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Abstract

In this paper we present a general framework for shortest path algo-
rithms, including amongst others Dijkstra's algorithmand the A* algorithm.
By showing that all algorithms are special cases of one algorithm in which
some of the nondeterministic choices are made deterministic, termination

and correctness can be proved by proving termination and correctness of
the root algorithm. Furthermore, several invariants of the algorithms are
derived which improve the insight with respect to the operations of the
algorithms.

1 Introduction

In the context of this paper, the shortest path problem is de�ned as the problem
of �nding in a directed graph the shortest path from a source vertex to a set of
target vertices. For variations of the problem we refer to the taxonomy of Deo
and Pang [Deo-Pang].

The shortest path is a classic topic both in the �eld of Combinatorial Optimiza-
tion and in the �eld of of Arti�cial Intelligence. In Combinatorial Optimization,
the Dijkstra algorithm [Dijkstra] in case of nonnegative arc distances, and the
Modi�ed Dijkstra algorithm in case of arbitrary arc distances, are well known. In
Arti�cial Intelligence, the shortest path problem arises in the context of heuristic
search. In heuristic search a heuristic estimate function is given, which returns
for each vertex v an estimate of the length of the shortest path from v to the
single target vertex. The best known algorithm is A*, originating from Hart
[Hart].

In this paper we present a general framework for shortest path algorithms; see
Figure 1. By showing that all algorithms are special cases of one algorithm in
which some of the non-deterministic choices are made deterministic, termination
and correctness can be proved by proving termination and correctness of the root
algorithm. In this way we avoid some of the ad hoc proofs found in the litera-
ture. Furthermore, we shall provide invariants of the algorithms which improve
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Figure 1: The framework

our understanding of these algorithms. In [Pijls-Kolen] this approach has led to
improved dominance results with respect to space and time complexity of the
algorithms.

An instance of the shortest path problem is de�ned by a directed graph G =
(V;A), where V is the set of vertices and A is the set of arcs (an arc is an orde-
red pair of vertices), a source vertex s and a subset T � V of target vertices, a
distance function d : A!IR, and heuristic estimate function h : V !IR.
Following standard graph terminology we de�ne a walk W in G from start vertex
v1 to end vertex vn to be a sequence (v1; v2; : : : ; vn) such that (vi; vi+1) 2 A; i =
1; 2; : : :n � 1; the length (denoted by length(W )) is de�ned by

Pn�1
i=1 d(vi; vi+1).

A cycle is a walk in which the start and the end vertex are identical and no other
vertex occurs more than once in the walk. A path is a walk in which no vertex
occurs more than once. The shortest path problem is to �nd a path of minimal
length from s to every target vertex. In most of our algorithms T = V or T
consists of one single vertex; in the latter case the target vertex is denoted by t.
The length of a path with minimal length from s to v is denoted by ĝ(v).
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Our framework consists of the tree in Figure 1. The root algorithm is the so-
called Arc algorithm. This is shown in Figure 2. In this algorithm every vertex
has a label, denoted by g, which is regularly updated. Finding the shortest path

g(s):= 0;

for all v 2 V, v 6= s, do g(v) := 1;

while any arc (v,w) 2 A satisfies g(w) > g(v) + d(v,w)

[ select any arc (v,w) with g(w) > g(v) + d(v,w);

g(w) := g(v) + d(v,w);

]

Figure 2: The Arc algorithm.

in a graph containing cycles of negative length is NP-hard [Garey]. As is shown
below, the Arc algorithm does not terminate in this case.

Theorem 1.1 If (v1; v2; : : : ; vn) is a walk such that g(vi+1) � g(vi) + d(vi; vi+1)
for i = 1; : : : ; n� 1, then g(vn) � g(v1) +

Pn�1
i=1 d(vi; vi+1).

Proof

Add the inequalities g(vi+1) � g(vi) + d(vi; vi+1), i = 1; : : : ; n� 1. 2

Corollary 1.1 If the Arc algorithm terminates on an instance, then every cycle
has nonnegative length.

Proof

Let (v1; v2; : : : ; vn; v1) be a cycle. On termination of the Arc algorithm we have
g(vi+1) � g(vi) + d(vi; vi+1) and g(v1) � g(vn) + d(vn; v1). By Theorem 1.1
g(vn) � g(v1) +

Pn�1
i=1 d(vi; vi+1). Combining this with g(v1) � g(vn) + d(vn; v1)

gives
Pn�1

i=1 d(vi; vi+1) + d(vn; v1) � 0. 2

In Section 2 we prove the correctness of the Arc algorithm for graphs without
negative cycles, i.e., we prove that the Arc algorithm terminates on any graph
without negative cycles and that, on termination, g(v) equals the shortest path
distance from s to v, for any v 2 V . The shortest path itself from s to v can be
traced on termination by a method, explained in Section 3.
Although we will prove termination, there are problem instances, even for a de-
terministic algorithm as the SE-algorithm, which take an exponential number of
updates.

The Arc algorithm originates from Ford [Ford]. A termination proof for the
case of integer arc distances can be found in [Ahuja]. Our termination proof,
which does not assume that the arc distances are integer, has not been explicitly
stated in literature.

In the Arc algorithm the choice of the arc (v; w) with g(w) > g(v) + d(v; w)
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is completely non-deterministic. In the Modi�ed Arc algorithm (see Figure 3),
we loop through all the arcs to see if there is a possible label update. The order,

while any arc (v,w) 2 A satisfies g(w)>g(v)+d(v,w) do

for each arc (v,w) 2 A do

if g(w) > g(v)+d(v,w) then g(w) := g(v) + d(v,w);

Figure 3: The Modi�ed Arc algorithm.

in which the arcs are considered by the for loop, is arbitrary. Hence the Modi�ed
Arc algorithm is still non-deterministic. As we will see in Section 4, jV j � 1
repetitions of such a loop su�ce.

In the S-set algorithm (see Figure 4), we have yet another way of grouping arcs
together, to see if any update is possible. In the S-set algorithm, we maintain
a set S of vertices, for which we can guarantee a special property: if an arc has
its start vertex in S, then no label updates are possible, using this arc. In each

g(s) := 0;

for v2V, v6=s, g(v):=1;

S:=;;
while S6=V do

[ select any vertex k 62 S with g(k)<1;

S:= S +[k];

for all (k,v) 2 A do

if g(v) > g(k) + d(k,v) then

[ g(v) := g(k) + d(k,v);

if v 2 S then S := S - [v];

]

]

Figure 4: The S-set algorithm.

iteration, we take a vertex outside S and we consider all arcs starting at that
vertex. Using these arcs, we perform all possible updates and the start vertex of
these arcs is added to S. If an end vertex of an arc is updated, this end vertex
is removed from S, because the special property can no longer be guaranteed for
this vertex.

In the F-algorithm, to be discussed in Section 6, we encounter the heuristic
estimate for the �rst time. The f -label of a vertex v is de�ned as g(v) + h(v). In
the algorithm a global variable F appears, which is initialized to �1. When we
replace the selection statement in the S-set algorithm by:

(a) if F < minimumff(v)j v 62 Sg
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then F := minimumff(v) j v 62 Sg;
(b) select any vertex k with k 62 S and f(k)�F

then the F-algorithm is obtained.
The F-algorithm has several instances. The Smallest Estimate algorithm (SE-
algorithm) is de�ned by specifying the non-deterministic choice in the selection
statement of the F-algorithm as:

(b) select a vertex k, k 62S and f(k)=minimumff(v)j v 62 Sg.

Notice that for the vertex selected, the condition f(k) � F is satis�ed. The
SE-algorithm can also be de�ned as the instance of the S-set algorithm in which
selection is prescribed as: select k with f(k) = mimimumff(v) j v 62 Sg.
When the non-deterministic choice in the F-algorithm is speci�ed as:

(b) select a vertex k, k 62S and

g(k)=minimumfg(v)j v 62 S and f(v) � Fg

the Combined Selection Strategy algorithm (CSS-algorithm), is de�ned, which
considers both the f -label and the g-label.
The Smallest Label algorithm (SL-algorithm) is a special version of the SE-
algorithm with h = 0. The SL-algorithm can also be de�ned as the instance of
the S-set algorithm that has the following selection criterion: select k with g(k) =
mimimumfg(v) j v 62 Sg.

For the instances of the F-algorithm several so called versions will be distin-
guished. We will refer to the complete version of the F-algorithm as the label-
correcting version. A contrasting version is the label-setting version, in which no
vertex ever leaves the S-set. A third version is the target version which may be
applied in case T = [t]. In this version g(t) = ĝ(t) holds, as soon as t is in S, and
therefore the execution is stopped at that time.

2 Correctness of the Arc algorithm

In this section we �rst prove termination of the Arc algorithm, and we next
prove that this algorithm determines the length of the shortest path from s to
any vertex v. In order to prove termination, we introduce a new variable and
we insert into the algorithm two statements dealing with this variable. The new
variable is called ancestors and its type is array of sequence. A quantity of the
sequence type is an ordered sequence of vertices. So the quantity ancestors(v)
contains for any vertex v an ordered sequence of vertices. We add the following
statement to the initializing statements before the main loop:

ancestors(s):=(s);

Together with updating g(w), the quantity ancestors(w) is updated. For that
purpose, we insert the statement:

ancestors(w):=ancestors(v)+ w;
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The operator `+' achieves concatenation of a sequence of vertices and a single
vertex. The result of the operation s + v with s of the sequence type and v of
the vertex type consists of a new sequence containing s with v added at the end.
In Lemma 2.1 we prove, that, in the absence of negative cycles, each �nite g-label
g(v) equals the length of a path from s to v represented by ancestors(v). This
statement is used in Theorem 2.1 to prove that the number of label updates and
hence the number of iterations in the algorithm is �nite.
Moreover, Theorem 2.1 shows the correctness of the Arc algorithm, i.e., the Arc
algorithm provides the shortest path distance from s to v for any vertex v.

Lemma 2.1 (invariant) The Arc algorithm has the following invariants
a) for every v with g(v) < 1, ancestors(v) is a walk (p0, p1, p2, : : : , pn),

n � 0, with p0 = s and pn = v and g(v) =length(ancestors(v));
b) in ancestors(v) the following inequality holds:

g(pk) +
n�1X

i=k

d(pi; pi+1) � g(v); 0 � k � n� 1;

where strict inequality holds in case pk = v, 0 � k � n � 1;
c) if ancestors(v) contains a cycle for a vertex v, then this cycle has negative

length.

Proof

Proof of a)
It is easily seen that this invariant holds after the initialisations and is maintained
in each iteration of the main loop.

Proof of b)
This invariant holds after the initialisations. We shall prove that the invariant
is maintained during the while loop. Assume that the arc (v; w) is selected and
g(w) and ancestors(w) are updated. Let ancestors(v) be given by (p0, p1, p2, : : : ,
pn = v).
Before the update, we have

g(pk) +
n�1X

i=k

d(pi; pi+1) � g(v); 0 � k � n� 1;

This is equivalent to:

g(pk) +
n�1X

i=k

d(pi; pi+1) + d(v; w)� g(v) + d(v; w); 0 � k � n � 1; (2.1)

Assume that w does not occur in ancestors(v). Then the left-hand side of (2.1)
is unchanged by the update and the right-hand side is equal to g(w) after the
update.
Assume that w = pk for some index k, 1 � k � n � 1. Before the update, the
right-hand side of (2.1) is smaller than g(w) and hence

g(pk) +
n�1X

i=k

d(pi; pi+1) + d(v; w)< g(w):
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By the update, both sides are decreased by the same amount and thus strict
inequality is preserved.
Since also g(w) = g(v) + d(v; w), invariant b) is maintained.

Proof of c)
Assume that by the update of g(v), v a given vertex, ancestors(v) takes the form
(p0, p1, p2, : : : , pn) with pk = pn = v for some k with 1 � k < n. By invariant
b), g(pk) +

Pn�1
i=k d(pi; pi+1) < g(pn) and hence

n�1X

i=k

d(pi; pi+1) < 0

2

Theorem 2.1 The Arc algorithm terminates for any graph without negative cy-
cles and, on termination, g(v) = ĝ(v) for any v.

Proof

Due to part a) and c) of Lemma 2.1 ancestors(v) is a path from s to v for any
v with g(v) < 1. Therefore the number of label updates is is bounded by the
number of paths. Since this number is �nite, the algorithm terminates.
Let a shortest path from s to v be given by (s = p0; p1; : : :pn = v). Since
g(pk+1) � g(pk) + d(pk; pk+1), 1 � k < n, on termination, we obtain, using
Theorem 1.1, g(v) � g(s) +

Pn�1
k=1 d(pk; pk+1) = g(s) + ĝ(v). Since g(v) is equal

to the length of a path from s to v, g(v) � ĝ(v). Using g(s) � 0, we conclude
g(v) = ĝ(v). 2

3 Tracing the shortest path

On termination of the Arc algorithm, we have g(v) =length(ancestors(v)) and
g(v) = ĝ(v). Since ancestors(v) is a path, this quantity provides a path of
minimal length. However, the use of the array variable ancestors is not practical,
because it takes a lot of memory to associate to each vertex a sequence of vertices.
This variable has been introduced only for the termination proof. For �nding
the shortest path itself another variable, called backpointer, is more appropriate.
Henceforth, instead of updating ancestors(w), we update, together with g(w), a
variable backpointer(w) by the statement:

backpointer(w) := v

The line of reasoning is the following. In Theorem 3.1 we prove that, in the
absence of negative cycles, for every vertex v with g(v) < 1 a path from s to v
exists, such that each vertex is backpointer of its successor in the path and g(v)
is greater than or equal to the length of this path. It follows that, as soon the
equality ĝ(v) = g(v) is achieved during execution, this path is the shortest path
from s to v, as is stated in Theorem 3.2. Since ĝ(v) = g(v) on termination, the
shortest path can be traced on termination.
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De�nition 3.1 A walk (p1, p2, : : : , pn = v) with pk = backpointer(pk+1) for
1 � k � n� 1 is called a backpointer walk of v.

Lemma 3.1 (invariant) The Arc algorithm has the following invariants:

a) if v=backpointer(w) then g(w) � g(v) + d(v; w);

b) if (p1, p2, : : : , pn) is a backpointer walk of pn, then

g(p1) +
n�1X

i=1

d(pi; pi+1) � g(pn);

c) if a backpointer walk contains a cycle, then this cycle has negative length;

d) g(s) = 0, s has no backpointer.

Proof

a) This property holds before the �rst iteration. It is obvious that the invariant
holds after an iteration, in which arc (v; w) is chosen and g(w) is updated by
g(w) := g(v) + d(v; w). As long as v =backpointer(w), g(w) remains unchanged.
Since g(v) is non-increasing, the property remains valid.

b) We can prove that

g(p1) +
m�1X

i=1

d(pi; pi+1) � g(pm);

for m = 2; : : : ; n, by induction on m, using part a).

c) Suppose that an arc (v; w) is selected. If a cycle occurs, then the cycle has the
form (v; w = p1; : : : ; pn = v). Since (w = p1; : : : ; pn = v) is a backpointer walk
before the update, it follows from b) that

g(w) +
n�1X

i=1

d(pi; pi+1) � g(v);

where the g-labels refer to g-labels before the last update. Since (v; w) is selected,
we have g(w) > g(v) + d(v; w). Combining the inequalities, we obtain

n�1X

i=1

d(pi; pi+1) + d(v; w)< 0:

d) As long as g(s) is not updated, it has no backpointer and it keeps the initial
label g(s) = 0. 2

Theorem 3.1 If g(w) < 1 for a given w 6= s during the Arc algorithm on an
instance without negative cycles, then a backpointer path P = (p0; p1; : : : ; pn) with
s = p0 and w = pn exists; moreover g(w) � length(P ).
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Proof

If g(w) < 1, w 6= s, then at least one backpointer walk exists, namely (v; w),
where (v; w) is the arc which has generated the last update of g(w). By Lemma
3.1c) every backpointer walk is path, and has a �nite number of vertices therefore.
Consider the backpointer path (p0; p1; : : : ; pn = w) of w such that the number of
vertices in the backpointer path is maximal. Hence p0 has no backpointer.
In general, every vertex p 6= s that is a backpointer, satis�es g(p) < 1, and
consequently g(p) has been updated once and backpointer(p) exists.
It follows that, in the above backpointer path, p0 = s.
Since p0 = s has no backpointer, by Lemma 3.1d) g(s) = 0. It follows from
Lemma 3.1b) that g(w) � length(P ). 2

Corollary 3.1 During the Arc algorithm applied to an instance without negative
cycles, g(s) = 0.

Proof

This property holds after initialisations. In the proof of Theorem 3.1 we have
argued that, whenever a vertex w 6= s with g(w) <1 exists, then g(s) = 0. 2

The path, which is referred to in Theorem 3.1, is called the backpointer path
of v, denoted by Backp(v).

Theorem 3.2 (invariant) During execution of the Arc algorithm on a graph
without negative cycles, g(v) = ĝ(v) implies that Backp(v) is a path from s to v

with minimal length.

Proof

Since Backp(v) is a path from s to v we have ĝ(v) � length(Backp(v)). By Theo-
rem 3.1 g(v) � length(Backp(v)). Combining these inequalities with g(v) = ĝ(v),
we conclude ĝ(v) =length(Backp(v)). 2

Due to Theorem 3.1, the di�erence between ancestors(v) and Backp(v) is clear.
In case of only nonnegative cycles, the length of Backp(v) is a lower bound for
g(v), whereas the length of the path ancestors(v) is equal to g(v). Since the ine-
quality length(Backp(v)) < g(v) may happen, the notion backpointer path cannot
be used to prove termination of the Arc algorithm. In the following theorem, we
characterise the conditions under which the backpointer path and the ancestors
sequence are identical.

Theorem 3.3 (invariant) During execution of the Arc algorithm on an instance
without negative cycles, for every v 6= s with g(v) <1, ancestors(v) =Backp(v)
if and only if g(v) =length(Backp(v)).

Proof

The invariant holds after the initialisations. Suppose an arc (u; w) is selected.
The only-if part still holds after the update, due to Lemma 2.1a.
Suppose ancestors(w) 6=Backp(w) after the update. Then, before the update,
ancestors(u) 6=Backp(u) and, by the invariant, g(u) >length(Backp(u)). It follows
that after the update, g(w) >length(Backp(w)).
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Suppose ancestors(v) 6=Backp(v) for some v, v 6= w, after the update, whereas
equality held before the update. Then w occurs in ancestors(v). Let ancestors(v)
be given by (s = p0; p1; : : : ; pn = v) and assume w = pk with 1 � k < n. The
relation pi�1 =backpointer(pi) holds before the update for 1 � i � n, and after
the update, amongst others, for k < i � n. Furthermore, before the update
g(pk) =

Pk�1
i=0 d(pi; pi+1). After the update, by Theorem 3.1, length(Backp(pk)) �

g(pk) and, since g(pk) has been updated, g(pk) <
Pk�1

i=0 d(pi; pi+1). Therefore,
length(Backp(pk)) <

Pk�1
i=0 d(pi; pi+1) and after adding

Pn�1
i=k d(pi; pi+1) to both

sides of this inequality, we obtain length(Backp(v))<
Pn�1

i=0 d(pi; pi+1) = g(v). 2

4 The Modi�ed Arc algorithm

The Modi�ed Arc algorithm has been presented in Figure 3. This algorithm is
also discussed in [Ahuja]. It can be regarded as a non-deterministic version of
the Bellman-Ford method with a modi�cation from Yen, cf. [Lawler]. In our
paper it is shown that the algorithm can also be used to trace cycles of negative
length. Theorem 4.1 tells us that the algorithm terminates after at most jV j � 1
iterations of the while loop or, otherwise, a cycle with negative length can be
found. The proof of this theorem shows that such a cycle, similar to a shortest
path, can be traced by constructing a backpointer walk.

Lemma 4.1 (invariant) After n iterations of the outer loop during the Modi�ed
Arc algorithm, it holds for any path P , consisting of at most n arcs, from s to a
given vertex v that g(v) � length(P ).

Proof

We give a proof by induction. The invariant holds after 0 iterations. Assume the
invariant holds after n iterations. Since the g-labels are decreasing, the lemma
also holds after n + 1 iterations for paths of at most n arcs. It remains to prove
that the lemma holds for a path with n+ 1 arcs after n+ 1 iterations.
Let a path consisting of n + 1 arcs be given by (s = p0; p1; : : : ; pn; pn+1). Since
the invariant holds after n iterations and g-labels are non-increasing, we have,
directly before arc (pn; pn+1) is considered in outer iteration n + 1, g(pn) �Pn�1

j=0 d(pj; pj+1). After arc (pn; pn+1) is considered, g(pn+1) � g(pn)+d(pn; pn+1).
Hence g(pn+1) �

Pn
j=0 d(pj ; pj+1) and this relation also holds after the outer ite-

ration has completed, because g-labels are non-increasing. 2

Theorem 4.1 After jV j � 1 iterations of the outer loop of the Modi�ed Arc
algorithm on an instance, there exists an arc (v; w) such that g(w) > g(v)+d(v; w)
if and only if the instance contains a negative cycle.

Proof

By Corollary 1.1, the termination criterion of the Arc algorithm cannot be achie-
ved, if the instance contains a negative cycle.
If there exists an arc (v; w) such that g(w) > g(v) + d(v; w) after jV j � 1 ite-
rations of the main loop, then update g(w). Next, construct in reverse order a
backpointer walk P , starting at w by repeatedly taking the backpointer of the
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vertex under consideration. We distinguish two cases. Either the backpointer
walk is a path ending at vertex s and s has no backpointer, or the backpointer
walk can be continued in�nitely and hence contains a cycle, which has negative
length by Lemma 3.1.
First assume that the backpointer walk is a path ending at s and s has no back-
pointer. Then, by Lemma 3.1d), g(s) = 0. Let the backpointer walk from s

to w be denoted by P and the part between s and v be denoted by P 0. Hence
length(P ) = length(P 0) + d(v; w). Since P is a path, P contains at most jV j � 1
arcs. Before the update we have by Lemma 4.1 g(w) �length(P ), and, by Lemma
3.1, g(v) � g(s)+length(P 0) =length(P 0). It follows that before the update:

g(w) � length(P ) = length(P 0) + d(v; w)� g(v) + d(v; w):

This contradicts g(w) > g(v)+d(v; w). Therefore the �rst case cannot occur. We
conclude that, tracing back the backpointer walk starting at w after the update
of g(w), we encounter a cycle. 2

5 The S-set algorithm

The S-set algorithm consists of statements corresponding to label updates, in-
terchanged with statements corresponding to updates of the S-set. After a label
update, we can have at most jV j � 1 consecutive additions to the S-set, because
the algorithms terminates when S = V . Therefore the algorithm terminates if
the number of label updates is �nite, i.e., if the Arc algorithm incorporated is
�nite. Conversely, when the S-set algorithm terminates, the stop criterion of the
Arc-algorithm is satis�ed, as is proved in the next theorem by taking S = V . We
conclude that the S-set algorithm is an instance of the Arc algorithm.

Theorem 5.1 (invariant) If v 2 S during the S-set algorithm, then g(w) �
g(v) + d(v; w), for all (v; w) 2 A.

Proof

The invariant holds after the initialisations. Assume that the invariant holds
before k is selected. After insertion of k into S, g(w) � g(k) + d(k; w) for all
(k; w) 2 A. For any vertex v 2 S which remains in the S-set, g(v) is unchanged.
Since g(w) is non-increasing, g(w) � g(v) + d(v; w) remains true. 2

Now, we present some other properties, related to the S-set. Lemma 5.1 and
5.3 will be used in Section 6.

De�nition 5.1 A path (s = p0; p1; : : : ; pn = v), is called an S-path during the
S-set algorithm, if all intermediate vertices pi, 0 � i � n � 1 are in S.

Lemma 5.1 For any S-path P from s to v during the S-set algorithm g(v) �
length(P ).

Proof

By Theorem 5.1 and Theorem 1.1 g(v) � g(s)+ length(P ). Since g(s) � 0, the
result follows. 2
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Lemma 5.2 (invariant) If v=backpointer(w) during the S-set algorithm, then
g(w) = g(v) + d(v; w) if and only if v 2 S.

Proof

It follows from Lemma 3.1 that, if v =backpointer(w) then g(v)+d(v; w)� g(w).
By Theorem 5.1, g(w) � g(v) + d(v; w) if v 2 S. Hence the if part is proved.
The only-if part is proved as a loop invariant for any two given vertices v and
w. Assume that the relations v =backpointer(w) and g(w) = g(v) + d(v; w) are
achieved in an iteration. Then v 2 S after this iteration. In the subsequent
iterations, g(v) decreases if and only if v is deleted from S and g(w) decreases if
and only if backpointer(w) changes. 2

Lemma 5.3 For any vertex v with g(v) <1 during the S-set algorithm applied
to an instance without negative cycles, Backp(v) is an S-path if and only if g(v) =
length(Backp(v)).

Proof

Let Backp(v) be given by (s = p0; p1; : : : ; pn = v). By Corollary 3.1 g(s) = 0 and
by Lemma 3.1 g(pi+1) � g(pi) + d(pi; pi+1). Therefore, g(v)=length(Backp(v)) if
and only if g(pi+1) = g(pi) + d(pi; pi+1) for 0 � i < n. The lemma follows from
Lemma 5.2. 2

It follows immediately from Theorem 3.3 and Lemma 5.3 that Backp(v) =
ancestors(v) if and only if Backp(v)) is an S-path. In [Pijls] it is proved that, in the
SE-algorithm, Backp(k) is always an S-path, when k is selected. This property
does not hold in general for the CSS-algorithm; see the counterexample in [Pijls].
However, it is proved in [Pijls-Kolen], that g(k) = length(Backp(k)), when k is
selected in the CSS-algorithm, applied to an instance with nonnegative distances.

In contrast with the Modi�ed Arc algorithm, the S-set algorithm does not have
polynomial run time. We give an instance illustrating that the run time may be
exponential.

De�nition 5.2 The instance K(n) for the shortest path problem is de�ned by:

V = fn; n� 1; : : : ; 2; 1g
A = f(i; j) j i; j = 1; : : : ; n; i > jg

d(i; j) = 2i�1 � 2j

s = n

T = V

Theorem 5.2 Suppose that the S-set algorithm runs on K(n), where in each
iteration the smallest vertex with �nite g-label is selected. Let the binary repre-
sentation of a given number p, 0 � p < 2n�1, be given by an�1an�2 : : :a2a1.
De�ne an = 1. Then after p+ 1 iterations:

a) backpointer(w) is the smallest integer v greater than w such that av = 1.

b) S = fj j aj = 1g

12



Proof

Since vertex s = n is inserted in the �rst iteration, the invariant holds for p = 0.
Suppose that the invariant holds, after p+1 iterations. Let k be the smallest index
such that ak = 0. Then the binary representation of p is: an�1 : : :ak+101 : : :1.
Due to b), k is the smallest vertex outside S and hence, k is selected in iteration
p+ 1. We will show that each label g(q) with (k; q) 2 A, i.e., 1 � q � k � 1, is
updated, and hence q is deleted from S in this iteration.
We conclude from a) that backpointer(j) = j + 1 for 1 � j � k � 2, and
backpointer(k� 1) =backpointer(k) = ` where ` is the smallest integer such that
` > k and a` = 1. It follows from a) and b) that every backpointer is in S and
every backpointer path is an S-path. We conclude from Lemma 5.2 that g(k) =
g(`)+d(`; k) and g(q) = g(`)+d(`; k�1)+

Pq
i=k�2 d(i+1; i) = g(`)+d(`; k�1),

q = 1; : : : ; k�1. The following scheme shows that g(q), 1 � q � k�1 is updated.

g(k) + d(k; q)
= g(`) + d(`; k) + d(k; q)
= g(`) + 2`�1 � 2k + 2k�1 � 2q

= g(`) + 2`�1 � 2k�1 � 2q

< g(`) + 2`�1 � 2k�1

= g(`) + d(`; k� 1)
= g(q).

The binary representation of p + 1 is given by an�1 : : :ak+110 : : :0. Therefore,
the invariant also holds after p+ 2 iterations. 2

Corollary 5.1 The S-set algorithm on K(n), selecting the smallest vertex in
each iteration, has 2n�1 iterations.

Proof

Substituting p = 2n�1 � 1 in Lemma 5.2, we conclude that S = fn; n � 1; n �
2; : : : ; 1g and hence S = V , after 2n�1 iterations. 2

The following numbers are inserted successively after vertex n: 1, 2, 1, 3, 1,
2, 1, 4, 1, 2, 1, 3, 1, 2, 1, : : :. This series is also known from the problem 'Towers
of Hanoi', a famous problem, often used in text books on programmming to il-
lustrate recursion.
It can be proved that i < j; i; j 62 S;) g(i)�g(j)� 2j�2i (cf. [Pijls]). Therefore,
by the choice h(v) = 2v+v we achieve: i < j; i; j 62 S ) g(i)+h(i)< g(j)+h(j).
It appears that a run on K(n) of the S-set algorithm selecting the smallest vertex
can be viewed as as a run of the SE-algorithm.

6 The F-algorithm and its versions

We will refer to the complete version of the F-algorithm as the label-correcting
version. A contrasting version is the label-setting version, in which no vertex

13



ever leaves the S-set. This version applies, whenever the S-set algorithm has the
following invariant:

8w 2 S; 8v 62 S : g(w) � g(v) + d(v; w) (6.1)

Due to this invariant the labels of S-set elements are never updated and no vertex
is ever removed from S. Consequently, it holds that g(v) = ĝ(v) for any vertex v
which is inserted into S.
A third, intermediate, version is the so called target version which may be applied
in case T = [t]. If for an instance the condition g(t) = ĝ(t) holds, as soon as t
is in S, then the execution can be stopped. This code of a target version di�ers
from the label-correcting by one condition, namely, the halting condition in the
while-clause of the S-set algorithm:

while S 6= V do

is replaced by

while t 62 S do

So, every instance of the F-algorithm has three versions. We will see under which
conditions the target version or label setting version applies.

First of all, we will consider some special types of heuristic estimates, for which
the label-setting or the target version of the F-algorithm applies. If T = ftg (i.e.,
there exists one single target vertex), then ĥ(v) denotes the shortest path length
from a given vertex v to t.

De�nition 6.1 A heuristic estimate h is called consistent if h(v) � h(w) �
d(v; w) for each arc (v; w).

De�nition 6.2 An heuristic estimate h is called admissible, if T = ftg and
h(v)� h(t) � ĥ(v) for any vertex v.

De�nition 6.3 A heuristic estimate h is called non-misleading if T = ftg and
if for any two arbitrary paths P and Q from s to m and to n respectively the
following assertion holds:

length(P ) + h(m) < length(Q) + h(n) )

length(P ) + ĥ(m) � length(Q) + ĥ(n) (6.2)

A heuristic estimate h is called proper if the assertion in (6.2) holds for any two
paths, such that P and Q are not contained in each other (i.e., P is not a subpath
of Q and Q is not a subpath of P).

In [Pearl] also the notion monotone is considered and is proved to be equivalent
to consistent. A heurictic estimate is called monotone, if h(v)� h(w) is smaller
than or equal to the shortest pathlength from v to w for any pair v; w.
The de�nition of admissible is a generalisation of that in literature hitherto. It
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Figure 5: A non-misleading estimate.

can be proved easily that a monotone and thus a consistent estimate is always
admissible.
The concept non-misleading has been introduced by Ibaraki [Ibaraki] in the con-
text of the branch and bound method. The de�nition in [Ibaraki] di�ers from
the current one, which is taken from [Bagchi 83]; both de�nitions are equivalent
in case of an acyclic graph. In [Ibaraki] it is noted that non-misleading estimates
are rare. The notion proper has been introduced in [Bagchi 83]. It is clear that
a non misleading estimate is always proper. The converse is not true; see again
[Bagchi 83]. An example of a non-misleading estimate is shown in Figure 5. (The
arc distances are given along the arcs and h(v) is given between parenthesis at
vertex v.)

Lemma 6.1 (invariant) During execution of the F-algorithm on a graph wit-
hout negative cycles the following properties hold, if the heuristic estimate is
consistent:

a) 8w 2 S; 8v 62 S : f(w) � F � f(v);

b) 8w 2 S; 8v 62 S : g(w) � g(v) + d(v; w):

Proof

a) We will prove that this property holds, whenever a new F -value is determined
and is maintained in all other cases.
Suppose that the statement, establishing a new F -value, is executed. As a con-
sequence of the fact that a) holds before the execution of this statement, a) holds
afterwards.
When k is selected, we have by the selection criterion that f(k) � F and by a)
that f(k) � F . We conclude f(k) = F . Due to a) we have before the update:
8w 2 S; 8v 62 S : f(w) � F = f(k) � f(v).
If a vertex v is updated, then g(v) = g(k) + d(k; v) � g(k) + h(k) � h(v). It
follows that f(k) � f(v). Hence after the update we still have for each v 62 S:
f(k) = F � f(v). By b) g(w) with w 2 S is not updated and hence f(w) � F
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remains true.
b) The inequality f(w) � f(v) can be rewritten as g(w) � g(v) + h(v) � h(w),
which implies by the consistency of h that g(w) � g(v) + d(v; w). 2

Lemma 6.2 (invariant) During execution of the F-algorithm on a graph without
negative cycles the following properties hold if the heuristic estimate is admissible:

a) if t 62 S, then f(k) � F � ĝ(t) + h(t).

b) when t is inserted into S, then ĝ(t) = g(t) and f(t) = F .

Proof

a) We will prove that this property holds, whenever a new F -value is determined
and is maintained in all other cases.
In an iteration, which establishes a new F -value, it holds that f(k) = F . Con-
sider a path from s to t with minimal length. Let p be the �rst vertex in this
path, which is not in S. Since t 62 S, the vertex p exists; (p may be equal to k or
t). We have the following (in)equalities:

F � f(p) (since F is the minimum of the f -labels outside S)
= g(p) + h(p) (by de�nition)
� ĝ(p) + h(p) (by Lemma 5.1)

� ĝ(p) + ĥ(p) + h(t) (due to the admissibility)
= ĝ(t) + h(t) (since p lies on a shortest path)

In an iteration in which no new F -value is established, we have f(k) � F and a)
is maintained trivially.

b) As shown in the proof of a) we have, when t is selected, that F � ĝ(t) + h(t).
Moreover we have in general: g(t) + h(t) = f(t) � F . Since, as a consequence
of Lemma 2.1 g(v) � ĝ(v) for all v, we conclude that these three inequalities are
equalities. 2

Theorem 6.1 For the F-algorithm the following holds on a graph without nega-
tive cycles:

a) if the heuristic estimate function is consistent, then the label-setting version
is correct and is equivalent to the label-setting version of the SE-algorithm;

b) if the heuristic estimate function is admissible, then the target version is
correct and the greatest F -value during execution is equal to ĝ(t)+h(t).

Proof

a) The label-setting version is correct, because, by b) of Lemma 6.1, the invariant
(6.1) holds. Due to a) of Lemma 6.1, the vertex which is selected has minimal
f -label outside S.
b) This follows from b) of Lemma 6.2 2

Theorem 6.2 For the SL-algorithm,

a) the label-setting version is correct if all distances are nonnegative;

b) the target version is correct if ĥ(v) � 0 for each v 2 V .
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Proof

If h = 0 and all distances are nonnegative, then h is consistent. If h = 0 and
ĥ(v) � 0 for any v, then h is admissible. Since the SL-algorithm is the instance
of the SE-algorithm with h = 0, the results follows from Theorem 6.1. 2

Note

In the proof of Lemma 6.2, we only use the fact that in at least one path P with
minimal length h(p)� ĥ(p) � h(t) for all p 2 P . Therefore the related conditions
in Theorems 6.1b and Theorem 6.2 can be relaxed similarly.

There is another way to connect the SE- and SL-algorithm.

Theorem 6.3 Let graph G = (V;E) be given with distance functions d1 and d2,
such that

d1(i; j) = d2(i; j)� h(i) + h(j); 8(i; j) 2 A; (6.3)

where h denotes a heuristic estimate function on V . If the SE-algorithm runs
with distance function d2 and the SL-algorithm runs with distance function d1,
then in each iteration of each algorithm the same vertex is selected for insertion
into S and the same vertices are updated. It is assumed that ties are broken in
favour of the same vertex in both algorithms.

Proof

Let g1 and g2 denote the g-labels in case distance function d1 or d2 respectively is
used, and let f2 denote g2+h. We prove by induction that in each next iteration,
the same vertex is selected and the same labels are updated.
Assume that up to a certain iteration, for both algorithms the same vertex has
been selected and the same vertices have been updated in each iteration. By
Lemma 2.1 g1(v) and g2(v) are equal to the length of a walk. Since in all previous
iterations the same vertex has been selected and the same vertices have been
updated for each algorithm, these walks are the same. Determining the length
of this walk in each algorithm, we come to the following equality, using (6.3):

g1(v) = g2(v) + h(v)� h(s) = f2(v)� h(s); 8v 2 V (6.4)

Since both algorithms have selected the same vertex and have updated the same
labels in each iteration, the S-sets are equal. Due to (6.4), in the next iteration
the SL-algorithm with distance function d1 selects the same vertex as the SE-
algorithm does with d2.
Using (6.3) and (6.4), the following equality can be derived by straightforward
substitution:

g1(v)� g1(w)� d1(v; w) = g2(v)� g2(w)� d2(v; w); 8v; w 2 V (6.5)

Hence the same labels are updated in both algorithms. 2

Note that Theorem 6.3 matches Theorems 6.1 and 6.2. If h is consistent, then
d1 is nonnegative. If h is admissible, then ĥ(v) � 0, where ĥ is measured with
respect to d1.
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De�nition 6.4 The selection criterion of an instance of the F-algorithm is called
proper, if for all v 62 S, k 6= v, the relation

f(k) < f(v)
_
g(k) � g(v)

is satis�ed, when k is selected.

Notice that CSS has a proper selection criterion. The SE-algorithm has a proper
selection criterion, when an additional rule is applied: ties are resolved in favour
of the smallest g-label.
The next lemma gives some invariants related to the F-algorithm with a proper
heuristic estimate. These invariants will be used in Theorem 6.4 to prove that
the label-setting versions is correct in case of a proper heuristic estimate.

Lemma 6.3 (invariant) If an instance of the F-algorithm using a proper selec-
tion criterion runs on a graph with non-negative distances and with a proper
heuristic estimate, then for any v 62 S and any w 2 S:
a) g(w) � g(v) _ g(w) + ĥ(w) � g(v) + ĥ(v)
b) g(w) � g(v) + d(v; w)

Proof

This invariant holds before the �rst iteration. We will show that it holds after
each next iteration.
Suppose the vertex k is selected and inserted into S. Since the selection criterion
is proper, we have for all v 62 S:

g(k) � g(v)
_

g(k) + h(k) < g(v) + h(v): (6.6)

Because of invariant b), no vertex has been deleted from S and therefore, each
backpointer path is an S-path. Consequently the backpointer paths of k and v

cannot be subpaths of each other. Because of Lemma 5.3 the lengths of both these
backpointer paths are equal to the corresponding g-labels. Since the estimate
function h is proper, we state:

g(k) + h(k) < g(v) + h(v)) g(k) + ĥ(k) � g(v) + ĥ(v) (6.7)

It follows from (6.6) and (6.7) that a) is preserved, when k is inserted into S.
We now show that a) is preserved, when a given vertex v is updated. After the
update, g(v) = g(k) + d(k; v). If g(w) � g(k) for a vertex w 2 S, then a) is
preserved trivially for this vertex w. If g(w) + ĥ(w) � g(k) + ĝ(k) for a vertex
w 2 S, then we state:

g(w) + ĥ(w) � g(k) + ĥ(k) = g(v)� d(k; v) + ĥ(k) � g(v) + ĥ(v) (6.8)

The right inequality in (6.8) is a consequence of a general inequality for the
ĥ-function:

8(u; v) 2 A : ĥ(u) � d(u; v) + ĥ(v) (6.9)

By (6.8), a) is also preserved for this vertex w.
Now we show that b) is preserved. We have the implication:

g(w)+ĥ(w) � g(v)+ĥ(v) � g(v)+d(v;w)+ĥ(w)) g(w) � g(v)+d(v;w) (6.10)
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(Again the inequality in (6.9) is used.) Using the nonnegativity of the distances,
we conclude that each inequality in a) implies b). 2

Theorem 6.4 For an instance of the F-algorithm with a proper selection crite-
rion, the label-setting version is correct on a graph with non-negative distances
and a proper or non-misleading heuristic estimate function

Proof

Notice that a non-misleading heuristic estimate is always proper, as mentioned
earlier. Due to part b) of Lemma 6.3, the label-setting version is correct. 2

In contrast with a consistent estimate, the f -values, successively selected, do
not generate an increasing series. This is illustrated by the instance in Figure 5.

We conclude with remarks on the existing literature. The target version of SE-
algorithm is known as the A* algorithm [Hart, Pearl]. The target version of
CSS is called the C-algorithm [Bagchi 83, Bagchi 85]. Several other algorithms
have been designed, which are essentially specializations of F. In literature the
following instances can be found (see also [Mahanti 88]): B [Martelli], B' [Mero],
PropA [Bagchi 85], PropC [Bagchi 85]. The label-setting and the label-correcting
version of SL are known in literature as Dijkstra' algorithm [Dijkstra] and Mo-
di�ed Dijkstra's algorithm [Johnson] respectively. In [Martelli] a correspondance
between A* and Modi�ed Dijkstra is pointed out, which is similar to Theorem
6.3.
By adding target vertex 0 and adding an arc (1; 0) with d(1; 0) = 2n to the graph
K(n), (see Section 5), we obtain an instance of the A*-algorithm. (This instance
resembles instances in [Martelli] and [Mahanti 88].) We conclude that also A*
may have exponential run time.
A weaker version of Theorem 6.4 has been derived in [Bagchi 83], which states
that a non-misleading heuristic estimate with nonnegative weights results in a li-
near number of insertions. The result that the label-setting version is also correct
for a proper heuristic estimate, has not been stated before in literature.
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