
Dualisation, Decision Lists and Identi�cation of Monotone

Discrete Functions

Jan C. Bioch

Department of Computer Science

Erasmus University Rotterdam

P.O. Box 1738, 3000 DR Rotterdam

The Netherlands

bioch@few.eur.nl

March, 1998

Abstract

Many data-analysis algorithms in machine learning, datamining and a variety of
other disciplines essentially operate on discrete multi-attribute data sets. By means
of discretisation or binarisation also numerical data sets can be successfully analysed.
Therefore, in this paper we view/introduce the theory of (partially de�ned) discrete
functions as an important theoretical tool for the analysis of multi-attribute data sets.
In particular we study monotone (partially de�ned) discrete functions. Compared
with the theory of Boolean functions relatively little is known about (partially de-
�ned) monotone discrete functions. It appears that decision lists are useful for the
representation of monotone discrete functions. Since dualisation is an important tool
in the theory of (monotone) Boolean functions, we study the interpretation and prop-
erties of the dual of a (monotone) binary or discrete function. We also introduce
the dual of a pseudo-Boolean function. The results are used to investigate extensions
of partially de�ned monotone discrete functions and the identi�cation of monotone
discrete functions. In particular we present a polynomial time algorithm for the iden-
ti�cation of so-called stable discrete functions.

Keywords: Monotone discrete functions, decision list representations, partially
de�ned discrete functions, dualisation, pseudo-Boolean functions, stable functions and
identi�cation of monotone discrete functions.

1 Introduction

Real-world datasets analysed in machine learning, datamining and decision sciences very
often contain multi-attribute descriptions of objects. Some of these attributes may rep-
resent decision or classi�cation variables. The algorithms used to �nd an explanation of
the dataset, or to discover association rules, or to induce concepts from positive and neg-
ative examples, or to induce decision trees, are essentially based on Boolean or discrete
attributes. Successful applications of datasets with numerical attributes are made possible
by the process of discretisation or binarisation before or during the analysis of the data.
Recent successful methodologies such as logical analysis of data (LAD) [11, 17] and as-
sociation rules (AR) [3], that also can handle numerical data, are even based on Boolean

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19187531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

attributes. Since many of these data-analysis algorithms essentially operate on discrete
multi-attribute datasets we introduce discrete functions as an important theoretical tool
for the analysis of these data sets.

In this paper we study monotone discrete functions as a tool for ordinal classi�cation
and exact learning (identi�cation), and as a basis for multi-attribute decision making.
However, contrary to Boolean functions, very little is known about monotone discrete
functions, see Davio et al. [13] and St�ormer [21].

In ordinal classi�cation the attributes and classes are linearly ordered sets. In mono-
tone classi�cation problems the classi�cation rules are supposed to be order preserving
maps. In fact, if the data set D is a subset of a partially ordered set X and Y is a
�nite linear ordered set, then a monotone classi�cation rule is an order preserving map
F : X 7! Y . Let f be the monotone function f : D 7! Y that represent the class labeling
of the data elements in D. Then F is called an extension of f if F agrees with f on
D: F (x) = f(x); 8x 2 D. Thus in ordinal classi�cation problems one is interested in
extensions, such as monotone decision trees, minimal(maximal) extensions etc. Ordinal
classi�cation for multi-attribute decision making has recently been studied by Ben-David
[4, 5], Makino and Ibaraki [18], Potharst and Bioch [7, 19]. The theory of extensions of
partially de�ned Boolean functions has been extensively studied by Boros, Ibaraki and
Makino [9, 10], and in the framework of LAD by Boros, Crama, Ibaraki, Hammer and
Kogan [12, 11, 17]. From a theoretical point of view multi-attribute ordinal classi�ca-
tion is essentially the study of monotone extensions of partially de�ned discrete functions
(pdDfs). The only paper we know of on this subject is of Greco et al. [15, 16]. Although
this paper is informal, it describes an interesting problem on risk analysis and discusses
the idea of what can be viewed as the discrete version of a (Boolean) pattern which plays
a central rôle in the LAD methodology.

The problem of the identi�cation of a given monotone discrete function f discussed in
this paper is in fact a special case of the extension problem discussed above. In this case
the data set is not �xed, but extended by asking queries to an oracle about the values of f
in speci�c points of the input space X , until only one (monotone) extension is possible (the
given function). In the case f is a Boolean function, in computational learning theory this
is called exact learning of a theory f by asking membership queries only [1, 2]. However,
in this paper we do not only acquire explicit knowledge about the set of minimal vectors of
the monotone discrete function f but also of the set of maximal vectors. The identi�cation
problem (in this sense) for Boolean functions is studied by Bioch and Ibaraki in [6]. It
appears that this problem is polynomially equivalent to many other interesting problems.
The complexity of this problem, that is related to that of dualisation is still not known,
although Fredman and Khachiyan [14] have proved a result on the mutual duality of
positive Boolean functions that tells that the complexity of identi�cation discussed here
is unlikely to be NP-hard.

This paper is organised as follows. In section 2 we discuss representations of monotone
discrete functions, such as normal forms (DNF and CNF). It is known [21] that monotone
discrete functions have a unique disjunctive normal form (DNF) consisting of all prime
implicants. As far as we know this is essentially all that is known about monotone discrete
functions. We present this result by using discrete variables introduced in [13] so that the
correspondence to the theory of (partially de�ned) Boolean functions becomes clear. In
this section we also introduce decision lists and binary monotone level functions as a
convenient representation of monotone functions. In section 3 we introduce the dual of

2

a discrete function and study its properties and interpretation. We also introduce the
dual of a pseudo-Boolean function and we argue that a pseudo-Boolean function can be
viewed as a discrete function. It appears that dualisation of a monotone discrete function
is equivalent to that of its binary level functions. Monotone extensions of partially de�ned
monotone discrete functions are discussed in section 4. Finally, in section 5 we discuss
the problem of identi�cation of a monotone discrete function f . This problem can be
reduced to the identi�cation of the set of monotone binary level functions of f . This
shows that the complexity of dualisation and identi�cation of monotone discrete functions
is not essentially di�erent from that of monotone Boolean functions. We also introduce
the class of monotone stable functions and present an algorithm for the identi�cation of
monotone discrete functions. We show that for a stable function f the running time of
this algorithm is quadratic in the size of f and its dual.

2 Representations of positive discrete functions

In this paper we study discrete functions of the form

f : X1 �X2 � : : :�Xn ! Y; (1)

where X = X1 � X2 � : : : � Xn and Y are �nite sets. As known [21], without loss of
generality we may assume: Xi = f0; 1; : : : ; nig and Y = f0; 1; : : : ; mig. For example, if
Y = f�0; �1; : : : ; �mj �i 2 Rg then we we will replace Y by f0; 1; : : : ; mg. If jY j = 2, then
f is called a binary function. A discrete function is called a logic function if jXij = jY j for
1 � i � n. A Boolean function f is a binary logic function: f : f0; 1gn ! f0; 1g. As a
general reference for discrete functions we mention [13, 21]. The set X becomes a partially
ordered set if we de�ne 8x; y : x � y , xi � yi; 1 � i � n. Furthermore, we de�ne the lub
_ and the glb ^ of x; y 2 X as follows:

x _ y = v; where vi = maxfxi; yig
x ^ y = w; where wi = minfxi; yig:

(2)

Therefore, we can consider X (and Y) as distributive lattices. The greatest and smallest
element of X are respectively denoted by x� and 0�. (Quasi-)complementation for X is
de�ned as: x = (x1; x2; : : : ; xm), where xi = ni � xi. Similarly, the complement of j 2 Y

is de�ned as j = m� j. The following well-known properties of complementation hold:

x _ y = x ^ y

x ^ y = x _ y:
(3)

Note, that X is not a complemented lattice because e.g. x ^ x is in general not equal to
0�. The collection of all discrete functions D(X; Y) = ff : X ! Y g is partially ordered
by

f � g , 8x : f(x) � g(x): (4)

Furthermore, (D;^;_g is a distributive lattice if we de�ne the lub _ and the glb ^ by
respectively:

(f _ g)(x) = maxff(x); g(x)g
(f ^ g)(x) = minff(x); g(x)g:

(5)

3

Finally, the complement of a discrete function f is de�ned by: f(x) = f(x), and we have

f _ g = f ^ g

f ^ g = f _ g:
(6)

A discrete function f is called positive (monotone non-decreasing) if x � y implies f(x) �
f(y). If f and g are positive functions, then f _ g and f ^ g are also positive. Therefore,
the class of positive discrete functions is also a distributive lattice.

Notation We frequently use the following notation:
(m] = fjj 1 � j � mg and [m) = fij 0 � i � m� 1g:

Class functions and level functions

A discrete function f induces a partitioning on X with m+ 1 classes: Tj(f) = fxjf(x) =
jg; j 2 [m+ 1). Elements of Tj(f) are called true vectors of class j, or true vectors of the
class(indicator) function fj de�ned by:

fj(x) =

(
1 if f(x) = j

0 otherwise.
(7)

Obviously, every discrete function is determined by its class (indicator) functions fj ; j 2
[m+ 1). However, class functions are not monotone.

A positive discrete function f can also be represented bym binary monotone functions.
These functions called here the level functions of f are de�ned as follows:

�j(f)(x) =

(
1 if f(x) � j

0 otherwise
and �i(f)(x) =

(
1 if f(x) � i

0 otherwise
(8)

where j 2 (m] and i 2 [m).

Thus �j(f) =
Wm
i=j fj ; �m(f) = fm; and �i(f) =

Wi
j=0 fj ; �0 = f0. From (8) it follows

that:

� �j(f) is a positive function, and �i(f) is a negative function

� �1 � �2 � � � ��m and �0 � �1 � � � � � �m�1:

� fj = �j ^ �j = �j ^ �j+1 = �j ^ �j�1; j 2 (m� 1].

� �j = �j+1; j 2 [m).

Lemma 1 Let f and g be positive discrete functions.
Then f � g , �j(f) � �j(g); 8j 2 (m].

Proof Since the level functions are binary we have:

�j(f) � �j(g), (�j(f) = 1) �j(g) = 1): (9)

Suppose �j(f) � �j(g) and f(x) = j. Then �j(f) = 1; implying that �j(g) = 1. There-
fore, g(x) � j = f(x). Conversely, suppose f � g and �j(f)(x) = 1.
Then g(x) � f(x) � j. Thus �j(g)(x) = 1. Therefore, f � g) �j(f) � �j(g): 2
Corollary 1 If f and g are positive functions, then f = g , 8j 2 (m] : �j(f) = �j(g).

4

2.1 Monotone decision lists

In this subsection we discuss representations of positive discrete functions. It appears
that positive functions can be conveniently represented by two kinds of decision lists: the
maxlist and the minlist representation. To see this, we generalise the idea of a decision
list well-known in the theory of Boolean functions, see e.g. [2]. Given a discrete function
f : X 7! Y , binary test functions tj : X 7! f0; 1g; 1 � j � k � m, and j0; � � � ; jk 2 Y .
Then the decision list representation of f , denoted by:

f = ((t1; j1); (t2; j2); : : : ; (tk; jk); j0)

is de�ned by:

if t1(x) = 1 then set f(x) = j1
else if t2(x) = 1 then set f(x) = j2

...
else if tk(x) = 1 then set f(x) = jk

else set f(x) = j0:

In the sequel we use two special types of decision lists for a positive function f based on
the minimal and maximal vectors of f . A minimal vector v of class j is a vector such
that f(v) = j and no vector strictly smaller than v is also in Tj(f). Similarly, a maximal
vector w is a vector maximal in the class Tj(f), where j = f(w). Let minTj(f); j 2 (m]
denote the set of minimal vectors of class j, and let maxTi(f); i 2 [m), denote the set of
maximal vectors of class i. Then f is completely de�ned by each one of the sets minT (f)
and maxT (f), where:

min T (f) =
[

j2 (m]

minTj(f) and maxT (f) =
[

i2 [m)

maxTi(f):

In the minlist representation minT (f) is used to test whether an input vector belongs to
respectively class m;m� 1; : : : ; 1. Similarly, maxT (f) is used in a maxlist representation
of f to test whether an input vector belongs respectively to class 0; 1; : : : ; m� 1.

Example 1 Let f be the positive ternary function f : f0; 1; 2g3 7! f0; 1; 2g de�ned by the
sets minT1(f) = f002; 200g and minT2(f) = f210g, see table 1.

min T (f) maxT (f) f

210 2

002, 200 122, 202 1

021 0

Table 1: Representing f

The minlist representation of f is given by

f(x) = if x � 210 then 2
else if x � 002; 200 then 1

else 0.

5

Note, that in this list x � 002; 200 is a shorthand for: x � 002 or x � 200. Given the set
minT (f) we can compute maxT (f), also given in table 1, by dualisation, see section 3.
From this we obtain the decision list, called the maxlist of f :

f(x) = if x � 021 then 0
else if x � 122; 202 then 1

else 2.

In general, given sets minj ; j 2 (m], where each minj � X is a set of incomparable vectors
such that if u 2 mini and v 2 minj ; i > j, then u 6� v. Then the following function is
positive and minTj(f) = minj .

f(x) = if x 2 "minm then m

else if x 2 "minm�1 then m� 1
...
else if x 2 "min1 then 1

else 0.

Note, that if M � X; then the upset of M is de�ned by "M = fy 2 X j 9x 2M such that
x � y. Similarly, the downset of M is de�ned as: #M = fx 2 X j 9y 2 M , where x � y.
In the same way one can de�ne a positive function by a maxlist, given sets maxi; i 2 [m),
where each maxi � X is a set of incomparable set of vectors such that u 6� v, whenever
u 2 maxi and v 2 maxj and i > j. Here, the if-statements are of the form: if x 2 #maxi
then i, for i 2 [m):

2.2 Normal forms of positive discrete functions

It is well-known that positive Boolean functions have a unique disjunctive normal form
(DNF) consisting of all prime implicants, and a unique conjunctive normal form (CNF)
consisting of all prime implicates. It is known [21], that similar results hold in the case
of positive discrete functions. We will briey discuss the most important notions using
our notation (2)-(7), and the decision list representation. See also Davio et al. [13] and
St�ormer [21].

Although the notations of prime implicants and prime implicates, well-known in Boolean
function theory, can be generalised in several ways, for positive discrete functions these
de�nitions coincide. Before presenting the normal forms for positive functions we de�ne
the following basic functions, called here the (discrete) cubic and anti-cubic function:

cv;j(x) = if x � v then j else 0; j 2 (m]

aw;i(x) = if x � w then i else m; i 2 [m):

A cubic function cv;j is called a prime implicant of f if cv;j � f and cv;j is maximal w.r.t.
this property. Dually, aw;i is called a prime implicate of f if f � aw;i and aw;i is minimal
w.r.t. this property.

In our notation (cf. St�ormer [21]), the DNF of f :

f =
_
v;j

fcv;j j v 2 min Tj(f); j 2 (m]g; (10)

6

is a unique representation of f as a disjunction of all its prime implicants. A similar result
holds for the conjunctive normal form:

f =
^
w;i

faw;i j w 2 maxTi(f); i 2 [m)g: (11)

Thus, the CNF given here is the unique representation of f as a conjunction of all prime
implicates. We can write cv;j(aw;i) as a conjunction (disjunction) of discrete variables,
introduced in [13]:

xip = if xi � p then m else 0, where 1 � p � ni; i 2 (n]: (12)

Furthermore, we de�ne xini+1 = 0: Thus we can write:

cv;j = j:x1v1x2v2 � � �xnvn (13)

aw;i = i _ x1w1+1 _ x2w2+1 � � � _ xnwn+1: (14)

Note here, that j:xip denotes the conjunction j^xip, where j 2 Y is a constant, and xipxjq
denotes xip ^ xiq. Moreover, m:xip = xip; and if p � q; then xipxiq = xip; xip_ xiq = xiq:

Example 2 Let f be de�ned by the decision list:

f(x) = if x � 202 then 3
else if x � 200 then 2

else if x � 001; 110 then 1
else 0.

Then f(x) = (3):x12x32 _ 2:x12 _ 1:x11x21 _ 1:x31: 2

Using decision lists it is easy to see that every positive discrete function admits a DNF
in which all discrete variables are positive. By using the complements of these variables
it is also easy to see that every discrete function has a DNF expressed by positive and
negative literals.

f(x) =
_
v;j

fj:xv1xv2 � � �xvnx1v1+1x2v2+1 � � �xnvn+1 j f(v) = jg: (15)

Note, that if p+ 1 � ni, xip+1 means: if xi � p+ 1 then 0 else m. Thus:

xip+1 = if xi � p then m else 0: (16)

Furthermore, we de�ne xini+1 = m:

3 Dualisation of discrete functions

The dual of a Boolean function f is de�ned as

fd(x) = f(x): (17)

Dualisation and the complexity of it is extensively studied in the theory of Boolean
functions, see e.g. [6, 14]. In this paper we introduce the dual of a discrete functon using

7

the same de�nition. However, since we have generalised the concepts of complement, dis-
junction and conjunction to the lattice of discrete functions, not all properties necessarily
hold. The following well-known properties remain valid:

f � g , gd � fd

(f _ g)d = fd _ gd

(f ^ g)d = fd _ gd

(f)d = f
d
:

Furthermore, if xip is a discrete variable and j 2 Y a constant then

xdip = xip+1

jd = j:

Using these properties we can dualise any discrete function f given by a lattice expres-
sion in discrete variables.

3.1 Dualisation of positive discrete functions

From equations (13) and (14) of the preceding section it follows that:

cdv;j = a
v;j

: (18)

Therefore, the dual of the positive function f given by:

f =
_
v;j

j:cv;j equals f
d =
^
v;j

j _ a
v;j
: (19)

Thus the dual of a positive function can be computed by exchanging ^ and _, replacing
constants by their complements and discrete variables xip by their duals xip+1:

Example 3 Consider the ternary function of f : f0; 1; 2g3 7! f0; 1; 2g de�ned by:

f(x) = if x � 212 then 2
else if x � 002 then 1

else 0.
Then

f(x) = 2:x12x21x32 _ 1:x32

fd(x) = (x11 _ x22 _ x31)(1_ x31)

= 1:x11 _ 1:x22 _ x31: 2

The minlist representation of fd is:

fd(x) = if x � 001 then 2
else if x � 020; 100 then 1

else 0.

By dualisation of the DNF of fd we can also derive the CNF of f :

f(x) = (1_ x12)(1_ x21)x32: (20)

The three disjunctions in (20) are the prime implicates of f . The following theorem is a
generalisation of a well-known theorem in Boolean function theory.

8

Theorem 1 Let f be a positive discrete function. Then: min Tj(f
d) = fx 2 X j x 2

maxTj(f)g: Dually, maxTi(f
d) = fx 2 X j x 2 minTi(f)g; j 2 (m]; i 2 [m):

Proof The theorem is a consequence of the following equivalence:

x 2 minTj(f
d) , x 2 maxT

j
(f): (21)

To prove (21), let x 2 minTj(f
d): Then fd(x) = j, implying f(x) = j: Therefore,

x 2 Tj(f). Suppose y > x; so y < x: Then, since f is positive and x is minimal in

Tj(f
d), we conclude y 62 Tj(f

d). This is equivalent to fd(y) 6= j , f(y) 6= j , f(y) 6= j.
Thus, if y > x then y 62 T

j
(f). This proves the claim that x 2 maxT

j
(fd). The converse:

x 2 maxT
j
(f) implies x 2 minTj(f

d) is proved analogously. 2

Theorem 1 can be used to compute maxT (f) from minT (f).

Example 4 The maxlist representation of the positive function f de�ned in example 3
follows from the minlist representation of fd given:

f(x) = if x � 221 then 0
else if x � 122; 202 then 1

else 2. 2

Note, that the maxlist of f is obtained from the minlist of fd by complementing the
minimal vectors as well as the function values, and by reversing the inequalities.

3.2 Interpretation of the dual of a positive function

For positive Boolean functions it is known that y 2 T (fd) if and only if 8x 2 T (f) : y 6� x.
This means that y is a transversal of T (f) : y ^ x 6= 0�. In particular this means that a
prime implicant of fd has at least one variable in common with every prime implicant of
f .

Binary functions

Before we generalise this result for discrete functions, we �rst note that for binary func-
tions a similar result holds.

Lemma 2 Let f be a positive binary function. Then:

y 2 T (fd), 8x 2 T (f) : y 6� x: (22)

Proof The proof is the same as for Boolean functions, and therefore omitted. 2

Note, that the condition y 6� x is equivalent to:

9i 2 (n] such that xi + yi � ni + 1; where ni + 1 = jXij: (23)

If we interpret (22) or (23) as y is a `transversal' of x, then Lemma 2 implies that
minT (fd) is just the set of minimal transversals of minT (f). Otherwise stated cw is

9

a prime implicant of fd if and only if cw is a minimal transversal of the prime im-
plicants of f . Thus, if dv is any prime implicant of f , then there exist a variable
xip in cw and a variable xiq in dv such that p+ q � ni + 1.

Example 5 Consider the binary function f : f0; 1; 2g3 7! f0; 1g de�ned by
f = x12x21x32 _ x11x22x31. Then fd = (x11 _ x22 _ x31)(x12 _ x21 _ x32) =

= x12 _ x11 _ x21 _ x22 _ x21 _ x31 _ x32: Thus minT (f) = f212; 121g and min T (fd) =
f200; 110; 020; 011; 002g is the set of all minimal `transversals' of minT (f): 2

Discrete functions

To interpret fd in the case of a positive discrete function f , we represent f by its binary
monotone level functions de�ned in section 2.

Theorem 2 Let f be a positive discrete function, then
�j(f)

d = �
j+1(f

d) and �j(f
d) = �

j+1(f)
d; j 2 (m].

Proof �j(f)
d(x) = �j(f)(x) = 1, f(x) < j , fd(x) > j , fd(x) � j + 1:

The last inequality is equivalent to x 2 T (�j+1(f
d)). Therefore, �j(f)

d = �j+1(f
d).

This also implies �j(f
d) = �j+1(f)

d, since j + 1 = j � 1: 2

We now return to the interpretation of the dual of a positive discrete function f .

Theorem 3 Let f be a positive discrete function then we have:
fd(y) � j , y 6� x for all x with f(x) � j + 1:

Proof fd(y) � j , �j(fd)(y) = 1, �
j+1(f)

d(y) = 1.
Since the last equality implies that y is a transversal of the binary function �j+1(f),

we conclude fd(y) � j , 8x : f(x) � j + 1) y 6� x: 2

3.3 Dualisation and class functions

As discussed in section 2, the class functions fj of a monotone function f are binary func-
tions that indicate for each x 2 X whether f(x) = j or not. Since f is binary T1(fj)
will also be denoted by T (fj) and T0(fj) by F (fj). However, the class functions are not
positive.

The functions fj can be expressed in terms of the test functions occurring in either a
minlist or maxlist representation of f . This can be used to dualise a monotone function
f , i.e. to compute maxT (f) from minT (f) and vice versa.

Example 6 Let f be the positive function f0; 1; 2g2 7! f0; 1; 2g given by
minT1(f) = f02; 11; 20g and minT2(f) = f22g. Then s1(x) = x � 02; 11; 20 and

s2(x) = x � 22. Suppose that the maxlist of f is given by: f(x) = ((t0(x); 0)); (t1(x); 1); 2).

10

Then the following holds:

f0 = t0 = s1s2 (24)

f1 = t1t0 = s1s2 (25)

f2 = t1t2 = s2 (26)

From s1(x) = x22 _ x11x21 _ x12 and s2(x) = x12x22, the class functions fj can be
computed.

Furthermore, we can use f1 and f0 to compute the maximal vectors as follows:

maxT0(f) = maxT (f0) = maxT (s1s2) (27)

maxT1(f) = maxT (f1) = maxT (s1s2): (28)

Since : s1s2 = (x22 ^ (x11 _ x21)^ x12)(x12 _ x22) = x11x22 _ x12x21;
and: s1x2 = x12x22 _ x11x12x21 _ x11x21x22 _ x12x22;

equations (27) and (28) imply: maxT0(f) = f01; 10g and maxT1(f) = f12; 21g: 2

In general, if f is a positive function and sj ; j 2 (m] are the test functions in the minlist
of f , then the following equations hold:

fj = sjsj+1 � � �sm�1sm = tj tj�1 � � � t1t0; j 2 (m� 1] (29)

f0 = s1s2 � � �sm = t0 (30)

fm = sm = tm�1tm�2 � � � t0: (31)

Using these equations we can compute maxTi(f) = maxT (fi); i 2 [m); given the functions
sj . Similarly, we can compute minTj(f) = minT (fj); j 2 (m], given the functions ti. Since
this enables us to switch between minT (f) and maxT (f), these equations can be used to
compute the dual of a positive function.

The minimal DNFs of class functions

Since class functions of positive discrete functions are not monotone, they do not have a
unique DNF consisting of prime implicants. It is known [21] that a prime implicant of a
class function fj is an indicator function of an interval:

c(x) =

(
1 if x 2 [v; w]
0 otherwise

, where v 2 minTj(f); w 2 maxTj and v � w:

(32)

St�ormer [21] discusses an elaborate method to �nd all minimal DNFs of a class function.
Since this is in fact a set covering problem, we briey show here how to solve this problem
by dualising an appropriate positive Boolean function.

Example 7We consider the class function of the positive function of 2 variables discussed
in the preceding example, see table 2. The prime implicants of f1 are the indicator func-
tions c1; � � � ; c4 of respectively the intervals: [02,12], [11,12], [11,21] and [21,22].

11

2 1 1 2
1 0 1 1
0 0 0 1

0 1 2

Table 2: The function f

f1 = c1 _ c2 _ c4

f1 = c1 _ c3 _ c4:

Figure 1: The minimal DNFs of f1

For each prime implicant ci we introduce a Boolean variable xi. For each element v 2

minT (f1) we form a conjunction mv of these variables, such that xi 2 Var(mv) , v 2
T (ci): Furthermore, the Boolean function gj is de�ned by:

gj =
^
v

f mv j v 2 min T (fj)g: (33)

In this example g1 = x1 _ x2x3 _ x4: The prime implicants of g1 actually denote that the
minimal vectors 02, 11 and 20 are true vectors of c1; c2 and c3; c4: To �nd the minimal
transversals of the sets fc1g, fc2; c3g and fc4g, we dualise the function g1:

gd = x1x2x4 _ x1x3x4: (34)

From (34) we conclude that the class function f1 admits exactly the two minimal DNFs
given in �gure 1. 2

3.4 Dual comparable discrete functions

Two discrete functions f and g are called mutually dual comparable, if one of the following
conditions hold: f � gd; fd � g or fd = g. The functions f and g are called respectively
mutually dual minor, mutually dual major or mutually dual. In particular the function f

is called dual minor, dual major or self dual if f � fd; fd � f or fd = f .

Example 8 Consider the function f : f0; 1g2 7! f0; 1; 2g de�ned by
f00:1, 01:0, 10:2, 11:1g. Then f is non-monotone and self dual. This can be

checked by applying the de�nition fd(x) = f(x) directly, or by dualising the following
DNF expression for f :

f = uv _ 1:uv _ 1:u v; (35)

where the binary variables u and v are de�ned by:

u = x11 =

(
2 if x1 = 1
0 if x1 = 0

and v = x21 =

(
2 if x2 = 1
0 if x2 = 0

(36)

Since u and v are binary variables we have ud = u and vd = v.
Therefore:

fd = (u _ v)(1 _ u _ v)(1_ u _ v) = uv _ 1:u _ 1:v (37)

12

Although, the DNF expression for fd is di�erent from (35), it is easy to see that fd = f . 2

For positive discrete functions the question of dual comparability can be reduced to
that of the comparability of positive binary functions.

Theorem 4 Let f and g be positive discrete functions. Then
f � gd , �p(f) � �q(g)

d for all p; q : p+ q = m+ 1.

Proof f � gd , 8p 2 (m] : �p(f) � �p(g
d) = �p+1(g)

d. Here we have used lemma 1 and
theorem 2. If q = p+ 1; then p+ q =m+ 1. Therefore: f � gd , �p(f) � �q(g)

d: 2

Similar results hold for mutual dual major and mutual dual functions. In particular,
a positive function f is self dual i� �p(f) = �q(f)

d; 8p; q 2 (m] : p+ q = m+ 1.

3.5 Dualisation of pseudo-Boolean functions

A pseudo-Boolean function F is a function F : X 7! R, where X is the hypercube
f0; 1gn. Since X is �nite, we can also view F as a discrete function: F : X 7! Y , where
Y = f�0; �1; : : : ; �mg; �i 2 R, consists of all di�erent function values of F in increasing
order. As a consequence we can also de�ne concepts such as the complement and the
dual of a pseudo-Boolean function. The complement of a pseudo-Boolean function F is
de�ned by: F (x) = �j = �j = �m�j , whenever F (x) = �j . As noticed before, without
loss of generality we may replace Y = f�0; �1; � � � ; �mg by Y = f0; 1; 2; � � � ; mg. For
example, let f denote the associated discrete function: f(x) = j , F (x) = �j . Then
fd(x) = p, F d(x) = �p. Therefore, fd = f , F d = F .

Example 9 Let F : f0; 1g2 7! R be the pseudo-Boolean function de�ned by:
F (x1; x2) = 3x1 � 4x2 + x1x2. Then F has three distinct function values:

�0 = �4; �1 = 0 and �2 = 3, see table 3.

x1 x2 F F d f fd

0 0 0 0 1 1
0 1 -4 -4 0 0
1 0 3 3 2 2
1 1 0 0 1 1

Table 3: A self dual pseudo-Boolean function

The associated discrete function f , see table 3, is the same as in example 8. We have
already noticed that fd = f . Therefore F is also self dual. The dual of F can also be
computed directly by applying the de�nition F d(x) = F (x). This shows again that F is
self dual. 2

13

4 Monotone extensions of partially de�ned discrete func-

tions

Discrete functions frequently encountered in machine learning and datamining are only
partially known. A partially de�ned discrete function (pdDf) is a function:

f : D 7! Y; where D � X: (38)

We assume that a pdDf f is given by a set of pairs x : y, where x 2 D and y 2 Y = [m+1).
Although pdDfs are often used in practical applications, the theory of pdDfs is only devel-
oped in the case of pdBfs (partially de�ned Boolean functions). Here we discuss monotone
pdDfs, i.e. functions that are monotone on D. If the function f̂ : X 7! Y , agrees with
f on D: f̂(x) = f(x); x 2 D; then f̂ is called an extension of the pdDf f . The set of
all extensions is a distributive lattice: for, if f1 and f2 are extensions of the pdDf f , then
f1 ^ f2 and f1 _ f2 are also extensions of f . The same holds for the set of all monotone
extensions. The lattice of all monotone extensions of a pdDf f will be denoted here by
E(f). It is easy to see that E(f) is universally bounded: it has a greatest and a smallest
element.

De�nition 1 Let f be a monotone pdDf. Then the functions fmin and fmax are de�ned
as follows:

fmin(x) =

(
maxff(y) : y 2 D \ #xg if x 2 "D

0 otherwise
(39)

fmax(x) =

(
minff(y) : y 2 D ["xg if x 2 #D
m otherwise

(40)

Lemma 3 Let f be a monotone pdDf. Then
a) fmin; fmax 2 E(f):
b) 8f̂ 2 E(f) : fmin � f̂ � fmax:

Proof The proof can be found in [19]. 2

Since E(f) is a distributive lattice, the minimal and maximal monotone extension of
f can also be described by the following expressions:

fmax =
_
f f̂ j f̂ 2 E(f)g and fmin =

^
f f̂ j f̂ 2 E(f)g: (41)

According to the previous lemma fmin and fmax are respectively the minimal and maximal
monotone extension of f . Decision lists of these extensions can be directly constructed
from f as follows. Let Dj := D \ Tj(f), then minTj(fmin) = minDj and maxTj(fmax) =
maxDj .

Example 10 Consider the pdDf f = f001 : 0; 002 : 1; 112 : 1; 202 : 1; 212 : 2g:
Then minD1(f) = f002g and minD2(f) = f212g. Similarly, maxD0(f) = f001g and
maxD1(f) = f112; 202g. Therefore, the minlist of fmin and the maxlist of fmax are given
by respectively:

14

fmin(x) = if x � 212 then 2
else if x � 002 then 1

else 0,

fmax(x) = if x � 001 then 0
else if x � 112; 202 then 1

else 2. 2

Note, that the pdDf f in this example is also discussed in section 3: example 3. To
compare fmin and fmax, it is convenient to use the same representation for these functions.
This can be done by dualisation in order to switch between the minlist and maxlist rep-
resentation. This yields:

fmin(x) = if x � 221 then 0
else if x � 122; 202 then 1

else 2,

fmax(x) = if x � 210 then 2
else if x � 100; 002; 010 then 1

else 0.

Using the minlist representations of fmin and fmax it follows that e.g. the function g

de�ned by:

g(x) = if x � 210 then 2
else if x � 002 then 1

else 0,

is a monotone extension of f satisfying: fmin < g < fmax. The advantage of comparing
decision list or DNF representations of fmin and fmax is, that we can search for extensions
with a more compact representation. This is similar to the minimum description length
principle used in machine learning to �nd hypotheses(extensions) with greater generalisa-
tion capabilities. Another possible advantage is that the minimal and maximal extension
can guide the construction of monotone extensions by other learning methods, such as
monotone decision decision trees [19, 18]. Finally, we remark that the method OLM dis-
cussed by Ben-David in [4, 5], can be viewed as an algorithm for constructing minT (fmin),
where f is a pdDf, extended with a �lter to handle inconsistent data.

5 Identi�cation of positive discrete functions

Since a monotone function is determined by its minimal or maximal vectors, the iden-
ti�cation problem can be stated as follows, where the input consists of an oracle for a
monotone discrete function f .

Problem IDENTIFICATION

Input: An oracle for a positive discrete function f .
Output: minT (f) and maxT (f).

The oracle for f answers queries about the function values of input vectors given to
it. Given a vector x 2 X , the oracle returns its answer (i.e. f(x)) in time O(s), where
s = log jY j. The input length of the oracle is de�ned as O(nr), where n is the number of
variables and r = logmax(jXij).

In the special case that f is a Boolean function, the oracle is called a membership
oracle. In computational learning theory [1, 2], identi�cation of a given Boolean function
f by asking membership queries to an oracle whether f(x) = 0 or 1 holds for some input
vector x, is also called exact learning of a Boolean theory f by membership queries only.

15

However, note that here by identi�cation we mean to determine both the set of minimal
vectors min T (f) as well as the sets of maximal vectors maxT (f). Although maxT (f)
can be computed from minT (f) in principle, we consider identifying of both the set of
minT (f) and maxT (f) as essential. During the process of identi�cation which we discuss
here partial knowledge of both minT (f) and maxT (f) becomes available, even in the case
we identify the sets minT (f) and maxT (f) separately. Therefore, maintaining both these
sets is natural.

The problem of identi�cation, and the problem of computing maxT (f) from minT (f)
are related to the problem of dualisation of f . The complexity of this problem, discussed
in the next section, is still a well-known open problem, see [6, 14]. The problem of
identi�cation and dualisation of a positive Boolean function and the relation to many other
problems is extensively studied in [6]. It appears that these problems for positive discrete
functions can be reduced to solving m identi�cation (dualisation) problems for positive
binary functions. However, the problems of dualisation and identi�cation of positive binary
functions are not essentially di�erent from those of Boolean functions. Thus, most of the
results in [6, 14] for Boolean functions can be generalised to binary functions. Since this
generalisation step is more or less straightforward we will not discuss the details of this step
in this paper. In the next subsection we present a simple algorithm for the identi�cation
of positive discrete functions. This algorithm is polynomial(quadratic) for so-called stable
functions.

5.1 Identi�cation of positive stable functions

Suppose MIN and MAX denote the partial knowledge of minT (f) and maxT (f) already
available:

MIN � minT (f) and MAX � maxT (f): (42)

Then we can approximate f by two functions g and h de�ned by:

minT (g) = MIN and maxT (h) = MAX: (43)

Lemma 4 Suppose f is a positive discrete function. Let g and h be positive functions
de�ned by (43). Then g � f � h:

Proof Trivial. 2

From the preceding lemma it follows that if MIN increases, then the function g will
also increase. Moreover, if MAX increases, then the function h will decrease. Therefore,
if the size of MIN or MAX increases, then g or h approaches to f .

De�nition 2 Let f be a positive discrete function. Then f is called stable i� for all pairs
of functions g and h de�ned by subsets of respectively minimal and maximal vectors of

f (see equation (43)), the following inequality hold:

jmaxT (g)j+ jminT (h)j � jminT (f)j+ jmaxT (f)j: (44)

It is not yet known how large the subclass of stable discrete functions is. In particular
we have not found positive Boolean functions that are not stable. Since stable Boolean

16

functions can be dualised in quadratic total time, it would be interesting to know the size
of the class of stable functions compared to the number of positive functions. Furthermore,
it would be interesting to know whether the following conjecture is true or not:

Conjecture The class of positive regular Boolean functions is a (proper) subclass of the
class of stable functions.

The following theorem implies that to �nd new maximal vectors of f not contained in
maxT (h), it is su�cient to compute the minimal vectors of h (e.g. by dualising h incre-
mentally). This step, which can be done in polynomial time for stable functions will be
discussed later in this section.

Theorem 5 Let u 2 minTj(h). Then either f(u) = h(u) = j and u 2 min Tj(f) or
f(u) < j. If f(u) = i < j, then there exists a vector w � u such that

w 2 maxTi(f) nmaxTi(h).

Proof Since f � h and h(u) = j, we have f(u) � j. First suppose that f(u) = j. Then
u 2 Tj(f). Let v 2 minTj(f) and v � u. Then h(v) � f(v) = j. Since h is positive we
also have h(v) � h(u) = j. Therefore, h(v) = j, implying v 2 Tj(h). From u 2 minTj(h)
and v � u we conclude v = u. This proves that u 2 minTj(f).

Finally, in the case that f(u) = i < j, we claim that 8w 2 maxTi(h) the following
holds: u 6� w. For, if u � w for some maximal vector of Ti(h), then j = h(u) � h(w) = i.
This contradicts the assumption i < j. From u 2 Ti(f) and u 6� w for all w 2 maxTi(h),
we conclude: 9w0 � u; w0 2 maxTi(f) and w0 62 maxTi(h). 2

The above theorem implies that if all minimal vectors of h are also minimal vectors of f ,
then we have identi�ed f : f = h. Otherwise, we can �nd a new maximal vector of f not
contained in maxT (h). Dually we can formulate this theorem for the function g.

Theorem 6 Let u 2 maxTj(g). Then either g(u) = f(u) = j and u 2 maxTj(f) or
f(u) > j. If f(u) = i > j, then there exists a vector v � u such that

v 2 min Ti(f) nminTi(g).

So if g 6= f , we can �nd a new minimal vector of f not contained in minT (g) by
computing the maximal vectors of g. Computing a minimal true vector or a maximal false
vector w of a positive Boolean function from an unknown vector u can be done in O(n)
time. For discrete functions we have the following generalisation of an algorithm in [6].

Algorithm MAXIMAL

Input: An incomparable set Mj � maxTj(f), a vector u 2 Tj(f) nMj , and an oracle
for f , where f is a positive discrete function.

Output: A maximal vector w 2 maxTj(f) nMj .
1. w := u; j := f(u)
2. for i = 1 to n do

while wi < mi and f(w) = j do wi := wi + 1;
if f(w) > j then wi := wi + 1

3. Output w.

17

Minimal vectors can be computed analogously. This algorithm is called MINIMAL.
Both algorithms use O(n) queries in step 2 before outputting the maximal (minimal)
vector w.

Before discussing our identi�cation algorithm we present an algorithm to identify a
positive function f given an oracle for f , by identifying min T (f). The correctness of this
algorithm, called IdMIN, follows from Theorem 6. We can also identify f by computing
only maxT (f) by a similar algorithm IdMAX.

Algorithm IdMIN

Input: An oracle for a stable discrete function f

Output: minT (f)
1. Initialisation

v0 := MINIMAL(all-one);
De�ne the positive function g by: minT0(g) = fv0g.

2. Update maxT (g).
3. Test if there exists a vector w 2 maxTj(g) for some j such that f(w) > j.

If not, then output minT (f) and halt. Otherwise goto 4.
4. If f(w) = i and i > j, then compute a new minimal vector v in Ti(f) :

v := MINIMAL(w); and update g by minT (g) := minT (g)[fvg. Goto 2.

In step 2 maxT (g) is updated by incrementally updating the dual of g as follows. At
each iteration g is updated by adding a new minimal vector v, or equivalently by adding
a new prime implicant cv to g. Thus g := gold _ cv. Therefore, gd := gdold ^ cdv: Since f

is stable, this step can be carried out in time O(jf j+ jfdj). Here jf j is the size of f : the
total length of all minimal vectors of f .

In step 4 of algorithm IdMIN a new minimal vector is computed. In general there are
many vectors v for which g(v) 6= f(v). Therefore, in step 4 we can compute in general
more than one minimal vector. Furthermore, as shown in Theorem 6, if g(v) = f(v), then
v is a maximal vector of f . Therefore, during the identi�cation of min T (f), we also get
more and more information about maxT (f). This information could be used to identify
simultaneously the maximal vectors of f using IdMAX. Thus running IdMIN and IdMAX
in 'parallel' such that all available knowledge can be used by both of them can reduce the
number of iterations substantially.

From our discussion it follows that the running time of algorithm IdMIN is
O(jminT (f)jmf), wheremf is de�ned as: jf j+ jfdj: Here we assume that in each iteration
at most one minimal vector of f is computed. Thus, the running time of the algorithm
IdMIN is at most O(m2

f):

Example 11 As an example we consider the identi�cation of the Boolean function
f = x1x2_x2x3x4_x1x4, where we assume of course that we only have a membership

oracle of f at our disposal. The dual of f is fd = x1x2 _ x1x3 _ x1x4 _ x2x4. Therefore,
we have to identify the following sets, where T (f)(F (f)) denotes T1(f)(T0(f)).

minT (f) = f1100; 0111; 1001g and maxF (f) = f0011; 0101; 0110; 1010g (45)

After the initialisation steps of IdMIN and IdMAX we have

min T (g) = f1100g and maxF (h) = f1010g (46)

18

By dualising the functions g and h de�ned in (46) we get:

maxF (g) = f0111; 1011g and minT (h) = f0100; 0001g (47)

Using the oracle for f , (45) and (47) imply that minT (h) does not contain minimal vectors
of T (f). Therefore, using MAXIMAL we �nd two new maximal vectors of F (f): 0110
and 0101. Similarly, maxF (g) does not contain maximal vectors of f . Using MINIMAL,
we obtain two new minimal vectors of T (f): 0111 and 1001. The new vectors are added
to the sets in (46). Thus, after one iteration we have:

min T (g) = f1100; 0111; 1001g and maxT (h) = f1010; 0110; 0101g (48)

Note, that if minT (h) did contain minimal vectors of T (f), then we would have added
these to min T (g) also. Similarly, maximal vectors of F (f) found in maxF (g) would have
been added to maxT (h). Thus, by intertwining the algorithms IdMIN and IdMAX, we
obtain maximal information in each iteration.

Although it seems that we have identi�ed minT (f) in one iteration, since minT (g) =
minT (f), we need one more iteration, because our algorithm only can halt in step 3 of
IdMIN and/or IdMAX. A second iteration of IdMIN yields:

maxF (g) = f0011; 0101; 0110; 1010g (49)

Using the oracle we �nd that all the vectors in (49) belong to F (f), and therefore to
maxF (f). Therefore, the algorithm halts in step 3 of IdMIN and outputs the sets given
in (45). The general procedure for identifying a positive discrete function f can now be
formulated as follows.

Algorithm IDENTIFY

Input: An oracle for a positive (stable) discrete function f .
Output: minT (f) and maxT (f).
1. Initialise the positive functions g and h by step 1 of respectively IdMIN and IdMAX.
2. Update maxT (g) and minT (h) (as in IdMIN and IdMAX);

MAX:= fu 2 maxT (g) j g(u) = h(u)g;
MIN:= fu 2 min T (h) j f(u) = h(u)g:

3. If MAX 6= maxT (g) then
minT (g) := minT (g)_ fv j v = MINIMAL(u); u 2 maxT (g) nMAXg _MIN;
goto 2. Otherwise f = g : minT (f) := min(T (g); maxT (f) := maxT (g); halt.

4. If MIN 6= minT (h) then
maxT (h) := maxT (h)_ fw j w = MAXIMAL(u); u 2 minT (h) nMINg _MAX;
goto 2. Otherwise f = h : minT (f) := max(T (f); maxT (f) := maxT (h); halt. 2

If we assume that at each iteration at most one maximal and one minimal vector of f
is found, then the running time of the algorithm IDENTIFY is O(m2

f). This follows from
our analysis of the running time of the algorithm IdMIN and the fact that each step in
the algorithm can be carried out in time O(mf). Note, that algorithm Identify does not
require that f is a stable positive function. However, if f is not stable, then of course
there is no guarantee that the running time is quadratic in mf . For the class of positive
discrete functions identi�cation can be done in (quasi-polynomial) time O(mf Q(mf))

19

where Q(mf) = m
O(logmf)
f : This is can be done by representing f by its binary level

functions and by generalising a number of results proved by Fredman and Khachiyan in
[14], and by Bioch and Ibaraki in [6].

6 Conclusions

Multi-attribute decision making is essentially based on (partially) de�ned discrete func-
tions. Therefore, the theory of partially de�ned discrete functions (pdDFs) is an important
tool for the analysis of multi-attribute data sets.

In this paper in particular monotone discrete functions are studied for ordinal classi-
�cation and exact learning of a monotone discrete function. However, since very little is
known about the class of monotone discrete functions, this class remains an interesting
topic for further research. Decision lists appear to be a natural and useful representation
of monotone discrete functions. The relationship between decision lists and the disjunctive
(conjunctive) normal form is discussed. We have shown how to dualise a decision list and
how they can be used to construct monotone extensions of monotone pdDFs.

We have extended the notion of the dual of a function, well-known in Boolean function
theory, to discrete functions. It appears that dualisation plays an important rôle in the
study of monotone discrete functions. By introducing so-called level functions of a discrete
function, it can be shown that the study of monotone discrete functions can be mainly
reduced to that of monotone binary functions.

We have argued that pseudo-Boolean functions can be viewed as discrete functions
and it is shown how to dualise pseudo-Boolean functions.

The (related) problems of the complexity of dualisation and identi�cation of monotone
discrete functions can be reduced to those of monotone binary functions. The complexity
of these problems is still not known even for Boolean functions. However, [6, 14], these
problems are unlikely to be NP-hard for Boolean functions, and therefore also for monotone
discrete functions.

We have introduced the class of monotone stable functions, and presented a polynomial
algorithm for the ident�cation of stable functions. The class of stable functions is an
interesting topic for future research.

Acknowledgement

The author thanks Toshihide Ibaraki of Kyoto University and Peter Hammer of Rutgers
University for some fruitful discussions on this and related subjects.

References

[1] Angluin, D. (1988). Queries and concept learning. Mach. Learning 2, 319-342.

[2] Anthony, M. and N. Biggs (1992). Computational Learning Theory, Cambridge Uni-
versity Press, Cambridge, UK.

[3] Agrawal, R. and R. Srikant (1994). Fast Algorithms for Mining Associations Rules.
In: Proc of the 20th Int'l Conference on Very Large Databases, Santiago, Chile.

20

[4] Ben-David, A. (1992). Automatic generation of symbolic multiattribute ordinal
knowledge-based DSSs: methodology and applications. In: Decision Sciences, vol.
23, 1357-1372.

[5] Ben-David A. (1995). Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, vol. 19, 29-43.

[6] Bioch J.C. and T. Ibaraki (1995). Complexity of Identi�cation and Dualisation of
Positive Boolean Functions. Information and Computation, vol 123, 50-63.

[7] Bioch, J.C. and R. Potharst (1997). Decision Trees for Monotone Classi�cation. In:
K. van Marcke and W. Daelmans eds. Proceedings of the Dutch Arti�cial Conference
on Arti�cial Intelligence (NAIC97), Antwerpen, 361-369.

[8] Boros, E., T. Ibaraki and K. Makino (1995). Error-free and best-�t extensions of
partially de�ned Boolean functions with missing data. RUTCOR Research Report
RRR 14-95, Rutgers University.

[9] Boros, E., T. Ibaraki and K. Makino (1996). Extensions of partially de�ned Boolean
functons with missing data. RUTCOR Research Report RRR 06-96, Rutgers Univer-
sity.

[10] Boros, E., P.L. Hammer, T. Ibaraki and A. Kogan (1997). Logical analysis of numer-
ical data. In: T.M. Liebling and D. de Werra, editors, Mathematical Programming,
North-Holland, vol 79, nos. 1-3 Oct. 1997, 163-191.

[11] Crama, Y., P.L. Hammer and T. Ibaraki (1988). Cause-e�ect relationships and par-
tially de�ned Boolean functions. Annals of Operations Research, vol. 16, 299-326.

[12] Davio, M., J. Deschamps and A. Thayse (1978). Discrete and switching functions.
McGraw-Hill.

[13] Fredman, M., and L. Khachiyan (1996). On the Complexity of Dualization of Mono-
tone Disjunctive Normal Forms. Journal of algorithms 21, 618-628.

[14] Greco, S., B. Matarazzo and R. Slowinski (1996). Rough Approximation of Preference
Relation by Dominance Relations. ICS Research Report 16/96, Warsaw, University
of Technology.

[15] Greco, S., B. Matarazzo and R. Slowinski (1997). A new rough set approach to the
evaluaton of the bankruptcy risk. Unpublished manuscript.

[16] Hammer, P.L. (1986). Partially de�ned Boolean functions and cause-e�ect relation-
ships. In: Proceedings of the International Conference on Multi-Attribute Decision
Making Via OR-Based Expert Systems, University of Passau, Germany.

[17] Makino, K., T. Suda, K. Yano, and T. Ibaraki (1996). Data analysis by positive deci-
sion trees. In: Proceedings International symposium on cooperative database systems
for advanced applications (CODAS), Kyoto, 282-289.

[18] Potharst, R., J.C. Bioch and T. Petter (1997). Monotone decision trees. Technical
report EUR-FEW-CS-97-07, Dept. of Computer Science, Erasmus University Rotter-
dam, 47 pp.

21

[19] Potharst R., J.C. Bioch and R. Dordrecht (1998). Quasi-monotone decision trees.
Technical report EUR-FEW-CS-98-02, Dept. of Computer Science, Erasmus Univer-
sity Rotterdam. Technical report EUR-FEW-CS-98-02, Dept. of Computer Science,
Erasmus University Rotterdam.

[20] St�ormer, H. (1990). Binary Functions and their Applications. Lecture Notes in Eco-
nomics and Mathematical Systems, vol.348. Springer-Verlag Berlin Heidelberg.

22

