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Abstract

A number of optimization methods require as a �rst step the con-

struction of a dominating set (a set containing an optimal solution)

enjoying properties such as compactness or convexity.

In this note we address the problem of constructing dominating

sets for problems whose objective is a componentwise nondecreasing

function of (possibly an in�nite number of) convex functions, and we

show how to obtain a convex dominating set in terms of dominating

sets of simpler problems.

The applicability of the results obtained is illustrated with the

statement of new localization results in the �elds of Linear Regression

and Location.

Keywords: Dominating set, Convexity, Regression, Location.

1 Introduction

Let I be an arbitrary index set and denote by
Q
i2I Ai the Cartesian product

of the nonempty sets Ai; i 2 I. If X � IRn is a nonempty closed convex
set and � :

Q
i2I IR �! IR is a componentwise nondecreasing function,

consider then the optimization problem

inf �((fi(x))i2I);

s.t. x 2 X
(P�)

where ffigi2I is a collection of �nite valued functions on IRn.

For simplicity it is also assumed that the in�mum v(P�) is �nite, al-
though not necessarily attained.
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Such optimization problems occur for example in the �elds of Location

and Linear Regression.

In order to solve these problems a number of existing algorithms require,

as a preliminary step, the construction of a compact convex set or even a

polytope which contains an optimal solution to (P�). To mention a few,

consider the cutting plane (e.g. [1]) or ellipsoid methods (e.g. [2, 3, 4]) of

(quasi)convex analysis, as well as many strategies of Global Optimization,

such as Branch and Bound procedures (e.g. [5]).

Although the feasible set X may serve as a dominating set in some

cases, this is not the general rule. In unconstrained problems, for instance,

a compact dominating set is required, and this may rule out the set X.

In the absence of a good knowledge of the behavior of the function �

(apart from its nondecreasing character), a plausible strategy would consist

of �nding dominating sets which are just determined by the functions fi,

thus independent of � (see e.g. [6]).

The aim of this paper is to show how, under suitable assumptions, such

dominating sets can be constructed from dominating sets for simpler prob-

lems (involving a much lower number of functions fi). This approach seems
to be especially useful to cope with problems where the cardinality of I is
much higher than the dimension of the space, as, for instance, for many
problems occurring in Location Theory or Statistical Estimation.

Throughout the paper jAj denotes the cardinality of the set A, conv(B)
the convex hull of B, and clconv(B) denotes the closure of conv(B). Fur-

thermore, it is assumed that jIj � n.

2 Dominance

To start our analysis of dominating sets we �rst introduce its de�nition,
[6, 7, 8].

Definition 2.1 If J � I, the point y 2 X J-dominates the point x 2 X

if fj(y) � fj(x) for all j 2 J . Moreover, the set K � X is called a J{

dominating set if for every x 2 X there exists some y 2 K J{dominating

x.

Introducing for every nonempty J � I and every x 2 X the nonempty

set DJ (x) given by

DJ (x) := fy 2 X : fj(y) � fj(x)8j 2 Jg;

it follows by the above de�nition that K � X is a J{dominating set if and

only if K \DJ (x) is nonempty for every x 2 X.

Let now KJ , J � I, denote the set of J{dominating sets. Since X is a
J{dominating set we obtain that KJ is always nonempty.
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Before showing the important role of I{dominating sets we need the

following de�nition.

Definition 2.2 Given " � 0, the point x 2 X is called an "-optimal

solution of the optimization problem (P�) if v(P�) � �((fi(x))i2I)� "

Observe, for " = 0, one obtains the standard de�nition of optimal solu-

tion. On the other hand, by the de�nition of an in�mum, it is clear that

the set of "-optimal solutions is always nonempty for every " > 0.

The following result relates I{dominating sets and "-optimal solutions.

Lemma 2.1 If � is nondecreasing, then each K 2 KI contains an "-optimal

solution of (P�) for every " > 0. Moreover, if the set of optimal solutions

is nonempty, then K contains an optimal solution.

Proof. If x� is an "-optimal solution for a given " � 0, then the nonde-

creasing character of � implies that any element in DI(x
�) is also "-optimal.

In particular, any x 2 K \ DI(x
�) is "-optimal. 2

To continue our analysis we introduce the following de�nition.

Definition 2.3 The function f : X ! IR is called inf-bounded if for every

r 2 IR the lower level set fx 2 X : f(x) � rg is bounded.

As observed in the introduction we are interested in constructing an
element of KI which is compact, convex and contains an optimal solution
of (P�). To �nd such an element we �rst need to know whether the set

K̂I := fK 2 KI : Kcompact and convexg
is nonempty. For I a �nite set and fi; i 2 I, inf-bounded it is easy to

verify that the set clconv((
S
i2I Dfig(x)), with x 2 IRn arbitrarily chosen,

belongs to K̂I . However, for I in�nite it seems to be di�cult to come
up with an easy veri�able condition which quarantees that the set K̂I is
nonempty. Therefore, for the general case we only show in Theorem 2.2 a
procedure which generates a closed convex set belonging to KI . Depending

upon the speci�c example (P�) under consideration this procedure generates

a bounded (and hence compact) or unbounded convex set. On the other
hand, if we were succesfull generating any K belonging to K̂I it follows for
I �nite or countably in�nite that this set automatically contains an optimal

solution of (P�) under some weak topological properties on the function �

and fi; i 2 I. To prove this, we need to introduce the following well-known
de�nition (see [9]).

Definition 2.4 Let M be a metric space. A function h : M ! IR

is called lower semicontinuous on M if for every x 2 M it follows that

liminfy!x f(y) = f(x):
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If I equals the set of natural numbers then the product space
Q
i2I IR

equipped with the weak topology generated by the projections �i; i 2 I is

metrizable, and its metric is given by (see page 8 of [10])

d(x; y) =
1X
i=1

2�ij�i(x)� �i(y)j:

Hence the set
Q
i2I IR is a metric space with metric d(�; �) and so the condi-

tions in the next lemma are properly de�ned.

Lemma 2.2 If the set I is �nite or countably in�nite, the functions fi are

lower semicontinuous and the componentwise-nondecreasing function � is

also lower semicontinuous on
Q
i2I IR then the function x 7! �((fi(x))i2I)

is lower semicontinuous on IRn.

Proof. By Proposition 1.4 of [9] one needs to show that the epigraph

epi(h) = f(x; r) 2 IRn+1 : h(x) � rg, with h(x) = �((fi(x))i2I) is a closed

set. Consider therefore a sequence f(xk; rk)gk2IN belonging to epi(h) and
suppose it converges to (x; r). Since � is componentwise nondecreasing this
implies with "k := kx� xkk and k � k the Euclidean norm that

r = liminfk!1 rk
� liminfk!1 �((fi(xk))i2I)
� liminfk!1 �((infffi(y) : y 2 x+ "kBg)i2I);

(1)

where B denotes the closed Euclidean unit ball. Applying now the lower
semicontinuity of the functions fi it follows for every i 2 I that

lim
k!1

infffi(y) : y 2 x+ "kBg = fi(x);

and so the vector (infffi(y) : y 2 x+ "kBg)i2I converges in the metric d ofQ
i2I IR to (fi(x))i2I . Finally by the lower semicontinuity of the function �

and (1) we obtain that

r � lim inf
k!1

�((infffi(y) : y 2 x+ "kBg)i2I)
� �((fi(x))i2I);

and this proves the desired result. 2

By Lemmas 2.1 and 2.2 and Weierstrass theorem the next existence

result follows immediately.

Theorem 2.1 If I is a �nite or countably in�nite index set and the func-

tions � and (fi)i2I are lower semicontinuous then the existence of a com-

pact I{dominating set implies that the set of optimal solutions of (P�) is

nonempty. Moreover, any compact I{dominating set contains an optimal

solution of (P�).
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Proof. By Lemma 2.1 it follows for any compact I{dominating set K that

v(P�) = infx2K �((fi(x))i2I). Applying now Weierstrass theorem (see corol-

lary 1.2 of [9]) and Lemma 2.2 we obtain that v(P�) = minx2K �((fi(x))i2I)

and this proves the desired result. 2

In the remainder we always assume that the functions � and (fi)i2I are

lower semicontinuous. This implies by Theorem 2.1 for I �nite or count-

ably in�nite that after the construction of a compact I{dominating set it

automatically contains an optimal solution and so this set can indeed serve

as a starting set of one of the algorithms mentioned in the introduction.

Therefore the remainder of this section is devoted to the construction of

I{dominating sets.

Theorem 2.2 Suppose for every i 2 I that the functions fi are �nite valued

and convex, and there exists at least one i 2 I such that fi is inf-bounded.

If for every J � I with jJ j = n one can �nd some KJ 2 KJ then

clconv([jJj=nKJ) 2 KI :

Moreover, if [jJj=nKJ is a bounded set then clconv([jJj=nKJ ) is compact.

Proof. Let K := clconv([jJj=nKJ ), and suppose that K =2 KI . If this
holds then there exists some x 2 X such that

; = DI(x) \K
= \i2I(Dfig(x) \K)

By our assumptions it follows that the functions fi are continuous and so the
collection fK; (Dfig(x))i2Ig is a collection of closed convex sets of which at
least one is compact. Since x 2 \i2IDfig(x) this implies by Helly's theorem
(see the remark after Corollary 21.3.2 of [11]) that there exists a subset
J � I with jJ j = n, such that

; = \j2J
�
Dfjg(x) \K

�
= DJ (x) \K:

However it follows by the de�nition of K that

DJ (x) \K � DJ (x) \KJ 6= ;;
and this yields a contradiction. Finally, the last part is a direct consequence

of Theorem III.1.4.3 of [12]. 2

For Theorem 2.2 to hold it is su�cient to assume that the lower level sets
of the functions fi are closed and convex and so we may impose the weaker

assumption that the functions fi are �nite-valued, lower semicontinuous and
quasiconvex. However, we cannot remove the inf-boundedness assumption

as shown by the following counterexample.
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Example 2.1 Let X = IR2; I = IN and for each i 2 I, let fi : IR
2 �! IR

be given by

fi(x1; x2) =

(
0; if 0 � x1 � (1=i)x2
1; otherwise

Clearly the functions fi; i 2 IN are lower semicontinuous and quasiconvex.

If K = f(1; t) : t � 0g, then K is a closed convex set and it is easy to

verify that K belongs to KJ for every �nite set J . Therefore, if Theorem

2.2 would be valid then K should also belong to KI but this is not true due

to

DI ((0; 0)) = f(0; t) : t � 0g:
2

If the set I is �nite, one can prove without the inf-boundedness assumption

a similar result as discussed by Theorem 2.2.

Theorem 2.3 Let I be �nite, and suppose for every i 2 I that the functions

fi are �nite valued and convex. If for each J � I with jJ j = n one can �nd

some KJ 2 KJ then

conv([jJj=nKJ ) 2 KI :

Moreover, if each KJ is compact then conv([jJj=nKJ ) is also compact.

Proof. The �rst part follows immediately by Theorem 21.6 of [11] and
the �rst part of the proof of Theorem 2.2. Moreover, if the set KJ for every
set J with jJ j = n is compact it follows that [jJj=nKJ is also compact and

by Theorem III.1.4.3 of [12] the second part follows. 2

By Theorem 2.3 for sets I with jIj = m much larger than n the con-
struction of a compact I{dominating set is reduced to the construction of
a compact J{dominating set for each J with jJ j = n. Although we need�
m

n

�
di�erent J{dominating sets, it will turn out that this is relatively easy

in some applications. We will now focus on whether a given compact and

convex set is actually J{dominating with J � I and jJ j = n. To decide this
we introduce the optimization problem P� given by

min
x2X

X
j2J

�jfj(x) (P�)

It is now possible to prove the next result.

Theorem 2.4 Let J be a nonempty �nite set and fj; j 2 J , a collection

of �nite-valued convex functions. If K � X is a compact and convex set

such that K contains an optimal solution of (P�) for every � = (�j)j2J with

�j > 0; j 2 J , then K is a J{dominating set.
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Proof. If K does not belong to KJ then there exists some x� 2 X such

that K \ DJ (x
�) is empty. Introduce now the vector-valued function F :

IRn ! IRjJj given by F (x) = (fj(x))j2J . Since K \ DJ (x
�) is empty this

implies that F (x�) does not belong to F (K) + IR
jJj
+ . Moreover, by the

convexity of fj; j 2 J , we obtain that F (K) + IR
jJj
+ is a convex set. Also,

by the continuity of F and K compact the set F (K) is compact and so it

follows that F (K)+ IR
jJj
+ is a closed set. Hence, by a well-known separating

hyperplane result between a point and a closed set not containing this point,

[11], there exists some � > 0 and � = (�j)j2J 6= 0 satisfying

X
j2J

�jzj � � +
X
j2J

�jfj(x
�)

for every z = (zj)j2J belonging to F (K)+ IR
jJj
+ . It is now easy to show that

�j � 0 for every j 2 J and by the above inequality we obtain that

X
j2J

�jfj(y) � � +
X
j2J

�jfj(x
�)

for every y 2 K. Moreover, since �j + 1=n > 0 for every n 2 IN and j 2 J

one can �nd by our assumption for each n 2 IN some y(n) 2 K satisfying

X
j2J

(�j + 1=n)fj(y
(n)) �

X
j2J

(�j + 1=n)fj(x
�)

Due to the compactness of K the sequence fy(n) : n 2 INg contains a con-
verging subsequence with limit y(1) 2 K and this yields by the continuity
of fj; j 2 J , and the previous observations that

X
j2J

�jfj(y
(1)) �

X
j2J

�jfj(x
�) � �� +

X
j2J

�jfj(y
(1))

Hence, we have contained a contradiction and so the desired result is proved.
2

The properties validating the proof of Theorem 2.4 are the compactness

of the convex set K and F (K) + IR
jJj
+ is a closed and convex set. Since

we assume that F is lower semicontinuous (see observations after Theorem

2.1) it follows due to the compactness of K that F (K) + IR
jJj
+ is closed

(see [9]) and so the key properties are the compactness of the convex set

K and F (K) + IR
jJj
+ is a convex set. Observe the last property is known in

the literature as convex-like, [14, 15]. If we drop the assumption that the
convex set K is compact the result of Theorem 2.4 does not hold as shown

by the following counterexample with K an unbounded convex set and F a

convex vector function.
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Example 2.2 Let X = [0;1)� [0;1), J = f1; 2g and f1(x1; x2) = x1 and

f2(x1; x2) = �px1:
If K = f(x1; x2) : x1 > 0; x2 � 1=x1g � X then it is easy to show that

K contains an optimal solution of the problem

minf�1x1 � �2
p
x1 : (x1; x2) 2 Xg

for any �1; �2 > 0. However, since DJ ((0; 0)) = f(0; x) : x � 0g it follows

that DJ ((0; 0)) \K = ; and so K is not a J{dominating set. 2

Although the assumption that F (K)+IR
jJj
+ is a convex set is muchweaker

than F is a convex vector valued function, it does not cover the important

class of a lower semicontinuous quasiconvex vector-valued function F on

the convex set K. This is shown by the following counterexample with K

a compact and convex set and F lower semicontinuous and quasiconvex.

Example 2.3 Let X = IR2, J = f1; 2g and f1; f2 : IR
2 �! IR the lower

semicontinuous quasiconvex functions

f1(x1; x2) =

8><
>:

0; if jx2j � �x1
3; if x1 > x2
2; otherwise

f2(x1; x2) =

8><
>:

3; if x1 < 1=2

0; if jx2j � x1 � 1
2; otherwise

It is easy to verify by inspection that the set f(0; 0); (1; 0)g contains an
optimal solution of the problem minf�1f1(x) + �2f2(x) : x 2 Xg for any
�1 > 0; �2 > 0. Hence the compact and convex set K = f(x1; 0) : 0 � x1 �
1g satis�es the assumptions of Theorem 2.4. However, the set DJ ((1; 2)) is

given by
f(x1; x2) : x1 � 1=2; x1 � x2g;

and so K \DJ ((1; 2)) = ; or equivalently K does not belong to KJ : 2

In the next two sections we will discuss some applications of the results
derived in this section.

3 A localization result in Linear Regression

Let (x1; y1); (x2; y2); : : : ; (xp; yp) be p � 2 points in the plane, not all con-

tained in the same vertical line, and consider for each i 2 I = f1; 2; : : : ; pg
the value "i given by

"i(a; b) = jyi � axi � bj
In other words, "i(a; b) gives the vertical distance from the point (xi; yi) to
the line y = ax+ b.
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Most regression estimates are obtained by solving mathematical pro-

grams of the form

min
(a;b)2IR2

�("1(a; b); "2(a; b); : : : ; "p(a; b)) (R�)

for some nondecreasing function � that aggregates the error at the di�erent

points.

It has been shown in [16] that the set EI of Pareto-optimal solutions of

the vector-optimization problem

vector-min
(a;b)

("1(a; b); "2(a; b); : : : ; "p(a; b))

is an I{dominating set. However, the set EI is in general not convex (it is

just a connected union of polytopes) which makes this set of limited interest

for optimization purposes. Our next result shows that a more manageable

I{dominating set can be built with the techniques presented in the previous

section.

Lemma 3.1 For each i; j 2 I such that xi 6= xj, let y = aijx+bij be the line

passing through (xi; yi) and (xj; yj). If K = conv(f(aij; bij) : 1 � i < j �
p; xi 6= xjg) then the compact and convex set K belongs to KI. Furthermore,

for any convex set K� 2 KI it follows that K � K�.

Proof. Observe �rst, for any i; j 2 I; i 6= j and t 2 [0; 1], that the set K
contains an optimal solution to the problem min(a;b) t"i(a; b)+(1� t)"j(a; b)
(in fact, the set of vertices of K enjoys this optimality property). Hence,
as K is compact, and each "i is convex, Theorem 2.4 implies that K is a
J{dominating set for all J � I; jJ j = 2, and hence by Theorem 2.3 the set

K is I{dominating.
On the other hand, if K� is a convex I{dominating set, it must contain

the points (aij; bij) which are the unique points that make both "i and "j
simultaneously 0. Hence, by the de�nition of K it follows that K � K�. 2

Remark 3.1 The geometrical description of the set EI given in [16] enables
to show that the set K de�ned in Lemma 3.1 is the convex hull of EI . The

above lemma also shows that K is minimal among all convex I{dominating

sets.

4 A localization result in Location

In planar single{facility location models, a family of users (usually repre-
sented as points in IR2) is given, and one seeks the location x 2 IR2 for

9



a facility such that the transportation costs from x to the users are mini-

mized, [17]. Transportation costs from the facility to each user are assumed

to be increasing in the distance, leading typically to nonconvex nonsmooth

optimization problems, [18].

The statement of localization results for these problems has attracted the

attention of many researchers (see e.g. [6, 19, 20, 21, 7] mainly due to two

reasons: First, a dominating set provides a broad{sense sensitivity analysis,

and also, the most popular resolution method, the BSSS ([22, 23]), is a

Branch and Bound procedure, which requires as a �rst step the construction

of a compact set containing an optimal solution.

The most relevant localization theorem states (see Corollary 1 of [7])

that clconv(A) is a dominating set for the family of functions f
(x�a)ga2A
with 
 a norm on IR2 and A � IR2. To extend and reobtain this result we

denote by 
S(x) the distance from x to the closest point in a nonempty,

compact and convex set S, i.e.


S(x) := min
s2S


(x� s)

We will now present a localization result for the functions f
Ai
(x)gi2I with

Ai; i 2 I, a collection of nonempty, compact and convex sets. To prove

this result, we �rst present a lemma which extends the well-known majority
theorem of Witzgall ([24]).

Lemma 4.1 Let A1; A2; : : : ; Ap be nonempty, compact and convex subsets

of IR2, and consider for each � 2 IRp
+; � 6= 0, the problem

min
x2IR2

F�(x) =
pX
i=1

�j
Aj
(x) (L�)

If there exists some 1 � k � p such that �k �
P

i6=k �i, then an optimal

solution to (L�) belongs to Ak.

Proof. Let x 2 IR2 and ai 2 Ai; i 2 I, be such that 
Ai
(x) = 
(x � ai).

By the properties of a norm it follows that

F�(x) =
P

i6=k �i
Ai
(x) + �k
Ak

(x)

� P
i6=k �i(
Ai

(x) + 
Ak
(x))

=
P

i6=k �i(
(x� ai) + 
(x� ak))

� P
i6=k �i
(ak � ai)

� P
i6=k �i
Ai

(ak)

= F�(ak) � mina2Ak
F�(a);

and this proves the desired result. 2

Using the above lemma one can now show the following result.
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Lemma 4.2 Let I be an arbitrary nonempty index set and Ai; i 2 I, a col-

lection of nonempty, compact and convex sets. If for each i; j 2 I; i 6= j, the

vector zij is an optimal solution of minx2Ai

Aj

(x) then the set clconv(fzij :
i; j 2 I; i 6= jg) is an I{dominating set for the family of functions (
Ai

(x))i2I

Proof. By Lemma 4.1 and Theorem 2.4 it follows that convfzij; zjig is

an fi; jg{dominating set. Applying now Theorem 2.2 we obtain that K =

clconv(fzij : i; j 2 I; i 6= jg) is an I{dominating set. 2

Remark 4.1 If each Ai; i 2 I, reduces to the single point set faig it follows
that zij = ai for every i; j 2 I. Hence, by the above lemma this yields that

clconv(fai : i 2 Ig) is an I{dominating set for the family of functions

f
(x� ai)gi2I .

5 Conclusions

In this note it has been shown using Helly's theorem that the problem of
obtaining a dominating set for a (possibly in�nite) family of convex func-
tions can be reduced to constructing dominating sets for families with lower
cardinality. This seems to be of practical interest when the number of func-

tions involved is much higher than the dimension of the space, as is typical
in Regression Estimation or Location Theory.

As an illustration of the usefulness of these techniques, convex domi-
nating sets for linear regression and location problems have been presented.
It should be noted that the same strategy can also be succesfully applied

to rediscover and generalize other localization results for planar location
problems. For instance, using Theorem 4.3 in [25], the minimal convex
dominating set for problems with mixed polyhedral gauges is easily shown
to be the convex hull of the intersection points which are strictly e�cient

(see [25]). On the other hand, this result, in conjunction with Theorem 6

in [26], enables us to rediscover and extend the octagonal{hull property of
[20] . This shows another example of a problem in location theory to which
one can apply the results of Section 2. Finally, we like to observe that the
construction of dominating sets for problems from other �elds is now under

study.
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