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Abstract

In a recent paper Gutiérrez et al. (2008) show that the lot-sizing problem with

inventory bounds can be solved in O(T log T ) time. In this note we show that their

algorithm does not lead to an optimal solution in general.
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1 Introduction

The lot-sizing problem with inventory bounds (LSB) is described as follows. Given the

(deterministic) demands for a finite planning horizon of length T , find a production plan

at minimal cost such that all demand is satisfied, while the inventory level in each period

should be no larger than the storage capacity. Toczylowski (1995) solved this problem in

O(T 2) time. Recently, Gutiérrez et al. (2008) improved the running time to O(T log T )

time. In this note, we show that the algorithm of Gutiérrez et al. (2008) does not lead to

an optimal solution in general.

This note is organized as follows. In Section 2 we formulate the problem. In Section 3

we briefly describe the geometric technique of Wagelmans et al. (1992), which is applied in

Gutiérrez et al. (2008). Furthermore, in Section 4 we show why the algorithm of Gutiérrez

et al. (2008) does not lead to an optimal solution in general. Finally, this note ends with

some concluding remarks in Section 5.

2 Problem description

To describe the LSB, we use the same notation as Gutiérrez et al. (2008). For t = 1, . . . , T

we let

dt: demand in period t with di,j =
∑j

t=i dt

ft: setup cost in period t

pt: unit production cost in period t

ht: unit holding cost in period t

St: inventory bound in period t

yt: binary setup variable in period t

xt: production quantity in period t

It: ending inventory in period t.

2



Given this notation, the problem is formulated as

min
T∑

t=1

(ftyt + ptxt + htIt)

s.t. It = It−1 + xt − dt for t = 1, . . . , T

xt ≤ dt,T yt for t = 1, . . . , T

It−1 + xt ≤ St for t = 1, . . . , T

It, xt ≥ 0, yt ∈ {0, 1} for t = 1, . . . , T,

where we assume that I0 = IT = 0. Note that the bound St is imposed on the starting

inventory It−1 + xt in period t. Using the inventory balance constraint, this constraint can

also be written as It ≤ St − dt. For feasibility we need that St ≥ dt for t = 1, . . . , T .

3 Geometric technique of Wagelmans et al. (1992)

Because Gutiérrez et al. (2008) apply the geometric technique of Wagelmans et al. (1992),

we briefly describe this technique. First, let F (t) be the optimal cost for periods t, . . . , T

in case of no inventory bounds. Using the zero-inventory property (Wagner and Whitin,

1958), the problem can be solved by the recursion

F (t) = min
t<j≤T+1

{ft + ctdt,j−1 + F (j)}
= ft + min

t<j≤T+1
{F (j) + ctdt,j−1} (1)

where we made the common substitution ct = pt +
∑T

i=t hi and we let F (T + 1) = 0.

Assume that the values F (t) are known for t = j + 1, . . . , T + 1. Then we can plot the

points (dt,T , F (t)) for t = j + 1, . . . , T + 1 and determine the lower envelope of this set of

points (see Figure 1). The points that contribute to the lower envelope are called efficient

periods, while the non-contributing points are called non-efficient.

Given the lower envelope of these points, Wagelmans et al. (1992) show that the min-

imum in (1), and hence the value of F (j), can be found in O(log T ) time by finding the

point that is tangent to the line with slope cj (see Figure 1). Furthermore, they show that
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adding the new point (dj,T , F (j)) and updating the lower envelope takes O(T ) time in the

total execution of the algorithm. This means that the overall running time is O(T log T ).
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Figure 1: Illustration of the geometric technique of Wagelmans et al. (1992)

4 Mistakes in Gutiérrez et al. (2008)

Gutiérrez et al. (2008) apply the technique of Wagelmans et al. (1992) to solve the problem

with inventory bounds. To that end, they use the recursive variable G(t), the optimal cost

to satisfy the demands in periods t, . . . , T . Before giving the recursion formula, we need

some more notation. Let x̂t be the optimal production quantity in period t corresponding

to G(t). Furthermore, let Mt be the maximum production quantity in period t, i.e.,

Mt = min{dt,j−1 + Sj : j = t, . . . , T}. Finally, let Rt be the largest period that can be

completely satisfied by production in period t, i.e., Rt = max{t ≤ j ≤ T : dt,j ≤ Mt}.
If we consider the problem starting from period t, then Love (1973) and Gutiérrez

et al. (2008) show that one of the following properties holds in an optimal solution: (i)

the production quantity is equal to the sum of an integer number of consecutive demands
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starting at period t, or (ii) the production quantity is equal to the maximum production

quantity Mt. Given these properties the LSB can be solved by the recursion (for ease of

exposition we assume that dt > 0)

G(t) = min





mint<j≤Rt+1{ft + ctdt,j−1 + G(j)}
min{t<j≤Rt+1:x̂j≥Mt−dt,j−1}{ft + ctMt − cj(Mt − dt,j−1) + G(j)}

= ft + min





mint<j≤Rt+1{ctdt,j−1 + G(j)}
min{t<j≤Rt+1:x̂j≥Mt−dt,j−1}{ctdt,j−1 + G(j) + (ct − cj)(Mt − dt,j−1)}

(2)

Note that the term (ct − cj)(Mt − dt,j−1) corresponds to the cost of producing an amount

of Mt − dt,j−1 in period t instead of in period j. This amount should be lower than the

production quantity x̂j and so the condition x̂j ≥ Mt − dt,j−1 is needed for feasibility.

Gutiérrez et al. (2008) now proceed as follows. To calculate G(j), they utilize the

lower envelope of the points (dt,T+1, G(t)) for t = j + 1, . . . , T + 1. Let q(j) be the period

corresponding to the point tangent to the line with slope cj. Note that the q(j) is equal

to period i in Figure 1 and equal to period r in Figure 2. Gutiérrez et al. (2008) use this

period to identify the minima in (2).
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Figure 2: Minimum attained at a non-efficient period (for ease of notation, an index k at

the horizontal axis represents the cumulative demand dk,T )
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We will now show that the algorithm does not necessarily find these minima in case

q(j) > Rj + 1. Note that in this case it is not feasible to produce dj,q(j)−1 units, because of

the inventory bounds. Therefore, Gutiérrez et al. (2008) determine the largest efficient and

non-efficient period smaller or equal than Rj + 1 with the smallest slope ratios, denoted

by qE(j) and qNE(j), respectively. The slope ratio of some period t is the slope of the line

between the point corresponding to period t and the point corresponding to the successor

of period t in the lower envelope. They claim that the value G(j) is found (i) by producing

for a consecutive number of periods up to period qE(j)− 1 or up to qNE(j)− 1, or (ii) to

produce Mj units in period j and to have the next production in period qE(j) or qNE(j).

The mistake in case (i) is that the period that minimizes the first term in (2) is not

necessarily equal to period qE(j) or qNE(j). This is graphically illustrated in Figure 2. It

follows from this figure that the optimal period is s, which is neither equal to qE(j) nor to

qNE(j). Note that qNE(j) = u because the slope ratio of period u ((G(u)−G(t))/du,t−1) is

smaller than the slope ratio of period s((G(s) − G(r))/ds,r−1). To overcome this mistake

one should use the lower envelope of the points (dt,T+1, G(t)) for t = j + 1, . . . , Rj + 1.

However, this means that in every iteration the left part of the lower envelope needs to be

updated, which takes additional computation time. An issue for case (ii) is that Gutiérrez

et al. (2008) do not check in their algorithm whether the condition x̂j ≥ Mj − dj,i−1 holds

for i ∈ {qE(j), qNE(j)}. Hence, the periods qE(j) and qNE(j) may correspond to a non-

feasible solution. Furthermore, this means that the (feasible) periods qE(j) and qNE(j) can

not be easily found by binary search.

A more fundamental mistake is that Gutiérrez et al. (2008) try to find the minimum

of the second term in (2) by utilizing the lower envelope of the points (dt,T , G(t)) for

t = j + 1, . . . , T . However, the term (ct − cj)(Mt − dt,j−1) causes that the approach of

Wagelmans et al. (1992) cannot be applied anymore. If this term is added to every value

G(j) at the start of an iteration, then the approach still works. However, this means that

each point and the corresponding lower envelope should be recalculated in every iteration,

which implies that the order of O(T log T ) running time cannot be achieved anymore.

The following numerical example shows that the periods q(j) and qE(j) cannot be used to
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identify the minimum of the second term in (2), implying that the algorithm of Gutiérrez

et al. (2008) fails to find an optimal solution in general.

Example 1 Consider the 3-period problem instance of Table 1. It follows that R1 = 2

and R2 = R3 = 3, which means that the problem starting from period 2 is uncapacitated.

After execution of the algorithm (Gutiérrez et al., 2008, p. 690, Algorithm 1), we get the

following values (we only present the most relevant values), where LE denotes the set of

efficient periods in the lower envelope:

Initialization: G(4) = 0, LE = {4} (we assume that c4 = 0 although this is not specified

in the algorithm)

Iteration 1: q(3) = 4, G(3) = 4, LE = {4, 3}
Iteration 2: q(2) = 3, G(2) = 8.2, LE = {4, 3, 2}
Iteration 3: q(1) = 4 > 3 = R1 + 1, qE(1) = 3 and c1 < c3, G(1) = 3 (obtained from code

line 19 in Algorithm 1)

So the solution obtained from the algorithm is: x1 = 5 and x3 = 1 with cost 3. However,

the optimal solution is: x1 = 5 and x2 = 1 with cost 2.1. Therefore, the optimal solution

is not found by Algorithm 1 of Gutiérrez et al. (2008).

t 1 2 3

dt 2 2 2

ft 0 0 2

ct 0 2.1 1

Mt 5 4 2

Table 1: Problem instance corresponding to Example 1
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5 Concluding remarks

The question remains whether the lot-sizing problem with inventory bounds can be solved

in O(T log T ) time. As follows from this note, to find the minimum in the first term of (2),

one needs to find an algorithm that updates the left part of the lower envelope in O(T log T )

time. Furthermore, it seems that one needs another recursion to find the minimum in the

second term of (2), as the lower envelope does not provide the required information. It

is shown in Hwang and van den Heuvel (2010 (under revision) how these issues can be

resolved for a more general problem. They develop an O(T log T ) time algorithm for the

lot-sizing problem with inventory bounds and back-logging.
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