ≠ Rj, Gi ∈ Goal }. Define Prolog = { P | G 4 P ∈ Prog, G ∈ Goal }.

We next develop an operational semantics for Prolog along the lines of section 3. In
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order to obtain a most general answer substitution (i.e. to avoid clashes of logical variables)

one is only allowed to resolve an atom against a program clause provided that the variables of

the clause are fresh with respect to the computation so far. We can achieve this by having

infinite supply of copies of the class of variables and tagging every goal with an index that it

should be renamed with. (This is in fact structure sharing.) In a global counter we keep track

of the number of the first class of variables not used yet.

(6.2) DEFINITION Let Term′ be the set of terms generated by F over V × IN and Σ be the col-

lection of substitutions over Term′, i.e. Σ = { σ : Term′ → Term′ 4 σ homomorphic }. The set

GGoal of generalized goals is defined by GGoal = { 〈G 1, D 1, m 1〉 : .. : 〈Gr , Dr , mr〉 4 r ∈ IN,

Gi ∈ Goal, Di ∈ Stack, i ≤ j ⇒ Di ≥ss Dj, mi ∈ IN }, the set of frames Frame = { [g, σ, n] 4
g ∈ GGoal, σ ∈ Σ, n ∈ IN }, the set of stacks Stack = { F 1: ..:Fr 4 r ∈ IN,

Fi = [ 〈G 1, D 1, m 1〉 : .. : 〈Gr , Dr , mr〉, σ, n ] ∈ Frame such that Fi +1 : .. : Fr ≥ss Dj } and the set of

configurations Conf = Stack ∪ Σ ∪ {Ω}.

The transition system underlying the operational semantics is a straightforward modifi-

cation of definition 3.3.

Execution of actions t 1=t 2 and procedure calls R(t 1, ..,tk) involve unification. We use a

black box unification algorithm mgu that yields a most general unifier for two atoms or terms

if one exists, and is undefined otherwise. (Cf. [JM]a, [Fr]a.) So the effect of the execution of

an action t 1=t 2 in state σ is the update σθ, i.e. composition of substitutions, of σ with respect

to the most general unifier θ of t 1 and t 2 in state σ (and appropriately renamed).

Slightly more deviating is procedure handling, since one has to unify first the call and

the head of the particular clause successfully before body replacement can take place.

(Stretching a point one may consider Prolog as a form of conditional rewriting. See also

[BW]a, [EY]a.) A call is operationally described as follows. Consider a call, i.e. atom,

R(t 1, .., tk). First the concerning procedure definition, i.e. clause, is looked up in the declara-

tion, i.e. Prolog-program. Say this is R(t
3

1, .., t
3
k) ← G

33
. Next we try to unify R(t 1, ..,tk) and

R(t
3

1, .., t
3
k) (considering renaming and the current substitution). If this is possible, i.e. a most

general unifier exists, we replace the call by the procedure body, i.e. body of the program

clause, extended with dump stack and renaming index, and change the state and global

counter according to the side effect, i.e. the result of mgu, initiated by the call. We refer the

reader to the nice tutorial of [Le] for a discussion of unification in logic programming vs.

parameter passing and value return in imperative languages.

(6.3) DEFINITION Let P ∈ Prog. P induces a deterministic transition system →P with as

transition-relation the smallest subset of Conf × Conf such that

(i) Ε →P δ

(ii) [ γ,σ,n ]:S →P σ
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(iii) [ 〈true , D , m〉:g,σ,n ]:S →P [ g,σ,n ]:S

(iv) [ 〈t 1=t 2 & G , D , m〉:g,σ,n ]:S →P [ 〈G , D , m〉:g,σθ,n ]:S

if θ = mgu( t1
(m) σ , t2

(m) σ ) exists

[ 〈t 1=t 2 & G , D , m〉:g,σ,n ]:S →P S otherwise

(v) [ 〈fail & G , D , m〉:g,σ,n ]:S →P S

(vi) [ 〈! & G , D , m〉:g,σ,n ]:S →P [ 〈G , D , m〉:g,σ,n ]:D

(vii) [ 〈R(t 1, .., tk)&G , D , m〉:g,σ,n ]:S →P [ 〈G
33

,S,n〉:〈G , D , m〉:g, σθ, n +1 ]:S

if R(t
3

1, .., t
3
k) ← G

33
∈ P and θ = mgu( R(t1

(m) , .., tk
(m))σ , R(t

3
1
(n)

, .., t
3

k
(n)

) ) exists

[ 〈R(t 1, .., tk)&G , D , m〉:g,σ,n ]:S →P S otherwise

(viii) [ 〈(G 1 or G 2) & G , D , m〉:g,σ,n ]:S → F 1:F 2:S

where Fi = [ 〈Gi&G , D , m〉:g, σ, n ]

In the above definition we denote by t (m) the term in Term′ obtained by renaming in t

variables in V into the corresponding variables in V × { m}. We use suffix notation for the

application and composition of substitutions.

The operational semantics is defined similar to definition 3.4. Here, in the context of

logic programming, we choose to fix the start state, viz. the identity substitution σid. The

renaming index is set to 1 having used 0 for the top-level goal already.

(6.4) DEFINITION The operational Prolog-semantics O: Prolog → Σ⊥ is defined by O(P | G) =

αP ( [ 〈 G,Ε,0 〉,σid ,1 ] ) where αP : Conf → Σ⊥ is the valuation associated with the transition sys-

tem induced by P.

Having discussed already the idiosyncrasies of Prolog with respect to unification-action

and call, it is clear how to adapt the denotational semantics of B in order to obtain a denota-

tional semantics for Prolog.

First we redefine the functionality of environments and success continuations. Define

Atom = { R(t 1, .., tk) 4 R ∈R of arity k, ti ∈ Term }. (Atom is the Prolog-counterpart of Proc.) Let

Env = Atom → IN → SCont → FCont → CCont → Σ → IN → Σ⊥ and SCont = FCont → CCont → Σ

→ IN → Σ⊥ . We take FCont and CCont as defined previously (with Σ⊥ implicitly changed).

(6.5) DEFINITION

(i) [[ d ]]A : AGoal → Env → IN → SCont → FCont → CCont → Σ → IN → Σ⊥

[[ t 1=t 2 ]]A ηmξφκσn = ξφκ{σθ}n if θ = mgu( t1
(m) σ , t2

(m) σ ) exists

[[ t 1=t 2 ]]A ηmξφκσn = φ otherwise

[[ fail ]]A ηmξφκσn = φ

[[ ! ]]A ηmξφκσn = ξκκσn

[[ G 1 or G 2 ]]A ηmξφκσn = [[ G 1 ]]G ηmξ{ [[ G 2 ]]G ηmξφκσn}κσn

[[ R(t
→
) ]]A ηmξφκσn = η{R(t

→
)}mξφκσn
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(ii) [[ d ]]G : Goal → Env → IN → SCont → FCont → CCont → Σ → IN → Σ⊥

[[ true ]]G ηmξφκσn = ξφκσn

[[ A & G ]]G ηmξφκσn = [[ A ]]A ηm{[[ G ]]G ηmξ}φκσn

(iii) Φ : Prog → Env → Env

ΦPη{R(t
→
)}mξφκσn = [[ G 0 ]]G ηn{λφ

3
κ
3

.ξφ
3

κ}φφ{σθ}{n+1}

if R(t
→

0 ) ← G 0 ∈ P and θ = mgu( R(t
→(m)

)σ , R(t
→

0
(n)

) ) exists

ΦPη{R(t
→
)}mξφκσn = φ otherwise

(iv) [[ d ]]Prolog : Prolog → Σ⊥

[[ P | G ]]Prolog = [[ G ]]G ηP 0 ξ0 φ0 κ0 σid 1

where ηP is the least fixed point of Φ(P), ξ0 = λφκσn.σ and φ0 = κ0 = δ

It is a matter of routine to obtain the equivalence of the operational and denotational

semantics for Prolog along the lines of section 5.

Section 7 Concluding Remarks

In this paper we have established a denotational continuation semantics for Prolog and we

have related it to an operational one. Three ideas have contributed to a clean equivalence

proof. First we have focused on the control flow aspects in the uniform language B, obtained

from Prolog by leaving out the logic programming issues, such as most general unifiers and

renaming indices. (Hence illustrating the “Algorithm = Logic + Control” paradigm.)

Secondly, the representation of the operational semantics as the least upperbound of a chain

of approximations (and the use of continuations) enabled us to establish equivalence on the

level of approximations of both the denotational and operational semantics already. Thirdly,

this could be done via an intermediate operator on operational configurations in a denota-

tional manner by virtue of an appropriate induction principle. Having obtained the

congruence of the operational and denotational semantics of B we have generalized these

semantics to handle Prolog. Also the equivalence proof for B could be extended straightfor-

wardly to the Prolog situation.

It is subject of future research to establish a denotational semantics for Prolog closer to

the declarative semantics of logic programming based on Herbrand models. Another

interesting topic under current research is to exploit the idea of using continuations and

approximations in order to compare operational and denotational semantics for other pro-

gramming language concepts.
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