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A scientific way of looking beyond the worst-case return is to employ statistical 
extreme value methods. Extreme Value Theory (EVT) shows that the probability on 
very large losses is eventually governed by a simple function, regardless the specific 
distribution that underlies the return process. This limit result can be exploited to 
construct semi-parametric portfolio Value at Risk (VaR) estimates around and beyond 
the largest observed loss. Such extreme VaR estimates can be useful inputs for 
scenario analysis and stress testing. The aim of this chapter is to introduce the reader 
to extreme value theory and the statistics of extremes. 

1.  Introduction 

In EVT one studies the distribution of the maximum and minimum values of random 
variables as the sample size increases. EVT is widely used in engineering problems 
like the determination of dike height as a function of the highest flood levels and their 
frequency. Paralleling the growth of risk management, there is a recent interest for 
EVT in finance. EVT has proven to be a useful theoretical and statistical tool to 
calculate risk measures like VaR (i.e. from the optimist’s point of view the portfolio 
value that will be exceeded with a high probability).  

This chapter presents in a simple way the basic concepts of EVT and the statistical 
techniques used to analyse extreme market movements. We start with a visual 
analysis of market index returns, to emphasize the frequent occurrence of large 
market swings. This shows that the return distribution has heavier tails than the 
normal distribution. If the distribution has heavy tails, EVT shows that the probability 
on the most extreme loss returns is governed by a particular function. This function 
has the nice property that it is to a first order self-additive. This property can be 
exploited to reduce the computational burden of the risk manager. We introduce the 
statistical techniques, which are used to estimate this function, and provide a small 
case study.  

2. Extremes in Financial Returns 

Even though it is often expedient and fruitful to assume that asset returns are normally 
distributed, it is also well known that empirical return distributions contain an 
excessive amount of extremes relative to the normal model; see Campbell, Lo and 
MacKinlay (1997). To show this data feature we plotted in Figure 1 the log-returns 
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from the daily closing prices of the AEX stock market index over the period March 
17, 1983 - May 15, 2002. One can easily recognize the various crashes and market 
rallies at the end of 1987, the Asian crisis in 1997, the Russian crisis in 1998 and the 
recent market turmoil.  
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Figure 1 AEX daily logarithmic returns 13-03-1983/15-05-2002 

In Figure 2 we have generated an equal amount of pseudo random numbers by 
drawing from a normal distribution with the same mean and standard deviation as in 
the AEX return data (y-axes have the same scale). Relative to the normal data, the 
true returns do exhibit many larger and smaller spikes, which sometimes appear in 
clusters. For risk management with its focus on outliers this deviation from normality 
is crucial and cannot be ignored. This data feature is the so-called heavy tail feature, 
referring to the power shape of the tails of the density (the normal has a light tail as 
the tails of the density fall towards zero at an exponential rate). For example a 
Student-t distribution would fit the picture much better. 
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Figure 2 Normally generated returns 
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3. Extreme Value Theory 

The EVT gives an approximation to the distribution of the maximum and minimum 
values of random variables as the sample size increases. The advantage is that the 
limit laws provided by EVT do not require a detailed knowledge of the distribution, 
which generates the returns (this is in analogy with the advantage of the central limit 
law for averages). Moreover, EVT implies that the probability on very large losses is 
governed by a simple function, again regardless the specific distribution that underlies 
the return process.i This limit result is exploited in risk management to construct 
semi-parametric portfolio Value at Risk (VaR) estimates around and beyond the 
largest loss. 

Let X1, X2, …, Xn be a sample of random variables of size n. We can think of X1, X2, 
…, Xn as the returns on the AEX index. The maximum Mn and the minimum mn of the 
returns are defined as  

Mn =  max { X1, X2, …, Xn }   and mn =  min { X1, X2, …, Xn }. 

The worst case VaR might thus be calculated as -mn times the portfolio value. 
Examples of maximum and minimum values of the AEX are reported in Table 1. 

Table 1: AEX max-min returns 

Period Maximum Minimum 

15-12-2001 / 15-05-2002 2.7% −2.2% 

15-11-2001 / 15-05-2002 2.7% −2.2% 

15-10-2001 / 15-05-2002 4.1% −4.8% 

15-09-2001 / 15-05-2002 5.6% −7.5% 
 
When one increases the sample size by moving down in the table, the maximum 
increases or is unchanged and the minimum decreases or is unchanged. In the 
following we study the (limit) distribution of the maximum and the minimum as the 
sample size grows (unboundedly). 

From now on we concentrate on positive random variables only, since by changing 
the sign on Xi one can reduce the study of minima to the study of maxima. Assume 
that the random variables are independent and identically distributed with 
(cumulative) distribution function F(x). The probability that the maximum is less or 
equal to a pre-specified value is given by 

n
nnn xFxXxXxXxXxM )]([}{Pr}{Pr},,{Pr}{Pr 11 =≤≤=≤≤=≤ LK . (1) 

Unfortunately, [F(x)]n is mostly impractical to calculate even for moderate values of  
n.ii Worse, in most cases we do not even know F(x). Fortunately, the approximation to 
[F(x)]n  offered by EVT is very helpful.  

Albeit F(x) is not known, the efficiency of EVT is increased if we capitalize on the 
fact that the return series exhibits the spikes observed in Figure 1. To this end we 
need a precise definition of heavy tail distributions; see Feller (1971). 

Definition 1. We say that the distribution of the returns F(x) has a heavy upper tail 
for the positive returns Xi,  if (for large x) 
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and the function L(x) is such that for any x>0 
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The tail of the distribution factors into two parts, the L(x) function and the power part. 
The L(x) function is asymptotically unimportant since L(tx) ≈  L(x) for large t (one 
says L(•) varies slowly at infinity). The tail of the distribution is dominated by the 
power part α−x . If L(x) is constant then F(x) in (2) is the Pareto distribution, while in 
case of e.g. the Student-t distribution L(x) is not constant (for the Student-t α equals 
the degrees of freedom). The coefficient α is called the tail index and indicates the 
number of bounded moments. Note that the larger is the tail index α, the less extreme 
is the behaviour of the returns. Due to the power part, the tail of F(x) in the end 
always falls off more slowly than the tails of distributions such as the normal and 
lognormal, which have exponential like tails. Most financial data appear to be heavy 
tailed in this sense.  

We can now state the main result from EVT. If the distribution F(x) satisfies (2), then 
EVT shows that if the sample size n becomes large  

{ } ,x)]a(F[lim/Prlim nnn

α−−
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where an is a sequence of positive scaling numbers (needed to obtain a non-trivial 
limit law, cf. the central limit law).  

Result (4) tells us that when we use a large but finite sample of returns, the 
distribution of the maximum can be approximated by  

{ } αα −−=≈≤ xa
n

nexGxM )(Pr .    (5) 

This implies an approximate density 
ααααα

−−−−= xa
n

nexaxg 1)( , which for large values 

of x reads (since exp ( ) 1→− −αα xan  as ∞→x )  

1)()( −−=≈ ααα xaxhxg n  .    (6) 

Note that h(x) in (6) is the density of a Pareto distribution H(x)=1 αα −− xan  on 
),[ ∞na . Thus the heavy tail feature of F(x) is transferred to the limit distribution for 

the maximum.  

The converse is also true. That is to say, if  (4) holds for a distribution F(x), then (2) is 
implied. To give a heuristic explanation for this, consider (5) which holds that 

GF n ≈  or nGF /1≈ . Upon differentiation we get an expression for the density 

.)(1)()(1)( 1/11/1 −−− =≈ ααα xaxG
n

xgxG
n

xf n
nn     

One shows that the αα n
n axGn /11 )(−  part is in fact a slowly varying function, i.e. 

respects the limit in (3). Thus the density f(x) factors into a power part 1−−αx  and a 
slowly varying part, just like the density g(x) for the maximum. Hence, the tail of the 
return density f(x) necessarily has a Pareto like tail shape. 
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Thus whether we focus on the distribution of the maximum Mn in large samples, or on 
the distribution of very large x (extreme VaR levels), are two sides of the same coin. 
The two-way street relation between (2) and (4) is important when we discuss 
estimation. To summarize, the above shows that if we are only interested in the tail 
behaviour and the occurrence of extreme values, we do not need to model a specific 
distribution F(x) of the returns. Instead we can proceed by estimating the ‘Pareto 
factor’ α-ax  for large values of x.  

In case the distribution does not exhibit the heavy tail feature, the EVT implies that 
one of two other limit distributions may apply. Which case applies depends on 
whether the distribution has finite endpoints, or has exponential like tails. See Reiss 
and Thomas (2001) or Embrechts, Klueppelberg and Mikosch (1997) for further 
details.  

In risk management applications one usually calculates the VaR for several time 
horizons (e.g. for internal use and regulatory purposes). This would in principle 
require re-estimation of the Pareto factor at the different frequencies. However, due to 
an important additivity property of distributions which satisfy (2), such repeated 
estimation is unnecessary. Recall that the sum of two consecutive daily log-returns is 
equal to the two-day log-return. Fortunately, if two random variables are heavy tailed, 
then the distribution of their sum is also heavy tailed. Specifically, Feller (1971) 
showed that if  X1, X2   are independent and satisfy (2), we have that 

002}{Pr 21 >>−≈>+ α,xαxaxXX   (7) 

where X1 + X2 is the two-day logarithmic return. Hence, once the scale factor a and 
the tail index α  have been estimated, one can rescale linearly the probabilities for the 
desired time horizon. 

Conversely, if the probability level is kept constant, one can adjust the VaR level for 
the time horizon by inverting (7). This yields the alpha-root of time rule. 

Proposition (The α-root rule): The extreme returns estimates over T-days are equal 
to the one-day extreme returns estimates multiplied by the alpha root of the 
considered time horizon T. 

Compare this result α/1T  to the case of the normal distribution when the scaling has 
to be done by the square root 2/1T  of the time horizon T. For many financial data one 
finds that 2>α  so that the scaling factor is smaller than in case of normality, i.e. 
using the normal scaling factor induces overly conservative capital levels at longer 
horizons (while using the normal model to calculate VaR levels at short horizons may 
be imprudent).  

4. Statistics of Extremes 

For applications the norming constant and the tail index need to be estimated to obtain 
the Pareto factor. One possible estimation procedure is to create sub-sample maxima, 
and apply maximum likelihood to (5); see e.g. Longin (2000). Since there can be 
multiple extreme realizations in a single subsample, an efficient use of the data is to 
exploit the tight connection between (4) and (2), and use all realizations above a 
certain high threshold s, say, to estimate the tail part of the unknown density f(x); see 
e.g. Hols and De Vries (1991) or Danielsson and De Vries (2000) for this approach. 
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In this semi-parametric set-up the tail index α  is commonly estimated by means of 
Hill’s procedure; see Box 1. 

 

BOX 1 The Hill estimator 

The Hill estimator is motivated by the maximum likelihood estimator for the 
power coefficient of the Pareto density h(x) in (6). First note that the conditional 
Pareto density reads 11)/()|( −−−=> ssxsxxh αα . Taking logarithms and 
differentiating with respect to α  yields  

)/log(/1/)|(log sxsxxh −=∂>∂ αα . 

The Hill estimator is found by equating this first order condition to zero, replacing 
x with realizations sX i > , and to sum over these elements. Solving for α/1  gives 

∑
=

=
k

i

i

s
X

k 1

)(log1
ˆ
1
α
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where the X(i) are the largest descending order statistics X(1) ≥ X(2) ≥ …≥ X(k) ≥ s≥ 
X(k+1) ≥ … ≥ X(n), pertaining to the sample X1, X2, …, Xn, and where n is the 
number of observations. The number k is the number of extreme returns above s, 
where s is the point from where the Pareto approximation applies.  

Once the tail index has been estimated, we can directly estimate large quantiles 
(returns x), i.e. there is no need to first estimate the scaling constant a in the Pareto 
factor. This is explained further in Box 2. 

BOX 2 The Quantile Estimator 

Large quantile estimates can be obtained as follows. Consider two tail 
probabilities p = 1−F(xp) and t = 1−F(xt). For example, take p < 1/n < t ≤ k/n, 
where n is the number of observations and k is the number of extreme returns we 
use. Let xp and xt denote the quantiles corresponding to the probability levels p and 
t.  Then, by the Pareto approximation we deduce that α−≈ pxap and α−≈ txat . 

Combining these two expressions yields α/1)/( ptxx tp ≈ . Let t ≈ m/n, m integer, 
be the empirical distribution function at t. Replace xt by Xm+1, which is the m+1 
largest positive return. This provides the following quantile estimator 

α̂/1

1ˆ 







= + np

mXx mp , 

where α̂  is the Hill estimator of the tail index α; see de Haan et. al. (1994). 

We now illustrate these techniques on the daily AEX returns as described in Section 
1. Using the Hill estimator we find that for the positive returns 0.3=α  (k = 119, n = 
4849), and for the negative returns 6.2=α (k = 153). These values confirm the 
typical results from academic research that the tail index is so low that only the first 
few moments are bounded, and that the tail index for the positive returns is larger than 
the index for the negative returns. 

Extreme return estimates are presented in Table 2, using 3=α . The risks of loss (or 
gain) are expressed as events that occur once per so many years, and are given in the 
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first column. The associated return estimates appear in columns two (gains) and three 
(losses). For example, the 25 Y Pr. Level means that on average once per 25 years 
there is a one-day positive return higher than 12%. The estimates for the two-day 
returns are obtained by using the alpha-root of time rule, i.e. by multiplication of the 
one-day return estimates with the factor 21/3. Other methods typically underestimate 
the loss (and gain) levels reported in this table and hence their relevance for risk 
management. 

Table 2: AEX index estimated returns 

Daily extreme returns estimates 

Pr. Level Positive  (−) Negative 

25 Y 12.0% 12.5% 

20 Y 11.0% 11.5% 

15 Y 10.5% 10.5% 

Two-day extreme returns estimates 

25 Y 15.1% 15.7% 

20 Y 13.9% 14.5% 

15 Y 13.0% 13.2% 

5. Conclusions 

In this chapter we have presented the basic concepts of extreme value theory and the 
statistics of extremes. Particularly, we have shown how this theory is beneficial to the 
investigation of the occurrence of large and as of yet unseen market movements.  

The way in which we have presented the theory relied on the assumption that the 
returns are independently distributed. Empirical research has shown that even though 
autocorrelation in the returns is very low, there are clusters of volatility (dependence 
in the second moment). Fortunately, the theory of extremes also holds for dependent 
variables, see McNeil and Frey (2000) who study conditional VaR. Nevertheless, the 
alpha-root of time rule has to be adapted when the data are dependent. Apart from 
time dependency, the cross sectional dependency is also of interest for the co-
dependence between different asset markets in view of possible systemic risk. The 
multivariate dependency can be captured via a copula function, see chapter XXX of 
this book. 

The long and short of all this is that it is essential for risk managers to peek beyond 
the sample, for which EVT offers a reliable and coherent method. 
 
 
                                           
i An introductory textbook to EVT with many applications is Reiss and Thomas (2001). A rigorous 
treatise is Embrechts, Klueppelberg and Mikosch (1997). 
ii As simple example, suppose that F(x) is the normal distribution with mean zero and variance one: 
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 Then [F(x)]n can not be directly solved already for n larger than 

three. 
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