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Local search has proven to be an effective solution approach for the traveling salesman problem. We con-
sider var iants of the TSP in which each city is to be visited within one or more given time windows. The
travel times are symmetric and satisfy the triangle inequality; the objective is to minimize the tour duration.
We dev elop efficient sequential and parallel algorithms for the ver ification of local optimality of a tour with
respect to k -exchanges.
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1. Introduction
Like so many other approaches in combinatorial optimization, local search was first seriously investigated in
the context of the traveling salesman problem. Lin [1965] calls a traveling salesman tourk-optimalwhen it
cannot be improved by replacing a set ofk of its edges by another set ofk edges. It is not known whether, for
any fixed value ofk ≥ 2, a k-optimal tour can begeneratedin polynomial time. However, it is trivial to
observe that thek-optimality of a given tour throughn cities can beverifiedin O(nk) time: there are (n

k) ways
to deletek edges; for each of these, there is a constant number of candidate improvements (where the con-
stant depends onk); and each of these candidates can be evaluated in constant time. For example, ifk = 2,
two edges are replaced by two other edges, and only four cost coefficients have to be checked in order to
compute the length of the new tour.

The above analysis implicitly assumes that the algorithm is to be executed on a traditional computer, which
performs at most one computation at a time. Now suppose that we have a computer that can perform a num-
ber of operations in parallel. Such a computer has a greater processing power than a serial one. More specifi-
cally, assume we have a parallel random access machine (PRAM), a machine with an unbounded number of
processors that operate in parallel and communicate with each other in constant time through a shared mem-
ory. In that case, thek-optimality of a tour throughn cities can be verified byO(nk) processors inO(log n)
time: each processor evaluates a singlek-exchange in constant time, and the best of these is selected in loga-
rithmic time. It is not hard to reduce the number of processors involved by a factor of logn, as will be
explained later in this paper. Hence, for the TSP,O(nk/ log n) processors do in timeO(log n) what a single
processor can do in timeO(nk). We thus achieve aperfect speedup.
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Now suppose that each city has a single time window during which it must be visited, and again consider
the casek = 2. If two edges are replaced by two other edges, then a certain segment of the tour will be tra-
versed in the opposite direction. Therefore, in addition to the test for improvement, there has to be a test for
feasibility with respect to the time windows. In a straightforward implementation, this requires an amount of
work proportional to the length of the modified part of the tour. In general, evaluating the feasibility of a sin-
gle k-exchange requires linear time on a sequential computer, or logarithmic time and a linear number of pro-
cessors on a parallel computer. This leads to an algorithm for verifyingk-optimality in O(nk+1) time on a
sequential machine andO(log n) time andO(nk+1/ log n) processors on a parallel machine, which is a perfect
speedup again. In comparison to the case without time windows, the total effort has increased by a factor of
n.

We will investigate more sophisticated implementations that avoid the additional factor ofn. We concen-
trate on the verification of 2-optimality of a tour in the presence of time windows. In Sections 2 and 3 we
review sequential and parallel local search for the unconstrained TSP; this material is relatively straightfor-
ward. Sections 4 and 5 discuss efficient implementations of sequential and parallel local search for the TSP
with a single time window for each city. Finally, Sections 6 and 7 present our implementations for the TSP
with multiple time windows.

2. Local search for the TSP
In the traveling salesman problem, one is given a complete undirected graphG with vertex set{1, . . . ,n} and
a travel timedij for each edge{i , j} , and one wishes to find a Hamiltonian cycle (i.e., a cycle passing through
each vertex exactly once) of minimum total duration. We assume that the travel times satisfy the triangle
inequality, i.e.,dij + d jk ≥ dik for each triple (i , j , k). The TSP is a well-knownNP-hard problem, for which
many optimization and approximation algorithms have been proposed; cf. Lawler, Lenstra, Rinnooy Kan &
Shmoys [1985].

We consider the following local search algorithm for the TSP. Construct an initial Hamiltonian cycle by
taking an arbitrary permutation of the vertices or by applying a specific heuristic method such as thenearest
neighborrule or thedouble minimum spanning treealgorithm. Then try to improve the tour by replacing a set
of k of its edges by another set ofk edges, and iterate until no further improvement is possible. Such replace-
ments are calledk-exchanges, and a tour that cannot be improved by ak-exchange is said to bek-optimal.
Throughout the paper, we will consider the casek = 2 in detail. Fork > 2, the analysis is conceptually similar
but technically more involved.
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Figure 1. A 2-exchange.

For notational convenience, we consider the tour (1, 2, . . . ,n, n + 1), where the origin 1 and the destination
n + 1 denote the same vertex. A 2-exchange replaces two edges{i , i + 1} and { j , j + 1}, with j > i , by the
edges{i , j} and{i + 1, j + 1}, thereby reversing the path fromi + 1 to j ; see Figure 1. It is an open question if
there exists a polynomial-time algorithm that obtains a 2-optimal tour by a sequence of 2-exchanges [John-
son, Papadimitriou & Yannakakis, 1988]. We therefore restrict ourselves to deciding whether a given tour is
2-optimal.
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Because the travel times between the vertices do not depend on the direction, a 2-exchange results in a
local improvement if and only if

dij + di+1, j+1 < di ,i+1 + d j , j+1.

Testing a single 2-exchange for improvement involves only a constant amount of information and hence
requires constant time. It follows that verifying 2-optimality takesO(n2) time. No algorithm that proceeds by
enumerating all possible improvements can run faster, as there are (n

2) 2-exchanges.

3. Parallel local search for the TSP
Before discussing the verification of 2-optimality on the PRAM model, we will first consider an elementary
problem and describe a basic technique in parallel computing for its solution. The algorithm consists of two
phases. In some simple situations, as in this section, only the first phase is needed.

The problem is to find thepartial sumsof a given sequence ofn numbers. For the sake of simplicity, let
n = 2m and suppose that then numbers are given byan, an+1, . . . ,a2n−1. We wish to find the partial sums
bn+ j = an + . . . + an+ j for j = 0, . . . ,n − 1. The following procedure is due to Dekel & Sahni [1983]:

for l ← m − 1 downto 0 do
par [2l ≤ j ≤ 2l+1 − 1] aj ← a2 j + a2 j+1;

b1 ← a1;
for l ← 1 to m do

par [2l ≤ j ≤ 2l+1 − 1] bj ← if j oddthen b( j−1)/2 elsebj/2 − aj+1.

Here, a statement of the form ‘par [α ≤ j ≤ ω ] sj ’ denotes that the statementssj are executed in parallel for
all values ofj in the indicated range.
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Figure 2. Partial sums: an instance withn = 8.

The computation is illustrated in Figure 2. In the first phase, represented by solid arrows, the sum of the
aj ’s is calculated. Note that thea-value corresponding to a non-leaf node is set equal to the sum of alla-
values corresponding to the leaves descending from that node. In the second phase, represented by dotted
arrows, each parent node sends ab-value (starting withb1 = a1) to its children: the right child receives the
same value, the left one receives that value minus thea-value of the right child. Theb-value of a certain node
is therefore equal to the sum of alla-values of the nodes of the same generation, except those with a higher
index. This implies, in particular, that at the end we havebn+ j = an + . . . + an+ j for j = 0, . . . ,n − 1.

The algorithm requiresO(log n) time and n processors. This can be improved toO(log n) time and
O(n/ log n) processors by a simple device. First, the set ofn numbers is partitioned inton/ log n groups of
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size logn each, andn/ log n processors determine the sum of each group in the traditional serial way in logn
time. After this aggregation process, the above algorithm computes the partial sums over the groups; this
requiresO(n/ log n) processors andO(log n) time. Finally, a disaggregation process is applied with the same
processor and time requirements.

In the form given above, the algorithm does not work for operations such as maximization. The partial
sums algorithm uses subtraction, which has no equivalent in the case of maximization. We therefore present a
version of the partial sums algorithm which is not quite so elegant as the original one, but which has the
desired property since it makes use of addition only. It also runs inO(log n) time usingO(n/ log n) proces-
sors:

for l ← m − 1 downto 0 do
par [2l ≤ j ≤ 2l+1 − 1] aj ← a2 j + a2 j+1;

for l ← 0 to m do
par [2l ≤ j ≤ 2l+1 − 1]

bj ← if j = 2l then aj else if j oddthen b( j−1)/2 elseb( j−2)/2 + aj .

We now return to the verification of 2-optimality. The following procedure decides whether or not the tour
(1, 2, . . . ,n, n + 1) is 2-optimal:

par [1 ≤ i < j ≤ n] δ ij ← dij + di+1, j+1 − di ,i+1 − d j , j+1;
δmin ← min{δ ij |1 ≤ i < j ≤ n};
if δmin ≥ 0
then (1, 2, . . . ,n, n + 1) is a 2-optimal tour
else let i * and j * be such thatδ i* j* = δmin,

(1, . . . ,i*, j*, j * −1, . . . ,i * +1, j * +1, . . . ,n + 1) is a shorter tour.

By adapting the first phase of the partial sums algorithm such that it computes the minimum of a set of num-
bers and also delivers an index for which the minimum is attained, the above procedure can be implemented
to requireO(log n) time andO(n2/ log n) processors. The total computational effort isO(log n ⋅ n2/ log n) =
O(n2), as it is in the serial case. This is called afull processor utilizationor aperfect speedup.

Although the serial and parallel implementations seem similar, there is a basic distinction. When the tour
under consideration is not 2-optimal, the serial algorithm will detect this after a number of steps that is some-
where in between 1 and (n

2). In the parallel algorithm, confirmation and negation of 2-optimality always take
the same amount of time.

4. Local search for the TSP with single time windows
In the TSP with time windows, each vertexi has a time window on the departure time, denoted by [si , ti ].
The time window is opened at timesi and closed at timeti . If the salesman arrives ati beforesi , he has to
wait; if he arrives afterti , he is late and his tour is infeasible. The salesman departs at the opening time of the
time window associated with his starting vertex, and his objective is to be back as early as possible.

Due to the presence of time windows, there are feasible and infeasible tours, and this complexifies the
problem. To start with, the problem of determining the existence of a feasible tour isNP-complete in the
strong sense. This follows from the observation that the unconstrained TSP has a tour of duration no more
thanB if and only if there is a feasible tour for the constrained TSP in which each vertex has a time window
[0, B].

Second, when applying local search, we have to test all candidate improvements for feasibility. Ak-
exchange influences the arrival times at all vertices visited after the first change in the tour. This may lead to
changes in the departure times and even to infeasibility. In a straightforward implementation, we needO(n)
time to handle a singlek-exchange, which results in a time complexity ofO(nk+1) for the verification ofk-
optimality. We will show how to reduce this time bound by an ordern, thereby obtaining the same time com-
plexity as in the unconstrained case.

The basic idea is the use of a specificsearch strategyin combination with a set ofglobal variablessuch
that testing the feasibility of a single exchange and maintaining the set of global variables require no more
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than constant time. The discussion below is an adaptation of Savelsbergh [1986]. We consider the casek = 2
in detail. Related results can be found in Savelsbergh [1991].

As before, we consider the tour (1, 2, . . . ,n, n + 1). We assume that this tour is feasible. A 2-exchange
involves the replacement of the edges{i , i + 1} and { j , j + 1} by the edges{i , j} and {i + 1, j + 1}. Such an
exchange is both feasible and profitable if and only if the following three conditions are satisfied:

(1) the reversed path (j , . . . ,i + 1) is feasible, i.e., the new departure time at vertexk is not larger thantk,
for k = i + 1, . . . ,j ;

(2) the new departure time at vertexj + 1 is smaller than it was before the exchange;
(3) a part of the gain at vertexj + 1 can be carried through to the destination, i.e., the original departure

time at vertexk is strictly larger thansk, for k = j + 1, . . . ,n.
Condition (3) needs further consideration. If it is violated, the exchange will not affect the duration of the

tour. Howev er, it will reduce the duration of the path from 1 tok − 1, for the smallestk for which violation
occurs. In the sequel, we will drop condition (3), for two reasons. First, introducing some slack may be bene-
ficial for the rest of the procedure, even though the slack cannot be carried through to the end of the tour. In
addition, taking condition (3) into account would make the presentation needlessly complicated. In this set-
ting, a tour is 2-optimal if and only if there does not exist a feasible 2-exchange that reduces the duration of
the path from 1 tok for any vertexk. This is a broader notion of 2-optimality, which implies the original one.

We propose asearch strategythat examines the 2-exchanges in lexicographic order. We choosei succes-
sively equal to 1, 2, . . . ,n − 2; this will be referred to as the outer loop. For a fixed value ofi , we choosej
successively equal toi + 2, i + 3, . . . ,n; this will be called the inner loop. In the inner loop, the previously
reversed path (j − 1, . . . ,i + 1) is repeatedly expanded with the edge{ j , j − 1}; cf. Figure 3.

Figure 3. The search strategy for 2-exchanges.

In the following, we assume thati is fixed and consider the inner loop. The departure time at vertexk in
the tour (1, 2, . . . ,n, n + 1) will be denoted byDk, for k = 1, . . . ,n + 1. The waiting and departure times at
vertexk after reversal of the path (i + 1, . . . ,j ) will be denoted byW j

k andD j
k, respectively, fork > i .

We define threeglobal variables, which will be associated with the reversed path (j − 1, . . . ,i + 1), and
which will be maintained throughout the inner loop. First,T is equal to the total travel time along this path:

T = Σ j−2
k=i+1 dk,k+1.

Second,W is equal to the total waiting time along the path after departing from vertexj − 1:

W = Σ j−2
k=i+1 W j−1

k .

Third, S is equal to the maximum forward shift in time of the departure time at vertexj − 1 that would cause
no time window violation along the path:

S= mini+1≤k≤ j−1 tk − (D j−1
j−1 + Σ j−2

l=k dl ,l+1).

Note that in the definition ofS we implicitly assume that the current reversed path is feasible; also note that
this definition is independent of any waiting time along the current path.

Expanding the reversed path (j − 1, . . . ,i + 1) with the edge{ j , j − 1} may change the arrival time at vertex
j − 1 and thereby all departure times along the path (j − 1, . . . ,i + 1). We define alocal variable∆ to denote
the difference between the new arrival time and the old departure time at vertexj − 1:

∆ = D j
j + d j , j−1 − D j−1

j−1.
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∆ can be computed in constant time, usingD j
j = max{s j , Di + dij } andD j−1

j−1 = max{s j−1, Di + di , j−1}.
In order to prove that we can verify 2-optimality of the tour (1, 2, . . . ,n, n + 1) in O(n2) time, we have to

establish two facts: it is possible to update the values of the global variables in constant time, and the new
values allow us to handle a single 2-exchange in constant time.

As to updating the global variables, we note that the definition of∆ covers two cases. In the case that
∆ < 0, the triangle inequality implies that the old arrival atj − 1 cannot have been later than the new arrival;
hence, the old arrival and departure times did not coincide, so that the old departure occurred at the opening
of the time window. But then we have that−∆ = W j

j−1, the new waiting time atj − 1. In the case that∆ ≥ 0,
we obviously have∆ = D j

j−1 − D j−1
j−1, the forward shift of the departure time atj − 1. We conclude that the

new values of the global variables are obtained by

T ← T + d j−1, j ,

W ← max{W − ∆, 0},

S← min {t j − D j
j , S− ∆}.

These updates require constant time.
As to handling a single 2-exchange, the conditions (1), requiring feasibility, and (2), stipulating profitabil-

ity at vertex j + 1, can be written as

(1) D j
k ≤ tk for k = i + 1, . . . ,j ,

(2) D j
j+1 < D j+1.

The inequalities (1) are obviously equivalent toS ≥ 0; see Savelsbergh [1986] for a formal proof. For
inequality (2), we observe that the new departure time atj + 1 satisfies

D j
j+1 = max{s j+1, D j

j + T + W + di+1, j+1}.

We conclude that conditions (1) and (2) can be tested in constant time.

5. Parallel local search for the TSP with single time windows
We will now present a parallel algorithm for verifying 2-optimality of a time-constrained TSP tour. It requires
O(log n) time andO(n2/ log n) processors, and thereby has the same resource requirements as in the uncon-
strained case. An earlier, more cumbersome, variant of the algorithm was presented in a previous paper
[Kindervater, Lenstra & Savelsbergh, 1989].

Again, we consider the tour (1, 2, . . . ,n, n + 1), which is assumed to be feasible. We start by considering all
partial paths along the tour. This enables us to construct the tours that can be obtained by a 2-exchange. Our
algorithm has three phases.

∞

0
t

∞

0
t

∞

0
t

Figure 4. The three possible shapes of the functionEij .

(1) For each pair of vertices{i , j} with i < j , we defineEij (t) as the earliest possible arrival time at vertexj
when traveling along the tour fromi to j after arriving at vertexi at timet, andEji (t) as the earliest possible
arrival time at vertexi when traveling fromj to i in the reverse direction along the tour after arriving at
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vertex j at time t. Note thatE1,n+1(s1) is the arrival time at vertex 1 of the initial tour. We hav e for alli
(1 ≤ i ≤ n) that

Ei ,i±1(t) =




max{si , t} + di ,i±1

∞
for t ≤ ti ,

for t > ti .

The other functionsEij can be obtained by composition. By considering all possibilities, one can show that
each of these functions has one of the three shapes shown in Figure 4. Composing functions is an associative
operation. Hence, we can use the partial sums algorithm from Section 3 for obtaining all functionsEij in par-
allel. Since a composition of two functions of the type described here can be derived in constant time, we can
in fact determine all functionsEij in O(log n) time withO(n2/ log n) processors.

(2) Given all these functions, we compute the earliest arrival timeAij (k) at a few specific verticesk,
including the origin, after the replacement of the edges{i , i + 1} and { j , j + 1} by the edges{i , j} and
{i + 1, j + 1}:

par [1 ≤ i < j ≤ n] Aij ( j ) ←if E1i (s1) ≤ ti thenmax{si , E1i (s1)} + dij else∞;
par [1 ≤ i < j ≤ n] Aij (i + 1) ←Ej ,i+1(Aij ( j ));
par [1 ≤ i < j ≤ n] Aij ( j + 1) ←if Aij (i + 1) ≤ ti+1 thenmax{si+1, Aij (i + 1)} + di+1, j+1 else∞;
par [1 ≤ i < j ≤ n] Aij (n + 1) ← Ej+1,n+1(Aij ( j + 1)).

For this phase we needO(1) time andO(n2) processors, orO(log n) time andO(n2/ log n) processors.
(3) We now decide whether or not the given tour is 2-optimal in the same way as in the case without time

windows:

Amin ← min{Aij (n + 1)|1≤ i < j ≤ n};
if E1,n+1(s1) ≤ Amin

then (1, 2, . . . ,n, n + 1) is a 2-optimal tour
else let i * and j * be such thatAi* j* = Amin,

(1, . . . ,i*, j*, j * −1, . . . ,i * +1, j * +1, . . . ,n + 1) is a better feasible tour.

For this last phase, the same time and processor bounds as before suffice. So, we end up with an algorithm
that runs inO(log n) time usingO(n2/ log n) processors, which is the same as in the case without time win-
dows.

For each fixedk > 2, we can derive a logarithmic-time algorithm along similar lines. One has to take into
account that, givenk edges, severalk-exchanges are possible. Further, the influence of ak-exchange on a
tour is more complex. However, it is not hard to see that the running time remainsO(log n) usingO(nk/ log n)
processors, which is optimal with respect to the numberΘ(nk) of k-exchanges.

6. Local search for the TSP with multiple time windows
In Section 4, we have shown thatk-exchange algorithms can be adapted to handle a single time window at
each vertex without increasing the time complexity. A next natural step is to investigate whether they can also
be adapted to handle multiple time windows at each vertex.

Suppose that each vertex hasl time windows and must be visited in any one of these. It takesO(log l ) time
to determine whether the arrival time at a vertex falls within one of its time windows. The straightforward
approach for the verification of 2-optimality therefore requiresO(n2(n log l )) time. We will present an imple-
mentation with a time complexity ofO(n(ln log ln)), which is better for all realistic values ofl .

To simplify the presentation, we will restrict ourselves to the case where each vertexi has two disjoint time
windows, denoted by [s1

i , t1
i ] and [s2

i , t2
i ].

Let us briefly review the variables introduced in the single time window case. Considering the reversed
path (j − 1, . . . ,i + 1), we have that

T = total travel time along the path,

W = total waiting time along the path after departing from vertexj − 1,
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S= maximum forward shift in time of the departure time at vertexj − 1
that would cause no time window violation along the path,

∆ = difference between the new arrival time and the old departure time at vertexj − 1
after expansion of the path with the edge{ j , j − 1}.

In each iteration the global variables were updated using the following formulas:

T ← T + d j−1, j ,

W ← max{W − ∆, 0},

S← min {t j − D j
j , S− ∆}.

In the case of multiple time windows, the same set of variables will be used for the verification of feasibil-
ity and profitability. Although the use of these variables in handling a single 2-exchange remains unchanged,
the rules for updating their values have to be reconsidered, because it is no longer possible to give a closed
form expression for each of them. The update formula forT is obviously still valid. The other two are more
complicated, as will be explained below.

First, we consider the update of the maximum forward shift. Clearly, infeasibility occurs when a departure
time is later than the closing of the last time window. Howev er, there is one other situation that has to be
taken into account. It occurs whenD j

j ≤ t1
j andt1

j − D j
j ≤ S− ∆ < s2

j − D j
j . Considering the closing of the last

window at vertexj would result in the updateS ← min {t 2
j − D j

j , S− ∆} = S− ∆, whereasS should be equal
to t1

j − D j
j . This deficiency can be circumvented by the following updated updating rule:

S←




t1
j − D j

j

min {t 2
j − D j

j , S− ∆}

if 0 ≤ t1
j − D j

j ≤ S− ∆ < s2
j − D j

j ,

otherwise.

Second, we consider the update of the waiting time. An implicit but important characteristic of the single-
window case is the fact that shifting the departure time atj − 1 forward in time never leads to an increase of
the total waiting time on the path (j − 1, . . . ,i + 1). In the multiple-window case this is no longer true. Wait-
ing time might occur anywhere along the reversed path. This global nature of the waiting time is precisely the
reason why we are not able to obtain the same time complexity as in the single-window case.

For a fixed value ofi , the lexicographic search strategy enables us to maintain a set of triples that can be
used to calculate any waiting time along the reversed path inO(log n) time. Considering the reversed path
( j − 1, . . . ,i + 1), this set, denoted by{(L1,U1,W1), . . . , (Lm,Um,Wm)}, will have two properties:

(i) (L1,U1], . . . , (Lm,Um] form a set of pairwise disjoint half open intervals, andWk ≥Uk for all k
(1 ≤ k ≤ m);

(ii) if the arrival time at vertexj − 1, denoted byAj−1, satisfies the conditionLk < Aj−1 ≤Uk for somek,
then the total waiting time on the reversed path (j − 1, . . . ,i + 1) is equal toWk − Aj−1.

When the path (j − 1, . . . ,i + 1) is extended with the edge{ j , j − 1}, we transform the set of triples such
that it is defined relative to the departure time at vertexj , by subtracting the travel timed j , j−1 from all Lk and
Uk. Next, we add the triples (−∞, s1

j , s1
j ) and (t1

j , s2
j , s2

j ), which handle the waiting time at vertexj only.
There are five basic cases that have to be considered when a triple (Lnew,Unew,Wnew) is added to the cur-

rent set of triples. Composite cases can all be handled as a sequence of basic ones. A more elaborate discus-
sion of these intricate updates is given by Sav elsbergh [1988]. LetAj denote the arrival time at vertexj .

Case 1.∀k (Lnew,Unew] ∩ (Lk,Uk] = ∅. The simplest case. The new triple is simply added.
Case 2.∃k (Lnew,Unew] ∩ (Lk,Uk] = (Lnew,Unew]. The waiting time incurred by the new triple is com-

pletely dominated by the waiting time incurred by the triple (Lk,Uk,Wk). The set of triples is therefore not
changed.

Case 3.∃k (Lnew,Unew] ∩ (Lk,Uk] = (Lk,Uk]. Here, the situation is opposite to the previous case. The
waiting time incurred by the new triple completely dominates the waiting time incurred by the triple
(Lk,Uk,Wk). The triple (Lk,Uk,Wk) is therefore replaced by (Lnew,Unew,Wnew).
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Case 4.∃k (Lnew,Unew] ∩(Lk,Uk] = (Lk,Unew]. Here, the situation is a bit more complicated. At first
glance, there is only partial dominance. In fact, a kind of chaining occurs. The waiting time incurred when
the arrival time at vertexj falls inside the new interval is determined byWk − Aj . The triple (Lk,Uk,Wk) is
therefore replaced by (Lnew,Uk,Wk).

Case 5. ∃k (Lnew,Unew] ∩ (Lk,Uk] = (Lnew,Uk]. Here, there really is partial dominance. When
Lk < Aj ≤ Lnew, it will still induce a waiting time equal toWk − Aj , but whenLnew< Aj ≤Unew, it will induce a
waiting time equal toWnew− Aj instead ofWk − Aj . The triple (Lk,Uk,Wk) is therefore replaced by
(Lk, Lnew,Wk), and a new triple (Lnew,Unew,Wnew) is added.

As to the implementation of such an iteration, we do not actually transform the existing set of triples by
subtractingd j , j−1. It is more efficient to compute the new triple relative to vertexi by addingT to its three
elements. In each iteration, this avoids anO(m) amount of work.

To analyze the complexity of the 2-exchange procedure for the TSP with multiple time windows, let us
drop the assumption that there are at most two time windows at each vertex. We assume instead that there are
at mostl time windows at each vertex, for a fixedl . Now, when the path (j − 1, . . . ,i + 1) is expanded with
the edge{ j − 1, j} , there are at most 2l intervals that have to be compared with the current set of intervals.
The worst that can happen is that each interval leads to the creation of a new interval (Case 1 or Case 5), and
the cardinality of the current set of intervals increases by exactly 2l . In the worst case, we end up withO(ln)
intervals. With the appropriate data structures, such as trees, it is possible to perform all necessary operations
on the set of intervals inO(ln log ln) time. This leads to an overall worst case time complexity for testing
2-optimality ofO(n(ln log ln)).

7. Parallel local search for the TSP with multiple time windows
Finally, we will give a parallel algorithm for the verification of 2-optimality in the presence of multiple time
windows per vertex. As in the previous section, the algorithm will be presented for the case where each ver-
tex has at most two time windows. At the end we will discuss the general case.

A straightforward approach would be a direct modification of the algorithm presented in Section 5, in the
sense that we make use of adapted functionsEij . These functions, however, are not that simple any more and
the total computational effort would outgrow the one in the sequential case. Fortunately, it turns out that we
do not have to determine all functions explicitly.

What we need is an algorithm for the following problem. Given aren vertices, numbered 1, . . . ,n. Con-
sider the tour (1, 2, . . . ,n, n + 1), where the vertices 1 andn + 1 are the same. Let each vertexi have two time
windows, and letEi ,i+1 deliver the arrival time at vertexi + 1 as a function of the arrival time at vertexi
(1 ≤ i ≤ n). What is the arrival time at vertexi when leaving vertex 1 at a giv en timeti , for 2 ≤ i ≤ n + 1?

The algorithm consists of two phases. The first phase is the same as the first phase of the partial sums algo-
rithm from Section 3. Again, for the sake of simplicity, letn = 2m.

for l ← 1 to mdo
par [0 ≤ j ≤ 2m−l − 1] E1+ j2l ,1+( j+1)2l ← E1+(2 j+1)2l−1,1+2( j+1)2l−1 E1+2 j2l−1,1+(2 j+1)2l−1.

Since each vertex has two time windows the functionsEi ,i+1 are piecewise linear with four breakpoints. The
number of breakpoints in each of the functions that are obtained by composition may be as large as the sum
of the number of breakpoints of the functions from which they are obtained. We start withn functions, with
four breakpoints each. In the first iteration, we obtainn/2 functions with at most eight breakpoints, in the sec-
ond iterationn/4 functions with at most sixteen breakpoints, and so on. Hence, in each iteration we have to
considerO(n) breakpoints in total. Forming a composition of two functions withk breakpoints each can be
done inO(log k) time withO(k) processors using binary search. Since we have to considerO(n) breakpoints
at each stage, this phase requiresO(log2 n) time withO(n) processors.

We are now ready to compute the arrival time at vertexi when leaving vertex 1 at timeti . This can be done
for all i (2 ≤ i ≤ n + 1) in parallel. Below,vi denotes an intermediate vertex on the path from vertex 1 to ver-
tex i , andai the corresponding arrival time atvi . Note that we only use those functionsEij that are deter-
mined in the previous phase.
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par [2 ≤ i ≤ n + 1] ai ← ti , vi ← 1;
for l ← mdownto0do

par [2 ≤ i ≤ n + 1] if vi + 2l ≤ i then ai ← Evi ,vi +2l (ai ), vi ← vi + 2l .

As in the previous phase, the time needed isO(log2 n) with O(n) processors.
So we end up with an algorithm that runs inO(log2 n) time with O(n) processors. Since the amount of

work involved in the algorithm isΘ(n log2 n), we cannot reduce the number of processors by a significant
factor without increasing the computation time.

We return to the verification of 2-optimality of the tour (1, 2, . . . ,n, n + 1). Let Aij (k) denote the arrival
time at vertexk with respect to 2-exchange{i , j} . The steps of the verification algorithm are the following:

(1) Compute the arrival timesAij (i). This is achieved by a single invocation of the above algorithm.
(2) Compute the arrival timesAij ( j ). Here, we go directly from vertexi to vertex j .
(3) Compute the arrival timesAij (i + 1). In this step we consider paths along the tour in the reversed direc-

tion with different starting times. For allj , we must apply the above routine with the arrival times obtained in
the previous step.

(4) Compute the arrival timesAij ( j + 1). As in step (2), we travel over a single edge.
(5) Compute the arrival times at the originAij (n + 1). We can obtain these times by applying the above

algorithmn times in parallel and modifying the second phase such that it computes the arrival times at vertex
n + 1 giv en the starting times at the other vertices.

(6) Determine whether the given tour is 2-optimal in the same way as in Section 5.
Steps 3 and 5 dominate the time and processor requirements. Since in each of these steps we apply the

basic routinen times in parallel, we have that the total time for verifying 2-optimality with two time windows
per vertex isO(log2 n) usingO(n2) processors, which gives a total computational effort that is slightly worse
than in the sequential case.

The extension tol time windows per vertex has only minor consequences. An operation in the binary trees
part of the algorithm now requiresO(log ln) time andO(ln) processors. Further, the time needed for consider-
ing a single edge will increase toO(log l ). Hence verifying 2-optimality can be done inO(log n log ln) time
with O(ln2) processors.

8. Conclusions
We hav e described various adaptations of the well-known 2-exchange local search algorithm for the TSP that
are able to handle time windows efficiently, on sequential and parallel architectures. The presented techniques
can also be used to implement generalk-exchange local search algorithms.

In two of the situations considered (no time windows and single time windows), we have achieved a per-
fect speedup. That is, the total computational effort of ak-exchange algorithm remains the same when we
move from a sequential to a parallel computer. In the multiple time window case, the work done by the paral-
lel algorithm exceeds the one in the sequential case by a factor ofO(log n).

An interesting open problem in this context is the following. Given a tour for the TSP and two time win-
dows per vertex, its duration can obviously be computed inO(n) time on a sequential machine and in
O(log2 n) time on a PRAM withO(n) processors using the techniques described above. Does there exist a
parallel algorithm that achieves a perfect speedup?
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