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Abstract

We model the impact of financial conditions on asset market volatility and correlation.

We propose extensions of (factor-)GARCH models for volatility and DCC models for

correlation that allow for including indexes that measure financial conditions. In our

empirical application we consider daily stock returns of US deposit banks during the

period 1994-2011, and proxy financial conditions by the Bloomberg Financial Condi-

tions Index (FCI) which comprises the money, bond, and equity markets. We find

that worse financial conditions are associated with both higher volatility and higher

average correlations between stock returns. Especially during crises the additional

impact of the FCI indicator is considerable, with an increase in correlations by 0.15.

Moreover, including the FCI in volatility and correlation modeling improves Value-at-

Risk forecasts, particularly at short horizons.
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1 Introduction

Volatilities and correlations of financial asset returns are crucial for many different purposes

in financial management. Forming an investment portfolio using the mean-variance frame-

work or related approaches requires the covariance matrix of the constituent assets returns,

and so does calculation of Value-at-Risk for such portfolios. Pricing options depending on

various underlying assets is highly sensitive to the correlations between their returns.

A key feature of volatilities and correlations of asset return volatilities is that they

vary over time. Not surprisingly then, there is a substantial literature that attempts to

link volatility and correlation dynamics to macroeconomic and financial fundamentals. For

volatility most studies consider measures of aggregate market volatility in equity, bond and

foreign exchange markets. Concentrating on the equity market, which is most relevant for

this paper, it has been well documented that, in-sample, variables like bond returns, short

term interest rates, producer prices and industrial production growth contain information

for volatility (Schwert, 1989; Andersen et al., 2003, 2007, among many others). Out-of-

sample, volatility forecasts can be improved by including short term interest rates (Glosten

et al., 1993), and credit market variables including the commercial paper-to-Treasury spread,

default returns, default spread and proxies for funding liquidity (Paye, 2012; Christiansen

et al., 2012).

Most of the existing studies on the macroeconomic and financial drivers of return correla-

tions focus on correlations between international equity returns or between stocks and bonds.

International stock return correlations are positively associated with world market volatility

and a trend; while they are negatively related to exchange rate volatility, term structure

differentials across markets, real interest rate differentials, and the return on a world mar-

ket index (Bracker and Koch, 1999). Bond and stock return correlations are only little

explained by macro-economic fundamentals, but other factors, especially liquidity proxies,

play a more important role (Baele et al., 2010; Christiansen and Ranaldo, 2007). Sheppard

(2008) studies return correlations within an asset market, and using monthly covariances of

the six Fama-French equity portfolio returns finds widespread evidence of statistically sig-

nificant variation in conditional covariances attributable to financial and macro-economic

state variables.
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In this paper, we study the impact of financial conditions on both volatility and cor-

relations. This is motivated by a substantial body of recent evidence that particularly

financial conditions are an important driver of the economy at large. Financial conditions

impact monetary policy and macroeconomic variables, such as inflation and real GDP (see

Goodhart and Hofmann, 2008; Guichard and Turner, 2008; Hatzius et al., 2010). In this

literature, financial conditions are defined as the current state of financial variables that

influence economic behavior and the future state of the economy (cf. Hatzius et al., 2010).

From the literature on general economic conditions, it is known that high uncertainty causes

an increase in volatility as investors react more strongly to new information (Pastor and

Veronesi, 2008; Hamilton and Lin, 1996; Perez-Quiros and Timmermann, 2001), and asset

returns may be more closely connected during bear markets than during bull markets (Lon-

gin and Solnik, 2001; Ang and Chen, 2002). So far little is known on how volatility and

comovement of asset returns respond to changes in financial conditions. A notable exception

is the work of Boudt et al. (2012), who document that financial conditions affect transition

probabilities between volatility and correlation states.1

We propose several models to study the effects of financial conditions on asset volatil-

ities and correlations in a multivariate GARCH framework. Specifically, we consider two

approaches that both model the volatilities and correlations separately, which has become

popular since the introduction of the DCC model of Engle (2002). Together, the models for

volatility and correlation define the covariance matrix. The advantage of this set-up is that

the effect of financial conditions on volatility and correlation can be disentangled. In the

first approach, we extend the Spline-GARCH model of Engle and Rangel (2008) to include

a measure of financial conditions as an explanatory variable. This model is combined with

various specifications for the correlation dynamics. Specifically, we start with a simple linear

relationship between (quasi) conditional correlations and a measure of financial conditions.

This specification allows for flexibility in the correlation structure by allowing series specific

impact of financial conditions. In addition, we adapt the cDCC model of Engle (2002) and

Aelli (2013). In the second approach, we extend the Factor-Spline-GARCH model of Rangel

and Engle (2012) by allowing financial conditions to affect the conditional variances of both

the common market factor and the idiosyncratic returns. Indirectly, this also implies effects

1We turn to a more detailed comparison with our analysis later on in the introduction.
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of financial conditions on the correlations between asset returns.

We conduct an empirical analysis using daily equity returns of the largest US head-

quartered bank holding companies for the period January 1, 1994, through December 30,

2011. As a measure of financial conditions we use the Bloomberg Financial Condition Index

(FCI), which is an equally weighted sum of money market indicators, bond market indica-

tors and equity market indicators.2 Our analysis consists of two parts. First, we study the

in-sample fit of the models. We compare model specifications with and without financial

conditions, and test for significance of the impact of the FCI on both volatilities and correla-

tions. Second, in an out-of-sample framework we consider whether Value-at-Risk predictions

improve when financial conditions are included. The empirical application is inspired by

Boudt et al. (2012), who use weekly returns of the same financial institutions to study the

impact of the St. Louis Fed financial stress indicator on regime switching probabilities of a

regime-switching GARCH model with two (equi-)correlation regimes.3

Our results show that financial conditions indeed do affect both the volatilities and the

correlations of large US bank holding companies. Specifically, worse financial conditions are

associated with higher volatilities and higher correlations. This result is both statistically

and economically significant. For example, the FCI boosts the level of the correlation by

0.15 on average during the 2007-2008 crisis. In addition, Value-at-Risk (VaR) forecasts

improve significantly compared to models without the FCI, such that less violations are

made and the unconditional coverage match more closely to the nominal quantile. Finally,

we find that our main result is not only driven by the VIX index - which is also captured

by the Bloomberg FCI - but also by the other components of the Bloomberg FCI.

The remainder of the paper is organized as follows. Section 2 presents our modeling

framework including our new proposed dynamic correlation model. In Section 3, we describe

the data. Sections 4 and 5 discuss the in-sample and out-of-sample results, respectively.

2In recent years, several Financial Conditions Indexes (FCIs) (also sometimes called Financial Stress
Indexes) have been developed, both by institutions including the IMF, World Bank and several branches
of the Federal Reserve, as well as by major investment banks including Citi and Goldman Sachs. The
various FCIs have in common that they summarize key indicators of financial market conditions into a
single number. We opt for the Bloomberg FCI for two reasons: First, it is available at a daily frequency,
and second, it comprises different financial markets.

3In contrast, we analyze daily returns and interact financial conditions directly with volatilities and
(nonequi-)correlations. We use the Bloomberg FCI instead of the St. Louis Fed Indicator, since the
Bloomberg index is available on a daily basis. We turn to data at the daily level as daily information
has an important role for financial conditions during crises.
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Section 6 investigates the role of the VIX index in the Bloomberg FCI. Section 7 concludes.

2 The modeling framework

We use two different approaches to examine the role of financial conditions in shaping

the volatilities and correlations of asset returns. First, we assume that volatilities can

be described by a variation of the Spline-GARCH model of Engle and Rangel (2008) and

combine this with variations of the dynamic conditional correlation (DCC) model of Engle

(2002). Second, we extend the Factor-Spline-GARCH model of Rangel and Engle (2012),

for volatilities and correlations simultaneously. In both cases we extend the models to

incorporate the effects of financial conditions. We explain both modeling frameworks and

the estimation of the models in the following subsections.

2.1 The Spline-GARCH model for volatility with DCC for corre-

lation

Let ri,t denote the (excess) return for asset i in period t. We consider the volatilities

and correlations for K assets, with their returns collected in the K-dimensional vector

rt ≡ (r1,t, . . . , rK,t)
′

, for t = 1, . . . , T . In our first modeling approach we assume that the

conditional mean of rt is constant
4, while its conditional covariance matrix is time-varying.

That is, we have

Et−1[rt] = µ,

Et−1[(rt − µ)(rt − µ)
′

] = Ht,
(1)

where µ = (µ1, . . . , µK)
′

, Et−1 denotes the expectation given the information set through

time t − 1, and Ht the time-varying conditional covariance matrix. We disentangle the

conditional correlations from the conditional variances by writing Ht as

Ht = D
1/2
t RtD

1/2
t , (2)

4The assumption of a fixed expected return is made purely for ease of exposition. It can be relaxed
in a straightforward manner. In fact, in our empirical application we considered the possibility of time-
varying expected returns by including autoregressive terms and possible explanatory variables such as the
Bloomberg FCI in (1). All corresponding coefficients were insignificant, even at the 10% level.
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where Dt = diag(hi,t), i = 1, . . . , K is a diagonal matrix with the conditional variances of

the stock returns on the diagonal, and Rt is the conditional correlation matrix.

We assume that the conditional variances can be described by a variant of the Spline-

GARCH model of Engle and Rangel (2008). In the standard Spline-GARCH model the

volatility is decomposed into two components: a fast-moving GARCH term to capture

typical high-frequency behavior, and a slow-moving spline function to capture more gradual

movements due to, e.g., macroeconomic fluctuations. We adapt the model by replacing the

second component with a function of a time-varying explanatory variable, such as a financial

conditions index. The resulting model specification is given by

hi,t = gi,tτi,t,

gi,t = ωi + αi
(ri,t−1 − µi)

2

τt−1
+ γi

(ri,t−1 − µi)
2

τi,t−1
I[(ri,t−1 − µi) < 0] + δigi,t−1,

τi,t = exp(κi,0 + κi,1Xt−1).

(3)

with gi,t the fast-moving GARCH component and hi,t the slower-moving volatility compo-

nent linked to the explanatory variable Xt−1, which is scaled to have mean zero. In the

GARCH term gi,t in (3), I[A] denotes an indicator function taking the value one when

its argument A holds true and zero otherwise. The corresponding term allows for differ-

ent effects of positive and negative shocks on volatility, as in the GJR-model of Glosten,

Jagannathan and Runkle (1993). For identification purposes, we impose the restriction

ωi = (1 − αi − δi − γi/2), such that the unconditional mean of gi,t is equal to one. Accord-

ingly, gi,t is referred to as the unit GARCH component. In the τi,t component the coefficient

κi,0 essentially is a scaling parameter determining the unconditional mean of hi,t, while κi,1

measures the impact of the exogenous variable Xt on the volatility for asset i. We label this

model the Spline-GARCH-X model, to highlight its dependence on the explanatory variable

X . The main advantage of this approach over simply including the explanatory variable into

a GARCH specification directly, is that the unit GARCH term gi,t in (3) does not change

and that the variance hi,t is always positive because of the exponent term in τi,t in (3).

In the spirit of the DCC model of Engle (2002), we model the correlation matrix Rt in (2)

by means of a quasi-correlation matrix Qt. By appropriately scaling this quasi-correlation

matrix the correlation matrix is obtained. This approach guarantees that the correlation
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matrix will have ones on the diagonal, and values between −1 and 1 in the off-diagonal

elements. We start with a simple linear relationship between the quasi-correlation matrix

Qt ≡ [qij,t], i, j = 1, . . . , K and the exogenous variable Xt:

Qt = Q̄+ γDCXt−1J, (4)

with J a (K ×K) matrix of ones and Q̄ the unconditional covariance matrix of the stan-

dardized returns εt = D
−1/2
t (ri,t − µi), estimated by its sample analogue: Q̄ = 1

T

∑T
t=1 εtε

′

t.

In this model the innovation in the correlations stems solely from the Xt−1 term. The im-

pact of this explanatory variable is measured by γDC , and is equal across asset correlations.

Finally, we scale the Qt matrix to ensure a valid time-varying conditional correlation matrix

Rt:

Rt = Q
∗−1/2
t QtQ

∗−1/2
t . (5)

We label this specification the DC-X model, for Dynamic Correlation with eXplanatory

variables.

The specification in (4) may be considered restrictive, for the two properties just men-

tioned: the dynamics in the correlations are purely driven by the single variable Xt−1, while

its impact is identical for all correlations. Both characteristics can be relaxed in a rela-

tively straightforward manner. First, we may allow for a series specific impact of Xt on the

correlations by defining γDC as a (N × 1) vector and specifying Qt as

Qt = Q̄ + γDCγ
′

DCXt−1, (6)

which resembles the generalized DCC [G-DCC] model of Cappiello et al. (2006) and Hafner

and Franses (2009). Note that all elements of the (K×K) matrix γDCγ
′

DC are positive, such

that the direction of the effect of the Xt−1 variable is still the same across all correlations

but its magnitude may obviously differ. We label this more flexible variation as the DC-X-F

model.

Second, richer time-varying correlation patterns may be obtained by including the ex-

ogenous variable in the DCC model of Engle (2002). We start from the corrected DCC
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(cDCC) model proposed by Aelli (2013), given by

Qt = Q̄+ αcDCC(Q
∗1/2
t−1 εt−1ε

′

t−1Q
∗1/2
t−1 − Q̄) + βcDCC(Qt−1 − Q̄), (7)

with Q∗

t = diag(qii,t), i = 1, . . . , K and αcDCC and βcDCC scalar parameters. Following

van Dijk et al. (2011), we extend this specification by replacing the unconditional (quasi-

)correlation matrix Q̄ with a time-varying matrix Q̄t driven by the explanatory variable X .

This results in the model

Qt = Q̄t + αcDCC(Q
∗1/2
t−1 ǫt−1ǫ

′

t−1Q
∗1/2
t−1 − Q̄t−1) + βcDCC(Qt−1 − Q̄t−1)

Q̄t = Q̄+ γcDCCXt−1J,
(8)

In this setting, the scalar coefficient γcDCC has the same interpretation as in (4), namely

the total effect of the variable Xt−1 on Qt. We label this model as cDCC-X.5

2.2 The Factor-Spline-GARCH model

As a second approach to model volatilities and correlations and their relations with financial

conditions, we adapt the Factor-Spline-GARCH model of Rangel and Engle (2012). This

model extends the standard Spline-GARCH model in two dimensions. First, the asset

returns are assumed to be adequately described by a one-factor version of the arbitrage

pricing theory asset pricing model of Ross (1976). Second, time-varying volatilities and

correlations of the asset returns are obtained jointly by specifying Spline-GARCH and DCC

models for the market factor and the idiosyncratic returns. Specifically, the first extension

of the Spline-GARCH model boils down to the assumption that the excess return of asset

5A natural question arises whether it is guaranteed that Qt is positive definite (pd) in our proposed
models. In the standard cDCC model, Qt is positive definite when αcDCC ≥ 0, βcDCC ≥ 0 and αcDCC +
βcDCC ≤ 1. When exogenous variables enter the specification these conditions are no longer sufficient. In
case γcDCCXt−1 is positive, Qt consists of the sum of a positive definite and a positive semi-definite matrix.
As long as the effect of the latter matrix is not dominant, Qt is still positive definite. The same holds for
the DC-X and DC-X-F models. In general it is however not guaranteed that Qt is positive definite. In the
estimation procedure we use a pragmatic rule to ensure it is positive definite, through allowing γcDCC to be
negative, as long as the Qt matrix is positive definite for every t. In our empirical application this did not
generate problems for both in the in-sample estimation of Section 4 and the forecasting exercise in Section
5.
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i, i = 1, . . . , K depends linearly on a single market factor:

ri,t = ξi + βirm,t + ui,t, (9)

where rm,t denotes the market excess return, ξi and βi are parameters to be estimated, and

ui,t are the residuals or idiosyncratic returns. Allowing for cross-correlation between the

idiosyncratic returns of different assets and for correlation between the market return and

the residuals (that is, Et−1[ui,tujt] 6= 0 for some i 6= j and Et−1[rm,tui,t] 6= 0 for some i),

Rangel and Engle (2012) show that the conditional correlation between assets i and j at

time t is given by

ρij,t = (βjβiVt−1[rm,t] + βjEt−1[rm,tui,t] + βiEt−1[rm,tuj,t] + Et−1[ui,tuj,t])

× (β2
i Vt−1(rm,t) + Vt−1[ui,t] + 2βiEt−1[rm,tui,t])

−1/2

× (β2
jVt−1[rm,t] + Vt−1[uj,t] + 2βjEt−1[rm,tuj,t])

−1/2

(10)

where Vt−1 denotes the variance given the information set through time t − 1. Thus, as

a result of the one-factor APT set-up of (9), the conditional correlation ρij,t is driven by

various factors, including the variances of the market returns and the idiosyncratic returns,

the β’s, and the possible correlation between the market return and the idiosyncratic returns.

The idea of Rangel and Engle (2012) for the second departure of the spline-GARCH

model is to now model the time-varying volatilities and correlations of the market factor,

as well as and the N idiosyncratic returns ui,t. The Spline-GARCH model is used for all

(N+1) volatilities to discriminate between long- and short-term volatility effects. Here we

adapt the Spline-GARCH model in a similar way as in the previous section, and replace the

slow-moving spline by the explanatory variableXt. This results in the following specification

for the market return rm,t:

rm,t = µm +
√
gm,tτm,tεm,t, where εm,t|It−1 ∼ (0, 1),

gm,t = ωm + αm
(rm,t−1 − αm)

2

τm,t−1

+

γm
(rm,t−1 − µm)

2

τm,t−1
I[(rm,t−1 − µm) < 0] + δmgm,t−1,

τm,t = exp(κm,0 + κm,1Xt−1),

(11)
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with ωm = (1 − αm − δm − γm/2) for identification purposes. Likewise, the specification of

the volatility of the idiosyncratic part of the returns reads:

ui,t =
√
gi,tτi,tεi,t, where εi,t|It−1 ∼ (0, 1),

gi,t = ωi + αi
(ri,t−1 − ξi − βirm,t−1)

2

τi,t−1
+

γi
(ri,t−1 − ξi − βirm,t−1)

2

τi,t−1
I[(ri,t−1 − ξi − βirm,t−1) < 0] + δigi,t−1,

τi,t = exp(κi,0 + κi,1Xt−1),

(12)

with ωi = (1 − αi − δi − γi/2). Finally, we follow Rangel and Engle (2012) by assuming a

cDCC process for the innovations of (11) and (12), collected as εtott = (εmt , ε1,t, ε2,t, . . . , εK,t)
′:

Qt = (1− αcDCC − βcDCC)Q̄+ αcDCC(Q
∗1/2
t−1 ε

tot
t−1ε

tot′

t−1Q
∗1/2
t−1 ) + βcDCCQt−1, (13)

with Q∗

t = diag(qmm,t, q11,t, . . . , qKK,t) and scale the matrix Qt using (5). We label this

model as Factor-Spline-GARCH model.

The main difference between the modeling approaches of the previous section and the

one presented here, is that the first case volatilities and correlations of the equity returns are

modeled directly through the Spline-GARCH-X model and the (c)D(C)C-X model, and also

the impact of the exogenous variable Xt is directly incorporated. In contrast, in the second

case the link between Xt and between volatilities and correlation is indirect. An increase of

the explanatory variable in the market factor increases both the volatility and correlation

of all assets, and likewise an increase of the explanatory variable in the idiosyncratic part

increase both the volatility and relevant pair-wise correlations. An advantage of the Factor-

Spline-GARCH model is computational elegance: as the cDCC model for the remaining

ideosyncratic terms εi,t does not contain extra variables all matrix are by definition positive

definite.

2.3 Estimation

This last subsection briefly discusses the estimation of the models put forward in the previous

sections. For both modeling approaches, we follow the two-estimation procedure advocated

by Engle (2002). In the first step, we estimate the parameters in the Spline-GARCH models

9



for volatilities of the (idiosyncratic) returns of all K assets separately, as well as for the

market return in case of the Factor-Spline-GARCH model.6 Here we follow Rangel and Engle

(2012) by assuming a conditional Student-t distribution for the standardized returns. In the

second step, we estimate the parameters of the correlation models using the standardized

residuals from the Spline-GARCH volatility models. For the cDCC models we estimate

these parameters by maximizing the (quasi) Composite Likelihood (CL) of Engle, Shephard

and Sheppard (2008), as standard likelihood-based optimization implies biased estimates

of αcDCC for large K (see Engle and Sheppard, 2005). The composite likelihood sums up

likelihoods for each pair (i, j) of assets:

CL(θcorr) =

T∑

t=1

K∑

i=1

∑

i>j

logLi,j,t, (14)

where logLi,j,t denotes the log-likelihood corresponding to the correlation part of asset i and

j of the relevant correlation model and θcorr stacks the correlation parameters. In practice,

we follow the suggestion of Engle, Shephard and Sheppard (2008) and reduce the number of

pairs by only considering randomly chosen contiguous pairs i, i+1. This does not affect the

parameter estimates. We do not use the composite likelihood for the DC-X(-F) correlation

models in (4) and (6), since the only innovation term is the Xt−1 variable. Using the regular

likelihood in this case reduces the computational costs considerably.

For the Factor-Spline-GARCH model it is useful to note that estimation may be facili-

tated by first rewriting the factor setup as follows:

rtott = ξ +Butot
t , (15)

where rtott = (rm,t, r1,t, r2,t, . . . , rK,t)
′

is the vector of excess returns at time t, utot
t = (rm,t, u1,t, u2,t, . . . , uK,t)

′

such that it contains the market factor as well as the idiosyncratic returns, B =


 1 01×N

β IN×N


,

β = (β1, β2, . . . , βK)
′

and ξ is a vector of intercepts. Then we have that rtott |It−1 ∼ (ξ,Ht),

6For the Factor-Spline-GARCH model, we obviously first estimate the coefficients δi and βi in (9) by
means of least squares.
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such that

Vt−1 = Ht = BDtRtDtB
′

, (16)

with Dt = diag(
√
τk,tgk,t), (k = m, 1, . . . , K), Rt the conditional correlation matrix as in (5)

with Qt denoted in (13). The corresponding correlation matrix of rtott is then the covariance

matrix scaled by the volatilities on its main diagonal: diag(Ht)
−1/2Htdiag(Ht)

−1/2.

3 Data

While financial conditions may affect the volatilities and correlations of equity returns of all

kinds of firms, this should in particular be the case for financial institutions. For this reason

we apply the models discussed in the previous section to returns on stocks of the largest US

headquartered bank holding companies. We consider daily returns, over the period from

January 1, 1994 to December 30, 2011. Following Boudt, Danielsson, Koopman and Lucas

(2012), the banks in our sample are selected based on a ranking in terms of US domestic

deposits constructed by the Federal Deposit Insurance Corporation.7 We select those banks

that have been among the fifteen largest banks for at least three consecutive years during

the sample period. Table 1 lists the 16 bank holding companies that satisfy this requirement

and are included in our sample. The penultimate column in the table indicates the years

for which the banks belonged to the top 15 of largest deposit holding companies in the US.

Out of the 16 banks, six have been in the top list through the complete sample period,

including Wells Fargo and Bank of America. Further, several banks have merged during

the sample period (and some more than once), such as Nationsbanks Corp. and Chemical

Banking Corp. We download daily price index returns from CRSP for all 16 banks. The

last column provides the exact sample for which daily data is available. We do not have a

balanced panel since the daily returns of Wachovia Corp. and National City Corp. are only

available until December 30, 2008, as they merged in 2009 with Wells Fargo & Co and PNC

Financial Services, respectively.

Figure 1 provides an impression of the average level of the correlations between the

7http://www2.fdic.gov/sod/index.asp
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bank returns by showing the sample correlations for the period with an unbalanced sample

(November 11, 1994 until December 30, 2011). The correlations of Wachovia Corp. and

National City Corp. are based on the sample November 11, 1994, until December 30, 2008.

The horizontal axis in the graph indicates the 16 banks (in the same order as in Table 1),

and for each bank we plot the 15 sample correlations with the other banks. All correlations

are positive and sizeable, ranging between 0.40 and 0.75 with an average close to 0.60. The

maximum correlation is 0.78, between Wells Fargo & Co. and National City Corp. It is also

interesting to note that Capital One Financial Corp. consistently has the lowest correlation

with each of the other bank holding companies.

The correlations between the different bank stock returns are not constant over time, as

shown by Figure 2. This graph plots the average daily correlation of the Bank of America

Corp. with the remaining 15 banks, as obtained by means of the Riskmetrics Model of

Morgan (1994).8 We observe substantial time-variation in this average correlation. Most

notably, it increases considerable to a level around 0.8 during the financial crisis (2007-2008),

which is particularly pronounced compared to the substantial decline to around 0.1 at the

end of 2006. A similar pattern occurs in 2011. The opposite pattern is observed in 2003-4,

where the average correlation drops even to negative values after a period of high values

around 0.8. For the other banks we find similar patterns.

In the models of Section 2 we extend volatility and correlation models with a financial

conditions index. In our empirical application we use the Bloomberg FCI. This daily index

tracks the overall conditions in the US money market, bond market and equity market. The

FCI is an equal-weighted sum of three sub-indexes for each of these markets, see Rosenberg

(2009). Table 2 shows the series of underlying indicators that form each sub-index, which

are also equally-weighted. The underlying indicators as well as the FCI itself are presented

as a Z-score, such that the index value should be interpreted as the number of standard

deviations above or below its average, by construction over the period 1994-2008. Figure 3

shows the evolution of the Bloomberg FCI over time. The recent crisis in 2008 clearly stands

out, but also other episodes of relatively low FCI values (below -2, say) can be associated

with turmoil such as the Russian crisis and the LTCM bailout both in 1998, 9/11 in 2001,

8This model specifies the covariance matrix Σt for day t as Σt = λΣt−1 + (1 − λ)rt−1r
′

t−1. We use the
default value of λ = 0.94.
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Figure 1: Sample correlations of daily returns of financial institutions
This figure depicts sample correlations of daily excess stock returns from 14 US bank holding companies
from November 11, 1994 until December 30, 2011 (4312 observations) and correlations of Wachovia Corp.
and National Citi Corp. (nr. 3 and 7) from November 11, 1994 until December 30, 2008 (3556 observations).
Each column i of small circles represents the sample correlations of stock i with the 15 other constituents.
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Figure 2: Average daily correlations of the Bank of America Corp. with other

banks
This figure depicts average daily correlations between the Bank of America Corp. and the other US de-
posit bank returns from November 11, 1994 until December 30, 2011 (4312 observations), estimated with
Riskmetrics. The correlations between the Bank of America Corp. and Wachovia Corp. and National City
Corp. are based on the sample November 11, 1994 until December 30, 2008 (3556 observations).

1995 1997 1999 2001 2003 2005 2007 2009 2011
−0.2

0

0.2

0.4

0.6

0.8

1

Time

A
ve

ra
ge

 c
or

re
la

tio
n

14



Table 1: Description of US bank holding companies
This table lists 16 US bank holding companies, together with the first and last year for which they belong to the top 15 of largest deposit banks in the
US. Permno denotes the CRSP identifier. The table is modeled after Boudt, Danielsson, Koopman and Lucas (2012).

Permno Name In top 15 Sample
1. 34746 Fifth Third Bancorp 2001 - 2011 1994 - 2011
2. 35044 Regions Financial Corp 2005 - 2011 1994 - 2011
3. 36469 First Union Corp, Wachovia Corp 1994 - 2008 1994 - 2008a

4. 38703 Norwest Corp, Wells Fargo & Co 1994 - 2011 1994 - 2011
5. 47896 Chemical Banking Corp, Chase Manhattan Corp, JP Morgan Chase & Co 1994 - 2011 1994 - 2011
6. 49656 Bank of New York Mellon Corp 2008 - 2011 1994 - 2011
7. 56232 National City Corp 1996 - 2008 1994 - 2008b

8. 59408 Nationsbank Corp, Bankamerica Corp, Bank of America Corp 1994 - 2011 1994 - 2011
9. 60442 PNC Bank Corp, PNC Financial Services GRP Inc 1994 - 2011 1994 - 2011
10. 64995 Keycorp 1994 - 2011 1994 - 2011
11. 66157 US Bancorp 1998 - 2011 1994 - 2011
12. 68144 Suntrust Banks Inc 1994 - 2011 1994 - 2011
13. 69032 Morgan Stanley 2009 - 2011 1994 - 2011
14. 70519 Citigroup 1999 - 2011 1994 - 2011
15. 71563 Southern National Corp NC, BB&T Corp 2000 - 2011 1994 - 2011
16. 81055 Capital One Financial Corp 2006 - 2011 1995 - 2011

a Wells Fargo & Co and Wachovia announced on October 3, 2008 they had agreed to merge. The purchase has been
completed on December 31, 2008.
b PNC Financial Services announced October 24, 2008, its purchase of National City.
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the WorldCom bankruptcy in September 2002 and the Lehman collapse in 2008.

Table 2: Bloombergs’ US FCI components and weights
This table lists the major sub-indexes and their underlying indicators that form the Bloomberg FCI. The
table is modeled after Rosenberg (2009).

Category/item Weight
Money Market

Ted Spread 11.1 %
Commercial Paper/ T-Bill Spread 11.1 %
Libor-OIS Spread Spread 11.1 % +

33.3 %
Bond Market

Baa/Treasury Spread 6.7 %
Muni/Treasury Spread 6.7 %
Swaps/Treasury Spread 6.7 %
High Yield/Treasury Spread 6.7 %
Agency/Treasury Spread 6.7 % +

33.3 %
Equity Market

S&P 500 Share Prices 16.7 %
VIX Index 16.7 % +

33.3 %
+

Total 100%

4 In-sample results

This section analyzes in-sample estimation results of the volatility and correlation models,

applied to daily deposit bank excess returns. The in-sample period goes from November 11,

1994, through December 30, 2011 (4,312 observations). We consider a balanced sample, such

that we can also maximize the regular likelihood as discussed in Section 2.3, and therefore

remove Wachovia Corp. and National City Corp (see Table 1).

We first turn to the results for the volatility models. Table 3 provides estimation results

for the Spline-GARCH model of (3). To preserve space we report estimates of Morgan

Stanley and Citigroup. See Table A.1 in Appendix B for results of the other banks. In Panel

A we report estimates of the Spline-GARCH model with and without the FCI included as

regressor. Specifically, the columns labeled (1) refer to the specification which does not

include a financial conditions index, while the columns with label (2) add the Bloomberg

FCI in the volatility specification. A key results from the table is that the coefficient on
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Figure 3: The Bloomberg Financial Conditions Index
This figure depicts the daily Bloomberg FCI from January 3, 1994, through December 30, 2011. The
horizontal line denotes the sample mean of the indicator over the period 1994-2008. A positive value of
the Bloomberg FCI indicates better (future) financial conditions of the US economy than on average while
negative values means worsening of the financial conditions. The scale should be interpreted as the number
of standard deviations above or below its average over the index 1994-2008.
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the FCI, κ1, is significant at the 1% level. The coefficient is negative, thus a decrease in

financial conditions causes volatility on the assets to increase. The effect is stronger for

Morgan Stanley than for Citigroup. An decrease of the FCI by 1 point, increases Morgan

Stanleys volatility by 1.05 percentage points. Further, the leverage effect, captured by the γ

parameter, reduces considerably for both banks when we include the Bloomberg FCI in the

volatility specification. Hence a fraction of this effect is translated to economic fundamentals.

Nevertheless, the α parameter indicates that the leverage effect is still stronger than the

effect of the squared demeaned excess returns.

In Table 4 we report estimation results for the Factor Spline-GARCH model. In Panel

A we report estimates of the volatility model of the ideosyncratic returns, as in (12), and in

Panel B on the S&P 500 market return from our second model approach, as in (11)). For

comparability to Table 3 we focus on Morgan Stanley and Citigroup as well. The estimates

of the remaining financial institutions are given in Table A.2 of Appendix B. The estimates

of the idiosyncratic return as reported in Panel A are very similar to those reported in Panel

A of Table 3. The impact of financial conditions on the volatility is somewhat weaker for

the market factor (reported in Panel B), compared to the ideosyncratic return volatilities

(−0.32 vs. −0.40). Again, a part of the leverage effect translates to the FCI. Note that for

the market return the leverages effect together with the FCI are the source of innovations

for the volatility, while the squared demeaned excess market return does not influence the

volatility.

Figures 4 and 5 depicts the in-sample volatilities of both banks for the period 1994 - 2011

according to the two different model set-ups. The upper part of Figure 4 represents estimates

of the square root of the unit GARCH term gt of the Spline-GARCH model without the

FCI, while presented in (3), while the middle and the bottom part shows estimates of the

decomposed volatility terms from the Spline-GARCH-X model with the Bloomberg FCI

included as exogenous variable: the square root of the unit GARCH term gt (middle) and

the square root of the “spline” component τt (bottom) containing the Bloomberg FCI. The

figure indicates that including the Bloomberg FCI in the “spline” component τt results in less

severe spikes of the unit GARCH term, as they are now incorporated in the τ component.

For both banks the estimated volatility of the Spline-GARCH-X model is substantially

higher during certain turmoil periods, especially in 1998 (Asia crisis) and the second half of
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2007 (credit crunch due to subprimes).

Figure 5 visualizes again in-sample volatilities of Morgan Stanley and Citigroup, but

now corresponding with the factor Spline-GARCH approach from Section 2.2. In this figure

the top part corresponds to the Factor-Spline-GARCH without the FCI included, and the

bottom part to the Factor-Spline-GARCH model with the FCI included. In this case the

differences between the volatility patterns is small. The reason could be due to the S&P500

factor, which is now subtracted from the excess returns. At the same time, the S&P 500 is

also part of the Bloomberg FCI (see Table 2). Hence it could be that this factor dominates

the other variables that are part of the Bloomberg FCI. Nevertheless, some peaks are higher,

especially at the two aforementioned times (1998 and 2007).

The bottom part of Table 3 shows estimation results of alternative correlation models

of Section 2.1, using daily returns of all 14 deposit banks. All models use standardized

returns corresponding to specification where the volatilities are “corrected” for the impact

of the FCI on volatility. For both the DC-X and cDCC-X correlation models, the FCI has

a significant impact on the correlations between asset returns. A lower value of the FCI

means worse financial conditions and increases correlations. This finding is in line with

the literature (Longin and Solnik, 2001; Ang and Chen, 2002) that documents a stronger

connection between asset returns during bear markets than during bull markets.

Figure 6 highlights the effect of including the FCI into correlation models by plotting

the estimated correlation between Morgan Stanley and Citigroup. The three subgraphs

correspond to the DC-X, cDCC, the cDCC-X and the Factor-Spline-GARCH model. As

‘true correlation’ is not observable, it is not possible to judge which of these correlation

pattern is better.9 Nevertheless the plots highlight some interest in differences in the pat-

terns, from which we draw three main conclusions. First, the DC-X model is less volatile

than the Factor-Spline-GARCH and the cDCC(-X) models while during historical events

like the 2007-2008 crisis the DC-X model produces a higher correlation than the remaining

models. The average difference in correlation between the DC-X model and the cDCC(-X)

model during the period October 1 through December 31, 2008, is equal to 0.15. All cDCC

type of models shows a considerable drop in correlations during 1997, 2000, and 2009, while

9In the next section, we analyse the economic impact of the different correlation patterns by means of
forecasting portfolio VaRs.
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Table 3: In-sample estimation results - Spline-GARCH Models
This table reports the estimation results of the cDCC(-X) and DC-X model. The volatility is formulated as
a Spline-GARCH-X model:

ri,t = µi +
√
gi,tτi,tεi,t,

gi,t = (1 − αi − δi − γi/2) + αi
(ri,t−1−µi)

2

τi,t−1

+ γi
(ri,t−1−µi)

2

τi,t−1

I[(ri,t−1 − µi) < 0] + δigi,t−1,

τi,t = exp(κi,0 + κi,1FCIt−1),

and the correlation part is given by the cDCC(-X) or DC-X(-F) model:

Qt = Q̄+ γDCFCIt−1J, (DC-X)

Qt = Q̄t + αcDCC(Q
∗1/2
t−1 ǫt−1ǫ

′

t−1Q
∗1/2
t−1 − Q̄t−1) + βcDCC(Qt−1 − Q̄t−1), (cDCC-X)

Q̄t = Q̄+ γcDCCFCIt−1J,

with J a matrix of ones. We scale Qt from each model to obtain a valid correlation matrix:

Rt = Q
∗−1/2
t QtQ

∗−1/2
t ,

with Q∗
t = diag(q11,t, . . . , qKK,t). Further, ri,t the daily excess return of holding bank i, (i = 1, . . . , 14), and

FCIt represents the Bloomberg FCI. The first part of the table shows Maximum Likelihood estimates of the
Spline-GARCH(-X) model, assuming a conditional Student-t distribution for εt. We show the volatilities
corresponding to Morgan Stanley and Citigroup. Panel B shows estimation results of maximizing the
Composite Likelihood (CL) and (quasi) Maximum Likelihood, using all 14 financial institutions. The LogL
values of the DCC and cDCC-X models correspond with their regular likelihood values, obtained by plugging
in the optimized CL estimates. Standard errors are in parentheses. The sample goes from November 11,
1994, through December 30, 2011 (4,312 observations).

Panel A: Volatility part
Morgan Stanley Citigroup

Coeff. (1) (2) (1) (2)
µ 0.029 (0.027) 0.021 (0.030) 0.015 (0.019) 0.006 (0.033)
α 0.025 (0.007) 0.029 (0.008) 0.036 (0.007) 0.031 (0.007)
δ 0.923 (0.009) 0.939 (0.012) 0.928 (0.009) 0.948 (0.009)
γ 0.094 (0.014) 0.046 (0.014) 0.069 (0.012) 0.038 (0.014)
κ0 2.368 (0.309) 1.891 (0.201) 2.167 (0.399) 1.844 (0.347)
κ1 -0.403 (0.050) -0.323 (0.089)
ν 7.203 (0.667) 7.460 (0.759) 7.151 (0.608) 7.072 (0.613)
LogL -9900 -9877 -9228 -9211

Panel B: Correlation part
Coeff. DC-X cDCC cDCC-X
γDC -0.214 (0.005)
αcDCC 0.026 (0.001) 0.019 (0.001)
βcDCC 0.964 (0.002) 0.970 (0.002)
γcDCC -0.220 (0.013)
LogL 20835 20296 21023
CL 11748 11904
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Table 4: In-sample estimation results - Factor-Spline-GARCH models
This table reports the estimation results of the Factor-Spline-GARCH model. The volatility is formulated
as a Spline-GARCH-X model:

ri,t = µi,t +
√
gi,tτi,tεi,t,

gi,t = (1 − αi − δi − γi/2) + αi
(ri,t−1−µi,t)

2

τt−1

+ γi
(ri,t−1−µi,t)

2

τt−1

I[(ri,t−1 − µi,t) < 0] + δigi,t−1,

τi,t = exp(κi,0 + κi,1FCIt−1),

and the correlation part is given by the cDCC model:

Qt = (1− αcDCC − βcDCC)Q̄ + αcDCC(Q
∗1/2
t−1 ǫt−1ǫ

′

t−1Q
∗1/2
t−1 ) + βcDCCQt−1,

where we scale Qt from each model to obtain a valid correlation matrix:

Rt = Q
∗−1/2
t QtQ

∗−1/2
t ,

with Q∗
t = diag(q11,t, . . . , qKK,t). Further, ri,t the daily excess return of holding bank i, (i = m, 1, . . . , 16)

and the S&P 500 market return. In addition, µi,t = ξi + βirm,t with rm,t the excess market return at
day t. Otherwise, µi,t = µm in case of the market return. FCIt represents the Bloomberg FCI and
Q∗

t = diag(qmm,t, q11,t, . . . , qKK,t). The first part of the table shows Maximum Likelihood estimates of the
Spline-GARCH(-X) model, assuming a conditional Student-t distribution for εt. We show the volatilities
corresponding to Morgan Stanley and Citigroup. Panel B shows similar results, but for the daily S&P500
returns. Panel C shows estimation results of maximizing the Composite Likelihood (CL) using the stan-
dardized returns of all assets including the market return. The LogL value of the cDCC model corresponds
with the regular likelihood, obtained by plugging in the optimized CL estimates. Standard errors are in
parentheses. The sample goes from November 11, 1994 through December 30, 2011 (4312 observations).

Panel A: Ideosyncratic Volatility
Morgan Stanley Citigroup

Coeff. (1) (2) (1) (2)
β 1.605 (0.023) 1.612 (0.023) 1.301 (0.020) 1.306 (0.020)
α 0.028 (0.007) 0.018 (0.005) 0.065 (0.012) 0.054 (0.012)
δ 0.943 (0.009) 0.976 (0.007) 0.914 (0.012) 0.929 (0.013)
γ 0.050 (0.011) 0.010 (0.009) 0.036 (0.014) 0.026 (0.012)
κ0 1.649 (0.315) 1.203 (0.278) 1.588 (0.442) 1.241 (0.361)
κ1 -0.401 (0.039) -0.401 (0.053)
ν 5.537 (0.393) 5.918 (0.453) 5.987 (0.445) 6.154 (0.485)
LogL -8362 -8327 -7739 -7715

Panel B: Market Volatility
Coeff. (1) (2)
µ 0.042 (0.012) 0.036 (0.013)
α 0.000 (0.009) 0.000 (0.008)
δ 0.923 (0.012) 0.924 (0.012)
γ 0.133 (0.017) 0.114 (0.017)
κ0 0.037 (0.336) -0.101 (0.112)
κ1 -0.316 (0.064)
ν 9.194 (1.144) 9.546 (1.293)
LogL -6126 -6116

Panel C: Correlations
Coeff. cDCC
αcDCC 0.010 (0.001)
βcDCC 0.987 (0.001)
LogL 8478
CL 4051
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Figure 4: In-sample volatilities - Spline-GARCH models
This figure depicts daily estimated volatilities of Morgan Stanley and Citigroup from November 11, 1994,
through December 30, 2011. The top part denotes estimates of the square root of the unit GARCH term gt
from the Spline-GARCH model without exogenous variables included. The middle and bottom part shows
estimates of the GARCH term

√
gt (middle part) and the evolution of the ‘spline’ component

√
τt (bottom

part) from the Spline-GARCH-X model with the Bloomberg FCI included as exogenous variable.
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Figure 5: In-sample volatilities - Factor-Spline-GARCH models
This figure depicts daily estimated volatilities of Morgan Stanley and Citigroup from November 11, 1994,
through December 30, 2011. The top part denotes estimates of the conditional volatility

√
ht from the

Factor-Spline-GARCH model without exogenous variables included. The bottom part shows estimates of
conditional volatility from the Factor-Spline-GARCH model with the Bloomberg FCI included as exogenous
variable.
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the DC-X model does not. A second finding is the similarity between the Factor-Spline-

GARCH correlations and the cDCC(-X) correlations, although the former is more volatile

and exhibits more spikes. Hence it seems the one-factor approach with cDCC correlations

for the ideosyncrasic returns captures the same dynamics as the cDCC-X correlations for

the excess returns. Third, the inclusion of a financial conditions index in the cDCC model

or in the Factor-Spline-GARCH model does play a role, although the effect is more visible

in the cDCC model than in the Factor-Spline-GARCH model. Similar as in the volatilities,

it seems that the market return factor captures a part of the effect of the Bloomberg FCI.

In summary, the results suggest that the Bloomberg FCI has a statistically significant

impact on both volatilities and correlations of bank returns. Lower financial conditions

will increase the volatilities of bank returns as well as the correlation between financial

institutions, in particular during crises periods.

5 Forecasting portfolio Value-at-Risk

We assess the economic value of including the Bloomberg FCI into correlations and volatil-

ities by considering portfolio Value-at-Risk forecasts. The VaR is a particular quantile of

the conditional portfolio distribution which is of interest for risk-management in general.

Based on this number, financial institutions for example have to decide how much capital

should be hold for possible losses.

In the context of our models presented in section 2, we have assumed a particular spec-

ification for the conditional mean and variance. It follows then that the q% portfolio VaR

at time t can be expressed as

V aRq
t = µP,t + zq

√
w′

tHtwt, (17)

with µP,t the portfolio conditional mean, wt the portfolio weights, and Ht the (forecasted)

portfolio covariance matrix such that
√
w′

tHtwt denotes the portfolio standard deviation at

time t. Finally zq represents the q-th quantile of the standardized portfolio distribution.

In the analysis, we consider a equally-weighted portfolio, such that wt = w = 1/K, with

K the number of assets. In addition, µP,t = µP = µ
′

w with µ defined in (1) in case of the
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Figure 6: In-sample correlations
This figure depicts the estimated correlation between daily excess returns of Morgan Stanley and Citigroup
from November 11, 1994, through December 30, 2011 (4,312 observations) according to five different cor-
relation models. The upper part shows in-sample correlations from the cDCC (blue line) and the DC-X
model of (4) (red line), while the middle corresponds with estimated correlations of again the cDCC model
(blue line) and the cDCC-X model (red line). The bottom part provides the estimated correlations of the
Factor-Spline-GARCH model (9)-(12) with (blue line) and without (red line) including the Bloomberg FCI.
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cDCC-X and DC-X models and µ = α + αmβ in case of the Factor-Spline-GARCH model

(see (9)-(13)). Further, Ht is the predicted h-step ahead covariance matrix, based on the

Factor-Spline-GARCH (with and without the FCI included), the cDCC(-X) and the DC-

X models. We use an expanding-window to estimate the volatility/correlation parameters,

starting with a sample of 1500 observations, which corresponds to the years 1995-2000.10 We

re-estimate the parameters repeatedly after each 50 observations, which corresponds roughly

to two months. At each point in time, we compute a 1%, 5% and 10% 1-day portfolio VaR.

In addition, we consider 5% and 10% 10-day portfolio VaRs and estimate a suitable ARMA

process to forecast the Bloomberg FCI 10 steps ahead.11 Finally, we create 10 different

sub-series in order to circumvent possible serial correlation in the 10-day portfolio VaRs.

Hence sub-series j contains the forecasts {V aRq
j , V aRq

j+10, V aRq
j+20, . . .} for j = 1, . . . , 10.

Let us continue by focusing on the quantile zq in (17) of the standardized portfolio

returns. We emphasize the importance of this number as it has a direct impact on the VaR.

Given the non-normality of our financial institution excess returns, the use of the traditional

values corresponding with the standard-normal distribution is not desirable. We therefore

estimate zq using two different approaches. The first approach considers the empirical

quantiles corresponding with the in-sample standardized portfolio returns which is most

reliable as one does not make a parametric judgement about the distribution. The second

approach estimates a Student-t distribution on the in-sample standardized portfolio returns

such that zq = t−1
ν̂P
(q). By doing so, we avoid a computationally involved estimation of our

multivariate models assuming a conditional Multivariate Student-t distribution.12

Finally, we backtest our forecasted portfolio VaR using the unconditional and conditional

coverage tests and independence test proposed by Kupiec (1995) and Christoffersen (1998).13

10Inclusion of the FCI makes most sense in an expanding window framework, as the FCI is quite calm in
non-crises periods and volatile in crises periods. A moving window could therefore contain no crises, and
hence the inclusion of the FCI results in little forecasting power.

11We do not forecast 10-step ahead at once, as the daily dynamics of the FCI fits better to an ARMA
process than the 10-day dynamics.

12A second argument is the fact that if univariate returns ri,t (i = 1, . . . , J) are Student-t(νi) distributed,
the weighted average of these K return vectors may not follow a Student-t distribution.

13See Appendix A for more detailed information about these tests. As indicated by Santos et al. (2013),
these tests do not rank the performance of each model. Statistical tests that do take this into account
are for example the CPA test of Giacomini and White (2006) or the encompassing test of Giacomini and
Komunjer (2005). However, as these tests require an in-sample window of a fixed length we do not use
these tests. In addition, as it is our aim to investigate whether including the FCI leads to a better coverage
and/or independence a ranking of the various methods is not a necessity.
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We follow the suggestion of Diebold et al. (1998) by using Bonferroni bounds for the 10

sub-series in our multi-step ahead VaR-forecasts. That is, we assume that the VaR series

has autocorrelation up to and including lag 9, whereas each sub-series should have correct

coverage and independent VaR violations. We therefore backtest each sub-series separately

with a size of α/J . Rejecting the null hypothesis of unconditional coverage/independence

occurs when the null is rejected for any of the 10 sub-series.

Tables 5 and 6 shows results of the 1-day and 10-day portfolio VaR forecasts. In the

former table, we report the test results for the 1%, 5% and 10% quantiles of the various

volatility and correlation models, while the latter table shows only the tests corresponding

with the 5% and 10% quantiles of the same models. In the left hand part we show the

results where the quantiles are calculated using empirical quantiles, and in the right part

the results with the student-t distribution. From the table it is clear that especially at the

5% and 10% VaR forecasts, including the FCI leads to an improvement in the VaR forecasts.

For example, when the empirical quantile is used for zq, the cDCC and the Factor-Spline-

GARCH model both fail at the 5% VaR forecasts in the unconditional coverage test, while

the cDCC-X, the DC-X and cDCC model with the FCI in the volatilities do not. This

result holds also for all aforementioned models except the DC-X model when the student-t

distribution is used for zq and one takes a significance level of 10%. Even the Factor-Spline-

GARCH model with the FCI included in the variances fails in its coverage in case of 5% VaR

forecasts. It seems that including the FCI in both the volatility as well as in the correlations,

i.e. the cDCC-X model, delivers the best coverage, although the DC-X model fails when one

uses an Student-t distribution for the 5% and 10% models. This could be due to parameter

uncertainty around estimating ν, or due to the fact that the standardized portfolio returns

does not closely match a Student-t distribution.

The influence of the FCI becomes smaller for 10-day VaR forecasts, as indicated by Table

6. This is not surprising, as forecasting the Bloomberg FCI 10-steps ahead introduces more

uncertainty than forecasting the same quantity one step ahead. Moreover, the effect of FCIs

could be short-lived, similar to the effect of realized measures in (multivariate) volatility

models, see for example Noureldin et al. (2012). In addition, the statistical tests have less

power as the number of expected violations are lower, compared to the same tests applied

to the 1-day VaR forecasts. Nevertheless, the 5% and 10% VaR forecasts corresponding
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Table 5: Evaluation of 1-day portfolio Value-at-Risk forecasts
This table reports the performance of various models in forecasting the q% 1-day portfolio VaR (q =
1%, 5%, 10%), using an equally weighted portfolio over the period 2001-2011. The first column denotes
the possible exogenous variable included in the conditional variance specification of the individual assets
(market factor and ideosyncrasies). Corr.Mod represents the used correlation model. V (perc) denotes the
number of violations (percentage w.r.t. the total number of forecasts). FSG-cDCC is the abbreviation of
the Factor-Spline-GARCH model of 2.2. puc, pind and pcc are p-values of the (un)conditional coverage test
and the independence test of Christoffersen (1998). The number of forecasted VaRs is equal to 3,025.

Vol. Corr. Mod V(perc) puc pind pcc V(perc) puc pind pcc
zq using emp. quantile zq = t−1

ν̂P
(q)

q = 1%
- cDCC 34 (1.12) 0.502 0.379 0.542 34 (1.12) 0.502 0.399 0.559
FCI cDCC 33 (1.09) 0.620 0.393 0.615 30 (0.99) 0.964 0.438 0.740
FCI cDCC-X 33 (1.09) 0.620 0.393 0.615 33 (1.09) 0.620 0.393 0.615
FCI DC-X 35 (1.16) 0.397 0.365 0.464 35 (1.16) 0.397 0.365 0.464
- FSG-cDCC 32 (1.06) 0.751 0.351 0.615 32 (1.06) 0.751 0.351 0.615
FCI FSG-cDCC 32 (1.06) 0.751 0.408 0.675 32 (1.06) 0.751 0.351 0.615

q = 5%
- cDCC 187 (6.18) 0.004 0.892 0.016 172 (5.69) 0.090 0.788 0.229
FCI cDCC 167 (5.52) 0.196 0.789 0.418 161 (5.32) 0.421 0.615 0.637
FCI cDCC-X 164 (5.42) 0.294 0.700 0.535 169 (5.59) 0.146 0.850 0.341
FCI DC-X 170 (5.62) 0.125 0.628 0.274 179 (5.92) 0.024 0.653 0.071
- FSG-cDCC 197 (6.51) 0.000 0.731 0.001 181 (5.98) 0.016 0.785 0.053
FCI FSG-cDCC 177 (5.85) 0.036 0.834 0.109 161 (5.32) 0.421 0.615 0.637

q = 10%
- cDCC 330 (10.91) 0.100 0.446 0.193 331 (10.94) 0.088 0.423 0.170
FCI cDCC 326 (10.78) 0.159 0.872 0.366 319 (10.55) 0.321 0.654 0.553
FCI cDCC-X 319 (10.55) 0.321 0.946 0.610 323 (10.68) 0.219 0.637 0.420
FCI DC-X 329 (10.88) 0.113 0.969 0.284 340 (11.24) 0.026 0.748 0.078
- FSG-cDCC 361 (11.93) 0.001 0.371 0.002 354 (11.70) 0.002 0.247 0.005
FCI FSG-cDCC 329 (10.88) 0.113 0.360 0.187 328 (10.84) 0.127 0.381 0.212

with the Factor-Spline-GARCH model fails for the coverage test at the 1% level when using

the empirical distribution for zq. Even if one uses the Student-t distribution, the null of

correct coverage is rejected at a 5% level. At the same time, cDCC model is not statistically

outperformed, although it seems that the independence is not always strong, as indicated

by the top-left and bottom-right part of the table (p-values of 0.025 and 0.021 respectively).

All in all, we conclude that including the FCI into volatility and correlation modeling

improves the VaR forecasts in case of unconditional coverage, especially at the short horizon.

For the 10-day horizon, the evidence is less strong, although the Factor-Spline-GARCH

model is still outperformed by the same model extended with the FCI.
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Table 6: Evaluation of 10-day portfolio Value-at-Risk forecasts
This table reports the performance of various models in forecasting the q% 10-day portfolio VaR (q =
5%, 10%), using an equally weighted portfolio over the period 2001-2011. The first column denotes the
possible exogenous variable included in the conditional variance specification of the individual assets (market
factor and ideosyncrasies). Corr.Mod. represents the used correlation model. Vav(av.perc) denotes the
average number of violations (average percentage w.r.t. the total number of VaR forecasts) over the 10
porfolios. FSG-cDCC is the abbreviation of the Factor-Spline-GARCH model of 2.2. pm,uc, pm,ind and
pm,cc are the minimum p-values out of the 10 tests on (un)conditional coverage test and independence test
of Christoffersen (1998). The number of forecasted VaRs is equal to 303.

Vol. Corr. Mod Vav(av.perc) pm,uc pm,ind pm,cc Vav(av.perc) pm,uc pm,ind pm,cc

zq using emp. quantile zq = t−1
ν̂P

(q)
q = 5%

- cDCC 16.8 (5.55) 0.144 0.025 0.050 15.9 (5.26) 0.222 0.095 0.190
FCI cDCC 15.9 (5.26) 0.251 0.129 0.196 14.8 (4.89) 0.251 0.068 0.169
FCI cDCC-X 15.0 (4.96) 0.256 0.210 0.346 15.1 (4.99) 0.256 0.095 0.190
FCI DC-X 16.2 (5.36) 0.217 0.129 0.196 16.4 (5.42) 0.217 0.095 0.190
- FSG-cDCC 22.6 (7.47) 0.000 0.024 0.001 20.0 (6.61) 0.004 0.054 0.005
FCI FSG-cDCC 17.3 (5.72) 0.140 0.171 0.184 16.5 (5.45) 0.217 0.095 0.184

q = 10%
- cDCC 31.7 (10.48) 0.149 0.222 0.346 31.2 (10.31) 0.149 0.021 0.057
FCI cDCC 29.4 (9.72) 0.297 0.289 0.391 28.8 (9.52) 0.212 0.286 0.391
FCI cDCC-X 29.0 (9.59) 0.146 0.267 0.341 29.8 (9.85) 0.212 0.186 0.367
FCI DC-X 31.7 (10.48) 0.279 0.186 0.367 31.6 (10.45) 0.279 0.186 0.367
- FSG-cDCC 42.0 (13.88) 0.000 0.220 0.001 41.2 (13.62) 0.000 0.220 0.001
FCI FSG-cDCC 32.1 (10.61) 0.149 0.267 0.347 31.7 (10.48) 0.206 0.267 0.429
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6 The role of the VIX in the FCI

This paper shows that including the FCI into volatility and correlation models gives a better

in-sample fit as well as better VaR forecasts. The FCI is composed of various components,

including money market spreads, bond market spreads and S&P500 share prices and the

VIX index (see Table 2). The question arises which of these elements drives our results. As

shown in the literature, e.g. Koopman et al. (2005), the VIX is a powerful predictor of future

volatility. To examine to which extent this measure drives the results on the FCI index and

to what level the other components of the Bloomberg FCI have explaining/forecasting power

beyond the VIX, we re-consider our in-sample and VaR analyses, now including both the

FCI and VIX index.

First, we rewrite the Spline-GARCH specification in our two modeling approaches. We

change the τt component (omitting the subscript i) as follows to include also the VIX index:

τt = exp(κ0 + κ1FCIt−1 + κ2V IXt−1). (18)

Note that the entire specification of the conditional variance of both model approaches is

given in (3) and (9)-(12). If the significance of the FCIt−1 vanishes, then the remaining

components of the Bloomberg FCI do not have impact on the volatilities of the excess bank

returns, market factor or ideosyncratic bank returns. Table 7 reports estimation results

of the model parameters corresponding with Morgan Stanley, Citigroup and the market

factor. In the Spline-GARCH specifications the FCI variable is significant for both financial

institutions. In addition, the FCI has also statistical impact on the market volatility beyond

the VIX. Using the Factor-Spline-GARCH specification, the VIX seems to take away the

significance in case of Citigroup.14 Nevertheless, as the FCI is significant for the market

factor and Morgan Stanley, we conclude the FCI contains information beyond the VIX that

impacts the volatility of asset returns. Finally, we analyse the possible influence of the VIX

on the correlation between our deposit banks. The results (not shown here) suggest that

the VIX does not have statistical influence on the correlations between the banks. Hence

the other components of the Bloomberg FCI are additional drivers of our main result that

financial conditions have impact on correlations.

14With regards to the other financial institutions of our study, the result is qualitatively similar.
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Table 7: In-sample estimation results with the VIX included
This table reports the estimation results of the (Factor-) Spline-GARCH-X model:

ht = gtτt,

gt = (1− α− δ − γ/2) + α (rt−1−Et−1(rt−1))
2

τt−1

+ γ (rt−1−Et−1(rt−1))
2

τt−1

I[(rt−1 − Et−1(rt−1)) < 0] + δgt−1,

τt = exp(κ0 + κ1FCIt−1 + κ2V IXt−1),

with rt the excess daily return or the ideosyncratic return of Morgan Stanley and Citigroup or the S&P
500 market return rm. Further, Et−1 denotes the conditional expectation using all information up to and
including time t − 1, FCIt represents the Bloomberg FCI, V IXt is the VIX at time t. The table shows
Maximum Likelihood estimates, assuming a conditional Student-t distribution for the standardized returns
(rt − Et−1(rt)/

√
ht. F-Spline-GARCH denotes the Factor-Spline-GARCH model. Standard errors are in

parentheses. The sample goes from November 11, 1994, through December 30, 2011 (4,312 observations).

Morgan Stanley Citigroup Market factor
Coeff. Spline-GARCH F-Spline-GARCH Spline-GARCH F-Spline-GARCH S&P 500 ret.
α 0.029 (0.009) 0.015 (0.004) 0.023 (0.006) 0.054 (0.013) 0.000 (0.014)
β 0.940 (0.019) 0.977 (0.005) 0.965 (0.008) 0.929 (0.014) 0.917 (0.016)
δ 0.029 (0.013) 0.011 (0.007) 0.020 (0.008) 0.024 (0.012) 0.077 (0.020)
κ0 0.632 (0.286) 0.682 (0.323) 0.759 (0.376) 0.427 (0.415) -1.590 (0.195)
κ1 -0.172 (0.061) -0.257 (0.060) -0.093 (0.065) -0.196 (0.077) -0.092 (0.049)
κ2 0.551 (0.113) 0.285 (0.091) 0.519 (0.103) 0.402 (0.109) 0.707 (0.093)
ν 7.600 (0.811) 5.953 (0.466) 7.153 (0.646) 6.134 (0.495) 10.611 (1.620)
LogL -9865 -8322 -9200 -7709 -6096

Second, we perform VaR forecasts in the same spirit as the previous section. We consider

the Factor-Spline-GARCH model, the cDCC model and the DC-X model with only the VIX

included in the conditional variance specification and investigate whether similar forecast

results are made as the models that contains the Bloomberg FCI in the corresponding

specification. Table 8 shows that including only the VIX does not lead to correct coverage.

Regarding the 1-day 5% and 10% VaR, the cDCC-X, DC-X and Factor-Spline-GARCH

model, all significantly overestimate the number of violations. Only the cDCC model with

the VIX does not fail when a Student-t distribution is used. Inspecting the 10-day VaR

leads to the finding that all tests perform well, except the Factor-Spline-GARCH model.

The minimum p-value takes the value 0.009 for the 5% VaR forecasts, which is below the

Bonferroni bound of size 0.01. Hence, we reject the null hypotheses of unconditional coverage

at the 10% significance level. We conclude that the other components of the FCI also have

a significant impact on the VaR forecasts, in particular at the short-horizon.
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Table 8: Evaluation of 1- and 10-day portfolio Value-at-Risk forecasts with the

VIX index
This table reports the performance of various models in forecasting the q% 1- and 10-day portfolio VaR
(q = 1%, 5%, 10% for 1-day VaRs and q = 5%, 10% for 10-day VaRs), using an equally weighted portfolio
over the period 2001-2011. All models contain the VIX index in its conditional variance specification.
V (perc) denotes the number of violations (percentage w.r.t. the number of forecasts), Vav(av.perc) is the
average number of violations (average percentage w.r.t. the total number of VaR forecasts) over the 10
porfolios. FSG-cDCC is the abbreviation of the Factor-Spline-GARCH model of 2.2. puc, pind and pcc are
p-values of the (un)conditional coverage test and the independence test of Christoffersen (1998) in case of
1-day VaR, while pm,uc, pm,ind and pm,cc are the minimum p-values of the same test over the 10 portfolios in
case of the 10-day VaR forecasts. The number of forecasted VaRs is equal to 3025 (1-day) and 303 (10-day)
respectively.

Model V(perc) puc pind pcc V(perc) puc pind pcc

1−day VaR forecasts
zq using emp. quantile zq = t−1

ν̂P
(q)

q = 1%
cDCC 31 (1.02) 0.891 0.327 0.613 30 (0.99) 0.964 0.305 0.590
cDCC-X 33 (1.09) 0.620 0.375 0.596 34 (1.12) 0.502 0.399 0.559
DC-X 38 (1.26) 0.173 0.503 0.316 41 (1.36) 0.062 0.586 0.152
FSG-cDCC 33 (1.09) 0.620 0.375 0.596 30 (0.99) 0.964 0.305 0.590

q = 5%
cDCC 179 (5.92) 0.024 0.653 0.071 168 (5.55) 0.169 0.573 0.332
cDCC-X 175 (5.79) 0.053 0.543 0.128 171 (5.65) 0.106 0.911 0.270
DC-X 188 (6.21) 0.003 0.829 0.012 191 (6.31) 0.001 0.984 0.006
FSG-cDCC 212 (7.01) 0.000 0.969 0.000 194 (6.41) 0.001 0.656 0.003

q = 10%
cDCC 334 (11.04) 0.060 0.465 0.131 327 (10.81) 0.142 0.403 0.240
cDCC-X 339 (11.21) 0.030 0.579 0.081 340 (11.24) 0.026 0.552 0.069
DC-X 352 (11.64) 0.003 0.477 0.011 368 (12.17) 0.000 0.409 0.000
FSG-cDCC 366 (12.10) 0.000 0.146 0.000 353 (11.67) 0.003 0.264 0.006

10−day VaR forecasts
Vav(av.perc) pm,uc pm,ind pm,cc Vav(av.perc) pm,uc pm,ind pm,cc

q = 5%
cDCC 16.3 (5.39) 0.140 0.154 0.160 15.4 (5.09) 0.251 0.129 0.196
cDCC-X 16.5 (5.45) 0.144 0.180 0.163 14.7 (4.86) 0.256 0.068 0.169
DC-X 17.9 (5.92) 0.090 0.077 0.050 17.1 (5.65) 0.144 0.130 0.163
FSG-cDCC 20.2 (6.68) 0.009 0.046 0.013 18.8 (6.21) 0.030 0.054 0.054

q = 10%
cDCC 30.8 (10.18) 0.213 0.027 0.060 30.3 (10.02) 0.288 0.027 0.060
cDCC-X 30.9 (10.21) 0.288 0.027 0.060 28.4 (9.39) 0.146 0.289 0.286
DC-X 33.6 (11.11) 0.105 0.308 0.268 33.0 (10.91) 0.206 0.434 0.346
FSG-cDCC 36.9 (12.20) 0.013 0.077 0.037 36.0 (11.90) 0.032 0.150 0.093
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7 Conclusion

We study the impact of Financial Conditions Indexes (FCIs) on volatilities and correlations

of equity returns. We propose extensions of (factor-)GARCH models for volatility and

DCC models for correlation that incorporate an index to measure financial conditions. In

our empirical application, we use daily excess stock returns of US deposit banks during the

period 1994-2011 and proxy the financial conditions by the Bloomberg FCI. This daily index

summarizes the money, bond and equity market.

Our results show that financial conditions affect both the volatilities and the correlations

of large US bank holding companies. Specifically, worse financial conditions are associated

with higher volatilities and higher correlations. This result is both statistically and econom-

ically significant. During crisis periods, the inclusion of the FCI results in an increase in the

estimated correlation of 0.15. A forecasting exercise shows the economic gain of including

the Bloomberg FCI into our volatility and correlation models. Specifically, we consider port-

folio VaR forecasts using an equal-weighted portfolio and conduct 1- and 10-day ahead VaRs

at various quantiles. We find that including the FCI in both the volatility and correlation

specification improves the VaR forecasts at the short horizon, such that less violations are

made and hence the unconditional coverage match more closely to the nominal quantile.

Our results imply that risk managers and portfolio managers of financial institutions should

take into account financial conditions as a predictor of future volatility and correlations.
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A VaR backtests

A.1 The Unconditional Coverage test

The aim of the unconditional coverage test is to investigate whether the fraction of observa-

tions inside the (estimated/predicted) interval is equal to the nominal coverage probability.

Given τ observations, define It, t = 1, . . . , τ as an indicator function which takes the value

1 if the VaR lies outside the forecasted interval and 0 otherwise. Christoffersen (1998) and

citetK1995 propose the following null hypothesis about correct unconditional coverage:

H0 : Pr[It+1 = 1] = q

where q is the nominal coverage probability. This probability is equal to the expectation of

the indicator function It. Assuming independence of I1, . . . , Iτ , the likelihood function for

interval forecasts with coverage probability p = Pr[It+1 = 1] is given by

L(p; Iτ , Iτ−1, . . . , I1) = pT1(1− p)T0,

where T1 and T0 represent the amount of violations and non-violations respectively. The

likelihood under the null hypothesis given above with p = q is compared with the likelihood

under the alternative hypothesis where p equals the failure rate f . This rate is estimated

by f̂ = P̂ r(It+1 = 1) = T1/(T0 + T1). The LR statistic is then given by

LRuc = −2 log

(
qM(1− q)T−M

f̂M(1− f̂)T−M

)
(19)

and is asymptotically distributed as a χ2 distribution with one degrees of freedom.

A.2 The Independence test

The independence test advocated by Christoffersen (1998) investigates whether the occur-

rences violations are spread out over the sample instead of appearing in clusters. This

‘independence’ is tested against the specific alternative of a first-order Markov chain. Using
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the same notation as in the previous section, this boils down to

H0 : Pr[It+1 = 1|It] = Pr[It+1] t = 1, . . . , τ.

If It+1 follows a first-order Markov chain with transition probability matrix, then

Π1 =


 1− π01 π01

1− π11 π11




where πij = Pr[It+1 = j|It = i]. The likelihood is equal to

L(Π1; Iτ , Iτ−1, . . . , I1) = (1− π01)
T00πT01

01 (1− π11)
T10πT11

11 ,

where Tij is equal to the number of observations out of (τ−1) such that It+1 = j and It = i.

The maximum likelihood estimate of Π1 is given by

Π̂1 =




T00

T00+T01

T01

T00+T01

T10

T10+T11

T11

T10+T11


 .

Under the null hypothesis of independence, π01 = π11 ≡ π2, which leads to the corresponding

likelihood function

L(π2; Iτ , Iτ−1, . . . , I1) = (1− π2)
T00+T01πT01+T11

2 .

Then by estimating π2 with π̂2 = (T00+T01)/(T00+T01+T10+T11) the likelihood ratio test

of independence is computed as

LRuc = −2 log

(
L(π̂2; Iτ , Iτ−1, . . . , I1)

L(Π̂1; Iτ , Iτ−1, . . . , I1)

)
asy→ χ2 (20)

under the null hypothesis. Finally, as shown by Christoffersen (1998) , the unconditional

coverage and the independence test can be combined to test correct conditional coverage by

adding the two likelihood ratio test statistics. Under H0 this statistic follows asymptotically

a χ2 distribution with two degrees of freedom.
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B In-sample Volatilities - All assets

Table A.1: In-sample estimation results - Spline-GARCH Models - All assets
This table reports the estimation results of the Spline-GARCH(-X) model:

ri,t = µi +
√
gi,tτi,tεi,t,

gi,t = (1 − αi − δi − γi/2) + αi
(ri,t−1−µi)

2

τi,t−1

+ γi
(ri,t−1−µi)

2

τi,t−1

I[(ri,t−1 − µi) < 0] + δigi,t−1,

τi,t = exp(κi,0 + κi,1FCIt−1),

with ri,t the daily excess return of holding bank i, (i = 1, . . . , 16), FCIt represents the Bloomberg FCI.
Panel A of the table shows Maximum Likelihood estimates of the Spline-GARCH model without any added
exogenous variable, assuming a conditional Student-t distribution for εt. Panel B shows parameter estimates
of the Spline-GARCH-X model with the Bloomberg FCI included as exogenous variable. Nr in the first
column corresponds with the order of Table 1. Standard errors are in parentheses. The sample goes from
November 11, 1994, through December 30, 2011 (4,312 observations) for all numbers except nr. 3 and 7
(Wachovia Corp. and National City Corp.). For these two financial institutions, the sample goes from
November 11, 1994, through December 30, 2008 (3,556 observations).

Panel A: Spline-GARCH
Nr. µ α δ γ κ0 ν
1. 0.007 (0.014) 0.054 (0.011) 0.901 (0.013) 0.078 (0.016) 1.889 (0.340) 6.405 (0.517)
2. 0.012 (0.016) 0.039 (0.010) 0.911 (0.011) 0.088 (0.014) 1.472 (0.309) 6.105 (0.471)
3. 0.059 (0.026) 0.052 (0.013) 0.924 (0.008) 0.049 (0.015) -0.414 (0.027) 7.947 (0.024)
4. 0.021 (0.023) 0.024 (0.007) 0.931 (0.008) 0.086 (0.012) 2.174 (0.415) 8.521 (0.902)
5. 0.032 (0.022) 0.024 (0.007) 0.933 (0.008) 0.080 (0.012) 1.990 (0.334) 7.889 (0.766)
6. 0.014 (0.032) 0.022 (0.009) 0.922 (0.011) 0.104 (0.017) 2.397 (0.042) 5.737 (0.082)
7. 0.012 (0.060) 0.062 (0.016) 0.883 (0.017) 0.084 (0.025) 1.504 (0.345) 5.858 (0.559)
8. 0.029 (0.020) 0.046 (0.009) 0.919 (0.009) 0.064 (0.013) 1.963 (0.435) 7.150 (0.620)
9. 0.014 (0.017) 0.037 (0.010) 0.920 (0.013) 0.079 (0.016) 1.987 (0.413) 6.446 (0.545)
10. 0.025 (0.024) 0.031 (0.008) 0.937 (0.009) 0.057 (0.012) 1.575 (0.334) 7.568 (0.740)
11. 0.037 (0.018) 0.044 (0.010) 0.919 (0.010) 0.068 (0.013) 1.528 (0.363) 7.499 (0.677)
12. 0.023 (0.018) 0.037 (0.008) 0.933 (0.009) 0.050 (0.012) 1.321 (0.286) 7.014 (0.616)
13. 0.029 (0.027) 0.025 (0.007) 0.923 (0.009) 0.094 (0.014) 2.368 (0.309) 7.203 (0.667)
14. 0.015 (0.016) 0.036 (0.007) 0.928 (0.009) 0.069 (0.012) 2.166 (0.399) 7.151 (0.609)
15. 0.017 (0.014) 0.028 (0.010) 0.922 (0.012) 0.095 (0.014) 1.961 (0.437) 6.864 (0.591)
16. 0.046 (0.031) 0.027 (0.007) 0.945 (0.009) 0.051 (0.011) 2.254 (0.334) 5.535 (0.359)
Panel B: Spline-GARCH-X
Nr. µ α δ γ κ0 κ1 ν
1. 0.000 (0.017) 0.052 (0.012) 0.910 (0.015) 0.058 (0.015) 1.578 (0.255) -0.354 (0.067) 6.415 (0.544)
2. 0.006 (0.015) 0.037 (0.010) 0.917 (0.012) 0.073 (0.013) 1.275 (0.242) -0.359 (0.063) 6.072 (0.489)
3. 0.028 (0.022) 0.070 (0.014) 0.883 (0.016) 0.048 (0.019) 1.042 (0.156) -0.436 (0.062) 7.989 (0.958)
4. 0.014 (0.031) 0.020 (0.006) 0.944 (0.008) 0.069 (0.011) 2.009 (0.392) -0.282 (0.048) 8.667 (0.957)
5. 0.026 (0.020) 0.021 (0.006) 0.948 (0.008) 0.055 (0.012) 1.755 (0.295) -0.272 (0.051) 8.139 (0.846)
6. 0.006 (0.012) 0.021 (0.011) 0.936 (0.020) 0.072 (0.020) 1.926 (0.362) -0.337 (0.055) 5.679 (0.463)
7. 0.010 (0.020) 0.050 (0.014) 0.900 (0.024) 0.048 (0.021) 1.029 (0.146) -0.476 (0.050) 6.405 (0.671)
8. 0.024 (0.020) 0.041 (0.009) 0.937 (0.010) 0.039 (0.012) 1.635 (0.376) -0.327 (0.052) 7.334 (0.663)
9. 0.008 (0.017) 0.024 (0.010) 0.950 (0.015) 0.044 (0.014) 1.536 (0.357) -0.369 (0.045) 6.306 (0.554)
10. 0.021 (0.029) 0.024 (0.008) 0.958 (0.009) 0.030 (0.010) 1.293 (0.264) -0.336 (0.046) 7.952 (0.829)
11. 0.029 (0.019) 0.038 (0.010) 0.932 (0.011) 0.052 (0.012) 1.293 (0.295) -0.354 (0.053) 7.658 (0.734)
12. 0.019 (0.019) 0.029 (0.008) 0.952 (0.009) 0.029 (0.010) 1.089 (0.237) -0.317 (0.047) 7.091 (0.635)
13. 0.021 (0.030) 0.029 (0.008) 0.939 (0.012) 0.046 (0.014) 1.891 (0.201) -0.403 (0.050) 7.460 (0.759)
14. 0.006 (0.033) 0.031 (0.007) 0.948 (0.010) 0.038 (0.014) 1.846 (0.035) -0.323 (0.089) 7.081 (0.094)
15. 0.010 (0.014) 0.016 (0.009) 0.945 (0.012) 0.074 (0.012) 1.671 (0.400) -0.317 (0.049) 7.038 (0.642)
16. 0.035 (0.027) 0.014 (0.005) 0.972 (0.006) 0.026 (0.007) 1.880 (0.319) -0.317 (0.041) 5.575 (0.368)
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Table A.2: In-sample estimation results - Factor-Spline-GARCH models - All

assets
This table reports the estimation results of the Factor-Spline-GARCH model. The volatility is formulated
as a Spline-GARCH-X model:

ri,t = µi,t +
√
gi,tτi,tεi,t,

gi,t = (1 − αi − δi − γi/2) + αi
(ri,t−1−µi,t)

2

τt−1

+ γi
(ri,t−1−µi,t)

2

τt−1

I[(ri,t−1 − µi,t) < 0] + δigi,t−1,

τi,t = exp(κi,0 + κi,1FCIt−1),

with ri,t the daily excess return of holding bank i, (i = m, 1, . . . , 16) and the S&P 500 market return. In
addition, µi,t = ξi + βirm,t with rm,t the excess market return at day t. Otherwise, µi,t = µm in case of
the market return. FCIt represents the Bloomberg FCI. Panel A of the table shows Maximum Likelihood
estimates of the Spline-GARCH model without any added exogenous variable, assuming a conditional
Student-t distribution for εt. Panel B shows parameter estimates of the Spline-GARCH-X model with the
Bloomberg FCI included as exogenous variable. Nr in the first column corresponds with the order of Table
1. Standard errors are in parentheses. The sample goes from November 11, 1994, through December 30,
2011 (4,312 observations) for all numbers except nr. 3 and 7 (Wachovia Corp. and National City Corp.).
For these two financial institutions, the sample goes from November 11, 1994, through December 30, 2008
(3,556 observations).

Panel A: Spline-GARCH
Nr. β α δ γ κ0 ν
Panel A
1. 0.980 (0.022) 0.082 (0.016) 0.897 (0.017) 0.027 (0.016) 1.508 (0.384) 5.352 (0.370)
2. 0.844 (0.018) 0.053 (0.012) 0.910 (0.012) 0.065 (0.014) 1.303 (0.378) 5.473 (0.382)
3. 0.977 (0.019) 0.106 (0.019) 0.864 (0.020) 0.037 (0.021) 1.073 (0.379) 5.856 (0.509)
4. 0.957 (0.018) 0.051 (0.010) 0.929 (0.010) 0.037 (0.013) 1.828 (0.509) 6.759 (0.572)
5. 1.327 (0.019) 0.028 (0.006) 0.952 (0.006) 0.036 (0.009) 1.332 (0.370) 5.597 (0.384)
6. 1.241 (0.020) 0.043 (0.012) 0.923 (0.014) 0.063 (0.016) 2.035 (0.462) 4.812 (0.295)
7. 0.930 (0.018) 0.120 (0.019) 0.871 (0.018) 0.000 (0.020) 1.518 (0.039) 4.809 (0.066)
8. 1.011 (0.019) 0.058 (0.011) 0.924 (0.011) 0.032 (0.013) 1.579 (0.493) 5.893 (0.438)
9. 1.060 (0.018) 0.059 (0.015) 0.933 (0.017) 0.008 (0.015) 1.232 (0.474) 5.144 (0.351)
10. 1.045 (0.018) 0.045 (0.010) 0.944 (0.010) 0.018 (0.012) 1.158 (0.415) 5.253 (0.352)
11. 1.005 (0.018) 0.079 (0.013) 0.907 (0.011) 0.016 (0.014) 1.072 (0.377) 5.888 (0.450)
12. 0.995 (0.017) 0.066 (0.014) 0.920 (0.015) 0.016 (0.013) 0.833 (0.346) 5.717 (0.413)
13. 1.605 (0.023) 0.028 (0.007) 0.943 (0.009) 0.050 (0.011) 1.648 (0.317) 5.538 (0.394)
14. 1.301 (0.020) 0.065 (0.012) 0.914 (0.012) 0.036 (0.014) 1.588 (0.447) 5.984 (0.445)
15. 0.909 (0.016) 0.075 (0.018) 0.911 (0.016) 0.024 (0.016) 1.625 (0.554) 5.168 (0.348)
16. 1.310 (0.031) 0.033 (0.005) 0.967 (0.003) 0.000 (0.007) -4.193 (0.076) 4.595 (0.133)
Panel B: Spline-GARCH-X
Nr. β α θ γ κ0 κ1 ν
1. 0.986 (0.022) 0.077 (0.018) 0.898 (0.021) 0.023 (0.015) 1.158 (0.241) -0.376 (0.054) 5.438 (0.401)
2. 0.844 (0.018) 0.041 (0.012) 0.924 (0.013) 0.059 (0.012) 1.086 (0.316) -0.318 (0.055) 5.563 (0.399)
3. 0.981 (0.019) 0.103 (0.019) 0.865 (0.024) 0.020 (0.021) 0.675 (0.219) -0.418 (0.062) 6.243 (0.594)
4. 0.961 (0.018) 0.033 (0.009) 0.946 (0.010) 0.041 (0.011) 1.632 (0.445) -0.339 (0.046) 6.871 (0.602)
5. 1.338 (0.019) 0.015 (0.004) 0.971 (0.005) 0.026 (0.007) 1.160 (0.311) -0.339 (0.039) 5.962 (0.445)
6. 1.246 (0.020) 0.032 (0.013) 0.934 (0.018) 0.061 (0.016) 1.746 (0.482) -0.356 (0.048) 4.790 (0.312)
7. 0.934 (0.019) 0.066 (0.027) 0.910 (0.043) 0.016 (0.020) 0.695 (0.228) -0.464 (0.057) 5.295 (0.461)
8. 1.013 (0.019) 0.048 (0.010) 0.939 (0.010) 0.023 (0.011) 1.277 (0.418) -0.310 (0.049) 6.068 (0.469)
9. 1.062 (0.018) 0.021 (0.007) 0.971 (0.007) 0.014 (0.007) 1.047 (0.377) -0.362 (0.037) 5.121 (0.349)
10. 1.047 (0.018) 0.034 (0.009) 0.959 (0.010) 0.010 (0.010) 0.940 (0.338) -0.320 (0.047) 5.500 (0.386)
11. 1.008 (0.018) 0.062 (0.013) 0.918 (0.012) 0.025 (0.014) 0.806 (0.301) -0.352 (0.042) 6.188 (0.510)
12. 0.998 (0.017) 0.043 (0.015) 0.944 (0.017) 0.017 (0.009) 0.569 (0.286) -0.315 (0.049) 5.846 (0.434)
13 1.612 (0.023) 0.018 (0.005) 0.976 (0.007) 0.010 (0.009) 1.201 (0.292) -0.401 (0.040) 5.921 (0.457)
14 1.306 (0.020) 0.054 (0.012) 0.929 (0.013) 0.026 (0.012) 1.240 (0.369) -0.401 (0.053) 6.150 (0.484)
15. 0.911 (0.016) 0.062 (0.020) 0.919 (0.019) 0.029 (0.013) 1.357 (0.505) -0.322 (0.058) 5.210 (0.366)
16. 1.383 (0.027) 0.017 (0.005) 0.973 (0.007) 0.017 (0.006) 1.589 (0.330) -0.289 (0.038) 4.444 (0.237)
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