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Abstract

Within the framework of reverse logistics, the classic economic lot-sizing prob-

lem has been extended with a remanufacturing option. In this extended problem,

known quantities of used products are returned from customers in each period.

These returned products can be remanufactured, so that they are as good as new.

Customer demand can then be fulfilled both from newly produced and remanu-

factured items. In each period, we can choose to set up a process to remanufacture

returned products or produce new items. These processes can have separate or

joint set-up costs. In this paper, we show that both variants areNP-hard. Further-

more, we propose and compare several alternative MIP formulations of both prob-

lems. Because ‘natural’ lot-sizing formulations provide weak lower bounds, we

propose tighter formulations, namely shortest path formulations, a partial shortest

path formulation and an adaptation of the (l, S, WW)-inequalities for the classic

problem with Wagner-Whitin costs. We test their efficiency on a large number of

test data sets and find that, for both problem variants, a (partial) shortest path type
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formulation performs better than the natural formulation, in terms of both the LP

relaxation and MIP computation times. Moreover, this improvement can be sub-

stantial.

Keywords: Lot-sizing, remanufacturing, reverse logistics, reformulations

1 Introduction

Reverse logistics (see Dekker et al. (2004)) is a field that has emerged during the last
decades. It studies situations in which there is not only a product flow towards the
customers, but products and materials are also returned to the manufacturer and these
may be reused in production processes. Within the framework of reverse logistics,
the classic economic lot-sizing problem has been extended with a remanufacturing
option. After showing that the economic lot-sizing problem with remanufacturing
is NP-hard, we shall propose several alternative formulations. Computational tests
show that these improved formulations have better LP relaxations and MIP computa-
tion times, and allow the solution of larger problem instances than conventional for-
mulations.

As in the classic problem, we face a deterministic demand from customers in a
number of discrete time periods. In each period, we must decide to set up a production
process or not, and if so how much to produce. In order to find a production plan
with minimal costs, we must find the optimal balance between set-up, holding and
production costs. In the problem extended with a remanufacturing option, known
quantities of used products are returned from customers in each period. There is no
demand for these returned products themselves (or ‘returns’ in short), but they can
be remanufactured, so that they are as good as new. Customer demand can then be
fulfilled from two sources, namely newly produced and remanufactured items. Since
both can be used to serve customers, they are referred to as ‘serviceables’. We are to
determine in which periods to set up a production process to remanufacture returned
products and in which to set up a production process to manufacture new items. Thus,
the traditional trade-off between set-up, holding and production costs is extended with
remanufacturing costs and holding costs for returns. This setting is similar to the one
described by Teunter et al. (2006), although we do not assume zero production and
remanufacturing costs.

Practical situations in which the flow of returns can be modeled deterministically
are described in Golany et al. (2001) and Beltrán and Krass (2002). Golany et al. (2001)
mention that the demand for and returns of packaging and shipping materials (such
as pallets or containers) are known, since the shipments in which they are used, are
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planned in advance. Beltrán and Krass (2002) discuss catalogue retailing, in which ’the
proportion of each period’s sales that come back as returns, and the timing of these
returns are often quite stable (. . . ) making it possible to forecast returns in each period
quite accurately’.

As in Teunter et al. (2006), we consider two variants of lot-sizing with remanufac-
turing. In the first variant, manufacturing new products and remanufacturing used
products take place in two separate processes, each with its own set-up costs. We
call this problem ELSRs (Economic Lot-Sizing with Remanufacturing and Separate set-
ups). In the second variant, the manufacturing and remanufacturing process have one
joint set-up cost, for instance because manufacturing and remanufacturing operations
are performed on the same production line. We call this problem ELSRj (Economic
Lot-Sizing with Remanufacturing and Joint set-ups).

ELSRj with time-invariant costs can be solved inO(T4) time with the dynamic pro-
gramming algorithm proposed in Teunter et al. (2006). However, in this paper we will
show that ELSRj is NP-hard in general. Moreover, we will prove that ELSRs is NP-
hard even if all costs are time-invariant.

Because of their complexity, it makes sense to look at good mixed integer program-
ming (MIP) formulations of both problems, which is what we do in this paper. A first
formulation with a ‘natural’ choice of variables was presented in Teunter et al. (2006)
and will serve as our benchmark. We shall see, however, that such a formulation con-
tains so-called ‘big M’ constraints. It is generally known (Pochet and Wolsey, 2006)
that these big M constraints in the natural lot-sizing formulation often lead to a bad
LP-relaxation and hence high running times. Consequently, we propose several new,
alternative formulations of the lot-sizing problem with remanufacturing. The first re-
formulation is based on a shortest path type formulation, as first proposed by Eppen
and Martin (1987) for the capacitated lot-sizing problem (without remanufacturing).
The second reformulation is a partial shortest path reformulation. This reformula-
tion has fewer variables than the full shortest path reformulation, while preserving the
quality of the LP-relaxation as much as possible. This idea was used by Van Vyve and
Wolsey (2006) for the classic lot-sizing problem. The last formulation is based on the
(l, S, WW)-inequalities, as introduced by Pochet and Wolsey (1994) for the single-item
uncapacitated lot-sizing problem with Wagner-Whitin costs. In order to assess and
compare their performances, we will subject all the formulations to a large number of
computational tests.

To the best of our knowledge, no-one has ever presented and tested a good MIP for-
mulation for the economic lot-sizing problem with remanufacturing. Previous work
generally used heuristics or solved restricted versions of the problem. Van den Heuvel
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(2006) solves ELSRs with a genetic algorithm that uses dynamic programming to solve
subproblems in which the production periods are given. Teunter et al. (2006) present
heuristics for both ELSRs and ELSRj. These heuristics are modifications of the well-
known Silver-Meal, Least Unit Cost and Part Period Balancing heuristics (see Silver
et al. (1998)). Recently, Schulz (2009) proposed an improvement of the modified Silver-
Meal heuristic for ELSRs. Exact dynamic programming algorithms were developed
by Pan et al. (2009) for several special cases of the capacitated lot-sizing problem with
production, disposal and remanufacturing. This includes lot-sizing with uncapaci-
tated production and capacitated remanufacturing and no final inventory of returns,
for which their algorithm runs in exponential time. With this algorithm, they solve in-
stances with up to 14 periods. Richter and Sombrutzki (2000) study a ‘reverse Wagner-
Whitin model’ with time-invariant costs in which there is an abundance of returns. As
such, manufacturing items is not necessary, but may result in a production plan with
lower costs. The problem is solved with an algorithm similar to Wagner and Whitin’s.
This model and algorithm are extended in Richter and Weber (2001) with variable (re-)
manufacturing costs. In the case of time-invariant costs and demand inputs, they find
an ‘optimal switching point’ between remanufacturing and manufacturing. Golany
et al. (2001) study the lot-sizing problem with remanufacturing in which it is possible
to dispose returned products. They show that the problem is NP-hard for general
concave costs, but solvable as a transportation problem in O(T3) if all costs are linear.
The same setting is studied in Yang et al. (2005). They extend the NP-hardness result
to the time-invariant costs case and develop a heuristic that runs in polynomial time.
Piñeyro and Viera (2009) study a similar model with a disposal option, but the concave
costs are restricted to fixed-plus-linear costs for (re-) manufacturing and disposing,
and holding costs are assumed linear. They construct a tabu search procedure for this
problem, as well as several inventory policies that run in O(T2). Beltrán and Krass
(2002) also consider a setting where disposal of returns is possible, but they assume
that remanufacturing returned items is not necessary, i.e., returns can directly be used
to satisfy demand. For this setting, they develop a dynamic programming algorithm
that runs in O(T3) time.

The remainder of this paper is organized as follows. The next section presents
a formal definition of ELSRs and ELSRj by giving a first, ‘natural’ MIP formulation.
In Section 3, we show that both ELSRs and ELSRj are NP-hard in general. All of
our reformulations are presented in Section 4. These formulations are put to the test
in Section 5 and Section 6 concludes this paper, with some suggestions for further
research.
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2 The original formulation

2.1 Separate set-ups

We can formulate the lot-sizing problem with remanufacturing as a mixed integer pro-
gram. A first, ‘natural’ formulation is based on the following decision variables:

xm
t is the number of items manufactured in period t;

xr
t is the number of items remanufactured in period t;

ym
t is 1 if the manufacturing process is set up in period t; 0 otherwise;

yr
t is 1 if the remanufacturing process is set up in period t; 0 otherwise;

Is
t is the inventory of serviceables at the end of period t;

Ir
t is the inventory of returns at the end of period t.

The notation that is used for the parameters in each period t, is as follows:

dt is the customer demand, where Di,j := ∑
j
t=i dt;

rt is the amount of returns, where Ri,j := ∑
j
t=i rt;

hs
t and hr

t are the unit holding costs for serviceables and returns, respectively;

Km
t and Kr

t are the set-up costs for manufacturing and remanufacturing, respectively;

pm
t and pr

t are the unit production costs for manufacturing and remanufacturing, re-
spectively.

Is
1 Is

2 Is
3

Ir
1 Ir

2 Ir
3

d1 d2 d3 d4

r1 r2 r3 r4

Ir
4

xm
1 , ym

1 xm
2 , ym

2 xm
3 , ym

3 xm
4 , ym

4

xr
1 yr

1 xr
2 yr

2 xr
3 yr

3 xr
4 yr

4

Figure 1: Network flow representation of ELSRs
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A network flow representation of this problem and its variables and parameters is
given in Figure 1. We are now ready to present a first, ‘natural’ formulation of the lot-
sizing problem with remanufacturing and separate set-ups. This formulation is similar
to the ones in Teunter et al. (2006), Yang et al. (2005) and Piñeyro and Viera (2009), and
will serve as our benchmark.

min
T

∑
t=1

(Km
t ym

t + pm
t xm

t + hs
t Is

t + Kr
t yr

t + pr
t xr

t + hr
t Ir

t ) (1)

s.t.

Is
t = Is

t−1 + xm
t + xr

t − dt t = 1, . . . , T (2)
Ir
t = Ir

t−1 − xr
t + rt t = 1, . . . , T (3)

xm
t ≤ Dt,T ym

t t = 1, . . . , T (4)
xr

t ≤ Dt,T yr
t t = 1, . . . , T (5)

xm
t , xr

t , Is
t , Ir

t ≥ 0 t = 1, . . . , T (6)
ym

t , yr
t ∈ {0, 1} t = 1, . . . , T (7)

Is
0 = Ir

0 = 0 (8)

We shall refer to this formulation as ‘Original’. It also serves as our (formal) defini-
tion of the economic lot-sizing problem with remanufacturing and separate set-ups
(ELSRs).

The objective (1) is to minimize the sum of set-up costs of the production and re-
manufacturing processes, production and remanufacturing costs, and holding costs
for serviceables and returns. (2) and (3) are inventory balance constraints for service-
ables and returns, respectively. (4) and (5) are set-up forcing constraints for the man-
ufacturing and remanufacturing processes. The last constraints (8) assume zero initial
inventories of both serviceables and returns, without loss of generality.

2.2 Joint set-ups

For the problem variant with joint set-ups, we give a similar formulation. The notation
is the same as before, but now we have only one set-up variable, yt, and one parameter
to denote the set-up costs, Kt.

min
T

∑
t=1

(Ktyt + pm
t xm

t + hs
t Is

t + pr
t xr

t + hr
t Ir

t ) (9)

s.t. (2), (3), (6), (8),

xm
t + xr

t ≤ Dt,T yt t = 1, . . . , T (10)
yt ∈ {0, 1} t = 1, . . . , T (11)
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We shall also refer to this formulation as ‘Original’. As before, it serves as our (formal)
definition of the economic lot-sizing problem with remanufacturing and joint set-ups
(ELSRj). The interpretation of the formulation is similar to the separate set-ups case.

3 Complexity results

3.1 Lot-sizing with remanufacturing and separate set-ups

Richter and Sombrutzki (2000) and Richter and Weber (2001) show that some special
cases of the ELSRs problem can be solved in polynomial time. However, Richter and
Sombrutzki (2000, p. 311) mention that “There are probably no simple algorithms to
solve that general model . . .”. In this section, we will show that the ELSRs problem is
indeedNP-hard in general. In the proof, we will use a reduction from the well-known
NP-complete PARTITION problem (see problem [SP12] in Garey and Johnson (1979)).
Problem PARTITION: Given n positive integers a1, . . . , an. Does there exist a set S ⊂
N = {1, . . . , n} such that ∑i∈S ai = ∑i∈N\S ai = A? (Note that we may assume without
loss of generality that ai < A for i = 1, . . . , n.)

Theorem 1 The ELSRs problem is NP-hard for time-invariant cost parameters.

Proof Given an instance of PARTITION, we construct an instance of the ELSRs problem
with T = n periods as follows. For t = 1, . . . , T, let dt = at, Km

t = Kr
t = 1, pm

t = 1,
pr

t = 0, hs
t = 3 and hr

t = 0. Furthermore, let r1 = A and rt = 0 for t = 2, . . . , T.
Clearly, this reduction can be done in polynomial time. We will show that the answer
to PARTITION is positive if and only if the ELSRs instance has a solution with a cost of
at most T + A.

Assume that we have a solution for the ELSRs instance with a cost of at most T + A.
First, we show that we may restrict ourselves to a solution where no serviceables are
held in stock. To that end, let t be the first period with serviceables in stock, so that t
is a manufacturing or remanufacturing period. Now decreasing the number of items
being (re)manufactured by one in period t and increasing the number of items being
(re)manufactured by one in period t + 1 will reduce the total cost by at least 1. By
repeating this process we end up with a solution without serviceables in stock and
cost at most T + A.

Because at most A items can be remanufactured and all demand has to be satisfied,
we incur at least a variable cost of A for manufactured items and we incur exactly a
cost of A if all returns are remanufactured. Moreover, since no serviceables are held
in stock and demand is positive, every period is a manufacturing or remanufacturing
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period. So if there is both remanufacturing and manufacturing in at least one period,
then the total setup costs will exceed T. Because the total cost is at most T + A, the total
amount remanufactured equals A and demand in each period is satisfied by either
manufacturing or remanufacturing (and not both). Therefore, the remanufacturing
periods (or the manufacturing periods) form the set S.

Conversely, let S be the set for which ∑i∈S ai = ∑i∈N\S ai = A. It is easy to verify
that by remanufacturing at items in each period t ∈ S and manufacturing at items in
each period t ∈ N\S, all demand is satisfied and total costs equal T + A. �

Note that from a practical point of view, the ELSRs problem instance in the proof has
reasonable assumptions on the cost parameters. Since remanufacturing adds value
to an item, it is reasonable to assume that holding serviceables is at least as costly as
holding returns (i.e., hs

t ≥ hr
t). Furthermore, if remanufacturing is motivated econom-

ically, then the assumption that the unit remanufacturing cost equals at most the unit
manufacturing cost (i.e., pm

t ≥ pr
t) is also reasonable. Finally, in practice it is likely

that the total amount of demand will be larger than the total amount of returns (i.e.,

∑T
t=1 dt ≥ ∑T

t=1 rt).
Note that the solution for the PARTITION instance and the optimal cost of the EL-

SRs instance are independent of the ordering of a1, . . . , an (as in the NP-completeness
proof for the capacitated lot-sizing problem (Florian et al., 1980)). This gives the fol-
lowing corollary:

Corollary 2 The ELSRs problem remains NP-hard in the case of increasing (or decreasing)
demand over time and time-invariant cost parameters.

3.2 Lot-sizing with remanufacturing and joint set-ups

Although the lot-sizing problem with remanufacturing and joint set-ups can be solved
in O(T4) time with the algorithm presented in Teunter et al. (2006) when all costs are
time-invariant, we show that ELSRj is NP-hard in general.

Theorem 3 The ELSRj problem is NP-hard.

Proof We show that the lot-sizing problem with remanufacturing and separate set-ups
is a special case of the problem with joint set-ups. Let an instance of ELSRs be defined
as in (1)-(8). We define an instance of the lot-sizing problem with remanufacturing and
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joint set-ups as follows:

T̃ = 2T K̃t =

{
Kr

t for t odd
Km

t for t even

d̃t =

{
0 for t odd
d 1

2 t for t even
r̃t =

{
r 1

2 (t+1) for t odd

0 for t even

p̃m
t =

 ∞ for t odd
pm

1
2 t

for t even
p̃r

t =

 pr
1
2 (t+1)

for t odd

∞ for t even

h̃s
t =

 0 for t odd
hs

1
2 t

for t even
h̃r

t =

 0 for t odd
hr

1
2 t

for t even

Note that the parameters with tilde correspond to ELSRj, whereas the ones without
correspond to ELSRs. An illustration of such an instance of ELSRj can be found in
Figure 2. Since this problem has joint set-up costs, there is a common fixed charge

0 hs
1 0 hs

2

0 hr
1 0 hr

2

d1 d2

r1 r2

∞, Kr
1 pm

1 , Km
1 ∞, Kr

2 pm
2 , Km

2

pr
1 Kr

1 ∞ Km
1 pr

3 Kr
2 ∞ Km

2

Figure 2: ELSRs as a special case of ELSRj

(Kr
1, Km

1 , Kr
2, Km

2 , . . .) on two arcs in each period. Observe that each period t in ELSRs
corresponds to a two-period pair (2t − 1, 2t) in ELSRj. In the first period of such a
two-period pair, the returned products become available and in the second customer
demand takes place. Inventory of both serviceables and returns can be carried between
two such periods without costs. Furthermore, remanufacturing will only take place in
the first and manufacturing only in the second period. In accordance with this, we
have chosen K̃2t−1 = Kr

t and K̃2t = Km
t . Since all other parameters in the instance of

ELSRj correspond directly to their counterparts in ELSRs, it is easy to see that ELSRs
is indeed a special case of ELSRj. Since this reduction can clearly be performed in
polynomial time, it follows that Theorem 3 holds. �
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4 Reformulations

In equations (2)-(8), we can see that the natural formulation contains two ‘big M’ type
constraints. It is generally known that these big M set-up constraints in lot-sizing often
lead to a bad LP-relaxation (Pochet and Wolsey, 2006). In order to obtain better lower
bounds, we propose several alternative formulations of the lot-sizing problem with re-
manufacturing, namely a shortest path reformulation (in Section 4.1), a partial shortest
path reformulation (in Section 4.2) and a formulation that uses an adaptation of the
(l, S, WW) inequalities (in Section 4.3).

4.1 The shortest path reformulation

The formulation presented in this section is based on a shortest path reformulation,
as proposed by Eppen and Martin (1987) for the capacitated lot-sizing problem. They
solved a shortest path problem in a network with flow variables zi,j (where i ≤ j)
through which a unit flow is sent. For three periods, this network corresponds to
(only) the zsm

i,j variables in Figure 3. An example of a feasible solution in this network
is z1,2 = 1

3 , z1,3 = 2
3 , z3,3 = 1

3 , and zi,j = 0 otherwise. This means that in period
1, we produce 1

3 of the demand in periods 1 and 2, and 2
3 of the demand in periods

1, 2 and 3. In other words: all demand in periods 1 and 2, and 2
3 of the demand in

period 3 are satisfied by items produced in the first period. Finally, the remaining 1
3

of the demand in period 3 is produced in period 3 itself. Notice that we start with a
flow of one at the first node and that in each node the inflow equals the outflow. In our
example, we have a set-up in periods 1 and 3, and this corresponds exactly to the nodes
with a nonzero outflow. Moreover, observe that in each period i, we can compute the
production quantities as xi = ∑T

t=i Di,t zi,t. Using this relation between the x and z
variables, the production and holding costs on each arc zi,j can be computed exactly.
For the classic (single-item uncapacitated) lot-sizing problem, the LP relaxation of the
shortest path formulation always gives an integer solution, i.e., the optimal solution
of the classic lot-sizing problem. The problem with remanufacturing can be viewed as
having two products: serviceables and returns. A shortest path type reformulation can
be applied to both.

4.1.1 Separate set-ups

When formulating the layer of serviceables as a shortest path problem, one should note
that there are two sources from which demand can be fulfilled, newly produced and
remanufactured products. Because both production processes have separate set-up
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(24) (24) (24)

zsm
1,1 zsm

2,2 zsm
3,3

zsm
1,2 zsm

2,3

zsm
1,3

zsr
1,1 zsr

2,2 zsr
3,3

zsr
1,2 zsr

2,3

zsr
1,3

zr
1,1 zr

2,2 zr
3,3

zr
1,2 zr

2,3 f3

zr
1,3 f2

f1
Figure 3: The shortest path reformulation

costs (and hence separate binary variables, ym
t and yr

t), we also need two types of flow
variables (as opposed to one in Eppen and Martin’s original shortest path reformula-
tion). Call these flow variables zsm

i,j and zsr
i,j. Here, zsm

i,j (zsr
i,j) is defined as the fraction of

demand in each of the periods i until j that is fulfilled by newly produced (remanufac-
tured) items in period i.

When formulating the layer of returns as a shortest path problem, one should note
that this is exactly the classic lot-sizing problem, but with the time reversed. In the
classical case, production in some period t is used to satisfy given demand in future
periods t, t + 1, . . .. Here however, there is a given amount of returns in each period
that is remanufactured in some future period t. The variable zr

i,j is defined as the frac-
tion of returns in each of the periods i until j that is remanufactured in period j. This
formulation also provides the opportunity to have a final inventory of returns, i.e., not
all returns need to be remanufactured within the problem horizon. For this purpose,
define ft (t ∈ {1, . . . , T}) as the fraction of returns in each of the periods t until T that is
added to the final inventory of returns at the end of period T. Following this definition,
we can say that Ir

T = ∑T
t=1 Rt,T ft. A shortest path reformulation with three periods is

depicted in the graph in Figure 3.
Before giving the objective function and constraints, we define the following cost
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parameters.

Csm
i,j = pm

i Di,j +
j−1

∑
t=i

hs
t Dt+1,j 1 ≤ i ≤ j ≤ T (12)

Csr
i,j = pr

i Di,j +
j−1

∑
t=i

hs
t Dt+1,j 1 ≤ i ≤ j ≤ T (13)

Cr
i,j =

j−1

∑
t=i

hr
t Ri,t 1 ≤ i ≤ j ≤ T (14)

C f
t =

T

∑
j=t

hr
j Rt,j t = 1, . . . , T (15)

We are now ready to present our shortest path formulation (SP) of ELSRs.

min

(
T

∑
t=1

(
Km

t ym
t + Kr

t yr
t + C f

t ft

)
+

T

∑
i=1

T

∑
j=i

(
Csm

i,j zsm
i,j + Csr

i,jz
sr
i,j + Cr

i,jz
r
i,j

))
(16)

s.t. (7) and

1 =
T

∑
j=1

(
zsm

1,j + zsr
1,j

)
(17)

t−1

∑
i=1

(
zsm

i,t−1 + zsr
i,t−1

)
=

T

∑
j=t

(
zsm

t,j + zsr
t,j

)
t = 2, . . . , T (18)

T

∑
j=t

zsm
t,j ≤ ym

t t = 1, . . . , T (19)

T

∑
j=t

zsr
t,j ≤ yr

t t = 1, . . . , T (20)

1 =
T

∑
j=1

zr
1,j + f1 (21)

t−1

∑
i=1

zr
i,t−1 =

T

∑
j=t

zr
t,j + ft t = 2, . . . , T (22)

t

∑
i=1

zr
i,t ≤ yr

t t = 1, . . . , T (23)

t

∑
i=1

Ri,t zr
i,t =

T

∑
j=t

Dt,j zsr
t,j t = 1, . . . , T (24)

zsm
i,j , zsr

i,j, zr
i,j ≥ 0 1 ≤ i ≤ j ≤ T (25)

Because we do not use the x-variables anymore, we have redefined the objective func-
tion as in (16). The shortest path constraints for the serviceables are given in equations
(17)-(20). (17) and (18) are flow conservation constraints and (19) and (20) are set-up
forcing constraints for the manufacturing and remanufacturing process, respectively.
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The shortest path constraints for the returns are given in equations (21)-(23). (21) and
(22) are flow conservation constraints and (23) is a set-up forcing constraint for the
remanufacturing process. Constraint (24) links the zr to the zsr variables and hence
the networks for serviceables and returns, which is illustrated by the dashed line in
Figure 3. Finally, (25) are nonnegativity constraints.

Note that the shortest path formulation (SP) assumes nonzero demand in the first
period. This can easily be overcome by excluding zsm

t,j and zsr
t,j from the summations on

the left hand sides of (19) and (20) if Dt,j = 0, as in Pochet and Wolsey (2006, p. 223).

4.1.2 Joint set-ups

Because both production processes have joint set-up costs (and hence joint binary vari-
ables, yt), we need only one type of flow variables when formulating the layer of ser-
viceables as a shortest path problem (as opposed to two in the separate set-up case).
Call these flow variables zs

i,j. Here, zs
i,j is defined as the fraction of demand in each of

the periods i until j that is fulfilled by remanufacturing or production of new items in
period i. The shortest path constraints and corresponding objective function for the
ELSRj problem are given in equations (26)-(34) below. Their interpretations are similar
to the separate set-ups case.

min

(
T

∑
t=1

(
Ktyt + C f

t ft

)
+

T

∑
i=1

T

∑
j=i

(
Csm

i,j zs
i,j + C̃r

i,jz
r
i,j

))
(26)

s.t. (11) and

1 =
T

∑
j=1

zs
1,j (27)

t−1

∑
i=1

zs
i,t−1 =

T

∑
j=t

zs
t,j t = 2, . . . , T (28)

T

∑
j=t

zs
t,j ≤ yt t = 1, . . . , T (29)

1 =
T

∑
j=1

zr
1,j + f1 (30)

t−1

∑
i=1

zr
i,t−1 =

T

∑
j=t

zr
t,j + ft t = 2, . . . , T (31)

t

∑
i=1

zr
i,t ≤ yt t = 1, . . . , T (32)

t

∑
i=1

Ri,t zr
i,t ≤

T

∑
j=t

Dt,j zs
t,j t = 1, . . . , T (33)
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zs
i,j, zr

i,j ≥ 0 1 ≤ i ≤ j ≤ T (34)

Constraint (33) links zr to zs. Note that the slack in this constraint is exactly the amount
of products that is manufactured in period t. In the objective function (26), Csm

i,j and C f
t

are computed in the same way as in the separate set-ups case (see (12) and (15)) and
C̃r

i,j is computed as

C̃r
i,j = (pr

i − pm
i ) Ri,j +

j−1

∑
t=i

hr
t Ri,t 1 ≤ i ≤ j ≤ T . (35)

4.2 The partial shortest path reformulation

The shortest path reformulations have O(T2) variables and O(T) constraints, as op-
posed to the O(T) variables and O(T) constraints of the original formulation. Al-
though O(T2) variables is usually not considered an excessive amount for most ap-
plications, using the shortest path formulation in a branch-and-bound setting to solve
large scale problem instances may lead to a large memory consumption. Moreover,
one often has some prior knowledge about which of the flow variables will not be use-
ful. For example, consider a problem instance in which the number of periods is large,
say 75, but the set-up costs are relatively small compared to the holding costs. Now, it
is unlikely that a variable as zr

1,75 will have a value different from zero (since it would
be cheaper to set up a new remanufacturing process in some period before period 75 to
process the first period’s returns than to keep them in stock for 74 periods). Of course,
one possibility is to leave variables like zr

1,75 out of the formulation altogether, but then
the formulation is not correct anymore. We can overcome this shortcoming by using
the ideas of Van Vyve and Wolsey (2006) (see also Pochet and Wolsey (2006)), which
are related to a formulation proposed earlier by Stadtler (1997). Van Vyve and Wolsey
(2006) describe a partial shortest path reformulation of the classic lot-sizing problem
that is still correct. The basic idea is that we choose a parameter k, such that arcs cov-
ering less than k periods are reformulated with flow variables (i.e., zi,j only exists for
i ≤ j < i + k) and new variables are introduced to capture all arcs covering more than
k periods (i.e., all zi,j with j ≥ i + k are aggregated in a new variable).

We apply this principle to lot-sizing with remanufacturing and separate set-ups
only, although an extension to the problem with joint set-ups would be straightfor-
ward. Let ks and kr be the number of periods that are reformulated with flow variables
in the layer of serviceables and returns, respectively. For T = 4 and ks = kr = 2, the
partial shortest path reformulation can be represented by the graph in Figure 4.

For servicables, zsm
i,j and zsr

i,j have the same interpretation as in the (full) shortest path
formulation, but their domains are restricted to j < i + ks. We define the following new
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Figure 4: The partial shortest path reformulation

variables:

usm
t (usr

t ) is the sum over all periods j ≥ t + ks, of the fractions of the cumulative
demands in periods t until j, that are satisfied by items that are newly produced
(remanufactured) in period t (for t ≤ T − ks);

vs
t is the sum over all periods i ≤ t− ks, of the fractions of the cumulative demands

in periods i until t, that are satisfied by items that are newly produced or reman-
ufactured in period i (for t ≥ ks + 1);

ws
t is the sum over all periods i ≤ t − 1 and j ≥ t + ks, of the fractions of the cu-

mulative demands in periods i until j, that are satisfied by items that are newly
produced or remanufactured in period i (for t = 2, . . . , T − ks).

For the sake of simplicity, we define usm
t , usr

t , vs
t , ws

t = 0 for all other values of t. The
constraints for serviceables are given in equations (36)-(44). (36)-(39) define a short-
est path problem. A unit flow through the network is ensured by (36) and (38). (39)
and (37) are flow conservation constraints for the upper and second layer of nodes in
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Figure 4, respectively. (40)-(42) provide lower bounds on the production and reman-
ufacturing quantities, and inventory of serviceables, respectively. Since arcs covering
more than ks periods are aggregated, no exact amounts can be computed here. (43) and
(44) are set-up forcing constraints for the manufacturing and remanufacturing process,
respectively.

1 =
ks

∑
j=1

(
zsm

1,j + zsr
1,j

)
+ usm

1 + usr
1 (36)

t

∑
i=max{1,t+1−ks}

(
zsm

i,t + zsr
i,t
)
+ vs

t =
min{t+ks,T}

∑
j=t+1

(
zsm

t+1,j + zsr
t+1,j

)
+ usm

t+1 + usr
t+1

t = 1, . . . , T−1 (37)
T

∑
i=T+1−ks

(
zsm

i,T + zsr
i,T
)
+ vs

T = 1 (38)

usm
t + usr

t + ws
t = ws

t+1 + vs
t+ks t = 1, . . . , T − ks (39)

xm
t ≥

min{t+ks−1,T}

∑
j=t

Dt,j zsm
t,j + Dt,t+ks usm

t

t = 1, . . . , T (40)

xr
t ≥

min{t+ks−1,T}

∑
j=t

Dt,j zsr
t,j + Dt,t+ks usr

t

t = 1, . . . , T (41)

Is
t−1 ≥

t−1

∑
i=1

T

∑
j=t

Dt,j

(
zsm

i,j + zsr
i,j

)
+

min{t+ks−1,T}

∑
j=t

Dt,j vs
j

+Dt,t+ks ws
t t = 2, . . . , T (42)

ym
t ≥

min{t+ks−1,T}

∑
j=t

zsm
t,j + usm

t t = 1, . . . , T (43)

yr
t ≥

min{t+ks−1,T}

∑
j=t

zsr
t,j + usr

t t = 1, . . . , T (44)

For returns, the variable zr
i,j has the same interpretation as in SP, but its domain is

restricted to i + kr > j. The other variables are:

ur
t is the sum over all periods i ≤ t − kr, of the fractions of cumulative returns in

periods i until t, that are remanufactured in period t (for t ≥ kr + 1);

vr
t is the sum over all periods j ≥ t + kr, of the fractions of cumulative returns in

periods t until j that are remanufactured in period j (for all t);

wr
t is the sum over all periods i ≤ t− kr and j ≥ t + 1, of the fractions of cumulative

returns in periods i until j, that are remanufactured in period j (for t ≥ kr + 1).
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Again for simplicity’s sake, we define ur
t , vr

t , wr
t = 0 for all other values of t. The con-

straints for returns are given in equations (45)-(51). (45)-(48) are flow conservation
constraints; (49) and (50) link the partial network variables to the original remanufac-
turing quantity and inventory variables; (51) is a set-up forcing constraint for the re-
manufacturing process. Note that the networks for serviceables and returns are linked
by constraints (41) and (49), which is illustrated by the dashed line in Figure 4.

1 =
kr

∑
j=1

zr
1,j + vr

1 (45)

t−1

∑
i=max{1,t−kr}

zr
i,t−1 + ur

t−1 =
min{t+kr−1,T}

∑
j=t

zr
t,j + vr

t t = 2, . . . , T (46)

T

∑
i=T+1−kr

zr
i,T + ur

T = 1 (47)

vr
t−kr + wr

t−1 = wr
t + ur

t t = 1 + kr, . . . , T (48)

xr
t ≥

t

∑
i=max{1,t−kr+1}

Ri,t zr
i,t + Rt−kr,t ur

t t = 1, . . . , T (49)

Ir
t ≥

T

∑
j=t+1

t

∑
i=1

Ri,t zr
i,j +

t

∑
i=max{1,t−kr+1}

Ri,t vr
i + Rt−kr,t wr

t

t = 1, . . . , T (50)

yr
t ≥

t

∑
i=max{1,t−kr+1}

zr
i,t + ur

t t = 1, . . . , T (51)

These constraints are added to the Original formulation (1)-(8) to obtain formulation
PSP. Altogether, this gives a mathematical formulation with O(ksT + krT) variables.
Of course, we still need to decide upon appropriate values of control parameters ks

and kr, such that we sufficiently reduce the number of variables without deteriorating
the LP-relaxation (too much). From quantities like the EOQ, we can obtain an approx-
imation of the time between orders (TBO). Van der Laan and Teunter (2006) found a
number of approximations of the order quantities for lot-sizing with remanufacturing,
from which we have derived times between orders for our model. Note that although
Van der Laan and Teunter (2006) studied a stochastic setting, their formulae were de-
rived from the analysis of a deterministic model, like ours.

The results in Van der Laan and Teunter (2006) lead to the following times between
orders:

TBOs =

√
2K̄s

h̄s(d̄− r̄)
and TBOr =

√
2K̄r

h̄r r̄
, (52)

where d̄, r̄, h̄s, h̄r, K̄s and K̄r denote the averages of dt, rt, hs
t , hr

t , Ks
t and Kr

t , respectively.
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In the computational tests in Section 5, we will use ks = d2 · TBOse and kr = d2 · TBOre,
as well as ks = d3 · TBOse and kr = d3 · TBOre. We call these formulations PSP2 and
PSP3, respectively.

4.3 The (l, S, WW) valid inequalities

A different approach to improve the MIP formulation is to add valid inequalities to
the Original formulation. A well-known set of strong valid inequalities for the classic
(single-item uncapacitated) lot-sizing problem consists of the (l, S, WW) inequalities
(Pochet and Wolsey, 1994). We adapt them for both the returns and serviceables layer
of lot-sizing with remanufacturing.

In case of separate set-up costs, the following valid inequalities are added to the
Original formulation (1)-(8) to obtain our (l, S, WW) formulation:

Is
i−1 +

j

∑
t=i

Dt,j (ym
t + yr

t) ≥ Di,j 2 ≤ i ≤ j ≤ T (53)

Ir
j +

j

∑
t=i

Ri,t yr
t ≥ Ri,j 1 ≤ i ≤ j ≤ T . (54)

The intuition behind (53) is as follows: if at the beginning of period i the inventory
(of serviceables) is insufficient to satisfy all demand in periods i until j, then we need
to set up the manufacturing or remanufacturing process in some period within this
interval. Moreover, if we do not have a set-up until period t, then there should be
sufficient inventory in period i to satisfy demand in periods i until t−1. Inequality (54)
has a similar interpretation, if we view the layer of returns as a lot-sizing problem with
reversed time, as we did in Section 4.1.

In case of joint set-up costs, the following valid inequalities are added to the Origi-
nal formulation ((9)-(11), (2), (3), (6), (8)) to obtain our (l, S, WW) formulation:

Is
i−1 +

j

∑
t=i

Dt,j yt ≥ Di,j 2 ≤ i ≤ j ≤ T (55)

Ir
j +

j

∑
t=i

Ri,t yt ≥ Ri,j 1 ≤ i ≤ j ≤ T . (56)

Their interpretations are similar to the problem with separate set-ups.

5 Computational tests

5.1 Test set-up

In order to gain insight into the performance of the different formulations, we ran-
domly generated 360 problem instances, both for ELSRs and ELSRj. The values of the
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problem parameters were chosen in the following way.
The considered time horizons are 25, 50 and 75 periods. Demand was assumed to be

normally distributed with mean 100 and standard deviation 50. Returns are also drawn
from a normal distribution, with three different parameter settings, (µ = 10, σ = 5),
(µ = 50, σ = 25) and (µ = 90, σ = 45). Negative demands and returns were rounded
up to zero, thus creating a positive probability of having zero demand or returns. The
coefficient of variation is kept constant (at 1

2 ); previous research on lot-sizing problems
(e.g. Trigeiro et al. (1989)) has indicated that varying this coefficient has little influence
on the difficulty of a problem. Each of the 9 possible parameter settings is replicated
10 times, thus obtaining 90 demand-returns data sets.

All cost parameters are assumed time-invariant. Preliminary experiments showed
that instances with non-stationary cost parameters were not harder to solve than their
counterparts with time-invariant costs. The values of the set-up costs that are tested
are 125, 250, 500 and 1000. In the ELSRs the set-up costs of the manufacturing and
remanufacturing process are equal. The holding costs are 1 for all instances, for both
serviceables and returns. Again, preliminary experiments showed that cases where
serviceables and returns had different holding costs were not harder to solve. Produc-
tion and remanufacturing costs were assumed to be zero.

We solved all problems with CPLEX 10.1 (single processor version) in the Aimms
3.9 modelling environment on a Windows XP based computer with a 3.0 GHz Intel
Core 2 Duo processor (E8400) and 3.2 GB RAM. The time limit for each instance and
formulation was one hour.

5.2 Results for the separate set-ups case

The results for the problem with separate set-ups can be found in Tables 1, 2 and 3.
These tables give the number of instances (out of ten replications) that could be solved
to optimality within the one hour time limit. They also give the average optimality gap
of the MIPs, where the gap of a problem solved to optimality was counted as zero. If
all instances were solved to optimality by all methods, then these rows were omitted.
Furthermore, the average solution times of the MIPs are given; if an instance could
not be solved to optimality within the time limit, the solution time was counted as
one hour. The number of times the LP relaxation of a formulation found the integer
optimal solution is also stated, unless none of the LP relaxations found any integer
optimal solutions. Finally, the average LP gaps are mentioned, as a measure of the
quality of the LP relaxation. We computed the LP gap as the percentage deviation of
the solution of the LP relaxation with respect to the best integer solution found by
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any of the formulations. The best performance among all formulations is indicated in
boldface.

In general, we can see that the shortest path (SP) and partial shortest path (PSP2
and PSP3) reformulations have the best LP relaxations, in the sense that they have
smaller LP gaps than the Original and (l, S, WW) formulations, in each ten-replication
average. Furthermore, the LP relaxations of SP, PSP2 and PSP3 give the same solution
for all instances but three, for which there was a negligible difference.

Table 1: Separate set-ups, 25 periods
average returns
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)

125 avg. sol. time MIP (s) 0.1 0.1 0.1 0.1 0.2 0.3 0.4 0.5 0.7 0.4 0.2 1.1 1.3 1.5 0.5
avg. LP gap (%) 85 0.99 0.99 0.99 20 82 5.9 5.9 5.9 19 47 9.6 9.6 9.6 13

250 avg. sol. time MIP (s) 0.4 0.1 0.1 0.2 0.5 1.1 0.5 0.9 0.9 1.1 0.6 1.2 2.2 2.5 1.1
avg. LP gap (%) 82 0.88 0.88 0.88 17 81 5.5 5.5 5.5 16 56 9.0 9.0 9.0 12

500 avg. sol. time MIP (s) 0.5 0.1 0.1 0.2 0.6 1.5 0.5 0.9 0.9 1.2 0.5 0.8 1.6 1.6 1.0
avg. LP gap (%) 77 0.85 0.85 0.85 14 79 4.2 4.2 4.2 14 63 7.7 7.7 7.7 11

1000 avg. sol. time MIP (s) 0.1 0.0 0.1 0.1 0.4 1.2 0.3 0.7 0.7 1.0 0.5 0.7 1.4 1.3 0.7
integer solutions LP 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0
avg. LP gap (%) 72 0.15 0.15 0.15 10 75 3.6 3.6 3.6 11 65 6.1 6.1 6.1 9.1

Table 2: Separate set-ups, 50 periods
average returns
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125 avg. sol. time MIP (s) 12 0.4 0.7 0.8 6 606 426 252 311 296 152 325 194 218 106
avg. LP gap (%) 91 1.7 1.7 1.7 21 89 7.0 7.0 7.0 20 45 7.3 7.3 7.3 11

250 solved to optimality 3 10 10 10 10 3 10 10 9 7 8 10 10 10 9
avg. MIP gap (%) 1.7 0 0 0 0 1.7 0 0 0.03 0.5 0.4 0 0 0 0.1
avg. sol. time MIP (s) 3272 0.5 1.1 1.1 369 2859 843 989 1090 2000 1122 811 805 920 1006
avg. LP gap (%) 89 1.0 1.0 1.0 18 88 6.3 6.3 6.3 17 56 7.8 7.8 7.8 11

500 solved to optimality 0 10 10 10 10 3 10 10 10 10 6 9 9 9 9
avg. MIP gap (%) 5.1 0 0 0 0 1.4 0 0 0 0 0.99 0.21 0.18 0.24 0.20
avg. sol. time MIP (s) 3600 0.5 1.3 1.3 335 3144 53 91 100 729 1576 390 450 517 607
avg. LP gap (%) 86 1.1 1.1 1.1 18 86 4.7 4.7 4.7 14 64 7.7 7.7 7.7 11

1000 solved to optimality 0 10 10 10 10 1 10 10 10 10 9 10 9 9 9
avg. MIP gap (%) 3.6 0 0 0 0 3.4 0 0 0 0 0.48 0 0.25 0.13 0.19
avg. sol. time MIP (s) 3600 0.4 1.0 1.1 401 3582 25 45 58 283 724 424 592 610 517
avg. LP gap (%) 83 0.67 0.67 0.67 14 83 3.8 3.8 3.8 12 69 6.2 6.2 6.2 9.3

When we look at performance in terms of optimality gap and computation time, we
see that the shortest path reformulation gives the best results in most cases. Notice that
PSP2 (with ks = d2 · TBOse and kr = d2 · TBOre) gives better results than PSP3 (with
ks = d3 · TBOse and kr = d3 · TBOre) in almost all cases, which could be explained
from the fact that both formulations have the same LP relaxation (in all but three tested
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Table 3: Separate set-ups, 75 periods
average returns
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125 solved to optimality 9 10 10 10 10 0 0 1 0 0 3 2 2 3 3
avg. MIP gap (%) 0.17 0 0 0 0 2.9 2.5 1.5 1.7 1.7 1.7 2.4 1.9 2.0 1.3
avg. sol. time MIP (s) 985 1.4 1.4 1.6 176 3600 3600 3504 3600 3600 2855 3268 3255 3277 2993
avg. LP gap (%) 94 1.3 1.3 1.3 21 88 7.5 7.5 7.5 20 46 7.7 7.7 7.7 11

250 solved to optimality 0 10 10 10 0 0 0 0 1 0 2 2 1 1 2
avg. MIP gap (%) 8.0 0 0 0 1.4 5.5 2.1 1.9 2.0 3.1 3.1 2.4 2.5 2.4 2.2
avg. sol. time MIP (s) 3600 3.2 4.6 5.0 3600 3600 3600 3600 3596 3600 3231 3151 3263 3280 3247
avg. LP gap (%) 92 1.2 1.2 1.2 18 89 6.3 6.3 6.3 17 56 7.9 7.9 7.9 11

500 solved to optimality 0 10 10 10 0 0 3 2 2 0 0 1 1 1 1
avg. MIP gap (%) 12.2 0 0 0 3.0 7.1 1.1 1.2 1.3 3.3 4.7 2.8 2.7 3.0 2.9
avg. sol. time MIP (s) 3600 2.6 4.6 5.3 3600 3600 2982 3034 2671 3600 3600 3555 3528 3472 3364
avg. LP gap (%) 90 0.97 0.97 0.97 16 89 5.0 5.0 5.0 15 65 8.1 8.1 8.1 11

1000 solved to optimality 0 10 10 10 0 0 6 5 5 0 0 3 2 2 2
avg. MIP gap (%) 14.9 0 0 0 3.7 10.5 0.4 0.4 0.5 2.9 5.0 2.0 2.2 2.4 2.4
avg. sol. time MIP (s) 3600 1.4 3.7 4.3 3600 3600 2239 2518 2765 3600 3600 2985 3309 3249 3340
avg. LP gap (%) 88 0.74 0.74 0.74 15 87 4.3 4.3 4.3 13 71 6.5 6.5 6.5 9.3

instances), but PSP2 has fewer variables. We also did some experiments with other
choices for kr and ks, but this did not lead to improvements in the performance.

PSP2 outperforms SP if the number of periods is large (50 or 75) and the set-up costs
are relatively low. It is not surprising that the partial shortest path reformulation has
an advantage over the full reformulation (SP) under these circumstances, because rela-
tively low set-up costs imply a small time between orders. In combination with a large
horizon, this means that PSP2 has much fewer variables than SP. Of course, one may
wonder why PSP2 does not always perform better than SP, since their LP relaxations
give the same solution. In some problem instances, the time between orders may be
large compared to the horizon, in which case there is little gain in using an approxi-
mate reformulation, because it will contain nearly all of the flow (z) variables and have
several additional variables (the u, v, w variables). Otherwise, the difference in per-
formance between PSP2 and SP may be attributable to the CPLEX solver, which may
choose a different cutting (and/or branching) strategy, for instance because it might
not recognize PSP2 as a shortest path formulation.

The performance of the shortest path type reformulations (SP, PSP2 and PSP3) is
best when the return rate is low. This is not surprising, because if there are no returns
at all, then we know that the LP relaxation of SP always gives the optimal (integer)
solution.

The (l, S, WW) formulation provides the smallest MIP gaps and computation times
if the return rate is high, the set-up costs are low and the horizon is not short (50 or
75 periods). The Original formulation only gives the fastest results for some of the
simplest instances, with only 25 periods and low set-up costs. It should be noted that
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the performance of both the Original and (l, S, WW) formulation can go down quite
dramatically when the set-up costs are higher. When there are 50 periods for example,
Original solves all 30 instances in 41

2 minutes on average if the set-up costs are 125, but
if the set-up costs are 1000, Original can solve only 10 out of 30 instances within the
one hour time limit.

5.3 Results for the joint set-ups case

Tables 4 and 5 present the results for the problem with joint set-ups. All formulations
of all instances with a horizon of 25 periods were solved by CPLEX within a quarter of
a second. Those results are therefore omitted.

When we compare the results for ELSRj with those for ELSRs, we see that ELSRj is
easier to solve than ELSRs. This was to be expected, because the problem with sepa-
rate set-ups has twice as many integer variables as the problem with separate set-ups.
In fact, formulation SP was able to solve all instances of ELSRj within a reasonable
amount of time, which was the reason why we did not test a partial shortest path re-
formulation for ELSRj.

Table 4: Joint set-ups, 50 periods
average returns
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125 avg. sol. time MIP (s) 0.0 0.0 0.2 0.0 0.1 0.3 1.4 4.9 3.9
integer solutions LP 0 9 1 0 0 0 0 0 0
avg. LP gap (%) 89 0.009 0.91 85 1.0 1.4 42 3.3 3.5

250 avg. sol. time MIP (s) 0.8 0.0 0.2 0.1 0.1 0.4 2.1 4.8 3.9
integer solutions LP 0 10 4 0 1 0 0 0 0
avg. LP gap (%) 87 0 0.70 85 0.48 0.97 53 3.5 4.0

500 avg. sol. time MIP (s) 35 0.0 0.2 1.9 0.0 0.3 3.4 3.2 3.7
integer solutions LP 0 10 6 0 6 3 0 0 0
avg. LP gap (%) 84 0 0.68 83 0.11 0.47 61 3.1 3.7

1000 avg. sol. time MIP (s) 168 0.0 0.2 16.8 0.0 0.2 6.2 0.9 2.4
integer solutions LP 0 10 6 0 7 5 0 0 0
avg. LP gap (%) 80 0 0.45 81 0.009 0.16 66 2.0 2.4

The results for joint set-ups show roughly the same pattern as for the separate set-
ups case. The shortest path formulation has the best LP relaxation in terms of LP gaps ,
compared to the Original and (l, S, WW) formulations. Moreover, the optimal solution
of the LP relaxation of SP is often integer. When the average returns are low (10), it even
finds an integral optimum in 79 out of 80 test instances. The LP relaxation of (l, S, WW)
also finds integer solutions, although not as often as SP. The LP relaxation of SP does
worsen when the average returns are higher, but the average LP gap is always smaller
than for the LP relaxations of Original and (l, S, WW).
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Table 5: Joint set-ups, 75 periods
average returns
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)
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SP (l
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)

125 avg. sol. time MIP (s) 0.1 0.0 0.8 0.1 0.2 1.3 36 69 38
integer solutions LP 0 10 2 0 0 0 0 0 0
avg. LP gap (%) 74 0 0.48 85 1.0 1.5 42 3.4 3.5

250 avg. sol. time MIP (s) 40 0.1 0.8 0.4 0.2 1.3 48 57 54
integer solutions LP 0 10 6 0 0 0 0 0 0
avg. LP gap (%) 91 0 0.32 87 0.42 0.83 53 3.3 3.6

500 solved to optimality 0 10 10 10 10 10 9 10 10
avg. MIP gap (%) 2.1 0 0 0 0 0 0.05 0 0
avg. sol. time MIP (s) 3600 0.1 0.8 58 0.2 1.4 678 248 136
integer solutions LP 0 10 5 0 0 0 0 0 0
avg. LP gap (%) 88 0 0.20 86 0.22 0.46 63 3.7 4.0

1000 solved to optimality 0 10 10 5 10 10 8 10 10
avg. MIP gap (%) 9.4 0 0 0.6 0 0 0.2 0 0
avg. sol. time MIP (s) 3600 0.1 0.8 2934 0.1 1.1 1686 61 38
integer solutions LP 0 10 8 0 5 3 0 0 0
avg. LP gap (%) 85 0 0.04 85 0.08 0.16 69 2.3 2.5

Looking at the computation times of the MIPs, we see again that the shortest path
reformulation gives the fastest results in most cases. If the average returns are higher,
however, (l, S, WW) often has shorter computation times when the horizon is long (75
periods) and Original has shorter computation times for 50 periods and low set-up
costs. The original formulation also gives slightly faster results in a few other cases
with low set-up costs. However, if the set-up costs grow, then the performance of
Original goes down, similar to what we have seen in the separate set-up case. This is
especially clear when the number of returns is low. For example: when there are 75
periods, Original solves all instances within 0.1 second if the set-up costs are 125, but if
set-up costs are 1000, none of the problems can be solved to optimality within one hour
and the average MIP gap is 9.4%, while SP can solve all instances within 0.1 second.

6 Conclusion and further research

In this paper, we have considered two variants of the economic lot-sizing problem with
remanufacturing. As we have shown, both the problem with joint and with separate
set-up costs for the production and remanufacturing process are NP-hard. We have
proposed several MIP formulations of these problems and tested their efficiency on a
wide variety of test instances and found that, for both problem variants, SP (our short-
est path formulation) performs better than the Original and (l, S, WW) formulations,
especially in terms of the quality of the LP relaxation. The computation times and MIP

gaps are also smaller in the vast majority of test instances. When the return rate is high
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though, faster results may be obtained by (l, S, WW) (for a large horizon) or Original
(for a shorter horizon). A partial shortest path formulation (PSP2) exhibits many fea-
tures of SP, such as the quality of the LP relaxation, while having fewer variables and
needing less computer memory.

It would be worthwhile to see what the consequences are if the test problems were
solved with another solver than CPLEX (that exploits the problem structure in a dif-
ferent way than CPLEX does) and see to what extent the differences in performance
between SP and PSP2 persist. Other avenues for further research include extending
the shortest path reformulations with production capacities, which should be quite
straightforward, since Eppen and Martin (1987) introduced their shortest path refor-
mulation of the lot-sizing problem without remanufacturing in the context of produc-
tion capacities. Another extension involves changing the assumption that remanufac-
tured products are as good as new to a situation with a separate demand for new and
remanufactured products, where new products can serve as substitutes for remanu-
factured ones. A similar setting was studied by Piñeyro and Viera (forthcoming), who
solved the problem with tabu search. Formulations similar to the ones presented in our
paper could be used to solve this extended problem to optimality. Another track worth
exploring is using the solution of the LP relaxation of SP in a heuristic, e.g. a round-
ing or relax-and-fix heuristic. Since this formulation gives good results for ELSRs and
especially ELSRj, we would expect such a heuristic to give good feasible solutions in a
short amount of time.
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