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Abstract Generalized canonical correlation analysis is a versatile technique that
allows the joint analysis of several sets of data matrices. The generalized canonical
correlation analysis solution can be obtained through an eigenequation and distribu-
tional assumptions are not required. When dealing with multiple set data, the situation
frequently occurs that some values are missing. In this paper, two new methods for
dealing with missing values in generalized canonical correlation analysis are intro-
duced. The first approach, which does not require iterations, is a generalization of
the Test Equating method available for principal component analysis. In the second
approach, missing values are imputed in such a way that the generalized canonical
correlation analysis objective function does not increase in subsequent steps. Con-
vergence is achieved when the value of the objective function remains constant. By
means of a simulation study, we assess the performance of the new methods. We com-
pare the results with those of two available methods; the missing-data passive method,
introduced in Gifi’s homogeneity analysis framework, and the GENCOM algorithm
developed by Green and Carroll. An application using world bank data is used to
illustrate the proposed methods.
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1 Introduction

In canonical correlation analysis (Hotelling 1936) linear combinations of two sets of
variables are obtained in such a way that the correlation between the linear combina-
tions is a maximum. Generalizations to a similar approach for more sets of variables
have been the topic of several studies (Horst 1961; Carroll 1968; Kettenring 1971).
Consequently, several different approaches have been proposed. Kettenring (1971)
provides an overview of four different generalizations. In the framework of homoge-
neity analysis Van der Burg (1988) and Gifi (1990) introduced nonlinear canonical
correlation analysis, also referred to by the algorithm name OVERALS, which takes
Carroll (1968) generalized canonical correlation analysis as a special case. Here, we
will also use the generalization proposed by Carroll (1968). An excellent descrip-
tion of his method, in a similar notation as we employ in this paper, can be found
in Steenkamp et al. (1994) who consider the method for marketing applications. An
important advantage of Carroll’s approach is its computational ease and the fact that
the method takes ordinary canonical correlation analysis as a special case.

In generalized canonical correlation analysis several sets of variables are analyzed
simultaneously. This makes the method suited for the analysis of various types of data.
For example, in marketing research, subjects may be asked to rate a set of objects
on a set of attributes. For each individual, a data matrix can then be constructed
where the objects are represented row-wise and the attributes column-wise. Then,
using generalized canonical correlation analysis a graphical representation, some-
times referred to as a perceptual map, can be made on the basis of the individuals’
observation matrices. Note that, the observation matrices do not necessarily contain
the same attributes. Steenkamp et al. (1994) focussed on this flexibility in their analysis
of idiosyncratic sets of attributes.

Another type of application, considered by Green and Carroll (1988), concerns the
derivation of a composite configuration from a set of configurations. For example,
multidimensional scaling solutions (perceptual maps) for the same objects from dif-
ferent countries can be used as input data. Generalized canonical correlation analysis
can then be applied to the coordinate matrices to obtain a composite configuration.
Finally, generalized canonical correlation analysis can be used when, for the same
set of subjects, we have data on sets of variables. For example, in their analysis of
socio-economic determinants of HIV pandemic and nations efficiencies, Zanakis et al.
(2007) used a set of 50 explanatory variables which could be divided into different
sets (e.g. economic indicators, education related variables, etc.). For such multiple set
data, generalized canonical correlation analysis can be used to obtain a configuration
depicting the cases.

Since generalized canonical correlation analysis deals with possibly large sets of
data, the possibility of the occurrence of missing values is significant. Some proce-
dures to deal with missings in generalized canonical correlation analysis have been
proposed, however, no attempt has been made to compare and evaluate the alterna-
tives. In this paper, we review two existing procedures and propose two alternative
methods that are conjectured to offer important advantages over the existing meth-
ods. We shall only concern ourselves with methods specifically aimed at dealing
with missing values in generalized canonical correlation analysis. General methods
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Generalized canonical correlation analysis

(e.g. multiple imputation, Rubin 1987) that require distributional assumptions, are
beyond the scope of this paper. The performance of the proposed methods under var-
ious conditions will be assessed by means of a simulation study. The results of this
simulation study clearly indicate the validity and, in some cases, superiority of the
new methods.

The paper is organized as follows. In the next section, we briefly introduce
generalized canonical correlation analysis. In Sect. 3, we consider methods that do not
require data imputation and rely on non-iterative solutions. Two methods involving
data imputation are described in Sect. 4. A simulation study in which all methods are
compared is presented in Sect. 5 and followed by an application of the approaches to
World Bank data in Sect. 6. We conclude the paper with a brief summary of our results.

2 Generalized canonical correlation analysis

In generalized canonical correlation analysis linear combinations are obtained in such
a way that the sum of squared correlations of the linear combinations of the vari-
ables with a so-called group configuration is a maximum. Let Y denote the unknown
group configuration. The order of Y is m × k, where m is the number of rows for
each observation matrix Xi (i.e. the i th data set) and k is the dimensionality of the
solution. The data matrices Xi are first centered. Sometimes, if the variables are for
example measured on different scales, they are also standardized. Note that the sizes
of the observation matrices Xi are m × pi (with pi ≤ m − 1)for i = 1, . . . , n. The
dimensionality of the solution, k, must be chosen by the researcher.

We can formulate as objective

min φ (Y,Ai ) = min trace
n∑

i=1

(Y − Xi Ai )
′ (Y − Xi Ai ) (1)

subject to the restriction

Y′Y = Ik . (2)

It is known, e.g. Carroll (1968), that for observed Xi matrices, the group configuration
Y can be obtained from the eigenequation

(
n∑

i=1

Xi
(
X′

i Xi
)−1 X′

i

)
Y = Y�, (3)

where � is a diagonal matrix with as elements the k largest eigenvalues of∑n
i=1 Xi

(
X′

i Xi
)−1 X′

i (where we have assumed that the X′
i s are of full column rank)

and the matrices Ai can be calculated as

Ai = (
X′

i Xi
)−1 X′

i Y. (4)

An interesting feature of the method is the fact that the sets of variables Xi may
contain different variables. Hence, the number of variables in each set does not need to
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be the same. Steenkamp et al. (1994) used this freedom to analyze object evaluations
where each individual used there own set of attributes to evaluate objects.

3 Noniterative methods for dealing with missing values in generalized canonical
correlation analysis

Van der Burg (1988) and Gifi (1990) suggested a method for dealing with miss-
ing values in nonlinear generalized canonical correlation analysis in which selection
matrices are used to discard complete rows containing at least one missing value.
Hence, if one element is missing in a row, the complete row is discarded. This method
is often applied in the homogeneity analysis framework as set forth in Gifi (1990). It
is referred to as the missing-data-passive approach to missing values. Van de Velden
and Bijmolt (2006) used an equivalent method for the case where complete rows were
missing. An advantage of the missing-data-passive approach is its computational ease.
The solution can be obtained directly by means of an eigenequation. However, dis-
carding complete rows if only one value is missing, clearly implies a considerable loss
of information. Moreover, as the data are centered with respect to the fully observed
rows, bias may be introduced. In particular, when values are not missing completely
at random, this bias may be severe. To account for this problem, we propose an alter-
native approach in which a constant term is estimated separately. The proposed new
method is a generalization of a method first proposed by Shibayama (1995).

For the sake of completeness and to facilitate an easy way of comparing the meth-
ods, we first summarize the missing-data-passive approach.

3.1 The missing-data-passive approach

In the missing-data-passive approach proposed in the context of nonlinear canonical
correlation analysis, rows of the data matrices are removed if they contain one or more
missing elements. The generalized canonical correlation approach is then applied by
only using the observed rows. This method can easily be implemented by introducing
a so-called selection matrix. Let Ki denote a diagonal matrix with its diagonals either
ones or zeros. The ones correspond to rows for which there are no missings in the i th
observation matrix and the zeros correspond to rows of Xi , for which at least one value
is missing. Obviously, the resulting selection matrices Ki are symmetric idempotent,
that is, Ki = K′

i = Ki Ki . In the missing-data-passive approach, the data are first
centered with respected to the fully observed rows. This centering can be achieved by
defining:

Qi = I− (
1′Ki 1

)−1 11′Ki . (5)

Inserting the centering and selection matrices into Eq. (1), we get

min φ (Y,Ai ) = min trace
n∑

i=1

(Y − Qi Xi Ai )
′ Ki (Y − Qi Xi Ai ) (6)
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which we minimize subject to the restriction

Y′KY = Ik, (7)

where

K =
∑

Ki .

It is not difficult to see that the resulting group configuration can be obtained from the
eigenequation:

K−1/2

(
n∑

i=1

Ki Qi Xi
(
X′

i Q
′
i Ki Qi Xi

)−1 X′
i Q

′
i Ki

)
K−1/2Ys= Ys�,

where � is the diagonal matrix with as elements the k largest eigenvalues and we
have assumed that the X′

i s are of full column rank, and Ys is an m × k matrix of cor-
responding orthonormal eigenvectors. Hence, the appropriately standardized group
configuration can be obtained as

Y = K− 1
2 Ys .

The matrices Ai can be calculated as

Ai = (
X′

i Q
′
i Ki Qi Xi

)−1 X′
i Q

′
i Ki Y.

3.2 The Test Equating method

The Test Equating method, was proposed by Shibayama (1995) in a one-dimensional
setting. However, Takane (1995) showed that the method could easily be extended to
a k-dimensional solution similar to principal component analysis. Moreover, Takane
and Oshima-Takane (2003) showed that the Test Equating method is closely related to
the missing-data-passive approach in homogeneity analysis (e.g. Meulman 1982; Gifi
1990). The difference between the two methods lies in the estimation of a mean term
in the Test Equating method. Here, we further generalize the Test Equating method to
the generalized canonical correlation analysis case. This new method is conjectured to
outperform the missing-data-passive method especially when the missing elements are
related to the values. That is, if missingness is related to the values (i.e. high values are
more likely to be missings), the test equating method should yield better results than the
missing-passive-approach that assumes the missings to occur completely at random.

To apply the Test Equating method in generalized canonical correlation analysis,
we must employ row-wise deletion similar as was the case in the missing-data-passive
approach described in Sect. 3.1. Hence, if a row contains at least one missing value,
the complete row will be removed. However, instead of the centering step employed
in the missing-data-passive approach, the Test Equating method requires the estima-
tion of a constant term. Thus, in the Test Equating method, the group configuration
is approximated by a constant term plus k linear combinations of the columns of Xi .

We can formulate this as follows:
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min φ (Y,Ai , ai0)=min trace
n∑

i=1

(
Y−Xi Ai −1a′

i0

)′ Ki
(
Y−Xi Ai −1a′

i0

)
. (8)

We can solve this minimization problem sequentially. First, differentiation with respect
to ai0 yields as first order condition,

ai0 = (
1′Ki 1

)−1 1′Ki (Y − Xi Ai ).

Subsituting this into (8), yields, after some manipulations,

min φ (Y,Ai ) = min trace
n∑

i=1

(Y − Xi Ai )
′ Q′

i Ki Qi (Y − Xi Ai ), (9)

where Qi is as defined in (5). Let

Pi = Q′
i Ki Qi ,

it is easily verified that Pi is symmetric idempotent, i.e. Pi = P′
i = Pi Pi . Solving (9)

subject to the constraint

Y′PY = I (10)

where

P =
n∑

i=1

Pi ,

yields, assuming for the moment that all inverses exist,

P−1/2

(
n∑

i=1

Pi Xi
(
X′

i Pi Xi
)−1 X′

i Pi

)
P− 1

2 Ys= Ys�,

where Ys is an orthonormal matrix of eigenvectors and � is the corresponding diago-
nal matrix containing the k-largest eigenvalues in decreasing order. The solution thus
becomes:

Y = P1/2Ys

Ai = (
X′

i Pi Xi
)−1 X′

i Pi Y,

and

ai0 = (
1′Ki 1

)−1 1′Ki (Y − Xi Ai ).
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Comparison with the results in Sect. 3.1 immediately shows the similarity between the
two methods. The only difference concerns the standardization with respect to P rather
than K. This computationally minor difference has considerable consequences. In the
missing-data-passive approach, the data are taken into deviation from the mean over
observed rows. As mentioned before, such a procedure may not be appropriate if the
missing values are related to certain aspects of a variable, certain values will be under–
or over represented. Hence, the mean over the observed values is a biased estimator of
the constant term. The Test Equating method does account for this problem. Finally,
an additional advantage of the Test Equating method is that the constraint (10), ensures
that the group configuration is centered. That is, Y′1 = 0. In the missing-data-passive
approach, this is not the case. Moreover, if missings indeed do occur completely at
random, the estimated mean in the Test Equating method will be similar to the mean
in the missin-passive-approach. Hence, in that case, the methods yield similar results.

4 Iterative imputation based methods for dealing with missing values
in generalized canonical correlation analysis

An important advantage of the two methods described in the previous section is its
computational simplicity. On the other hand, an important disadvantage of both meth-
ods is that by removing entire rows, useful and valid information may be discarded.
This may especially be the case when data matrices consists of many columns. To
overcome this problem, one may choose an imputation method. Some general impu-
tation methods, i.e. multiple imputation (Little and Rubin 1987; Rubin 1987) can be
used. However, these schemes require some distributional assumptions. If one does
not want to make such assumptions, methods specifically designed for generalized
canonical correlation analysis may be employed. Green and Carroll (1988) proposed
an imputation based method that uses regression analysis to impute the missings.
However, convergence is not guaranteed for their algorithm. Furthermore, there is
no mechanism that ensures that the final solution is, with respect to the carried out
minimization problem, better than the starting solution. We propose a new algorithm
that specifically addresses these two issues. For the sake of clarity we briefly reiterate
the Green and Carroll algorithm before introducing our new method.

4.1 Green and Carroll’s GENCOM algorithm

Green and Carroll (1988) proposed an iterative procedure for dealing with missing
elements in generalized canonical correlation analysis. For the sake of clarity we
will briefly reiterate their method here. The basic principle in their approach, which
they call GENCOM, is to estimate the missing values using linear regressions of the
variables on the group space.

The GENCOM algorithm can be summarized as follows:

1. For each Xi calculate X̂(t)i by replacing the missing values by the column averages.
Thus, for each column, the average is calculated by summing the observed values
and dividing this through the total number of observations in a column.
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2. Calculate Y(t) by applying generalized canonical correlation analysis to the X̂(t)i
matrices, and by then adding a column of ones to the configuration matrix. This
column of ones serves to estimate the constant in the linear regression model
carried out in the next step.

3. For each column of Xi , use ordinary least squares to fit: x∗
i( j) = Y(t)∗b(t)i , where

x∗
i( j) is the j th column of the original data matrix Xi after removing the rows

corresponding to missing values for that column, and Y(t)∗ is the matrix of cor-
responding rows of Y(t). Hence, the regression is based on observed values only

and b(t)i = (
Y(t)∗′Y(t)∗

)−1
Y(t)∗′x∗

i( j).

4. Construct B(t)i =
[

b(t)1 b(t)2 b(t)pi

]
and let X(t)∗i = Y(t)B(t)i .

5. Calculate X̂(t+1)
i by replacing the missing values of the original X∗

i matrix with the

corresponding elements of X(t+1)∗
i ,whilst keeping the observed values unaltered.

6. Insert X̂(t+1)
i in step 2, and repeat until the differences between two subsequent

Y(t) matrices becomes smaller than a certain convergence criterion.
Note that, like before, index i indicates different observation matrices, whereas
index t was used to indicate different iterations.

4.2 Minimized contribution approach

Green and Carroll (1988) do not give details on numerical properties of their algo-
rithm. There are, however, two important issues concerning the GENCOM algorithm.
First of all, although in each step Y and Bi are optimal with respect to the imputed
Xi matrices, there is no mechanism ensuring that subsequent Y

′
s become more sim-

ilar. That is, convergence is not guaranteed. Secondly, the value φ will always be at a
minimum for a given set of (imputed) Xi matrices. However, there is no mechanism
that ensures that this value will go down. Consequently, it may occur that the sum
of differences between the group configuration Y and the linear combinations of the
imputed Xi matrices is smaller in the first iteration than in the last iteration. (Obviously,
if in subsequent steps the change in the Xi matrices is small it is plausible that the
change in Y is also small. Hence, when the imputed values do not change, i.e. when the
regression estimates are “stable” the group configuration is likely to be stable as well).

To resolve these issues we propose a new algorithm that imputes the missing val-
ues of the Xi matrices in such a way that the value of the objective function does
not increase. Based on these imputed Xi matrices a new configuration is calculated
in the usual way. Thus, the value of the objective function cannot increase in subse-
quent steps of the iteration process. The algorithm terminates when the value of the
objective function remains constant. Recently, Albers and Gower (2010) developed a
general approach to handling missing values in Procrustes analysis. Our algorithm fits
in their framework and resembles an algorithm proposed by Ten Berge et al. (1993)
for the treatment of missing values in generalized Procrustes analysis with orthogonal
rotations.

The new algorithm that we propose is an alternating least-squares algorithm. The
imputed values will be chosen in such a way that their contribution to the objective is
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minimized. To achieve this, we first solve the usual generalized canonical correlation
analysis problem with respect to Y and Ai whilst considering the Xi matrices, in which
the missing elements are replaced by some initial values, constant. Next, we will use
the same objective function but this time we minimize with respect to the missing
values for Xi whilst considering Y and Ai constant. This process is then repeated until
the value of the objective function remains constant. As the value of the objective
function cannot increase in subsequent steps, convergence is guaranteed.

Recall objective function (1), where the Xi matrices may contain missing elements.
We will impute values for the missings in such a way that the value of the objective
function decreases in each step. Hence, while keeping Y and Ai fixed we must mini-
mize φ with respect to the missing (to be imputed) elements of Xi . This problem has
not been solved before.

We can formulate the problem in the following way. Let

Xi = Xo
i + Xm

i , (11)

where Xo
i is the m × pi matrix with the observed values and zeros for the non-observed

values. The values of Xo
i are constant whereas the entries in Xm

i that correspond to
missing values are the variables with respect to which we carry out the minimization.
The other entries, corresponding to observed values, of Xm

i will be ignored. Using
(11) we get

Y − Xi Ai = Y − X0
i Ai − Xm

i Ai = Y∗
i − Xm

i Ai

so that we can express the objective as

min φ = min
n∑

i=1

trace
(
Y∗

i − Xm
i Ai

)′ (Y∗
i − Xm

i Ai
)
.

We want to minimize this function with respect to the variable elements of Xm
i . Clearly

trace
(
Y∗

i − Xm
i Ai

)′ (Y∗
i − Xm

i Ai
) = vec

(
Y∗

i − Xm
i Ai

)′ vec
(
Y∗

i − Xm
i Ai

)
,

where the vec operator transforms a matrix to a vector by stacking the columns. Using
a well known relationship between the vec operator and the Kronecker product (see
e.g. Magnus and Neudecker 1998) we get

vec
(
Y∗

i − Xm
i Ai

) = vec
(
Y∗

i

) −
(

A
′
i ⊗ Im

)
vec Xm

i .

The matrix Xm
i , and hence its vectorization, contains several elements which corre-

spond to observed values. These elements are of no importance and should be kept
constant. By employing a selection matrix Li we select only those elements in Xm

i
which correspond to the missing values. Let the number of missing values in the
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original Xi matrix be qi . A qi × mp matrix Li , whose elements are zero or one, is
constructed in such a way that

Li vec Xm
i = xi .

Hence, xi is a qi × 1 vector whose elements we want to determine in such a way that
φ is minimized. It is not difficult to see that L

′
i Li vec Xm

i = vec Xm
i , so that

vec
(
Y∗

i − Xm
i Ai

) = yi−Ci xi ,

where yi= vec
(
Y∗

i

)
and Ci=

(
A

′
i ⊗ Im

)
L

′
i and we can express the objective function

as

min
xi
φ =

n∑

i=1

(yi−Ci xi )
′ (yi−Ci xi ).

This problem can be solved using matrix differentiation. As first-order condition for
xi we get

C′
i yi = C

′
i Ci xi . (12)

Hence, if
∣∣∣C′

i Ci

∣∣∣ �= 0,

xi =
(

C
′
i Ci

)−1
C

′
i yi . (13)

Moreover, if
∣∣∣C′

i Ci

∣∣∣ = 0, a vector xi satisfying the first-order condition (12) may be

obtained by replacing the inverse of C
′
i Ci by its Moore–Penrose inverse.

The updated Xi matrices can be obtained by inserting the qi elements of xi in the
appropriate places.

The algorithm can be summarized as follows:

1. Replace the non-observed values in the original Xi matrices by some initial values,
for example, the column averages or zeros.

2. Center the imputed Xi matrices.
3. Calculate the generalized canonical correlation analysis solution, i.e. the group

configuration Y and the value of the objective function ψ , in the usual way using
the imputed Xi matrices.

4. Use (13) to calculate the vector with missing values xi , and update the Xi matrices
accordingly.

5. Go back to step 2 and repeat until the difference between two subsequent values
for the objective function ψ is negligible.

The new algorithm will always converge as the value of the objective function
(1) decreases monotonically. It may be possible that the convergence point is a mere
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accumulation point. To avoid this, random starts may be considered. Another problem
that may occur involves degenerate solution in the sense that imputed values become
extremely large, thus dominating the solution. In practical situations this can easily
be avoided by imposing a restriction on the values to be imputed. For example, if the
original data are ratings, the maximum rating is an obvious restriction. For continuous
data, natural extremes also exist. Alternatively, the values can be bounded by taking
the mean value plus, for example, four standard deviations.

5 Simulation study

To investigate the properties of all four approaches, we conduct a simulation study.
In the simulation study, synthetic data are generated for several parameter settings
so that the methods can be evaluated under various conditions. To assess the perfor-
mance of the methods, we consider the measures “variance accounted for” (VAF) and
the alienation coefficient. In Sect. 5.2 we describe these measures and their functions.

5.1 Data generation process

The data generation process can be summarized as follows:

1. For fixed m and k, an m × k group configuration Ytrue is constructed by drawing
from a standard normal distribution and then calculating an orthogonal base.

2. For each observation matrix we draw an m × k (standard normal) random matrix
multiplied by a factor r = 0.125, and add this matrix to Ytrue. The resulting
matrix is then post-multiplied by a k × pi (uniform) random matrix to obtain the
i th observation matrix Xi .

3. For each m × pi observation matrix Xi , we draw a matrix indicating which ele-
ments are observed and which are missing.

4. We repeat this process n times leading to n “observation” matrices Xi .

5.2 Evaluation criteria and analysis

After generation of the data sets, we apply the four methods described in this paper.
To assess the performance of the methods we consider how well the obtained group
configuration is able to describe the original data. Steenkamp et al. (1994), proposed
the following measure, which they called variance accounted for (VAF). Select the j th
column of Xi , say xi( j) and calculate the multiple squared correlation coefficient, R2,

from the linear regression x∗
i( j) = Y∗b j +ei j ,where the superscripted * indicates that

the rows of Y and xi( j) corresponding to missing rows (i.e. elements) of xi( j) have
been removed. Repeat this for all columns of Xi and for all data matrices. The VAF is
defined as the average of all calculated squared multiple correlation coefficients.

In addition, as the true configuration is known, we can also assess how well the
solutions “recover” the true configuration. To do this we compare the Euclidean
distances between the rows of the true configuration, with the Euclidean distances
between the rows of the retrieved configuration. Let T denote the matrix with as
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elements the Euclidean distances between the rows of the true configuration. The

i j th element of T is: ti j =
√(

ytrue
i − ytrue

j

)′ (
ytrue

i − ytrue
j

)
, where ytrue

i is the i th

row of Ytrue written as a k × 1 column vector. Similarly, let O denote the matrix
with as elements the Euclidean distances between the rows of the derived configu-

ration: oi j =
√(

yi − y j
)′ (yi − y j

)
, where yi is the i th row of the obtained group

configuration Y, written as a k × 1 column vector. A congruence coefficient, which
measures to which degree the Euclidean distances in the two configurations are similar,
may be defined as:

c = trace(T′O)√
trace(T′T) trace(O′O)

.

The congruence coefficient lies between zero and one, where the maximum is attained
when the distances in the two configurations are equal. To allow easier discriminations,
Borg and Leutner (1985) introduce the following alienation coefficient:

a =
√(

1 − c2
)
.

Similar to Bijmolt and Wedel (1999), we will use this alienation coefficient, which
may be interpreted as the squared root of unexplained variance, to assess how well the
true configuration is recovered.

5.3 Experimental design

In generating the synthetic data sets, we fix the dimensionality of both the true and
approximated group configuration at two. We then vary a number of factors that might
affect the performance of the methods. Concerning the number of objects (rows) per
matrix we consider two cases: Relatively few rows for each set and relatively many
rows for each set. We will treat these two cases separately.

5.3.1 Relatively few rows for each set: m = 14

This corresponds, for example, to applications in which a set of objects (the rows) are
evaluated using a set of attributes (the columns). The number of objects that individu-
als are able to assess will differ from application to application. We chose 14 objects
to mimic situations in marketing research where the rows correspond to brands. In
such cases, the number of objects typically lies between 10 and 20. The number of
attributes are varied in such a way that:

1. The number of attributes for each set is obtained by drawing from a normal dis-
tribution with mean 4 and standard deviation 2, and rounding the number to the
nearest integer, with a minimum value of 2. Hence, the expected value for the
number of columns is slightly higher than 4: E[p] > 4.
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Table 1 Average variation accounted for VAF

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.71 0.51 0.74 0.66 0.75 0.76 0.79 0.77

CAR 10% 0.62 0.30 0.72 0.41 0.75 0.76 0.76 0.73

CAR 20% 0.50 0.26 0.67 0.29 0.75 0.76 0.71 0.71

CAR 40% 0.47 0.29 0.57 0.28 0.75 0.75 0.70 0.71

VDM, highest 1 0.60 0.35 0.69 0.55 0.72 0.73 0.74 0.70

VDM, highest 2 0.45 0.20 0.63 0.33 0.70 0.71 0.69 0.64

VDM, highest 3 0.35 0.20 0.58 0.29 0.70 0.71 0.67 0.57

Number of rows 14. Number of observation matrices n = 10

2. The number of attributes for each set is obtained by drawing from a normal dis-
tribution with mean 8 and standard deviation 2, and rounding the number to the
nearest integer, with a minimum value of 2. Hence, the expected value for the
number of columns is slightly higher than 8: E[p] > 8.

For the number of sets we also consider two cases:

1. Few (10) sets. This corresponds to the situation in which, for example, different
multidimensional scaling configurations are compared

2. Many (100) sets. This corresponds to the situation in which each data matrix
represents an observation matrix for an individual.

To ensure that we always obtain a solution we always generate one full data matrix
(this is essential for the noniterative methods where complete data matrices are dis-
carded when there are relatively many missing values). For the remaining matrices we
generate the missings according to the following scenarios:

(a) Completely missing at random (CAR).
(b) Value dependent missings (VDM).

In scenario (a), missings occur completely at random, we consider four cases with
probabilities for missing values in each observation matrix, equal to 5, 10, 20 and 40%
respectively. Under scenario (b), we consider the situation in which the probability of
values to be missing is directly related to the simulated values. This could, for example,
occur when certain true values are less desirable and hence reluctantly reported.We
consider three cases. For each column, the elements corresponding to (1) the highest
three, (2) the highest two and (3) the highest value, are missing.

Results The results of the simulation study with few rows are presented in Tables
1, 2, 3 and 4. It should be noted that for the minimized contribution approach
we restricted the imputed values to be less than 4 standard deviations from the
observed values. Without such a restriction the results deteriorate considerably. Espe-
cially when the number of missing values increases. Furthermore, as in the non-
iterative approaches entire rows are removed when one or more values in that
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Table 2 Average alienation coefficients

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.14 0.30 0.14 0.24 0.11 0.09 0.12 0.13

CAR 10% 0.18 0.47 0.18 0.45 0.11 0.09 0.14 0.16

CAR 20% 0.30 0.54 0.28 0.54 0.13 0.10 0.19 0.19

CAR 40% 0.42 0.55 0.40 0.56 0.17 0.16 0.27 0.22

VDM, highest 1 0.18 0.38 0.18 0.33 0.12 0.11 0.16 0.16

VDM, highest 2 0.29 0.50 0.27 0.47 0.14 0.13 0.20 0.22

VDM, highest 3 0.40 0.50 0.33 0.51 0.15 0.14 0.23 0.27

Number of rows 14. Number of observation matrices n = 10

Table 3 Average variation accounted for VAF

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.70 0.59 0.77 0.76 0.77 0.76 0.79 0.77

CAR 10% 0.61 0.40 0.77 0.75 0.77 0.77 0.76 0.75

CAR 20% 0.48 0.27 0.76 0.52 0.77 0.77 0.73 0.74

CAR 40% 0.43 0.33 0.72 0.31 0.78 0.78 0.70 0.73

VDM, highest 1 0.58 0.46 0.73 0.72 0.74 0.73 0.74 0.72

VDM, highest 2 0.43 0.26 0.71 0.61 0.72 0.72 0.69 0.68

VDM, highest 3 0.32 0.24 0.69 0.42 0.73 0.72 0.69 0.63

Number of rows 14. Number of observation matrices n = 100

Table 4 Average alienation coeficient

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.05 0.08 0.05 0.06 0.04 0.04 0.05 0.05

CAR 10% 0.06 0.25 0.06 0.11 0.04 0.04 0.05 0.06

CAR 20% 0.11 0.51 0.10 0.39 0.05 0.04 0.06 0.09

CAR 40% 0.29 0.55 0.23 0.55 0.07 0.07 0.10 0.14

VDM, highest 1 0.10 0.22 0.09 0.12 0.06 0.05 0.08 0.07

VDM, highest 2 0.17 0.60 0.12 0.28 0.06 0.06 0.09 0.09

VDM, highest 3 0.32 0.56 0.18 0.43 0.07 0.06 0.11 0.14

Number of rows 14. Number of observation matrices n = 100

row are missing, the situation may occur that for certain rows no observations are
available. This will especially be the case when we have relatively few sets. In
our simulation study, we avoided this situation by always generating one full data
matrix.
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We see that increasing the number of missings generally leads to a decrease in fit.
This decrease, however, appears to be much stronger for the non-iterative approaches.
In particular, with many missing values there is a strong decrease. For the situation in
which there are few (10) observation matrices (see Tables 1, 2) we also see that the
performance of the non-iterative approaches suffers when the number of columns is
increased. One reason for this is that for the non-iterative approaches, entire rows are
removed when one or more values in that row are missing. With many columns, this
may lead to a considerable loss in information.

In Tables 1 and 3 we see that, with respect to the variance accounted for, the Test
Equating method outperforms the missing-data-passive method in all cases. Further-
more, as conjectured in Sect. 3.2, the Test Equating method clearly outperforms the
missing-data-passive approach when the missings are not random. Note also that,
although the iterative approaches outperform both non-iterative approaches in nearly
all cases, the differences, especially when there are many sets and few columns, are
small.

Comparison of Tables 1 and 3 reveals that, for all methods, the influence of having
more data matrices on the VAF is limited. On the other hand, Tables 2 and 4 show that
recovery of the true configuration slightly improves (i.e. the alienation coefficients
decrease) when more sets are available.

5.3.2 Relatively many rows for each set: m = 100

This setting corresponds to applications where the rows correspond to cases. The col-
umns represent variables. Each matrix has observations on sets of variables. In a sense,
this could be considered the conventional generalized canonical correlation analysis
case. For the number of sets we again consider two cases: 4 sets and 8 sets. Further-
more, the number of columns (i.e. variables per set) is varied in the same manner as
before. That is, the expected number of variables per set is either slightly larger than
4 or slightly larger than 8. For the missing values in this setting we again consider the
scenarios in which missings occur completely at random (CAR) or are related to the
underlying values (VDM).

For the missing completly at random scenario we consider the same 4 cases as
before, i.e. missings occur with probabilities 5, 10, 20 and 40%. In the value depen-
dent missings we again consider three scenarios; the highest 5, 10, and 20% of the
values are missing. Again, we restricted the imputed values in the minimized contri-
bution approach to be less than 4 standard deviations from the observed values and
we always generated one complete matrix in each simulation.

Results The results of the simulation study with sets of m = 100 rows, are pre-
sented in Tables 5, 6, 7 and 8. We see that the variance accounted for in this scenario
is generally lower than in the setting with few observations whereas the alienation
coefficients are quite a bit larger. Again we see that the Test Equating method outper-
forms the missing-data-passive approach. Especially when the missings do not occur
at random. Also, although the iterative approaches yield better results, the differences
with the Test Equating method are, especially when there are relatively few missings,
not that large. If we compare Tables 5 with 7 and 6 with 8, we see that the variance
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Table 5 Average variation accounted for VAF

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.46 0.38 0.49 0.46 0.51 0.48 0.50 0.47

CAR 10% 0.42 0.30 0.48 0.43 0.51 0.48 0.49 0.46

CAR 20% 0.35 0.18 0.43 0.32 0.52 0.48 0.48 0.44

CAR 40% 0.27 0.18 0.36 0.20 0.53 0.49 0.46 0.41

VDM, highest 5% 0.53 0.27 0.74 0.42 0.75 0.43 0.74 0.43

VDM, highest 10% 0.35 0.18 0.43 0.39 0.47 0.42 0.46 0.41

VDM, highest 20% 0.28 0.14 0.38 0.29 0.46 0.43 0.43 0.38

Number of rows 100. Number of observation matrices n = 4

Table 6 Average alienation coeffcients

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.30 0.24 0.30 0.24 0.27 0.19 0.30 0.22

CAR 10% 0.34 0.29 0.34 0.29 0.28 0.20 0.34 0.25

CAR 20% 0.41 0.44 0.41 0.43 0.30 0.21 0.37 0.29

CAR 40% 0.49 0.56 0.49 0.56 0.33 0.23 0.42 0.34

VDM, highest 5% 0.32 0.19 0.32 0.19 0.28 0.14 0.30 0.16

VDM, highest 10% 0.53 0.26 0.74 0.25 0.75 0.15 0.74 0.18

VDM, highest 20% 0.44 0.46 0.43 0.42 0.37 0.23 0.32 0.29

Number of rows 100. Number of observation matrices n = 4

Table 7 Average variation accounted for VAF

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.43 0.35 0.47 0.46 0.48 0.47 0.48 0.46

CAR 10% 0.39 0.27 0.47 0.44 0.48 0.47 0.47 0.46

CAR 20% 0.31 0.16 0.43 0.37 0.49 0.47 0.46 0.44

CAR 40% 0.21 0.14 0.34 0.18 0.50 0.47 0.44 0.40

VDM, highest 5% 0.37 0.27 0.44 0.42 0.45 0.43 0.45 0.43

VDM, highest 10% 0.30 0.18 0.41 0.39 0.44 0.42 0.43 0.41

VDM, highest 20% 0.22 0.10 0.35 0.31 0.43 0.41 0.40 0.37

Number of rows 100. Number of observation matrices n = 8

accounted for appears to decrease when more sets are used whereas the recovery of the
true configuration improves upon having more sets. If we have more sets, it becomes
easier to fit noise, leading to the increase of variance accounted for, whilst more data
also leads to a better recovery of the true configuration.
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Table 8 Average alienation coefficients

E[p] > Missings Missing passive Test equating Gencom Min. contribution

4 8 4 8 4 8 4 8

CAR 5% 0.21 0.17 0.21 0.17 0.19 0.14 0.21 0.16

CAR 10% 0.25 0.22 0.25 0.22 0.20 0.14 0.24 0.18

CAR 20% 0.32 0.36 0.32 0.35 0.21 0.15 0.29 0.23

CAR 40% 0.46 0.55 0.46 0.55 0.25 0.17 0.36 0.31

VDM, highest 5% 0.24 0.19 0.24 0.19 0.20 0.14 0.21 0.16

VDM, highest 10% 0.29 0.26 0.29 0.25 0.21 0.15 0.24 0.18

VDM, highest 20% 0.40 0.41 0.38 0.36 0.24 0.17 0.28 0.23

Number of rows 100. Number of observation matrices n = 8

6 Illustration

The data catalog of the world bank (http://data.worldbank.org/) provides download
access to over 2,000 indicators from world bank resources. From the data catalog we
collected country-wise indicators from the year 2007. The world bank data catalog
organizes the variables into different sets. For each set, a selection of the available
indicators was chosen based on their appropriateness, uniqueness (some variables are
highly correlated as they are essentially the same variable measured in a different
way) and availability (measurements on some variables are only available for a small
sub-group of countries). Note that our purpose here is to illustrate the method. We do
not claim to give a comprehensive analysis of the countries’ positions with respect to
the world bank data.

The world bank distinguishes 10 sets of indicators. Due to data scarcity in several
sets we selected indicators from 6 of these sets: Economic policy and debt (10 indi-
cators), education (19 indicators), environment (16 indicators), health (17 indicators),
infrastructure (7 indicators), labor (5 indicators). The original data consisted of over
200 countries and regions. The regional observations are aggregated results for regions
constructed on the grounds of geographical classifications (i.e. Sub-Saharan Africa) or
economic classifications (i.e. High Income). As in the non-iterative approaches com-
plete rows (i.e. countries or regions) are removed if one variable is missing in a set, we
removed all countries/regions that did not have at least two complete sets of observa-
tions. This makes it possible to compare all approaches. The final data set used in our
analysis consisted of 131 countries and 17 regions. On average, approximately 10%
of the values were missing. The sets corresponding to education and labor indicators
had 23 and 13% missings respectively. Country-wise, the number of missings (over all
included indicators) ranged between no missings to 39% missings. Note that, for our
purpose of illustrating the described methods, we decided to keep the data cleansing
to a minimum. The obtained results may possibly be improved upon by using a more
thorough and expert driven data cleansing procedure.

We applied all four approaches to the final data set. To allow comparisons as well
as graphical representations of the solutions, we chose a 2 dimensional solution in
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Table 9 Alienation coefficients
between different group
configurations

Gencom Min. contribution Missing passive

Test equating 0.25 0.25 0.08

Missing passive 0.28 0.25

Min. contribution 0.25
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Fig. 1 Generalized canonical correlation analysis. Two dimensional group configuration of countries based
on 2007 World Bank Data. See Table 10 for country labels

all analyses. Increasing the number of dimensions had a relatively small effect on
the variance accounted measures in all analyses indicating the appropriateness of this
choice. The minimized contribution approach yields the largest variance accounted for
(0.42) but the difference with the gencom approach is small (0.41). The non-iterative
approaches, on the other hand both yield a considerably lower amounts of variance
accounted for 0.26. To see whether the methods yielded similar group configurations
we calculated the alienation coefficients between all pairs. The results are summa-
rized in Table 9. We see that the missing-data-passive and Test Equating method yield
nearly equivalent results, whereas the differences with and among the non-iterative
approaches are much larger.

Figure 1 presents the two dimensional group configurations obtained using the min-
imized contribution approach. For a quick interpretation we focus on the positions of
the aggregated observation points. The countries appear to be ordered from poor (Low
Income, on the lower left side) to rich (High Income, on the lower right). Geograph-
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Table 10 Country labels for selected countries in Fig. 1

Abbreviation Country Abbreviation Country

Alb Albania Kgz Kyrgyz Republic

Arg Argentina Lva Latvia

Arm Armenia Ltu Lithuania

Aze Azerbedjan Mys Malaysia

Blz Belize Mus Mauritius

Bwa Botswana Mex Mexico

Brz Brazil Mng Mongolia

Bgr Bulgaria Mar Morocco

Chl Chili Pan Panama

Col Columbia Pol Poland

Cri Costa Rica Rom Romania

Cyp Cyprus Rus Russian Federation

Cze Czech Republic Sgp Signapore

Dom Dominican Republic Zaf South Africa

Slv El Salvador Syr Syrian Arab Republic

Est Estonia Tto Trinidad and Tobago

Gab Gabon Tun Tunesia

Geo Georgia Tur Turkey

Hun Hungaria Ukr Ukraine

Jam Jamaica Uzb Uzbekistan

Kaz Kazakhstan Vnm Vietnam

ically, this corresponds to a trajectory from Sub-Saharan Africa through East-Asian
& Pacific, Middle-East and North Africa, Latin America and Caribbean, Europe and
Central Asia to the Euro Area. The second dimension is more difficult to interpret. On
the top of the plot we do see relatively small countries however the arch shape of the
cloud suggests that the solution is one-dimensional.

7 Summary and conclusions

Generalized canonical correlation analysis is a mathematically simple, yet versa-
tile technique with potential applications in many fields of research. In generalized
canonical correlation analysis, linear combinations of sets of variables are obtained
in such a way that the sum of squared distances between the linear combintation and
an overall group configuration becomes minimal. When the data sets contain missing
values, two procedures exist: Missing-data-passive, in which rows for which a miss-
ing value exists, are removed from the data, and GENCOM, an iterative approach
proposed by Green and Carroll (1988), where missing vaues are imputed based on
linear regression estimates. In this paper, we introduced two new methods for dealing
with missing values in generalized canonical correlation analysis. The first approach,
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the Test Equating method, does not require iterations. Like the missing-data-passive
method, it removes rows that contain missing values. When missings do not occur com-
pletely at random, the existing missing-data-passive procedure yields biased results
as the data are considered in deviation from the mean of the observed rows. We con-
jectured that the new Test Equating method, in which a constant term is separately
estimated, would perform better when missings do not occur at random. Our simu-
lation study clearly confirmed this conjecture. The Test Equating method consistenly
outperformed the missing-data passive approach and the difference in performance
increased with an increase in missing values. Given the computational similarity and
simplicity of these two non-iterative approaches, the Test Equating method is therefore
to be preferred over the missing-data passive approach.

The second new approach derived in this paper is the minimized contribution
approach. In this approach, missing values are imputed in such a way that the gen-
eralized canonical correlation analysis objective function is minimized. Unlike the
missing-data-passive and Test Equating method, no data are discarded in this method.
Instead, an iterative procedure is employed to obtain the optimal values. This method
can be seen specifically as an alternative to the GENCOM algorithm. An important
theoretical advantage of the minimized contribution approach is that it, unlike the
GENCOM algorithm, always converges. In our simulation experiment, we indeed
found that the GENCOM algorithm in some cases fails to converge. However, the
results of GENCOM appeared hardly affected by this. Moreover, the overall results
of the simulation indicate that GENCOM performs slightly better than the minimized
contribution approach.

Comparing the non-iterative and iterative approaches we see that the iterative
approaches generally outperform the non-iterative ones. However, especially when the
number of missings is small and there are relatively few columns (e.g. variables) per
set, the differences with the Test Equating method are small. In such cases we therefore
suggest to use this non-iterative approach as a direct and fast method. Alternatively, and
especially when the number of variables per set is relatively large and there are many
missings, either GENCOM or the minimized contribution approach can be used. The
simulation study showed that differences are small but on average slightly in favor of
GENCOM. As neither of these methods is computationally very demanding, it may be
worthwhile considering both approaches and choosing the one attaining best fit and
interpretational properties. In our illustration, the minimized contribution approach
offered a satisfactory solution in terms of variance accounted for and interpretability.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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