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Abstract

Global total least squares (GTLS) is a method for the identi�cation

of linear systems where no distinction between input and output vari-

ables is required. This method has been developed within the deter-

ministic behavioural approach to systems. In this paper we analyse

statistical properties of this method when the observations are gener-

ated by a multivariable stationary stochastic process. In particular,

su�cient conditions for the consistency of GTLS are derived. This

means that, when the number of observations tends to in�nity, the

identi�ed deterministic system converges to the system that provides

an optimal appoximation of the data generating process. The two

main results are the following. GTLS is consistent if a guaranteed sta-

bility bound can be given a priori. If this information is not available,

then consistency is obtained (at some loss of �nite sample e�ciency)

if GTLS is applied to the observed data extended with zero values in

past and future.
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1 Introduction

System identi�cation is concerned with the determination of su�ciently sim-

ple models that give a su�ciently accurate description of the observed data.

Identi�cation methods di�er in the speci�cation of the model class and in the

way the complexity and accuracy of models is evaluated. For our purposes it

is helpful to distinguish models according to their treatment of the observed

variables, that is, models can be (i) closed or open, and (ii) symmetric or

asymmetric. We call a model closed if it speci�es the behaviour of all the

observed variables, and open if it leaves some variables unexplained. A model

is symmetric if the a priori assumptions are the same for all the observed

variables, and asymmetric if this is not the case. Most of the approaches

that have been developed for the estimation of multivariable systems con-

sider either closed symmetric models or open asymmetric ones. To be more

speci�c, within the time series literature one usually models the variables as

a jointly stationary process, which corresponds to a closed symmetric model.

For example, ARMA models describe the observed process w in terms of a

white noise process " by means of square polynomial matrices P (z�1); Q(z�1)
as

P (z�1)w = Q(z�1)" (1)

where z�1 denotes the shift operator de�ned by (z�1w)(t) := w(t� 1). From

the standard textbooks on identi�cation along these lines we mention Hannan

(1970), Anderson(1971), Priestley (1981) and L�utkepohl (1993). On the

other hand, within the control engineering literature the usual starting point

consists of input-output relations. These models are open, as the behaviour of

the inputs is left unspeci�ed, and asymmetric, as they require prior selection

of input and output variables. A well-known example is prediction error

identi�cation, of which ARMAX modelling forms a special case. If the inputs

are denoted by u, the outputs by y and the noise by ", then these models are

described in terms of polynomial matrices P;Q;N , with P and Q square, as

P (z�1)y = N(z�1)u+Q(z�1)" (2)

The asymmetry of this model is especially clear in the modelling of the

disturbances, as one usually assumes that these act on the outputs alone

and not on the inputs, that is, u and " are assumed to be uncorrelated. For
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this and related approaches we refer to Davis and Vinter (1985), Ljung(1987),

Caines (1988) and Hannan and Deistler (1988).

In practice it may not always be clear which variables act as inputs and

which ones as outputs, or what are the properties of the disturbances. This is

particularly relevant if the disturbances are seen as a result of model inaccu-

racies rather than as the e�ect of physical noise acting on the system. Such

situations demand a more symmetric treatment of the system variables. On

the other hand, it may not be realistic to ask for a closed system model if the

available information is not su�cient to formulate relations for all the sys-

tem variables. In this case one needs methods for the identi�cation of open

symmetric models. Several approaches have been developed for this pur-

pose, in particular errors-in-variables models, see Deistler (1989), Beghelli

et al. (1990) and Deistler and Scherrer (1992), and system behaviours, see

Willems (1986, 1991), Heij (1989) and Roorda (1995a). The �rst approach

has the advantage that it treats stochastic systems which allows a statistical

analysis of identi�cation methods, whereas behaviours have been developed

within a deterministic setting. A disadvantage of errors-in-variables mod-

els is that identi�cation requires rather strong noise assumptions, whereas

identi�cation within the behavioural framework is a matter of deterministic

approximation. In order to make a statistical analysis of identi�cation pro-

cedures possible without the need for strong prior assumptions on the noise,

a synthesis of the two approaches is proposed in Heij et al. (1995) in terms

of dynamic factor models. Hereby it is assumed that the observations are

generated by a stationary stochastic process, denoted by w. A factor model

is a decomposition

w = ŵ + ~w (3)

R(z�1)ŵ = 0 (4)

where ŵ and ~w are stationary processes and R(z�1) is a polynomial matrix

with less rows than columns. Here ŵ is called the latent process, and ~w

is the corresponding error process. As errors are allowed in all components

this gives a symmetric treatment of the variables, and as the number of

restrictions on ŵ is less than the number of observed variables this model is

also open. Factor models are evaluated in terms of their complexity, measured

by the number of degrees of freedom of the latent process ŵ, and in terms of

the magnitude of the error process ~w. For the identi�cation of these models
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from observed data we consider in this paper the so-called method of global

total least squares (GTLS), see Roorda (1995a) and Roorda and Heij (1995).

The statistical properties of identi�cation methods for ARMA and AR-

MAX models are well-established. In particular, su�cient conditions for

consistency and asymptotic normality of estimators have been derived, see

Hannan (1970), Anderson(1971), Ljung(1987), Caines (1988) and Hannan

and Deistler (1988). In this paper we make a �rst step in the statistical

analysis of the estimation of open symmetric models, by considering the con-

sistency of global total least squares for the identi�cation of factor models.

Stated more precisely, assume that the tolerated complexity of factor mod-

els has been �xed. A model is called optimal if it has minimal total least

squares error under this complexity constraint, that is, if it minimizes the

error fEk ~w(t)k2g1=2 where k�k is the Euclidean norm. So this corresponds to

the best achievable approximation ŵ of the process w in case this process was

fully known. In practice, the available information consists of an observed

time series. An identi�cation method is called consistent if the identi�ed

system converges to the optimal system in case the number of observations

tends to in�nity. The two main results of this paper are, roughly stated, the

following. The global total least squares method is consistent if a guaranteed

stability bound for the optimal model can be given a priori. If this infor-

mation is not available, then consistency is obtained (at some loss of �nite

sample e�ciency) if GTLS is applied to the observed data extended with

zero values in past and future. This paper extends earlier partial results that

were presented in Heij et al. (1995) and Heij and Scherrer (1994, 1995).

The paper has the following structure. In Section 2 we specify the data

generating process, the class of factor models and the identi�cation method.

This is done in terms of system behaviours, that is, free of parametrization.

For algorithmic purposes, the representation of systems by means of so-called

isometric state space models is described in Section 3. The results on con-

sistency are presented in Section 4, and they are illustrated by two simple

simulation examples in Section 5. Section 6 concludes, and proofs are in the

Appendix.
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2 Linear Systems and Factor Models

In this section we describe the main elements of the identi�cation problem

considered in this paper, that is, the data generating process, the model class,

and the identi�cation procedure. In order to streamline the exposition we

will make several simplifying assumptions, some of which could be relaxed

without a�ecting the results. For a more general treatment of some of the

issues discussed in this section we refer to Willems (1986, 1991), Heij et al.

(1995) and Roorda (1995a).

2.1 The Data Generating Process

Let the observed process be denoted by w, and the number of observed

variables by q. A symmetric treatment of the variables requires that the prior

assumptions on the data generating process are also of a symmetric nature.

We will assume that the data are generated by a stationary stochastic process

in discrete time Z := f: : : ;�2;�1; 0; 1; 2; : : :g. To be more precise, we assume

that w is a purely nondeterministic, weakly stationary process of full rank,

with zero mean and �nite second order moments. The full rank condition

means that the process satis�es no (linear) deterministic restrictions, and the

condition of being purely nondeterministic means in practice that possible

purely harmonic components have been removed. These assumptions are

usual in the analysis of stationary time series. Under the above assumptions

the process has a standardized Wold representation

w = T (z�1)" (5)

where " is a q-dimensional white noise process with zero mean and unit

covariance matrix. Here T (z�1) =
P1

k=0 Tkz
�k is a causal transfer function

with causal inverse, with T0 invertible and
P1

k=0 kTkk
2 < 1. This also

means that the process has a spectral density given by � = 1
2�
TT �, where

T � is the adjoint de�ned by T �(z) := T 0(z�1) with T 0 the transposed of

T . Throughout this paper we will impose the condition that the transfer

function T is absolutely summable,
P1

k=0 kTkk < 1, so that the spectrum

is a bounded function on the unit circle. Such processes are called linear,

and they are ergodic in the sense that the sample covariances almost surely

converge pointwise to the process covariances if the number of observations
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tends to in�nity, see Hannan (1970, Theorem IV.6). In addition we assume

that Ef"(t) j "(s); s � t � 1g = 0, that Ef"(t)"0(t) j "(s); s � t � 1g =

E "(t)"0(t) = I, and that the fourth order moments of the process " exist. All

the above assumptions are satis�ed for Gaussian ARMA processes, but they

hold also true under weaker conditions.

2.2 The Model Class

The purpose of identi�cation is to estimate the main characteristics of the

data generating process from observed data. In order to de�ne our model

class, we �rst give a behavioural description of deterministic linear systems.

This approach was introduced by Willems (1986) and gives a symmetric

treatment of the system variables, in contrast with the usual description in

terms of input-output systems. The behaviour of a deterministic system with

q variables is de�ned as the set of all trajectories ŵ : Z! R
q that may arise

within the restrictions imposed by the system. So a behaviour is a subset B of

(Rq)Z. We consider behaviours that are linear, time invariant, and complete.

This means that B � (Rq)Z is a linear subspace that is invariant under the

shift operator z�1, de�ned by (z�1ŵ)(t) := ŵ(t� 1), and that the behaviour

is in addition closed in the topology of pointwise convergence. The last

condition means that for a sequence ŵn 2 B which converges pointwise (in

R
q) to ŵ0 2 (Rq)Z there holds that also ŵ0 2 B. This may seem a somewhat

technical condition, but it means that the behaviour corresponds to a linear,

time invariant, �nite dimensional system. The observed variables w can be

partitioned into inputs and outputs so that the behaviour consists of all

input-output trajectories that can be generated by a linear, time invariant,

�nite dimensional system with freely chosen initial conditions. In the sequel

we will simply use the term linear system to refer to a linear, time invariant,

complete behaviour.

De�nition 1 A linear system is a linear, shift invariant subset B � (Rq)Z

that is closed in the topology of pointwise convergence.

A linear system is called controllable if every past trajectory in B can be

driven in �nite time into every future trajectory in B.
Every linear system can be represented in polynomial form, as the solu-

tion set of the polynomial equations R(z�1)ŵ = 0 as in equation (4). The
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representation of a given system by a polynomial matrix is highly non-unique,

but every representation has the same (polynomial) rank, say p = rank(R).

Then (4) de�nes a �nite dimensional input-output system with p outputs and

m := q � p inputs. We denote by n the number of states (initial conditions)

of the system. This number equals the minimally achievable sum of the lags

of the p equations in (4).

Our model class consists of factor models, which are de�ned in terms of

linear systems as follows. A factor model of an observed process w is a decom-

position (3) where the latent process ŵ satis�es the polynomial equations (4).

More precisely, almost all realizations of ŵ should satisfy the equations (4).

For simplicity we will assume throughout that the processes w,ŵ and ~w are

stationary and purely nondeterministic.

For comparison, the traditional model of static factor analysis is of the

form w = Lf + ~w, where w is a vector of observed variables, f a lower di-

mensional vector of unobserved factor variables, ~w a vector of unobserved

noise components, and L a matrix of factor loadings. If we de�ne the latent

variables by ŵ = Lf , then these variables satisfy deterministic linear equa-

tions as the matrix L does not have full row rank. The model (3), (4) is

the dynamic version of this model, where the latent process satis�es deter-

ministic linear di�erence equations. The interpretation of this model is that

the data generating process w approximately satis�es the restrictions of the

linear system B, at the expense of an error ~w. Imposing stronger restrictions

on the latent process ŵ will in general result in a larger error ~w. So factor

models involve a trade-o� between complexity and goodness of �t.

The error of a factor model (3), (4) is de�ned in terms of the variance

of the noise process by fE k ~w(t)k2g1=2. In practical applications it may be

relevant to stress the importance of certain variables or certain frequency

regions, which can easily be achieved by appropriate pre�ltering of the data.

The error of a system B for the process w is de�ned as the smallest achiev-

able error of all factor models (3) where the latent process satis�es the equa-

tions (4) of the system B. The optimal factor model is given by ŵ = PBw and

~w = (I�PB)w, where PB is the operator of orthogonal projection (for square

summable trajectories) onto the linear system B, see Heij et al. (1995). In
terms of the spectrum � of the data generating process, the error of this
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factor model is given by

e(B) =
�Z �

��
tracef(I � PB(ei!))�(ei!)gd!

�1=2
: (6)

The complexity of a system B is de�ned as the pair (m;n), with m the

number of inputs and n the number of states of the system. The complexity

measures the number of degrees of freedom that are present in the latent

process ŵ, as the dimension of the system B restricted to a time interval of

length N � n is given by Nm + n.

Our aim is to �nd systems with minimal error for a given a priori bound

on the complexity. Such systems are called optimal. We are mainly inter-

ested in Pareto optimal systems, that is, among the systems of optimal �t

we prefer the ones with minimal complexity. We use a partial ordering of

complexities where (m;n) is less complex than (m0; n0) if both m � m0 and
n � n0. Every linear system can be decomposed as B = Bc + Ba where Bc

is the largest controllable system contained in B and where Ba is a �nite

dimensional set. The system Bc is called the controllable part of B, and Ba

is an autonomous system without inputs so that the trajectories in Ba are

completely determined by the initial conditions. As Ba contains no non-zero

square summable trajectories it follows that PB = PBc so that e(B) = e(Bc).

If B is not controllable then Bc has complexity (m;n0) with n0 < n. It follows

that Pareto optimal systems are controllable. The problem of determining

optimal models for given spectrum � and complexity (m;n) will be discussed

in Section 3.

We summarize the foregoing in a de�nition.

De�nition 2 (i) A factor model of an observed process w is a decom-

position w = ŵ + ~w, with ŵ and ~w stationary and where ŵ satis�es

equations (4).

(ii) The complexity of a system B is given by the pair (m;n), with m the

number of inputs and n the number of states.

(iii) The error of a system B with respect to a process w is de�ned by (6),

where � is the spectrum of w and PB the orthogonal projection onto B.

(iv) For given complexity (m;n), a system is optimal if it minimizes the

error (6) under this complexity constraint, and Pareto optimal if in

addition all less complex systems have strictly larger error.
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2.3 The Identi�cation Method

We now consider the situation where the process w is unknown, and the

available information consists of an observed time series generated by the

process. That is, the data wN = w(!)j[1;N ] consists of a realization w(!) of

the process observed on a time interval of length N . For the identi�cation of

a linear system on the basis of these data we minimize the global total least

squares (GTLS) distance, de�ned by

eN(B) = minf
1
p
N
kwN � wa

Nk with w
a
N 2 Bj[1;N ]g (7)

where k � k is the Euclidean norm in (qN)-dimensional space. This distance

involves the total squares, in the sense that approximations in all the variables

are allowed. It is also global in the sense that the approximation wa
N should

not only locally satisfy the system equations (4), as in prediction oriented

criteria, but also globally because the full trajectory wa
N should satisfy the

laws of the behaviour B.

For given complexity (m;n), a system is optimal for the observed data

if it minimizes the error (7) under this complexity constraint. We mention

that, in contrast with the process error (6), Pareto optimal systems for the

GTLS criterion (7) need not be controllable.

In applications it is of importance to make a balanced trade-o� between

complexity and goodness of �t. This can be achieved by varying the com-

plexity and evaluating the corresponding variations in the goodness of �t

of optimal models. In this paper we do not further consider the issue of

complexity speci�cation, and we take the complexity as given. For �xed

complexity (m;n) we denote the optimal model for the data wN by B�N . This
is a random system, as it depends on the data that are generated by the

stochastic process w. Let B� be the optimal system in the sense of minimiz-

ing (6) under the complexity constraint, that is, the system with minimally

achievable error if the data generating process is known. The quality of iden-

ti�cation methods can be measured in terms of the discrepancy between the

identi�ed system and the optimally achievable result, that is, the distance

between B�N and B�. The basic question considered in this paper is whether

global total least squares is a consistent identi�cation method. That is, we

investigate in which sense and under which conditions it holds true that
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lim
N!1

B�N = B�: (8)

In order to analyse this question we need to consider the algorithms for the

computation of B� and B�N in more detail, and this is the topic of the next

section.

3 Parametrization and Optimization

In the foregoing section we de�ned systems and their complexity and good-

ness of �t in behavioural terms, that is, in terms of the set of trajectories

compatible with the system restrictions. For computational purposes we

need a parametric representation of linear systems. One possibility is to

use polynomial representations (4). However, for the GTLS error (7) it has

proved convenient to use a more structured type of representation, by means

of so-called isometric state space models. In this section we describe this

parametrization and its use in GTLS identi�cation, and for further back-

ground we refer to Roorda(1995a, 1995b) and Roorda and Heij (1995).

3.1 Isometric State Models

Every linear system can be represented in terms of state variables x̂ and

driving variables v̂ by means of the equations

x̂(t + 1) = Ax̂(t) +Bv̂(t) (9)

ŵ(t) = Cx̂(t) +Dv̂(t): (10)

In contrast with the usual input-state-output model, here all observed vari-

ables are seen as outputs of a system driven by auxiliary forces. So the model

is symmetric, and it is also open because the driving forces are unrestricted

so that not all components of ŵ are explained. This can also be interpreted

as a dynamic factor model, where the observed variables ŵ are generated by

the factors x̂ that evolve over time and with additional unrestricted factors

v̂. For a given system this representation is highly non-unique. A system

of complexity (m;n) can be represented by m driving variables and n state

variables, and not by a smaller number of these factor variables. Such rep-

resentations are called minimal. If (A;B;C;D) is a minimal representation
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of a system then all its minimal representations are given by the feedback

group (S(A + BF )S�1; SBR; (C +DF )S�1; DR) where S and R are n � n

and m�m invertible matrices and F is an arbitrary m�n matrix. In terms

of parameters, the minimality of representations amounts to the conditions

that the n� (n+m) matrix [A B] has full row rank n, the q�m matrix D

has full column rank m, and the matrix pair (A+BF;C+DF ) is observable

for all m� n matrices F .

In our approach we will not incorporate all linear systems in the model

class, as we will require that the systems are stabilizable. In behavioural

terms, a system is called stabilizable if all trajectories on �nite time intervals

admit a continuation within the system that converges to zero. In paramet-

ric terms, a system is stabilizable if there exists a matrix F such that all

eigenvalues of the matrix A + BF are contained in the open unit disc. So

we exclude systems that are not stabilizable. Pareto optimal systems for the

process error (6) are controllable, and such systems are also stabilizable.

Stabilizable systems can be represented by means of isometric state space

models, where the (n+ q)� (n+m) matrix

 
A B

C D

!
(11)

is isometric, that is, it has orthogonal columns of unit length. Minimal

isometric representations are unique up to block-unitary transformations.

That is, if a behaviour has minimal isometric representation (A;B;C;D)

then all such representations are given by (UAU 0; UBV; CU 0; DV ) with U

and V n � n and m �m unitary matrices. For �xed dimensions (m;n) we

de�ne the parameter set � � R
n�n � R

n�m � R
q�n � R

q�m by

� = f(A;B;C;D);

 
A B

C D

!0  
A B

C D

!
=

 
In O

O Im

!
g (12)

So the parameter set consists of isometric representations, but note that min-

imality is not required. By B(�) we denote the linear system corresponding

to � 2 �, that is, all the trajectories w that can be generated by the equa-

tions (9), (10) for these values of the parameters. This parametrization of

systems is not injective, due to the non-uniqueness of isometric representa-

tions. The image of this parametrization is the set of all stabilizable systems

with complexity (m;n0) with n0 � n.
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3.2 Computation of Model Errors

The behavioural error of factor models is de�ned by e(�) := e(B(�)) given
in (6), and the GTLS error by eN (�) := eN (B(�)) as in (7). For later purposes
we need more explicit expressions, as these are the objective functions that

are minimized in identi�cation. For given � = (A;B;C;D) let ~B and ~D be

n� (q �m) and q � (q �m) matrices such that the matrix

 
A B ~B

C D ~D

!
(13)

is unitary, i.e., square and isometric. Now � = (A;B;C;D) is a minimal

representation if and only if [A B] has full row rank and (A; ~B) is con-

trollable. The system B(�) is controllable if and only if (A;B) is control-

lable. We de�ne the transfer functions Ĝ(z�1) = D +
P1

k=1CA
k�1Bz�k

and ~G(z�1) = ~D +
P1

k=1CA
k�1 ~Bz�k, and the adjoints by Ĝ�(z�1) := Ĝ0(z)

and ~G�(z�1) := ~G0(z). It follows from the isometry condition (12) that

A0A + C 0C = In, so that A is a stable matrix and the eigenspaces corre-

sponding to eigenvalues on the unit circle are not observable. This means

that Ĝ and ~G are bounded rational transfer functions, so that v̂ := Ĝ�w
and ~v := ~G�w are well-de�ned stationary processes, as well as ŵ = Ĝv̂ and

~w = ~G~v. There holds that Ĝ�Ĝ = Im and ~G� ~G = Iq�m, so that the transfer

functions are both isometric, and they are orthogonal as Ĝ� ~G = 0. Further,

P = ĜĜ� is the operator of orthogonal projection onto the system B(�) and
Iq � P = ~G ~G� onto its orthogonal complement. This gives the following

parametric expression for the error (6), where the subindex � denotes the

dependence on the parameters.

e(�) = fEk~v�(t)k
2g1=2 =

�Z �

��
tracef ~G�

�(e
i!)�(ei!) ~G�(e

i!)gd!
�1=2

(14)

Although for given parameters � the extension with ( ~B; ~D) in (13) is only de-

termined up to right multiplication by a unitary matrix, the expression (14)

only depends on � and not on the chosen extension. For the actual com-

putation of the above error it is convenient to use the following recursive

algorithm in terms of state space models. For a given process w and pa-

rameters � = (A;B;C;D) with ( ~B; ~D) a unitary extension as in (13), the
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optimal approximation ŵ = ĜĜ�w of w within the system B(�) and the

corresponding error ~w = ~G ~G�w can be obtained as follows.

x(t) = A0x(t+ 1) + C 0w(t) (15)

v̂(t) = B0x(t + 1) +D0w(t) (16)

~v(t) = ~B0x(t + 1) + ~D0w(t) (17)

x̂(t+ 1) = Ax̂(t) +Bv̂(t); ŵ(t) = Cx̂(t) +Dv̂(t) (18)

~x(t+ 1) = A~x(t) + ~B~v(t); ~w(t) = C~x(t) + ~D~v(t) (19)

These recursions can also be used for the computation of the GTLS error (7),

as follows. If data are observed over the time interval [1; N ], then com-

pute (15), (16), (17) backwards for t = N;N�1; : : : ; 1 and determine the end

state x(N + 1) by minimizing 1
N

PN
t=1 k~v(t)k

2. The resulting v̂ and ~v are the

inputs to (18), (19) with initial conditions x̂(1) = x(1) obtained from (15) and

~x(1) = 0. If � is a minimal representation, then the time series ŵ generated

by (18) is the optimal approximation wa
N 2 B(�)j[1;N ] in (7) with correspond-

ing GTLS error eN(�) = f 1
N

PN
t=1 k ~w(t)k

2g1=2 = f 1
N

PN
t=1 k~v(t)k

2g1=2. So the

di�erence between the approximation of a given process in (6) and the ap-

proximation of �nite observed data in (7) consists in the determination of the

states x(N + 1); x̂(1); ~x(1). However, if � is not minimal then the computed

time series ŵ need not belong to B(�)j[1;N ], since the state x̂(1) = x(1) may be

non-reachable within the system B(�). This means that in this case we only

obtain a lower bound, as eN (�) � e�N (�) where e
�
N (�) = f 1

N

PN
t=1 k~v(t)k

2g1=2

with ~v obtained as before by means of (15), (17) with optimally chosen end

state x(N + 1) so as to minimize f 1
N

PN
t=1 k~v(t)k

2g1=2.
We summarize the main points of the foregoing discussion. References

for the proofs are given in the Appendix.

Proposition 1 (i) Every stabilizable linear system can be represented in

isometric state space form (9), (10), (12), and in identi�cation we take

as parameter set � in (12) with �xed values for (m;n).

(ii) The set of systems parametrized by � is the set of all stabilizable systems

of complexity (m;n0) with n0 � n, and n0 = n if � is minimal.

(iii) On the process level, the error (6) is given in parametric terms by

e(�) = fEk~v(t)k2g1=2 in (14) and this can be computed by (15), (17).
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(iv) The GTLS error (7) satis�es eN(�) � e�N(�) obtained from (15), (17)

with optimally chosen end state x(N + 1), and equality holds true if �

is minimal.

3.3 Structural Properies of the Identi�cation Problem

In order to determine optimal models of complexity at most (m;n), the

objective functions e and eN should be minimized over the parameter set �.

This is a highly nonlinear problem, and a closed-form solution is not available.

Gauss-Newton algorithms have been developed that converge to local minima

of the identi�cation criteria (6), (7), see Roorda (1995b). These algorithms

directly apply to the GTLS criterion (7) for �nite observed data. On the

process level, the system error (6) can be expressed as the GTLS problem

over in�nite time for the standardized Wold transfer function T in (5), see

Heij et al. (1995). Here we will not consider further algorithmical details,

and instead we describe some more general properties of the optimization

problems at hand. Apart from the parameter set �, we consider in the

sequel also the subsets ��, with 0 < � � 1, de�ned by

�� = f� 2 �;�max(A) � �g (20)

where �max(A) denotes the maximum modulus of the eigenvalues of the ma-

trix A. Because of the isometry condition (12) there holds that �1 = �. Fur-

ther, if �max(A) = 1 then this representation is not minimal, that is, the cor-

responding system B(�) has less than n active state variables. So, for a given

system there always exists an isometric representation with �max(A) < 1.

The restriction of the parameter set �� is that this gives a guaranteed stabil-

ity bound, in the sense that the e�ect of initial conditions in (15), (18), (19)

dies out at an exponential rate of at least �.

The following result states some properties that are useful for the mini-

mization of e and eN over � or ��. Here we consider the parameter sets as

subsets of the Euclidean space R(n+q)(n+m) with the usual topology.

Proposition 2 (i) � and �� are compact;

(ii) e is continuous on �;

(iii) eN is continuous at minimal points � 2 � if N � n;
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(iv) for �xed N and �k ! � there holds lim supk!1 eN (�k) � eN (�).

The proof of this and other results can be found in the Appendix. This shows

that the identi�cation problem corresponds to the minimization of relatively

well-behaved functions on compact domains. This is further investigated in

the following section, where we also consider the question of consistency (8),

that is, the question whether the (global) minima of eN converge to those of

e if the number of observations N tends to in�nity.

4 Consistency

Stated in general terms, an identi�cation method is called consistent if the

model identi�ed from �nite data converges to an optimal approximation of

the data generating process if the number of observations tends to in�nity.

We analyse this question for GTLS on two levels, that is, on the paramet-

ric level in terms of the state space representation (9), (10), and on the be-

havioural level of linear systems as formulated in (8). Throughout this section

we assume that the maximal tolerated complexity (m;n) is �xed. Most of

the analysis will be in parametric terms, as this is most close to the algorith-

mic implementation of the GTLS procedure, see (15) - (19). Further we will

distinguish two cases, that is, modelling with a guaranteed stability bound

given by the parameter set �� in (20), and modelling over the full parameter

set � when the observed data are extended with zeros in past and future. In

the last case the criterion (7) is replaced by the GTLS approximation over

in�nite time of the time series (: : : ; 0; 0; wN ; 0; 0; : : :). In terms of the Fourier

transform w
f

N := 1p
N

PN
t=1 w(t)e

�i!t and the periodogram SN = 1
2�
w
f

N(w
f

N)
�

this GTLS error is given by

e0N (�) =

�Z �

��
tracef ~G�

�(e
i!)SN(e

i!) ~G�(e
i!)gd!

�1=2
: (21)

4.1 Identi�cation with Guaranteed Stability Bound

We �rst state some auxiliary results and introduce some notation. Let

Ĝ� and ~G� denote the isometric transfer functions corresponding to � de-

�ned in Section 2.3, and let ~v� = ~G�
�w and ~w� = ~G�

~G�
�w. By ~VN(�) and

~WN (�) we denote the vectors of values of ~v�(t) and ~w�(t) respectively, stacked
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in reverse order t = N;N � 1; : : : ; 1. Further, by �N(�) we denote the

N(q � m) � N(q � m) matrix of orthogonal projection onto the image of

the N(q �m)� n matrix ( ~B;A ~B; : : : ; AN�1 ~B)0. Finally, a class of (possibly
non-causal) �lters fF� =

P1
k=�1 F�(k)z

�k; � 2 �g is called uniformly stable

if
P1

k=�1fsup� kF�(k)kg <1.

Lemma 3 (i) For every � < 1 the classes of �lters f ~G�
�; � 2 ��g and

fP� = ~G�
~G�
�; � 2 ��g are uniformly stable, but this does not hold true

for � = 1.

(ii) The GTLS error (7) satis�es

1

N
~W 0
N(�)

~WN (�) � feN (�)g
2 � fe�N(�)g

2 =
1

N
~V 0
N(�)fI � �N(�)g ~VN(�)

(22)

Lemma 4 For every � < 1 and for N ! 1, the following convergence

results hold true almost surely and uniformly over �� :

(i) 1
N
~V 0
N(�)

~VN(�)! e2(�) and 1
N
~W 0
N(�)

~WN (�)! e2(�);

(ii) 1
N
~V 0
N(�)�N(�) ~VN(�)! 0;

(iii) eN(�)! e(�).

We now consider the consistency of GTLS over the parameter set ��, with

� < 1 �xed. For �xed complexity (m;n) we denote by ��
� = argminf�2��ge(�)

the set of optimal parameters for the process and by ��
�;N = argminf�2��geN(�)

the set of parameters of GTLS models for the observed data. We consider �

in a natural way as subset of R(n+q)(n+m) with Euclidean norm.

Theorem 5 In parametric terms, GTLS is consistent over the parameter

set �� for every � < 1, as for N !1 there holds that almost surely

sup
f�N2��

�;N
g

inf
f�2��

�g
k�N � �k ! 0:

This means that the parameters of optimal models obtained by the GTLS

procedure for �nite observed data converge to the parameters of models that

are optimal for the data generating process. A similar result can be obtained
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on the behavioural level, that is, independent of the chosen parametrization.

In order to formulate consistency in behavioural terms we use the so-called

gap metric

d(B1;B2) = kĜ�1Ĝ
�
�1
� Ĝ�2Ĝ

�
�2
k1 (23)

where k � k1 denotes the supremum norm on the unit circle, and �j is an

isometric representation of Bj. Note that d(B1;B2) measures only the dis-

tance between the controllable parts of the systems Bi, as d(B1;B2) = 0 if

B1 and B2 have the same controllable part. For given � < 1 we denote by

B�(�) the set of optimal systems over �� for the data generating process, in

the sense of minimizing (6) over this set of systems, and by B�
N(�) the set of

GTLS systems minimizing (7) over ��, so that B
�(�) = fB(�) ; � 2 ��

�g and
B�

N(�) = fB(�N ) ; �N 2 ��
�;Ng.

Theorem 6 For �xed complexity (m;n) and � < 1, GTLS is consistent on

the behavioural level as almost surely for N !1 there holds

sup
fBN2B�

N
(�)g

inf
fB2B�(�)g

d(BN ;B)! 0:

So the GTLS systems identi�ed from observed data converge to optimal

systems for the data generating process if the number of observations tends

to in�nity, and this provides an answer to the consistency question formulated

at the end of Section 2.

4.2 Existence and Uniqueness of Optimal Models

In order to give these consistency results more meaning we investigate the

existence and uniqueness of optimal systems. The optima are unique if

B�(�) and B�
N(�) are singletons, and in this case we call the minima of

e(�) and eN(�) unique up to equivalence. That is, if (A;B;C;D) are min-

imal and optimal parameters then all other optimal parameters are of the

form (UAU 0; UBV; CU 0; DV ) with U and V unitary matrices. Of course,

because of the involved nonlinearities in e(�) and eN (�) minima need not

be unique (up to equivalence). Minima need not even exist for eN(�), and

for a counter example we refer to Section 5.1 in Roorda (1995a). Such non-

existence of minima only occurs in exceptional cases, as is made more explicit
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in the next result. Here we use the following concept of genericity of data

generating processes, in terms of the spectrum �(ei!) of the process w. Let

S be the set of q � q spectral density matrices that are bounded on the

unit circle, and let a metric on S be de�ned by d(�1;�2) = k�1 � �2k1 :=

sup!2[��;�] �maxf�1(e
i!)��2(e

i!)g. Then a subset S 0 � S is called generic if

it contains a subset S 00 � S 0 that is open and dense in S. Further we de�ne
the diameter of a set of systems B as the supremum of the distance d(B1;B2)

with B1;B2 2 B. We consider the following properties, that of course depend

on the data generating process (DGP).

� P1 : there exists an optimal system.

� P2 : the set of optimal systems has diameter at most �.

� P3 : all optimal systems are controllable and have full complexity

(m;n).

� P4 : the optimal system is unique.

Theorem 7 (i) For every � � 1, the criterion e satis�es P1 for all DGP,

P2 (for every �xed � > 0) and P3 for generic DGP, and P4 for a dense

set of DGP.

(ii) For every � < 1 and for generic DGP, the criterion eN satis�es P1, P2

(for every �xed � > 0) and P3 for N su�ciently large, almost surely.

Loosely speaking this means that, up to arbitrary �nite precision, optimal

systems are generically unique and the same holds true for the GTLS system

for su�ciently large sample size.

4.3 Identi�cation by Zero Extensions

The proof of consistency in Theorems 5 and 6 is based on Lemma 3(i) so

that it is crucial that the stability bound � < 1 is given a priori, as for � = 1

uniform stability no longer holds true. We remark that generically, because

of Theorem 7(i), optimal systems for the process are minimal so that � < 1,

and in practice it is perhaps not a very strong restriction to �x � close to

unity. However, if information on the stability bound is not available and one

would not like to impose this condition arti�cially, the above result is of little
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value. Therefore we now consider modelling without this prior information.

As the analysis of the GTLS procedure turns out to be relatively complicated

in this case, we consider the slightly adjusted criterion function (21). This

is the GTLS criterion when applied to the observed data extended with

zeros in past and future. Stated in terms of the algorithm (15) - (19) this

means the following. We no longer optimize over the end state x(N + 1)

in (15), as this state is now zero, and further the errors of the approximation

in (19), or equivalently in (17), over time instants t � 0 are also taken into

account. Of course, minimization of (21) will keep the additional errors small

as the observations are zero outside the time interval [1; N ], but as compared

with GTLS (7) there will be some loss of �t. This additional error will be

relatively smaller for systems with stronger stability bound, as the value of

� = �max(A) measures the rate at which the inuence of wrongly speci�ed

initial conditions in (15) - (19) dies out.

For simplicity we assume that the data generating process is Gaussian

ARMA, that is, in the Wold representation (5) " is Gaussian white noise

and T is a rational transfer function. These assumptions can be weakened,

for example to those stated in Brillinger (1975, Theorem 7.7.2). In order to

prove consistency we �rst state an auxiliary result.

Lemma 8 Under the above assumptions there holds that

(i) e0N ! e uniformly over � if N !1, almost surely;

(ii) the global minimum of e0N over � always exists.

We use the following notation. By �� = argminf�2�ge(�) we denote the set
of optimal parameters for the process and by �0�

N = argminf�2�ge
0
N(�) the set

of parameters that minimize the adjusted GTLS criterion (21). These sets

are non-empty because of Theorem 7(i) and Lemma 8(ii). For simplicity, and

motivated by the results in Theorem 7(i) we will assume that �� parametrizes

a single controllable system B� of full complexity. Further we denote by B0�
N

the set of systems parametrized by �0�
N . The next theorem states consistency

results on the parametric and on the behavioural level.

Theorem 9 Under the above assumptions,
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(i) identi�cation by adjusted GTLS (21) is consistent over the full param-

eter set �, as for N !1 there holds that almost surely

sup
f�0

N
2�0�

N
g

inf
f�2��g

k�0N � �k ! 0:

(ii) Consistency holds also true on the behavioural level, as B0�
N is non-

empty and for N !1 there holds almost surely

sup
fB2B0�

N
g
d(B;B�)! 0:

This shows that identi�cation by applying GTLS to the data extended with

zero values in past and future gives consistent estimates over the full param-

eter set �, that is, over the class of all linear systems with complexity at

most (m;n).

5 Simulation Examples

We illustrate the foregoing consistency results by means of two simple sim-

ulations. Here we will apply the GTLS procedure on the full parameter set

�, that is, without conditions on the stability of the system. We also con-

sider the e�ect of extending the data by zeros in past and future, that is,

identi�cation with the criterion (21) instead of (7). In both examples we

�rst determine the optimal approximation on the process level, that is, the

system of restricted complexity that minimizes (6). Then we apply GTLS

to data generated by the process, and we investigate whether the identi�ed

system converges to the optimal approximation if the number of observations

increases. The GTLS algorithm (15) - (19) is implemented by the procedures

described in Roorda (1995a, Appendix B). 1

5.1 Mexican Hat

The so-called Mexican hat is a �lter for change detection in noisy signals,

where the output is obtained as the second derivative of the input signal after

smoothing with the normal density h(s) = (1=
p
2�)e�s

2=2. Let the input

1The authors thank Berend Roorda for allowing us to use his Matlab procedures.
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be denoted by u and the output by y, then these variables are related by

y(t) = � d2

dt2
f
R1
�1 h(s)u(t�s)dsg. In this simulation we consider a discretized

and scaled version y(t) =
P50

k=�50Hku(t� k) where Hk = �10h00(k=10) with
h00(s) := � d2

ds2
h(s). Note that this is not a causal system, as the output

depends on future values of the input. The data generating process is given

by w = (w1; w2)
0 with w1 = u+e1 and w2 = y+e2, where y is generated from

u by the Mexican hat �lter and where (u; e1; e2) is a Gaussian white noise

process with independent components, mean zero, and standard deviations

respectively �u = 1, �1 = 0:05 and �2 = 0:73. This has been chosen so that

the signal-to-noise ratio is twenty for both variables. The data generating

process corresponds to a process of type (3), with latent process (u; y)0 and
noise process (e1; e2)

0. The Mexican hat is not a rational transfer function,

and our discrete time version has McMillan degree 100 so that the order of

the polynomial equation (4) for the latent variables (u; y)0 has order 100.

The idea of this simulation example is to approximate the data generating

process by a linear system with lower complexity. We will �x the complexity

at (m;n) = (1; 4), and we mention that values of the state dimension n � 6

give very accurate approximations.

First we characterize the optimal approximation of the process, that is,

the system with complexity (m;n) = (1; 4) that minimizes (6). As stated

in Section 3.3 this is given by the GTLS model for the standardized Wold

transfer function T in (5). However, in this example it is simpler to apply

GTLS to another transfer function that generates the process from standard

white noise, that is, w = T0"0 where "0 = (u; e1=�1; e2=�2) is a white noise

process with zero mean and unit covariance matrix and where

T0 =

 
1 �1 0

H 0 �2

!
:

Here H =
P50

k=�50Hkz
�k is the discrete time version of the Mexican hat. The

optimal approximation is given by the linear system that minimizes the sum

of the squares of the GTLS errors of the three columns in T0. In this case,

because the coe�cients of the �lter T0 are zero outside a range of length 101,

the optimal approximation can simply be calculated by concatenation, that

is, we consider an 'observation' length 101 for each of the columns of T0 and

apply GTLS to the resulting 2 � 303 data matrix. The GTLS model has

an error (6) of approximately 0.693, and the coe�cients of the polynomial
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relation function (4) are given in Table 1. This relation can be transformed to

a (non-causal) transfer function Ha from w1 to w2, and the resulting relative

error kHa �Hk=kHk is also given in Table 1 where kHk = (
P

kH
2
k)

1=2.

We generated data on observation intervals of lengths N =50, 100, 200,

500 and 1000 and identi�ed GTLS systems of complexity (m;n) = (1; 4).

Of course these systems are random, and we will report the result of an

arbitrary simulation. Other simulations gave similar results, but we will

not discuss further details of this random variation. The results in terms of

the coe�cients of relation (4) and the relative errors kHN � Hk=kHk and

kHN�Hak=kHak of the identi�ed transfer function HN are in Table 1. This

indicates consistency. It requires relatively large sample sizes to come close

to the optimal approximation Ha as it is relatively di�cult to identify the

zeros of this system. The poles are very well identi�ed, notwithstanding the

fact that Ha has two stable poles and two unstable ones.

N 50 100 200 500 1000 1
kHN �Hk=kHk 1.086 0.503 0.340 0.318 0.302 0.288

kHN �Hak=kHak 1.124 0.500 0.151 0.059 0.042 0.000

w1(t) 0.353 0.061 0.261 0.175 0.171 0.086

w1(t� 1) 0.078 0.158 0.453 0.394 0.362 0.141

w1(t� 2) 0.046 0.225 0.411 0.508 0.453 0.156

w1(t� 3) 0.253 0.361 0.280 0.417 0.383 0.133

w1(t� 4) 0.305 0.305 0.139 0.185 0.181 0.081

w2(t) 1.000 1.000 1.000 1.000 1.000 1.000

w2(t� 1) -1.561 -3.616 -3.994 -3.947 -3.941 -3.940

w2(t� 2) 1.251 4.948 6.050 5.907 5.890 5.885

w2(t� 3) -2.054 -3.042 -4.112 -3.970 -3.952 -3.946

w2(t� 4) 1.395 0.713 1.059 1.011 1.006 1.003

Table 1: Results of Example 1. The �rst row shows the sample size,

and the next two rows give the relative errors of HN with respect to

the Mexican hat H and the optimal approximation Ha respectively. The

next rows show the GTLS coe�cients of the relation (4) in the order

w1(t); : : : ; w1(t � 4); w2(t); : : : ; w2(t � 4) and scaled so that w2(t) has co-

e�cient one. The columns correspond to the di�erent sample sizes and the

last column shows the optimal process approximation.
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N 10 50 100 500 1
GTLS w1(t) 0.049 0.019 0.012 0.000 0.000

w1(t� 1) 0.991 1.000 0.999 1.000 1.000

w2(t) 1.000 1.000 1.000 1.000 1.000

w2(t� 1) 0.104 0.012 0.002 0.004 0.000

aGTLS w1(t) 0.126 0.003 0.010 0.000 0.000

w1(t� 1) 0.955 0.976 0.998 1.000 1.000

w2(t) 1.000 1.000 1.000 1.000 1.000

w2(t� 1) 0.207 0.034 0.003 0.006 0.000

Table 2: Results of Example 2. The �rst row shows the sample size. The

next four rows give the GTLS coe�cients of the relation (4) in the order

w1(t); w1(t� 1); w2(t); w2(t� 1) and scaled so that w2(t) has coe�cient one.

The last four rows are similar for the adjusted GTLS criterion (21) instead

of (7). The columns correspond to the di�erent sample sizes and the last

column shows the optimal process approximation.

5.2 Bivariate Autoregression

In the second simulation we consider a simple bivariate autoregressive pro-

cess. The data are generated by w = (w1; w2)
0 with w1(t) = 0:9w1(t�4)+"1(t)

and w2(t) = w1(t � 1) + "2(t), where " = ("1; "2)
0 is a Gaussian white noise

process with zero mean and unit covariance matrix. We consider approxima-

tions by linear systems of complexity (m;n) = (1; 1). The optimal relation

function for this process is computed from the Wold representation (5) as

discussed in Section 3.3. This gives the approximation ŵ2(t) = ŵ1(t � 1)

with error (6) equal to 1
2

p
2.

We generated data on observation intervals of lengths N =10, 50, 100 and

500 and identi�ed GTLS models of complexity (m;n) = (1; 1). Further we

also identi�ed models by the adjusted GTLS criterion (21). The results are

in Table 2 in terms of the estimated polynomial equations (4). This again

con�rms the consistency of GTLS identi�cation. In addition, it indicates

that the criterion (21) corresponding to extending the data with zeros in

past and future is close to the GTLS criterion (7) if the number of observed

data is su�ciently large.
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6 Conclusion

In this paper we presented a statistical analysis for the identi�cation of open

symmetric models. This means that all variables are treated in a similar

way and that the model leaves some aspects of the evolution of the variables

unexplained. This is in contrast with more conventional approaches in system

identi�cation, where models are usually either closed and symmetric, such

as ARMA, or open and asymmetric, such as ARMAX. In our approach the

object of interest is the system behaviour, and basic system properties are

expressed independent of parametrization. We analysed the global total least

squares (GTLS) method for linear system identi�cation within a stochastic

framework. Here the complexity of the models is �xed, and a �nal model

choice will involve a trade-o� between complexity and goodness of �t.

The central result concerns the consistency of GTLS, in the sense that

the identi�ed model converges to an optimal approximation of the data gen-

erating process. In terms of isometric state representations, it is shown that

GTLS is consistent if the maximum modulus of the eigenvalues of the state

transition matrix is bounded a priori by a �xed number � < 1. The full

parameter set has � � 1 and, in fact, representations with � = 1 are not

minimal and hence correspond to systems of lower complexity. Consistency

for the whole model class is obtained if the observed data are extended by

zeros in past and future, and GTLS is applied to these extended data. For

�nite data this may cause an increase in error as compared to GTLS, but

this e�ect vanishes asymptotically with a speed depending on �.

The question whether GTLS is consistent on the whole model class is a

topic for future investigation. A further statistical analysis of identi�cation

by means of open symmetric models is needed. In particular, results on

(asymptotic) distributions would be of interest, both in terms of parameters

and in terms of system behaviours. This would open the way to testing

procedures, for instance concerning the selection of model complexity.

7 Appendix

Proof of Proposition 1

For (i) and (ii) we refer to Roorda (1995a), Propositions 3.2.4, 3.2.7 and 4.2.2,

(iii) follows directly from Heij et al. (1995), Theorem 5, and (iv) for minimal � is
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stated as Algorithm 1 in Roorda (1995a), see also Roorda(1995b). The result in

(iv) for non-minimal � follows because in this case the minimization for eN should

be restricted to the set of reachable states x(N + 1), while for e�N this restriction

is not taken into account. 2

Proof of Proposition 2

(i) It is evident from (12) that � is a closed and bounded subset of R(n+q)(n+m),

so that it is compact. As �� in (20) is a closed subset of � it is also compact.

(ii) Rewrite (14) as e2(�) =
R �
�� tracef(I � Ĝ�Ĝ

�
�)�gd!, where Ĝ�(e

i!) =

D +
P1

k=1CA
k�1Bei!k. Let f�kg be a sequence in � that converges to �0 =

(A0; B0; C0;D0) for k !1, then it su�ces to prove that e2(�k)! e2(�0). As the

standardized Wold representation (5) is assumed to be absolutely summable, the

spectral density � is bounded on the unit circle so that it su�ces to prove thatR
tracefĜkĜ

�
k� Ĝ0Ĝ

�
0gd! ! 0, where Ĝk := Ĝ�k . This is a standard result in case

A0 has all its eigenvalues within the open unit disc, as Ĝ0 is then a bounded ra-

tional matrix function on the unit circle. Otherwise, let fei!l ; l = 1; : : : ; Lg be the
eigenvalues of A0 on the unit circle, and de�ne for � > 0 the sets U1 :=

SL
l=1f! 2

[��; �]; j!�!lj < �g and U2 := [��; �]nU1. Then
R
U2
tracefĜkĜ

�
k�Ĝ0Ĝ

�
0gd! ! 0

as before, and j RU1
tracefĜkĜ

�
k � Ĝ0Ĝ

�
0gd!j �

R
U1

tracefĜkĜ
�
k + Ĝ0Ĝ

�
0gd! =R

U1
tracefĜ�

kĜk + Ĝ�
0Ĝ0gd! = 2m

R
U1
d! = 4mL� � 4mn�. Letting � # 0 the

result follows.

(iii) From the de�nition in (7) it follows that the GTLS error is obtained by

the residual after projecting the observed data wN onto the linear space Bj[1;N ].

If B has complexity (m;n) then for N � n the linear space Bj[1;N ] � R
Nq has

dimension n+Nm. The representation (18) shows that this projection space can

be represented as

ŴN = FN x̂(1) +GN V̂N (24)

where ŴN := (ŵ(1)0; : : : ; ŵ(N)0)0, V̂N := (v̂(1)0; : : : ; v̂(N)0)0,
FN := (C 0; A0C 0; : : : ; (A0)N�1C 0)0, and GN is the Nq�Nm matrix with t-th block

row, t = 1; : : : ; N , given by (CAt�2B; : : : ; CAB;CB;D; 0; : : : ; 0). In order to

obtain time series in Bj[1;N ], V̂N can be chosen freely and x̂(1) should be reachable

in (18). If � is minimal then all states x̂(1) are reachable as in this case [A B]

has full row rank, and then the matrix H(�) := [FN ; GN ] has full column rank

Nm+ n.

Now let be given observations wN and minimal �0 2 �, and let �k ! �0 for k !
1, so that �k is also minimal for k su�ciently large. According to the foregoing,

eN (�0) is obtained by projecting wN onto B(�0)j[1;N ] = imH(�0), and eN (�k) is

obtained by projecting onto imH(�k). So the continuity of eN is equivalent to
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the continuity of these projections as function of �. As the entries of H(�) are

clearly continuous functions of �, continuity of the projections is equivalent to the

condition that the projection spaces have constant dimension. Because �0 and �k
are minimal it follows that rankH(�0) = Nm + n = rankH(�0) for k su�ciently

large.

(iv) In a �rst step we construct the set of reachable states X � R
n of a

system B(�): Let the matrices Xj be de�ned by the recursion X0 = I and

Xj+1 = [AXj ; B]. Then by an induction argument it follows that imXj+1 � imXj

and if imXl+1 = imXl for some l, then imXl+j = imXl holds for all j � 0. This

immediately implies that imXn+1 = imXn. Clearly imXn � X holds by con-

struction and imXn � X follows from imXn+1 = imXn. Thus we have proved

that the set of reachable states equals the image of the matrix Xn.

Therefore eN (�) may be obtained by projecting WN onto the column space

of the matrix �H(�) = [FN (�)Xn(�); GN (�)]. Now we construct a unitary matrix

U = [U1; U2], such that �H(�0)U1 has full column rank and �H(�0)U2 = 0. Let �e(�)

denote the error of the projection ofWN onto the column space of �H(�)U1. Clearly

eN (�) � �e(�) and eN (�0) = �e(�0) holds. Finally, since �H(�k)U1 converges to the

full rank matrix �H(�0)U1 we have lim supk eN (�k) � limk �e(�k) = �e(�0) = eN (�0).

2

For later reference we collect some results in the following lemma.

Lemma 10 (i) Let fG�; � 2 �g and fF�; � 2 �g be two uniformly stable classes

of �lters, then fG�F�; � 2 �g is also uniformily stable.

(ii) Let " be a white noise process satisfying the assumptions stated at the end

of Section 2.1 and let fG�; � 2 �g be uniformily stable. Then for w� = G�"

there holds that almost surely sup� k 1
N

PN
t=1 w�(t)w

0
�(t)�Ew�(t)w

0
�(t)k ! 0.

Proof. Part (i) is immediate and (ii) is a simple generalization of Ljung (1987,

Theorem 2.B.1 and Corollary to Theorem 2.B.1) to the case of non-causal �lters.

2

Proof of Lemma 3

(i) As �� is compact, the corresponding set of n�n matrices A is also compact.

For �max(A) � � < 1 it follows from Davis and Vinter (1985, Proposition D.3.1)

that for every � < � < 1 there exists c > 0 such that kAkk � c�k for all k =

0; 1; 2; : : :, uniformly over ��. Here k � k is any matrix norm, and we consider the

induced norm. For the �lters ~G�(z
�1) =

P1
k=0

~G�(k)z
�k it follows from this result

and (13) that k ~G�(0)k = k ~Dk � 1 and k ~G�(k)k = kCAk�1 ~Bk � kCkkAk�1kk ~Bk �
c�k�1 for k � 1, that is, there is a constant M > 0 so that k ~G�(k)k �M�k for all
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k � 0. So
P

k sup� k ~G�(k)k � M
P
�k <1 which proves the uniform stability of

~G�
� and, by the above Lemma 10(i), of P�.

For � = 1 the family of �lters is not uniformly stable (unless in the trivial

cases n = 0 and m = q). We prove this by construction for (q;m; n) = (2; 1; 1), for

higher dimensions the result follows by taking this construction as a subsystem.

Let (A; ~B;C; ~D) = (�;��; (1; 1)0 ; ��(0; 1)0) with 0 < � < 1 and � and  so

that (A; ~B;C; ~D) is an isometric representation, that is,  =
p
(1� �2)=2 and

� =
p
2=(1 + �2). These parameters are minimal, and k ~G�(k)k = kCAk�1 ~Bk =

(1 � �2)�k�1=
p
1 + �2 � (1 � �2)�k�1=

p
2 for k � 1. A simple calculation shows

that sup�(1��2)�k�1=
p
2 is obtained for � =

p
1� 2=(k + 1) with value ck=(k+1)

where ck =
p
2(1� 2=(k+1))(k�1)=2. As ck !

p
2=e for k !1 it follows that this

family of �lters is not uniformly stable.

(ii) As realizations of the process ŵ� are elements of the system B(�) it follows
that e2N (�) � 1

N
~W 0
N (�)

~WN (�). According to (15) and (17) we have

~VN (�) =MN (�)x(N + 1) + LN (�)WN (25)

where WN = (w0(N); w0(N � 1); : : : ; w0(1))0 are the observed data, in reversed

time order, LN is the Nm � Nq matrix with t-th block row, t = 1; : : : ; N , given

by ( ~B0(A0)t�2C 0; : : : ; ~B0A0C 0; ~B0C 0; ~D0; 0; : : : ; 0) and MN = ( ~B;A ~B; : : : ; AN�1 ~B)0.
According to Proposition 1(iv) the error fe�N (�)g2 = 1

N
~V �
N (�)

0 ~V �
N (�) is computed

by ~V �
N (�) = MN (�)x

� + LN (�)WN = MN (�)(x
� � x(N + 1)) + ~VN (�) where x

�

is choosen such that ~V �
N (�)

0 ~V �
N (�) is minimal. Then x� is obtained by projecting

~VN (�) onto the image ofMN (�), so that ~V
�
N (�) is the projection onto the orthogonal

complement of this space, that is, ~V �
N (�) = (I ��N (�)) ~VN (�). 2

Proof of Lemma 4

(i) According to Proposition 1(iii) there holds e2(�) = E k~v(t)k2 = E k ~w(t)k2,
and 1

N
~V 0
N (�)

~VN (�) =
1
N

PN
t=1 ~v

0
�(t)~v�(t) and

1
N
~W 0
N (�)

~WN (�) =
1
N

PN
t=1 ~w0�(t) ~w�(t)

are the corresponding sample variances. So we have to prove that the sample

variances converge almost surely to the process variances, uniformly for the class

of �lters given by ~v = ~G�w = ~G�T", and ~w = P�w = P�T". This follows by the

uniform stability result in Lemma 3(i) and by Lemma 10(ii).

(ii) We use the notation introduced in the proof of Lemma 3. The projec-

tion operator �N is given in terms of the matrix MN = ( ~B;A ~B; : : : ; AN�1 ~B)0 by
�N = MN (M

0
NMN )

�M 0
N = MNK

2
NM

0
N , where (M

0
NMN )

� denotes the positive

semide�nite generalized inverse and KN is its positive semide�nite square root.

We remark that the pair (A; ~B) need not be controllable. Now de�ne the family

of �lters H�;k(z
�1) =

P1
j=0H�;k(j)z

�j , with � 2 ��; k 2 N, by H�;k(j) = KkA
j ~B

for j � k and H�;k(j) = 0 for j > k, and de�ne corresponding processes by u�;k =
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H�;k~v = H�;k
~G�
�T". Then by construction there holds 1

N
~V 0
N (�)�N (�) ~VN (�) =

1
N
ku�;N (N)k2 and we have to prove that almost surely

sup
f�2��g

1

N
ku�;N (N)k2 ! 0: (26)

Now assume that fH�;k; � 2 ��; k 2 Ng is a uniformly stable family of �lters. As T
is bounded and f ~G�

�; � 2 ��g is uniformly bounded, it then follows from Lemma 10

that almost surely and uniformly over ���N there holds 1
N
kPN

t=1 u�;k(t)u
0
�;k(t)�

E(u�;k(t)u
0
�;k(t))k ! 0 and hence also 1

N
[
PN

t=1[ku�;k(t)k2 � E ku�;k(t)k2]! 0. Ap-

plying this result for N and N � 1 shows that 1
N
[ku�;N (N)k2�E ku�;N (N)k2]! 0

uniformly over ��. Because of uniform stability, the variance of u�;N is uniformily

bounded, so that (26) follows.

It remains to prove the uniform stability of fH�;k; � 2 ��; k 2 Ng. First we

prove an auxiliary result for the term Aj in this expression. The Cayley-Hamilton

theorem states that An =
Pn�1

k=0 �kA
k where det(zI �A) = zn�Pn�1

k=0 �kz
k is the

characteristic polynomial. For all j � n we can write Aj =
Pn�1

k=0 �k(j)A
k , and it

is easily checked that the coe�cient vector �(j) = (�0(j); �1(j); : : : ; �n�1(j))0 can
be recursively computed by �(j+1) = 
�(j) with �(n) = � and with 
 the n�n

companion matrix with last column � and �rst n� 1 columns

 
0

In�1

!
. As the

set of A- matrices in �� is compact and � is a continuous function of A it follows

that k�k is bounded. The set of 
-matrices over �� is also compact, and as A and


 have the same eigenvalues it also follows that �max(
) � � < 1. It follows again

by Davis and Vinter (1985, Proposition D.3.1) that for every � < � < 1 there exists

c0 > 0 such that k
kk � c0�k uniformly over ��. Together with the boundedness

of k�k this shows that there is a constant M 0 > 0 such that k�(j)k � M 0�j.
Further for i � n � k there holds M 0

kMk � M 0
nMn � Ai�1 ~B ~B0(A0)i�1 so that

Kk � Kn and kKnA
i ~Bk � 1. So for j; k � n there holds kKkA

j ~Bk � kKnA
j ~Bk �Pn�1

i=0 j�i(j)j � kKnA
i ~Bk � nM 0�j , and this shows that the class of �lters H�;k is

uniformly stable over �� � N.

(iii) This is immediate from (i), (ii) and (22). 2

Proof of Theorem 5

We prove this by contradiction. So suppose that there would be a sequence

�N 2 ��
�;N and � > 0 such that inff�2��

�g k�N � �k � �. As �� is compact, see

Proposition 2(i), there is a subsequence �Nk
and �0 2 �� so that k�Nk

� �0k ! 0

for k ! 1. For simplicity of notation we relabel this subsequence as �N . Be-

cause of the results in Proposition 2(ii) and Lemma 4(iii) it follows that almost

surely jeN (�N )� e(�0)j � jeN (�N )� e(�N )j+ je(�N )� e(�0)j ! 0 for N !1. As
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�N 2 ��
�;N it follows that eN (�N ) � eN (�) for all � 2 ��. Combining these two

results it follows that e(�0) = limNeN (�N ) � limNeN (�) = e(�) for all � 2 ��, so

that �0 2 ��
�. This means that inff�2��

�g k�N � �k � k�N � �0k ! 0, which con-

tradicts the assumption that this in�mum was at least �. This proves the result.

2

Proof of Theorem 6

According to the result in Theorem 5 it su�ces to prove that d(B(�);B(�0))! 0 if

k� � �0k ! 0, that is, that B(�) is continuous on �� for � < 1. This is a standard

result, as the functions Ĝ�Ĝ
�
� in (23) are continuous on ��. The crucial point to

notice here is that the function (zI�A)�1 is uniformly bounded on the unit circle

because �max(A) � � < 1. We mention that continuity does not hold true on �,

see Heij et al. (1995, Proposition 11(iii)). 2

Proof of Theorem 7 (i) Throughout we take (m;n) and � � 1 �xed.

Property P1 follows from Proposition 2 (i) and (ii).

To prove P3 we �rst state an auxiliary lemma that we will prove later.

Lemma 11 Every DGP with rational spectrum �, such that each of the entries

�ij has at least 2n poles within the unit circle that are not poles of the other entries

�kl, (k; l) 6= (i; j), satis�es P3.

Because every stationary process can be approximated arbitrarily well by DGP's

that satisfy the above conditions, it follows from this lemma that P3 is a dense

property. Let �0 satisfy P3. Because the set �0 of parameters � that are non-

minimal or for which B(�) is non-controllable form a closed and hence compact

subset of ��, it follows from Proposition 2(ii) that for the DGP �0 the minimum

of the errors of systems B(�) with � 2 �0 is strictly larger than the minimum over

��. Because the error is a continuous function of the spectrum �, it follows that

the same holds true in an open neighbourhood of �0. So P3 is dense and open,

that is, generic.

Next we show that P4 holds for a dense set of DGP. Let w0 be a given DGP

satisfying P3 and let B0 be an optimal controllable system of complexity (m;n)

over ��, so that e(B0) � e(B(�)) for all � 2 ��. Let ~w0 = (I � P0)w0 where

P0 is the operator of orthogonal projection onto B0, and for � > 0 de�ne the

process w� := w0�� ~w0. Using the notation kwk = fEkw(t)k2g1=2, the error of the
system B with projection P for the DGP w� is given by e�(B) = k(I � P )w�k =
k(I �P )w0� �(I �P )(I �P0)w0k � k(I �P )w0k� �k(I �P )(I �P0)w0)k � (1�
�)k(I � P0)w0k = (1� �)e(B0) = e�(B0). This shows B0 is also an optimal system

for w�, and that another system B is optimal for w� if and only if it satis�es the two

conditions k(I �P )w0k = k(I �P0)w0k and k(I �P )(I �P0)w0)k = k(I �P0)w0k.
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Because k(I � P0)w0k2 = kP (I � P0)w0k2 + k(I � P )(I � P0)w0k2, the second

condition implies that kP (I � P0)w0k = 0, and since w0 is a full rank process this

means that P = PP0 so that P0�P is a projection operator that is orthogonal to

I � P0. The �rst optimality condition k(I � P )w0k = k(I � P0)w0k then implies

that k(I � P0)w0k2 = k(I � P )w0k2 = k(I � P0)w0k2 + k(P0 � P )w0k2, so that

P = P0 because w0 is a full rank process. Because w0 satis�es P3, the same holds

true for w� for � su�ciently small. This means that all optimal systems for w� are

controllable and that they have the same projection operator P = P0. But this

means that B = B0 for � su�ciently small, that is, then P4 holds for w�. Since P3

is a dense property, this proves that P4 is a dense property.

To show P2, let �0 belong to the dense set of DGP satisfying P4 with unique

optimal system B0. Let � > 0 and de�ne B as the set of systems with d(B;B0) �
�=2. As this is a closed set, it follows that for the DGP �0 the minimum of the

errors over B is strictly larger than the minimum over all systems of complexity

(m;n). Because the error is a continuous function of the spectrum, it follows that

for all DGP in a neighbourhood of �0 the minimum error will also only be obtained

for systems with d(B;B0) < �=2. As this is a set of diameter at most �, this proves

that P2 is dense and open, that is, generic.

It remains to show Lemma 11. We prove this in four steps.

Step 1. For given DGP with spectrum � let B(�) be an optimal system in ��

and let (Ĝ; ~G) be the corresponding pair of isometric transfer functions. Then

Z �

��
~G�(ei!)�(ei!)Ĝ(ei!)d! = 0:

This is proved as follows. Let ~G� = ( ~G; Ĝ)(I; �X 0)0Y with X 2 R
m�(q�m) and

Y such that ~G�
�
~G� = Y 0(I + �2X 0X)Y = I. As ~G and Ĝ have a common de-

nominator it follows that ~G� corresponds to a system of complexity (m;n) with

representation �� 2 ��. Further Y = I+O(�2) and ~G� = ~G+�ĜX+O(�2), so that

tracefR ~G�
��

~G�d!g = tracefR ~G�� ~Gd!g+2� tracefR ~G��Ĝd!Xg+O(�2). Since �

is optimal there holds tracefR ~G��Ĝd!Xg = 0 for all X and this shows the result.

Step 2. For given DGP with spectrum � let B(�) be an optimal system in ��

and assume that � is not minimal or that B(�) is not controllable. Then there

is exists a system of complexity (m;n0) with n0 < n and with isometric transfer

functions (Ĝ0; ~G0) such that

Z �

��
~G�
0(e

i!)�(ei!)Ĝ0(e
i!)

�� ei!

1� �ei!
d! = 0

holds for all 0 6= � 2 (��; �).
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This is proved as follows. The error e(�) = e(B(�)) depends only on the

controllable part of B(�). Thus if � is not minimal or if B(�) is not controllable,
then there also exists an optimal system B0 of complexity (m;n0) with n0 < n. Let

�0 =

 
A0 B0

~B0

C0 D ~D

!
; �1 =

0
B@ � 0 ��0T 0

�B0 A0 �B0T ~B0

�D C0 �DT ~D

1
CA

where �0 2 R(q+n�1)�(q+n�1) is an isometric representation of B0 with state dimen-
sion n� 1 and with corresponding isometric transfer functions Ĝ0(z

�1) = C0(zI�
A0)

�1B0+D and ~G0(z
�1) = C0(zI �A0)

�1 ~B0 + ~D. Further, �1 2 R(q+n)�(q+n) is
unitary for every 0 6= � 2 (�1; 1), � =

p
1� �2,  = (1; 0; : : : ; 0) 2 R

m and T =

diag(1; 1=�; : : : ; 1=�). It follows from straightforward calculations that the sys-

tem B(�1) has isometric transfer functions Ĝ(z�1) = Ĝ0(z
�1) diag((�� z�1)=(1�

�z�1); 1; : : : ; 1) and ~G(z�1) = ~G0(z
�1). Therefore P0 = Ĝ0Ĝ

�
0 = ĜĜ� = P , so

that the system B(�1) is also optimal. By repeating the above reasoning for the

other unit vectors  the result follows from step 1.

Step 3. If f(z) is a rational function that is analytic in an annulus containing

the unit circle and if
R �
�� f(e

i!)(�� ei!)=(1��ei!)d! = 0 for all 0 6= � 2 (��; �),
then f(z) is analytic for all jzj � 1.

This is proved as follows. First we write
R �
�� f(e

i!)(� � ei!)=(1 � �ei!)d! =H
�(z)g(z)dz where

H
denotes the integral along the unit circle, �(z) = f(z)=z and

g(z) = (� � z)=(1 � �z). Let zi, i = 1; : : : ; k, denote the poles of �(z) within

the unit circle, and let ni denote the multiplicity of these poles. Then �(z) has a

Laurent series expansion around zi of the form �(z) =
P1

j=�ni mi;j(z � zi)
j . The

series expansion of g(z) = (�� z)=(1��z) is given by g(z) =
P1

j=0 ki;j(�)(z� zi)
j

where the coe�cients ki;j(�) are given by ki;0 = (� � zi)=(1 � �zi) and ki;j =

(�2 � 1)�j�1=(1 � �zi)
j+1 for j > 0. Thus the residue of �(z)g(z) at the point

zi is given by
P�1

j=�ni mi;jki;�1�j(�), and by the residue theorem we obtain 0 =H
�(z)g(z)dz =

Pk
i=1

P�1
j=�ni mi;jki;�1�j(�). As this sum is a rational function

of � which is zero on an interval of positive length it follows that this expression

is zero for all � 2 C. The linear independence of the functions ki;j(�) implies

that mi;j must be zero for all j < 0, so that �(z) has no pole for jzj � 1. As

f(z) = z�(z) this proves the result.

Step 4. We now prove Lemma 11. Let � be a rational spectral density such that

each of the entries �ij has at least 2n poles withinin the unit circle that are not poles

of the other entries �kl, (k; l) 6= (i; j). Suppose that there would exist an optimal

system that is not controllable or that does not have full complexity. It then

follows from Steps 2 and 3 that there exists a pair (Ĝ0; ~G0) of isometric transfer

functions of state dimension (m;n0) with n0 < n such that ~G�
0�Ĝ0 is analytic
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within the unit circle. As the (i; j)-th entry ( ~G�
0�Ĝ0)ij is a linear combination of

the terms ~g�ki�klĝlj and as ~gki and ĝlj have at most n
0 < n zeros, at most 2n0 < 2n

poles of �kl can be cancelled in this product. Thus ~g�ki�klĝlj has at least one pole
within the unit circle that is not present in the other terms, so this is also a pole of

( ~G�
0�Ĝ0)ij . This contradicts that this function is analytic within the unit circle.

This proves that optimal systems are controllable and have full complexity (m;n).

This concludes the proof of part (i).

(ii) Let � > 0 be given and let the DGP belong to the generic set in (i)

satisfying properties P1, P2 (for �=3) and P3. For given �� 2 ��
� we de�ne an

open neighbourhood U(��) := f� 2 ��; k� � ��k < �g, where � > 0 is chosen such

that for all k����k < 2� the system B(�) is controllable and has full complexity and
in addition d(B(�);B(��)) < �=3. Let �0 =

SfU(��); �� 2 ��
�g and �00 = �� n�0.

Then �00 is a closed subset of �� and is thus compact. The continuity of e implies

that the minimum of e(�) over �00 is strictly larger than the minimum over �0.
The uniform convergence in Lemma 4(iii) implies that, almost surely and for N

su�ciently large, the in�mum of eN over �00 is also strictly larger than the in�mum
over the set �0. The continuity result in Proposition 2(iii) implies that eN has a

minimum over the closure of �0, and hence also over ��. As all systems B(�) with
� in the closure of �0 are controllable and have full complexity, this proves P1 and

P3, and P2 also follows from our construction of �0. 2

Proof of Lemma 8

(i) As before, by N we denote the sample size and by n the state dimension

of a linear system. For ~G(z�1) de�ne ~G+
k
(z�1) = ~D +

Pk�1
j=1 CA

j�1 ~Bz�j and
~G�
k
(z�1) =

P1
j=k CA

j�1 ~Bz�j . The isometry condition implies that A0A+C 0C = I

and AA0 + ~B ~B0 � I, so that
P1

j=0(A
0)jC 0CAj � I and

P1
j=0A

j ~B ~B0(A0)j � I. It

then follows that the truncation error is given by a(k) :=
R
( ~G�

k
)�( ~G�

k
)d! =

~B0(A0)k�1
�P1

j=0(A
0)jC 0CAj

�
Ak�1 ~B � ~B0(A0)k�1Ak�1 ~B. Evidently a(k + 1) �

a(k), and further
P1

k=1 a(k) � nI because for every  2 Rq�m with kk = 1 there

holds
P1

k=1 
0a(k) =

P1
j=0 trace(A

j ~B0 ~B0(A0)j) � trace
P1

j=0A
j ~B ~B0(A0)j � n.

So the truncation error is bounded by a(k) � (n=k)I.

From (14) and (21) it follows that fe0N (�)g2 � fe(�)g2 =
R
trace ~G��N

~Gd!

where �N = SN � �. Let  2 Rq�m with kk = 1 be an arbitrary vector and let

H = ~G, H+ = ~G+
k
 and H� = ~G�

k
. To show the uniform convergence of e0N (�)

to e(�) it su�ces to prove that
R
H��NHd! =

R
H�

+�NH+d!+2
R
H�

+�NH�d!+R
H���NH�d! converges uniformly (in �) to zero. Here �N (z) =

1
2�

P1
j=�1(�̂j �

�j)z
j , where �j = Ew(t)w0(t� j) are the covariances of the observed process and

�̂j the corresponding sample covariances given by �̂j =
1
N

PN
t=1 w(t)w

0(t�j)�(t�j)
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with �(t) = 1 for 1 � t � N and �(t) = 0 elsewhere. Let �N;k =
Pk�1

j=�k+1(�̂j �
�j)z

j , then it follows that
R
H�

+�NH+d! =
R
H�

+�N;kH+d!. Using the earlier

obtained bounds for the truncation error a(k) and that
R
H�

+H+d! �
R
H�Hd! =

2�, it follows that����
Z
H��NHd!

���� � 2�k�N;kk1 + 2�k�Nk1(2
q
n=k + n=k) (27)

This bound is independent of �, and we have to show that it converges almost

surely to zero when N ! 1. For this purpose we let the truncation k depend

on the sample size as k = (logN)4. As � is bounded on the unit circle it follows

from Brillinger (1975, Theorem 7.7.2) that lim supN k�Nk=(logN) < 1 almost

surley, so that the second term in (27) converges to zero. Concerning the �rst

term in (27), it follows from Hannan and Deistler (1988, Theorem 5.3.2) that

lim supNfmaxjjj<k k�̂j��jk
p
N= log logNg <1 almost surely, in which case also

lim supN k�N;kk1
p
N= log logN=k <1 and also the �rst term converges to zero.

This concludes the proof of (i).

(ii) The criterion e0N (�) of (21) is equal to e(�) in (14) if the spectrum � is

replaced by the periodogram SN . As SN is evidently bounded on the unit circle,

the reasoning in the proof of Proposition 2(ii) shows that e0N is continuous, and

with the compactness in Proposition 2(i) the result follows. 2

Proof of Theorem 9

(i) The same line of reasoning applies as in the proof of Theorem 5. Indeed, the

conditions for that proof are the compactness of the domain ��, the continuity of

the limit function e(�), and the uniform convergence of eN to e on �� . According

to Proposition 2(i) the set � is also compact, and Lemma 8(i) states the required

uniform convergence.

(ii) That B0�
N is non-empty is evident from Lemma 8(ii). It is assumed that the

optimal system has full complexity, so that �� 2 �� is minimal with �max(A) =

� < 1. It follows from (i) that almost surely and for N su�ciently large �0N 2 �0�
N

is also minimal and that �0N 2 �� where � :=
1
2(1+�) < 1. The result now follows

by the same arguments as in the proof of Theorem 6, that is, it follows from (i)

and the continuity of B(�) as a function of � in a neighbourhood of �� within ��.

2
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