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A K-sample homogeneity test based on the
quantification of the p-p plot: the Harmonic

Weighted Mass index∗
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and Charles van Marrewijk§
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Abstract

We propose a quantification of the p-p plot that assigns equal
weight to all distances between the respective distributions: the sur-
face between the p-p plot and the diagonal. This surface is labelled the
Harmonic Weighted Mass (HWM) index. We introduce the diagonal-
deviation (d-d) plot that allows the index to be computed exactly
under all circumstances. For two balanced samples absent ties the
finite sample distribution of the HWM index is derived. Simulations
show that in most cases unbalanced samples and ties have little effect
on this distribution. The d-d plot allows for a straightforward exten-
sion to the K-sample HWM index. As we have not been able to derive
the distribution of the index for K > 2, we simulate significance ta-
bles for K = 3, ..., 15. An example involving economic growth rates of
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the G7 countries illustrates that the HWM test can have better power
than alternative Empirical Distribution Function tests.

Key words: EDF test, p-p plot, power, d-d plot.
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1 Introduction

To determine whether samples are drawn from the same distribution, Empir-

ical Distribution Function (EDF) tests can be used if the underlying popula-

tion distributions are not known. Examples include the Kolmogorov-Smirnov

(KS) test (see Kolmogorov (1933) and Smirnov, 1939), the Fisz-Cramér-von

Mises (FCvM) test (see Cramér (1928), Fisz (1960) and von Mises, 1931), the

Kuiper (K) test (see Kuiper, 1960), and the Anderson-Darling (AD) test (see

Anderson and Darling, 1952). Unfortunately the finite sample distribution

is unknown for any of the concomitant statistics.

EDF tests quantify in one way or the other percentile-percentile (p-p)

plots: the scatter plot of percentiles of two distributions for all entries of their

joint support.1 In this paper we introduce a new EDF statistic: the Harmonic

Weighted Mass (HWM) index. It corresponds to the surface between the p-p

plot and the diagonal, up to a scaling factor that depends on sample sizes. In

case of two balanced samples absent ties we are able to derive the finite sample

distribution of the test statistic. This is particularly useful for applications

where samples are small, such as in experimental economics. Note that absent

ties, in the limit the HWM index coincides with the L1-version of the FCvM

statistic. The HWM index differs from the FCvM statistic when there are

ties in that it is invariant to the position of the tie in the sequence of order

statistics. This makes it a more robust statistic.

We derive a formula with which the HWM index can be computed exactly

under all circumstances. For that we introduce the diagonal-deviation (d-d)

1The obvious alternative is the scatter plot of order statistics of two distributions, the
so-called quantile-quantile (q-q) plot. If distributions differ in scale and location only, q-q
plots consist of straight lines, which is an attractive property when only differences in the
shape of the respective distributions are of interest (Wilk and Gnanadesikan, 1968). But
this is a drawback, of course, if differences in scale and location are to be revealed as well
(see also Holmgren, 1995).
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plot: the projection of the p-p plot onto the diagonal. Being able to compute

the HWM index exactly allows us to simulate its distribution in all cases for

which it is unknown. These reveal that in most cases the effect of ties on

the distribution of the HWM index is negligible, and that the sample size

correction factor deals adequately with unbalanced samples.

Extending the HWM index to the simultaneous comparison of K > 2

samples requires first the introduction of the K-dimensional p-p plot. The

diagonal of this plot corresponds to the line that cuts all 2-dimensional spaces

in equal halves. The K-sample HWM index then corresponds to the surface

between this diagonal and the K-dimensional p-p plot. This surface is not

uniquely defined however. An obvious norm is to consider for every point

the shortest distance between the K-dimensional p-p plot and the diagonal.

For this version of the K-sample HWM index we also derive a formula to

compute it, relying again on the d-d plot. As we have not been able to

identify analytically the distribution of theK-sample HWM index forK > 2,

we provide significance tables up to K = 15.

None of the existing EDF tests dominates any of the other under all cir-

cumstances. Strictly speaking therefore, any sample comparison must involve

the computation of all tests to rule out type-II errors as much as possible.

The HWM test has more power than any of the other EDF tests when the

p-p plot remains “close” to the diagonal over the entire probability space as

it is the only EDF test that assigns equal weight to all distances between

the respective distributions. It should therefore join the basket of EDF tests,

also because in these cases a visual inspection of the p-p plot easily leads to

incorrect conclusions. To illustrate this point the power of the HWM test

is compared with that of the extended AD test (Scholz and Stephens, 1987)

under circumstances where the latter is known to outperform existing alter-
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natives. In particular, we compare the distribution of economic growth rates

of all G7 countries where the distributions of two countries have significantly

different tails. It appears that either test can have more power, depending

on the subset of G7 countries that is considered.

2 The 2-sample HWM index

Consider the set of cumulative density functions Ξ1 = {F : R→ [0, 1]|∀x, h ∈

R: limx→−∞F (x) = 0, limx→∞F (x) = 1, limh↓0F (x + h) = F (x), and

a < b =⇒ F (a) ≤ F (b)}. For F1 and F2 belonging to Ξ1 the p-p plot

depicts for every domain value z from the joint support of F1 and F2 the

percentiles of one distribution relative to the other:

z 7−→
∙
F1(z)
F2(z)

¸
. (1)

This is a plot in the 2-dimensional simplex. Written as a function rather

than a plot it reads as:

p 7−→ F1(F
−1
2 (p)), 0 ≤ p ≤ 1, (2)

whereby F−12 (p) = inf {x : F2(x) ≥ p}. An example of a p-p plot for two

continuous random variables is given in Panel a of Figure 1. Clearly p-

p plots are mappings from [0, 1] onto [0, 1] and depict the correspondence

between the two underlying distributions in probability space. They are key

to the hypothesis underlying EDF tests:

H0 : F1 = F2.

As the p-p plot coincides with the diagonal if, and only if, the two un-

derlying distributions are identical, there are various well-known statistics to
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Figure 1: Theoretical p-p plot (panel a) and concomitant HWM index (panel
b).

test H0 that are based on the distance between the p-p plot and the diag-

onal. These include the Kolmogorov-Smirnov test (it considers the largest

absolute value of the maximum positive distance, D+, and the maximum

negative distance, D−; see Figure 1, Panel a), the Kuiper test (it considers

the sum of D+ and D−), the Fisz-Cramér-von Mises test (it sums up over

all squared distances d; see Figure 1, Panel a), and the Anderson-Darling

test (it augments the FCvM-test by weighing every squared distance with

the product of the distance between 0 and the centre of d, and the distance

between 1 and the centre of d).2 Although limiting distributions of these sta-

tistics are available (see Rosenblatt (1952), and Fisz, 1960), the finite sample

distribution is not known for any of them.

2The area below the p-p plot corresponds to the Mann-Whitney-Wilcoxon U statistic
(see Bamber, 1975). This statistic is used for testing whether one distribution first-order
stochastically dominates another.
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2.1 Definition

We propose the area between the diagonal and the p-p plot as the criterion

for validating H0 (see Panel b of Figure 1) as it is possible to derive under

certain conditions the exact distribution of this area. Also, the related test

can have better power than the existing alternatives. As the area reflects the

extent to which the probability mass of the two underlying distributions is

in harmony, we label it the Harmonic Weighted Mass (HWM) index.

The HWM index requires a continuous p-p plot. But for discrete random

variables the p-p plot is also discrete. The continuous analogue of a discrete

p-p plot is obtained by connecting the points of the discrete p-p plot through

straight lines (Girling, 2000). Let X1 and X2 be two random variables with

cumulative density functions F1(x) and F2(x) respectively. The coordinates

of the resulting piece-wise linear continuous p-p plot can be defined as:

Ã eF1(x)eF2(x)
!
≡
½
α

µ
F1(zi−1)
F2(zi−1)

¶
+ (1− α)

µ
F1(zi)
F2(zi)

¶¾
,

where z ≡{z1, ..., zm} are the ordered domain values of the joint support of

X1 and X2, and where α is uniformly distributed over the unit interval. The

2-sample HWM index is then formally defined as:

Definition 1

HWM(F1, F2) ≡ S(n1, n2)

∞Z
−∞

¯̄̄ eF2(x)− eF1(x)¯̄̄ d eF1(x),
where the sample size correction factor S(n1, n2) follows Rosenblatt (1952)

and Fisz (1960) and reads as:

S(n1, n2) =

r
n1n2

n1 + n2
. (3)
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This sample-size correction factor speeds up convergence of the finite sample

distribution towards the limiting distribution. Indeed, asymptotic critical

values are adequate approximations of the exact critical values for samples

containing as few as 8 observations. It also makes the analytical critical

percentile values of the HWM index good approximations for unbalanced

samples (see Section 2.3).

By virtue of the underlying p-p plot the HWM index is a non-parametric

and distribution free mapping. It has two further properties (proofs of all

properties are in Appendix A, Section 6.1):

Property P1 (equality):

HWM(F1, F2) = 0 ⇐⇒ ∀ z ∈ [a, b] : F1(z) = F2(z).

Property P2 (order irrelevance):

HWM(F1, F2) = HWM(F2, F1).

In practice the sample counterpart of a p-p plot needs to be considered.

Let X1 = {x1,1, ..., x1,n1} be n1 realizations of the random variable X1 with

discrete sample CDF F1,n1, and let X2 = {x2,1, ..., x2,n2} be n2 realizations

of random variable X2 with discrete sample CDF F2,n2 . The ordered set

of values which either X1 or X2 assumes is denoted by z1, ...zm, whereby

m ≤ n1+n2. In addition let z0 and zm+1 denote −∞ and∞ respectively and

define z ≡ {z0, ..., zm+1}. The vertical coordinates of the discrete sample p-p

plot are then defined by P [X1 ≤ zi] ∀ zi ∈ z while the horizontal coordinates

are given by P [X2 ≤ zi] ∀ zi ∈ z (Bamber, 1975). Let eF1,n1 and eF2,n2 be the
continuous counterparts of F1,n1 and F2,n2 respectively. The sample HWM

index is then simply obtained by substituting in Definition 1 the population

density functions by their sample counterparts. The resulting sample HWM

index is consistent, which allows it to be used for testing H0. That is:
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Month 1990 1993
January 4070 4114
February 4204 3944
March 3885 3814
April 3866 3813
May 3808 3836
June 3854 3757
July 3762 3824
August 3786 3751
September 3764 3809
October 3872 3896
November 3926 3818
December 4292 4406

Table 1: Maximum water levels of the river Meuse at Borgharen Dorp, in
millimeters, measured on every last day of every month. Source: Koninklijk
Nederlands Meteorologisch Instituut, personal correspondence.

Property P3 (consistency):

limn1,n2→∞HWM (F1,n1 , F2,n2) = HWM(F1, F2).

Accordingly, we also refer to the index value in Definition 1 as “the HWM

index” if it is based on distributions of samples rather than population dis-

tributions.

As an illustration consider the water level of the river Meuse as it enters

The Netherlands at Borgharen Dorp in 1990 and 1993. In 1993 the Southern

part of Holland was plagued by severe floods and it is of interest to know

whether the entire year 1993 was exceptional. Table 1 contains the maximum

water levels in millimeters for both 1990 and 1993 recorded on each last

day of every month. The resulting discrete sample p-p plot, its continuous

counterpart, and the concomitant HWM index are all depicted in Figure 2.
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Figure 2: Discrete p-p plot for entering heights of the river Meuse into The
Netherlands at Borgharen Dorp, 1990 versus 1993 (Panel a), the correspond-
ing continuous p-p plot (Panel b), the concomitant HWM index (Panel c),
and the resulting d-d plot (Panel d).
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2.2 Computation

We have derived a method to compute the HWM index exactly for any

F1, F2 ∈ Ξ1. Note that the value of the shaded area in Panel c of Figure

2, which equals 7
72
, is straightforward to obtain. For samples with ties this

is not necessarily the case. Within-sample ties impact on the number of

coordinates that make up the p-p plot. As such they have no effect on the

possible slope of the p-p plot. Between-sample ties may induce the p-p plot

to have linear pieces with any positive slope. This complicates the exact

computation of the HWM index.

For computing the HWM index we introduce the diagonal-deviation plot:

the projection of the p-p plot onto the diagonal.3 This means that each

point (F1(z), F2(z)) on the p-p plot is projected on the average probability

p(z) ≡ (F1(z) + F2(z)) /2. Because the length of the projection vector equals

d(z) ≡ |F1(z)− F2(z)|/
√
2, we arrive at the following definition:

Definition 2 The diagonal-deviation plot is the projection of the p-p plot

onto the diagonal: z 7−→
∙
p(z)
d(z)

¸
.

The d-d plot is obtained by first projecting the coordinates of the discrete

p-p plot onto the diagonal. This gives the coordinates of the d-d plot: D ≡

(p(zi), d(zi)), i = 1, 2, ...,m, where m ≤ n1 + n2, and (p(0), d(0)) ≡ (0, 0).

Next, linearly interpolate between these coordinates to obtain the d-d plot.

The value of the HWM index then corresponds to the surface between the

d-d plot line and the horizontal zero axis multiplied by the projection scaling

factor PS(2) =
√
2 (see Panel d in Figure 2).

3Use of this projection is not necessary for computing the exact value of the 2-sample
HWM index but it allows for a straightforward extension of the HWM index to the simul-
taneous comparison of K > 2 samples (see Section 3).
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Computation of the HWM index requires the exact location of all inter-

sections of the underlying p-p plot with the diagonal. Diagonal cutting points

are all points (F1(z), F2(z)) for which d(z) = 0. Their location follows from

the following lemma (the proofs of all lemmata are in Appendix A, Section

6.2):

Lemma 1 When the p-p plot cuts the diagonal between points zi and zi+1,

zi ∈ z, then

ph = F1,n1(zi) +
(F1,n1(zi+1)− F1,n1(zi))(F1,n1(zi)− F2,n2(zi))

(F2,n2(zi+1)− F2,n2(zi))− (F1,n1(zi+1)− F1,n1(zi))

if at probability ph we have that F1,n1(zi) ≥ F2,n2(zi) and F1,n1(zi+1) ≤

F2,n2(zi+1), i.e. the diagonal is “cut from below”, and

ph = F2,n2(zi) +
(F2,n2(zi+1)− F2,n2(zi))(F2,n2(zi)− F1,n1(zi))

(F1,n1(zi+1)− F1,n1(zi))− (F2,n2(zi+1)− F2,n2(zi))

if at probability ph we have that F1,n1(zi) ≤ F2,n2(zi) and F1,n1(zi+1) ≥

F2,n2(zi+1), i.e. the diagonal is “cut from above”.

Obviously, the p-p plot can cut the diagonal at points that are not in D.

Let L be the set with these diagonal cutting points consisting of l entries

and let I = D ∪L ≡ (p∗i , d∗i ), i = 1, 2, ...,m+ l be ordered on p∗i . The HWM

index can then be calculated exactly (the proofs of all propositions are in

Appendix A, Section 6.3):

Proposition 1

HWM(F1,n1 , F2,n2) = PS(2)S(n1, n2)× (4)
m+lX
i=1

½
(p∗i − p∗i−1)

2

¡
2max{d∗i , d∗i−1}−

¯̄
d∗i − d∗i−1

¯̄¢¾
.
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2.3 Hypothesis testing

Being able to compute the value of the HWM index exactly allows for the

simulation of significance tables under varying circumstances. For a special

case however the exact finite sample distribution of the HWM index is known.

2.3.1 Finite sample distribution

Consider the set of continuous distribution functions Ξ2 = {F |∀x, h ∈ R:

limx→−∞F (x) = 0, limx→∞F (x) = 1, limh−→0F (x+h) = F (x), and a < b =⇒

F (a) < F (b), for F (a), F (b) ∈ (0, 1)}. Note that Ξ2 ⊂ Ξ1, that functions

belonging to Ξ2 are continuous and strictly increasing on their support, and

that mass points are absent. In particular there are no ties. In what follows

we derive the probability density function (pdf) of the HWM index under H0

for distributions belonging to Ξ2 and for two samples of equal size n. That

is:

Assumption A1: F1, F2 ∈ Ξ2.

Assumption A2: n1 = n2 = n.

Observe first some properties of the possible HWM index values:

Lemma 2 Under A1 — A2, the number of possible distinct values of the

HWM index is Θ(n) ≡ 1 + n(n− 1)/ 2.

Lemma 3 Under A1 — A2, the vector containing all possible distinct values

of the HWM index is HWMn = {HWMn(1), ...,HWMn(1 + n(n− 1)/2)},

where

HWMn(j) =

r
n

8

µ
1− 2(j − 1)

n2

¶
,

j = 1, ..., 1 + n(n− 1)/ 2.
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The number of possible distinct outcomes of the HWM index varies

quadratically with n. For example, Θ(20) = 191 and Θ(100) = 4, 951. The

number of possible distinct p-p plots increases much more rapidly, and goes

from 1.38 × 1011 for n = 20 to 9.05 × 1058 for n = 100. Yet, the recursive

pattern in which HWMn varies with n allows us to identify its pdf for finite

samples.

Let BM(n) ≡ (∆n| 2Υn) for n > 1, where ∆n is the upper triangular

unit matrix of size n and Υn the unit vector of size n, and BM(1) = [1 2],

a 1×2 matrix (this matrix and all others introduced below are explained in

Appendix A, Section 6.3). Further let HM(1) ≡ 2 and let HM(n) be a

Θ(n)× n matrix with elements hmjk(n) defined as:

hmjk(n) =

½
a(j−k+1)k(n), j = k, ...,Θ(n− 1) + k − 1, k = 1, ..., n,

0 otherwise,

whereA(n+1) ≡ HM(n)BM(n), wherebyA(1) ≡ 2, and ajk is an entry from

the auxiliary matrix A(n + 1). Note that A(n + 1) is needed to construct

HM(n + 1). Finally, let Ω(n) =
P

i

P
j aij(n) denote the number of all

possible p-p plots and let HMj(n) denote row j of HM(n). The following

then holds:

Proposition 2 Under H0 and A1 — A2, HWMn(j) has probability pn(j),

where

pn(j) =
HMj(n)Υn

Ω(n)
,

j = 1, ...,Θ(n).

The exact critical percentiles of the HWM index thus follow. They are

given in Table 2 for sample sizes n = 3, ..., 20 at commonly applied signifi-

cance levels.4 High values of the HWM index imply a low probability that
4The entries do not display a monotonously declining pattern because the critical HWM

index values are falling in sample size absent the sample size correction factor, whereas
this factor itself is increasing in sample size.
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percentile 90 95 97.5 99
n
3 0.6124
4 0.5303 0.6187
5 0.5376 0.6008 0.6641 0.7273
6 0.5292 0.5774 0.6736 0.7217
7 0.5154 0.5918 0.6682 0.7445
8 0.5000 0.5938 0.6563 0.7500
9 0.5107 0.5893 0.6678 0.7464
10 0.5143 0.5814 0.6485 0.7379
11 0.5136 0.5911 0.6493 0.7462
12 0.5103 0.5784 0.6634 0.7485
13 0.5054 0.5808 0.6562 0.7467
14 0.4995 0.5804 0.6614 0.7424
15 0.5051 0.5903 0.6634 0.7486
16 0.5082 0.5856 0.6629 0.7513
17 0.4994 0.5801 0.6608 0.7516
18 0.5000 0.5833 0.6574 0.7500
18 0.4995 0.5849 0.6617 0.7471
20 0.5060 0.5850 0.6562 0.7510
∞ 0.4993 0.5821 * 0.7518

Table 2: Exact critical values of the HWM index under A1 - A2 at percentile
90, 95, 97.5, and 99.

the underlying samples are drawn from the same distribution. For instance,

for the data in Table 1 the HWM index value is 0.2381, which is substantially

smaller than the critical percentiles at common significance levels. Although

the southern part of The Netherlands was flooded in 1993, considering the

entire year shows that the monthly maximum water levels of the river Meuse

at Borgharen Dorp in 1993 were not significantly different from the levels in

1990.

2.3.2 Limiting distribution

In case of two continuous population distributions the HWM index con-

verges asymptotically to the L1-version of the FCvM statistic. In this case

15



no distinct points of the p-p plot exist which makes interpolation redundant.

Schmid and Trede (1995) note that the limiting distribution of the L1-version

of the FCvM statistic corresponds to the limiting distribution of the L1-norm

of a Brownian bridge. Johnson and Killeen (1983) derive the analytical ex-

pression for the latter and tabulate its critical values. These values are in the

last row of Table 2 (Johnson and Killeen (1983) do not include the limiting

value for the 97.5th percentile). Indeed, the critical values of the HWM index

converge fairly rapidly to their limiting values.

2.3.3 Ties

Ties can be present in any sample, even for continuous population distribu-

tions due to rounding. Within-sample ties reduce the number of coordinates

that constitute the p-p plot. Between-sample ties allow the p-p plot to re-

main closer to the diagonal. Ties therefore affect every EDF that quantifies

a p-p plot. One way of dealing with ties is to use a randomized tie-breaking

procedure (Dufour (1995), Dufour and Kiviet, 1998). Let Ui, i = 1, ..., n1+n2

be a random sample of n1 + n2 observations from a uniform continuous dis-

tribution. The observations Z = X1∪X2 can then be arranged following the

order:

(Zi, Ui) < (Zj, Uj) ⇐⇒ Zi < Zj or (Zi = Zj and Ui < Uj), (5)

which results in n1 + n2 different order statistics. The test statistic is then

computed for these n1+n2 different order statistics rather then the q < n1+n2

order statistics from the original samples.

Alternatively the q order statistics are used and Proposition 2 is applied

at the possible cost of a small size distortion in the critical area. Indeed,

within-sample ties possibly increase the value of the HWM index whereas

between-sample ties possibly reduce it. To assess the impact of ties on the

16



distribution of the HWM index we have to rely on numerical simulations

because assumption A1 is violated.

As the influence of ties on the distribution of the HWM index turns out

to be negligible in most cases, we report only on an extreme situation in

that all observations constitute a tie.5 Table 3 lists the size distortions of

the critical percentiles implied by Proposition 2. This distortion is defined as

Pr[HWM > cv]− cp, where cv is the critical value of the HWM index under

A1 — A2 and cp is the concomitant probability (i.e. 10%, 5%, 2.5% and 1%).

Clearly what matters is the number of classes that underlie the sample CDFs.

For instance, if there are only 2 classes, 0 and 1 say, the 90th percentile is 0.400

while absent ties it equals 0.500, yielding a size distortion of -0.040. But size

distortions fall rapidly when the number of classes increases. With as little as

7 classes the simulated 90th percentile is already 0.485 and the size distortion

is one percentage point only. It thus seems that for the HWM index the effect

of within-sample ties and between-sample ties cancels out when the number

of classes is sufficiently high. Because many applications will involve less

than 100% ties (the only other study we know of that considers the effect of

ties, Scholz and Stephens (1987), reports simulations up to situations where

60% of all observations constitute a tie), we conjecture that Proposition 2 is

accurate under most circumstances where assumption A1 is violated.

Perhaps more importantly, the HWM index is less sensitive to ties than

the L1-version of the FCvM statistic. This is because the HWM index is

invariant to the position of a tie whereas the FCvM statistic is not. For

instance, let X1 = {1, 2, 3}, and X2 = {1.5, 1.5, 4} with respective discrete

CDFs F1,3 and F2,3. If the entries in X2 are rounded upwards, yielding X2 =

{2, 2, 4} and F2,3, a between-sample tie arises at the second entry of both

5Simulations which show that the effect of ties on the distribution of the HWM index
is negligible when the fraction of ties is smaller are available upon request.
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percentile 90 95 97.5 99
domain
{0, 1} -0.047 -0.027 -0.018 -0.006
{0,.., 2} -0.040 -0.022 -0.014 -0.006
{0,.., 3} -0.023 -0.013 -0.007 -0.002
{0,.., 4} -0.023 -0.012 -0.009 -0.003
{0,.., 5} -0.018 -0.011 -0.005 -0.003
{0,.., 6} -0.016 -0.009 -0.002 0.001
{0,.., 7} -0.012 -0.007 -0.004 -0.002
{0,.., 8} -0.011 -0.006 -0.003 -0.001
{0,.., 9} -0.012 -0.007 -0.004 -0.001
{0,.., 10} -0.008 -0.005 -0.003 -0.002
{0,.., 11} -0.010 -0.008 -0.004 -0.001
{0,.., 12} -0.006 -0.004 -0.004 -0.001
{0,.., 13} -0.004 -0.006 -0.003 -0.002
{0,.., 14} -0.005 -0.005 -0.003 -0.001
{0,.., 15} -0.008 -0.006 -0.006 -0.002

Table 3: Size distortions of Proposition 2 due to ties in balanced samples.
All samples consist of 50 entries which are drawn from the integer domains
in the first column, where all entries have equal probability. The resulting
simulated distribution for each row consists of 10,000 independent HWM
index values.
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samples. This gives HWM(F1,3, F2,3) = 0.2041 and FCvM(F1,3, F2,3) =

0.1361. Alternatively the entries are rounded downwards, giving us X2 =

{1, 1, 4} and F2,3. A between-sample tie now occurs at the first entry of both

samples. This leaves the HWM index unaffected, HWM(F1,3, F2,3) = 0.2041,

while it does influence the FCvM statistic: FCvM(F1,3, F2,3) = 0.2722.

2.3.4 Unbalanced samples

The second assumption underlying Proposition 2 is that samples are of equal

size. To assess the influence of unbalanced samples we again have to revert

to numerical simulations. Tables 6 through 9 in Appendix B (Section 7.1)

list the simulated percentiles of the HWM index under H0 for all possible

unbalanced samples up to n = 20. Note the accuracy of these simulations

in the extent to which the diagonal entries coincide with those in Table 2.

It appears that the sample size correction factor (3) adequately deals with

unbalanced samples. For larger samples the simulated percentiles suggest a

simple rule of thumb: in case of unbalanced samples that are not in Appendix

B take the analytical value of the HWM index for the largest sample size.

Even in an extreme case where one sample consists of 3 entries while the

other has 20 entries this yields a small approximation error.

3 The K-sample HWM index

For extending the HWM index to the simultaneous comparison of K samples

we first have to introduce the K-sample p-p plot:

Definition 3 The K-sample p-p plot depicts for every domain value z from

the joint support of F1,..., FK the percentiles of one distribution relative to

the others: z 7−→

⎡⎣ F1(z)
...

FK(z)

⎤⎦.
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Obviously K-sample p-p plots are mappings from [0, 1] to [0, 1]K−1. Hypoth-

esis H0 then extends to:

H∗
0 : F1 = ... = FK .

And the generalized assumptions A1 and A2 respectively read as:

Assumption A1∗: F1,..., FK ∈ Ξ2.

Assumption A2∗: n1 = ... = nK = n.

3.1 Definition

The K-dimensional HWM index is defined as the surface between the K-

dimensional p-p plot and the diagonal that cuts all 2-dimensional spaces in

equal halves. For K > 2 this surface is not uniquely defined however. It

depends on the point of the diagonal on which probabilities are projected.

An obvious candidate is to take the shortest distance between the p-p plot

and the diagonal, which implies that each point of the p-p plot is projected

on the concomitant average probability.6 For characterizing this distance we

use the Mahalanobis distance:

Definition 4 HWM(F1, ..., FK) ≡ PS(K)S(n1, ..., nK)×
∞Z

−∞

vuut KX
i=1

³ eFi(x)− ep(x)´2dep(x),
where eFi(x) is the continuous analogue of the possibly discrete CDF of Xi,ep(x) = 1

K

PK
i=1

eFi(x) is the average probability at x, where S(n1, ..., nK) is

a multi-sample scaling factor, and where PS(K) is a factor that scales the

6We also considered alternatives, such as the minimum probability. This led to much
more variability in the HWM index which, we think, makes it less suitable for hypotheses
testing.
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projection. In particular we generalize (3) to:

S(n1..., nK) =

³QK
j=1 nj

´ 1
K

³PK
j=1 nj

´ 1
2

. (6)

And the projection scaling factor PS(K) maintains the correspondence be-

tween the surface below the d-d plot and the surface between theK-dimensional

p-p plot and the diagonal. It equals the length of the diagonal of the K-

dimensional p-p plot:

PS(K) =
√
K. (7)

Note that the 2-sample version of the HWM index in Definition 1 corresponds

to Definition 4 with K = 2.

The properties of the 2-sample HWM index carry over to the K-sample

version:

Property P1 (equality):

HWM(F1, ..., FK) = 0 ⇐⇒ ∀ z ∈ [a, b] : F1(z) = ... = FK(z).

Property P2 (order irrelevance):

HWM(F1, ..., FK) = HWM(G(F1, ..., FK)), where G(·) is any perturba-

tion of the order of its entries.

Property P3 (consistency):

limn1,...,nK→∞HWM (F1,n1 , ..., FK,nK ) = HWM(F1, ..., FK).

3.2 Computation

Computing the K-sample HWM index involves again the construction of

the underlying d-d plot. In case the p-p plot is projected on the average

probabilities, the coordinates of the corresponding d-d plot for any zi ∈ z
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are:

p(zi) =
1

K

KX
j=1

Fj(zi), (8)

d(zi) =

vuut KX
j=1

(Fj(zi)− p(zi))
2, (9)

i = 1, ...,m, m ≤
PK

j=1 nj, and (p(0), d(0)) ≡ (0, 0). Obviously Proposition

1 applies such that the K-sample HWM index can be computed as follows:

HWM(F1,n1 , ..., FK,nK) = PS(K)S(n1..., nK)× (10)
m+lX
i=1

½
(p∗i − p∗i−1)

2

¡
2max{d∗i , d∗i−1}−

¯̄
d∗i − d∗i−1

¯̄¢¾
,

where the notation of Proposition 1 applies.

3.3 Hypotheses testing

An exact formulation is not known for the finite sample distribution of any of

the existingK-sample EDF tests withK > 2 (Kiefer, 1959). We also have not

been able to identify an exact formulation along the lines of Proposition 2 for

the distribution of the K-sample HWM index. However, as it is distribution

free under assumptions A1∗ — A2∗, we can simulate its distribution. The

concomitant critical percentiles are in Tables 10 through 13 in Appendix B

for K = 3, ..., 15 for sample sizes up to the point of convergence.7

4 GDP growth rates across G7 countries

The performance of the HWM test ultimately must be measured against its

ability to discriminate between samples that are not drawn from the same
7Do note that ties can have a non-negligible effect on the distribution of the K-sample

HWM index for K > 2, even if the underlying population distributions consist of many
classes. This is because the probability of a between-sample tie increases with K relative
to the probability of a within-sample tie.
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Country period mean st. dev. min. max.
Italy (IT) 1970 — 2006 2.3 1.9 -2.0 6.5
United Kingdom (UK) 1948 — 2006 2.5 1.8 -2.1 7.1
Germany (DE) 1960 — 2006 2.8 2.6 -1.3 13.2
United States (US) 1948 — 2006 3.4 2.4 -1.9 8.7
France (FR) 1950 — 2006 3.5 2.0 -1.0 8.5
Canada (CA) 1948 — 2006 3.9 2.4 -2.9 9.5
Japan (JP) 1955 — 2006 4.7 4.2 -5.1 13.1

Table 4: Annual GDP growth rates of all G7 countries, taken from IMF
(2007).

population distribution. As none of the existing EDF tests dominates all

other tests under all circumstances, in principle all tests must be considered

at all times. However, in some cases a particular test is known to have the

best power. For instance, when samples are drawn from distributions with

different tails, the AD test outperforms all alternatives as it puts more weight

on extremities. The HWM test on the other hand is expected to outperform

all other tests when the p-p plot remains relatively close to the diagonal

because it is the only EDF test that assigns equal weight to all distances

between the respective distributions.

As an illustration consider the economic growth rates of all G7 countries

from the mid twentieth century up until 2006 (see Table 4; these data are

from IMF, 2007). The samples are unbalanced and ties are absent. The seven

countries can be arranged in three groups: those with an average growth rate

(i) between 2 and 3 percent (Italy, the United Kingdom, and Germany), (ii)

between 3 and 4 percent (United States, France, and Canada), and (iii)

above 4% (Japan). The distributions of growth rates for all countries are

depicted in Figure 3. These distributions differ more clearly between some

countries than others, and EDF tests can be used to determine whether these

differences are statistically significant.
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Figure 3: Pdfs of economic growth rates for all G7 countries from the mid
20th century up to 2006.

Note that the right tails of the distributions of Italy and Japan stand

out in particular: the one of Italy clearly lies below all other distributions

while that of Japan clearly is above all the others. We therefore compare

the performance of the HWM index with the alternative EDF test that is

specifically designed to deal with this situation, the AD test. Including either

Japan or Italy in a group of countries is expected to be picked up most quickly

by the latter. On the other hand, the HWM test should outperform the AD

test whenever a country is added to a group of countries that have comparable

distributions of growth rates.

The results of the two tests are in Table 5.8 Both tests reject equally

strongly the equality of economic growth rates across all G7 countries. This

holds also for all possible subsets of 5 or 6 countries (not shown in the table).

Further, both tests do not reject at any of the significance levels considered

the equality of growth rates within groups (i) and (ii). There are differences

8We use the AD test in modified form. In the notation of Scholz and Stephens (1987):
T =

¡
A2 −K + 1

¢±
σN , where σN and A2 respectively are taken from their formulae (4)

and (7).
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# samples comparison HWM AD
7 CA, DE, FR, IT, JP, UK, US 1.749∗∗∗∗ 8.055∗∗∗∗

4 CA, DE, FR, US 0.916∗∗ 1.736∗

CA, FR, IT, US 1.242∗∗∗∗ 4.035∗∗∗∗

CA, FR, JP, US 0.854∗ 2.879∗∗∗

CA, FR, UK, US 1.110∗∗∗∗ 3.857∗∗∗∗

CA, DE, IT, UK 1.250∗∗∗∗ 5.877∗∗∗∗

DE, FR, IT, UK 0.915∗ 2.511∗∗∗

DE, IT, JP, UK 1.053∗∗∗∗ 6.145∗∗∗∗

DE, IT, UK, US 0.945∗∗ 3.380∗∗∗∗

3 CA, DE, US 0.848∗∗∗ 2.215∗∗

CA, FR, US 0.474 -0.170
CA, UK, US 1.076∗∗∗∗ 5.063∗∗∗∗

CA, IT, UK 1.236∗∗∗∗ 7.666∗∗∗∗

DE, IT, UK 0.474 0.018
FR, IT, UK 0.891∗∗∗ 3.615∗∗∗∗

2 CA, FR 0.375 0.329
CA, US 0.256 -0.500
DE, FR 0.517∗ 1.394∗

DE, IT 0.275 -0.444
DE, UK 0.316 0.228
FR, US 0.279 -0.254
IT, UK 0.385 0.164

Table 5: Annual growth rate comparisons for G7 countries. Note: *, **,
***, and **** refers to H0 being rejected at the 10, 5, 2.5, and 1 percent
significant level respectively.
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though. The AD tests rejects H0 at higher significance levels than the HWM

test in 4 cases: {CA, FR, JP, US}, {DE, FR, IT, UK}, {DE, IT, UK, US},

and {FR, IT, UK}. As expected, in all these cases either Japan or Italy is

included in the comparison. On the other hand, the HWM test rejects H0 at

higher significance levels than the AD-test in 2 cases: {CA, DE, FR, US},

and {CA, DE, US}. Here the difference between the group members (i.e.

CA, FR, and US) and the other country included (DE) is relatively small,

such that the HWM test has more power.

5 Discussion and conclusions

The quantification of the p-p plot we propose assigns equal weight to all

distances between the respective distributions. This allows us to derive the

finite sample distribution of the concomitant EDF test in case of two balanced

samples absent ties. The formula for the exact computation of the HWM

index, which is applicable under all circumstances, allows for simulations in

cases where this distribution is not known. Both ties and unbalanced samples

appear to affect the distribution of the HWM index only mildly. We have not

been able to derive the analytical expression for the distribution of the K-

sample HWM index. But with the aid of the d-d plot we can calculate it again

under all circumstances, which prompts us to provide relevant significance

tables for K = 3, ..., 15. As none of the existing EDF tests, including the

HWM test, outperforms all other tests under all circumstances, they should

all be considered simultaneously so as to avoid type-II errors as much as

possible. It is our contribution to have added one member to this family.
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6 Appendix A Proofs

6.1 Proofs of properties

Proof of Property P1 Let [a, b] be the common support of eFj(z), j =

1, ..., K. HWM(F1, ..., FK) = 0 ⇐⇒ because of the continuity of both eFj(z)

and ep(z): rPK
j=1

³ eFj(z)− ep(z)´2 = 0 ∀ z ∈ [a, b]⇐⇒ eF1(z) = ep,..., eFK(z) =ep, ∀ z ∈ [a, b] ⇐⇒ F1(z) = ... = FK(z), ∀ z ∈ [a, b].

QED

Proof of Property P2 HWM(F1, ..., FK) ≡ PS(K)S(n1, ..., nK)×
∞Z

−∞

vuut KX
i=1

³ eFi(x)− ep(x)´2dep(x)
= PS(K)S(n1, ..., nK)

∞Z
−∞

vuutG

Ã
KX
i=1

³ eFi(x)− ep(x)´2!dep(x)
=HWM(G(F1, ..., FK)), where G(·) is any perturbation of the order of

its entries.

QED

Proof of Property P3 By application of Slutsky’s theorem:

limn1,...,nK→∞

∞Z
−∞

vuut KX
i=1

³ eFi,ni(x)− ep(x)´2dep(x)
=

∞Z
−∞

vuut KX
i=1

³
limn1,...,nK→∞

eFi,ni(x)− limn1,...,nK→∞ep(x)´2dep(x)
=

∞Z
−∞

vuut KX
i=1

³ eFi(x)− ep(x)´2dep(x).
QED

6.2 Proofs of Lemmata
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Figure 4: A p-p plot cutting the diagonal “from below” at point (ph, ph).
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Proof of Lemma 1 A p-p plot that cuts the diagonal from below at

probability ph between observations zi and zi+1 (i.e. F1,n1(zi) ≥ F2,n2(zi) and

F1,n1(zi+1) ≤ F2,n2(zi+1)) is illustrated in Figure 4. The diagonal runs from

(F1,n1(zi), F1,n1(zi)) to (F1,n1(zi+1), F1,n1(zi+1)) while the p-p plot connects

(F1,n1(zi), F2,n2(zi)) with (F1,n1(zi+1), F2,n2(zi+1)). Let a = ph−F1,n1(zi), b =

F1,n1(zi)−F2,n2(zi), c = F1,n1(zi+1)−F1,n1(zi), and d = F2,n2(zi+1)−F2,n2(zi).

From TAN(t) = d/c = (a + b)/a we obtain that a = bc/(d− c). Hence, ph

follows. A similar argument applies in case the diagonal is cut from above.

QED

Proof of Lemma 2 Define a “step” on the grid of the sample p-p plot as

an increase of the p-p plot of length 1/n in either the horizontal or vertical

direction. Under A1-A2 the smallest value of the sample HWM index obtains

when each next step of the p-p plot is vertical (horizontal) after a horizontal

(vertical) step. In that case the p-p plot consists of n triangulars yielding

as HWM index: S(n, n)n/2n2 = 1/
√
8n. The index obtains its largest value

when n consecutive steps are either vertical or horizontal, yielding as index

value: S(n, n)/2 =
p
n/8. The smallest difference between two sample HWM

index values is the surface of a square with length 1/n corrected for sample

size: S(n, n)/n2 = 1/
√
2n3. Hence, the number of distinct sample HWM

index values is 1 +
³p

n/8− 1/
√
8n
´.³

1/
√
2n3
´
= 1 + n(n− 1)/2.

QED

Proof of Lemma 3 First note that HWMn(j), j = 1, ..., 1+n(n−1)/2 is

decreasing in j. It then follows that HWMn(1) =
p
n/8 is the largest value

of the sample HWM index, and that HWMn(1 + n(n − 1)/2) = 1/
√
8n is

the smallest sample HWM index value. As HWMn(j + 1) − HWMn(j) =

1/
√
2n3, the lemma follows.
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QED

6.3 Proofs of propositions

Proof of Proposition 1 The surface between the p-p plot and the diagonal

equals the surface below the d-d plot multiplied by
√
K. The surface below

the d-d plot between (p∗i−1, d
∗
i−1) and (p

∗
i , d

∗
i ) equals (p

∗
i − p∗i−1)d

∗
i−1 + (p

∗
i −

p∗i−1)(d
∗
i − d∗i−1)/2 if d

∗
i ≥ d∗i−1, and (p

∗
i − p∗i−1)d

∗
i + (p

∗
i − p∗i−1)(d

∗
i−1− d∗i )/2 if

d∗i ≤ d∗i−1. The proposition then follows.

QED

Proof of Proposition 2 We first characterize all different p-p plots for

sample size n, we then order all these p-p plots according to the corresponding

value of the HWM index, and we conclude with combining these HWM index

values with their relative frequency of occurrence.

To identify all different p-p plots for sample size n we examine what

happens when the sample size increases with one observation. Increasing the

sample size from n = 0 tot n = 1 creates two possible p-p plots: one going

from (0,0) to (1,1) via (0,1) and one going from (0,0) to (1,1) via (1,0). This is

illustrated in panel a of Figure 5. Adding another observation creates six p-p

plots in total. As illustrated in panel b, three of these p-p plots go through

point a, and three run through point b. Panel c applies when going from

n = 2 to n = 3. As of points c and f there are four possible continuations of

the p-p plot, while there are three possible continuations from points d and

e onwards, leading to 20 possible p-p plots in total, and so on.

To capture the recursive pattern in which the set of possible p-p plots

evolves when the sample size increases, we identify border points: all points

on the grid of the p-p plot that are one step short of one, and only one

probability being unity. Point e in panel c is a border point, while it is
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Figure 5: P-p plots, border points, border numbers and history numbers;
panels a through d respectively refer to n going from 0 to 1, from 1 to 2,
from 2 to 3, and from 3 to 4.
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not in panel d. Note that all p-p plots emanating from border points with

sample size n necessarily pass through any of the border points for sample

size n+ 1. To reveal the pattern in the development of possible p-p plots it

suffices therefore to keep track of what happens at the border points.

Let x(n) be a border point given sample size n and letX(n) denote the set

of all border points for this sample size. For each border point we introduce

two numbers. The border number, bn(x(n)), is the number of border points

that can be reached when the sample size increases with one observation.

For example, as of point d in panel c three border points can be reached

in panel d: h, i and j, yielding bn(d) = 3. At the same time, as of point

d there are three possible routes to get at (1,1). Indeed, bn(x(n)) coincides

with the number of different p-p plot continuations at x(n). Border numbers

are uniquely related to the distance between the concomitant p-p plot and

the diagonal: the higher is the border number, the larger is the difference

between the diagonal and the p-p plot.

The history number, hn(x(n)), is the number of distinct routes that a

p-p plot can have taken to reach x(n) from any x(n − 1) onwards. For

instance, point h in panel d can be reached in three different ways from

two border points in panel c: twice from c and once from d. This yields

hn(h) = 3. History numbers are one-to-one related to the relative frequency

of the concomitant border point: the higher is the history number, the larger

is the probability that the particular border point is part of a p-p plot.

In Figure 5 both the border numbers and history numbers are depicted

whereby the history numbers are in brackets. For any n > 1 the number of

distinct p-p plots then equals:

Ω(n) =
X

x(n)∈X(n)

bn(x(n))hn(x(n)).
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This corresponds to
P

i

P
j aij(n) in the notation of Proposition 2.

To keep track of all possible p-p plots when n expands it suffices to identify

the recursive pattern in the development of both border numbers and history

numbers when the sample size increases. For that we introduce a logical tree

as in Figure 6. It combines all border points with the same border number,

split up according to the border points they emanate from. Note that there

is a one-to-one correspondence between this tree and the p-p plots in Figure

5. Going from n = 0 to n = 1 creates two possible p-p plots such that the

history number is 2 at the start of the tree. Adding another observation

creates two border points, a and b, that both can be reached in one way

only. The logical tree then groups the border points with the same border

number and history number. In case n = 3 there are four border points, two

of which have border number 3 (d and e), and two that have border number

4 (c and f ). Points d and e can be reached from both points a and b, while

points c and f can be reached only from points a and b respectively. Border

number 3 can thus emerge from four different p-p plots while there are two

distinct p-p plots that lead to border number 4. The tree in Figure 6 splits

up accordingly.

Going then from n = 3 to n = 4 nicely illustrates that points on the

grid of the p-p plot can enter Figure 6 at more than one position. Consider

for instance point i in panel d of Figure 5. That could have been reached

through d or e, yielding hn(i| d, e) = 4. It could also have been reached

through c or f, yielding hn(i| c, f) = 2. Hence the history number 6 at point

i (Figure 5, panel d). Obviously, the probability that a p-p plot that runs

through i passes through d or e is twice as large as the probability that it

passes through c or f.

Considering then the development of border numbers when the sample
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4 (2)

3 (2)

n: 3   4

d (2), e (2)

5 (2)

9 (8)

10 (4)

10 (4)

11 (2)

12 (2)
g (1), l (1)

n: 1   2 n: 2   3

c (1), f (1)

a (1), b (1)

3 (8)
i (4), j (4)

4 (2)
h (1), k (1)

4 (4)
h (2), k (2)

3 (4)
i (2), j (2)

Figure 6: Logical tree for the evolution of possible p-p plots as the sample
size increases.
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size increases, Figure 6 suggests that border numbers for sample size n al-

ways give rise to the same logical sequence of border numbers for sample

size n + 1. In particular, bn(x(n)) splits into bn(x(n)) − 1 border numbers

with values {3, 4, ..., bn(x(n)) + 1} when the sample size increases from n to

n + 1. For example, border number 3 is split into {3, 4} while border num-

ber 4 evolves into {3, 4, 5}. This is due to a recursive pattern indeed. In

general, from any border point x(n) all border points with respective border

numbers {3, 4, ..., bn(x(n))} can be reached at least once. In addition, there

is one border point with border number bn(x(n)) + 1 that can be reached as

well. These possibilities yield the recursive pattern in the evolution of border

numbers in Figure 6 as the sample size increases.

Regarding the development of history numbers, first note that in Fig-

ure 6 the history numbers of all border points that enter the tree at the

same position are summed up. This is because these entries give rise to p-

p plots that yield the same value for the HWM index. Then observe that

from any border point x(n) all border points with respective border numbers

{4, 5, ..., bn(x(n)) + 1} can be reached once, and only once. Accordingly, the

history numbers do not change. For instance, the history number for point h

insofar the p-p plot runs through point c is the same as the history number

at point c, while it is equal to the history number of point d for all p-p plots

that run through point h via point d. That is, hn(h| c) = hn(c) = 1, and

hn(h| d) = hn(d) = 2. The only exception to this rule are the border points

with border number 3. These can be reached from two different border points

that have the same border number and history number. And because these

border points are grouped together in the logical tree in Figure 6, the history

number of border points with border number 3 is twice the history number

of the border point they emanate from. For instance, as of point c border
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points g, h, i, and j can be reached, with respective border numbers 5, 4, 3,

and 3. Border points i and j can also be reached from point f, while points

g and h cannot. Therefore, in the bottom branch of Figure 6 we have that

hn(i| c, f) = hn(j| c, f) = hn(c) + hn(f) = 2, while hn(h| c, f) = hn(c) = 1,

and hn(g| c, f) = hn(f) = 1.

The recursive pattern in the evolution of border numbers and history

numbers is formalized in the matrix notation of Proposition 2. In particular,

the matrix BM contains the development factors of the history numbers,

and the history numbers themselves are in HM . For example, for n = 3 we

have for BM(3):
6 5 4 3

5
4
3

⎡⎣ 1 1 1 2
0 1 1 2
0 0 1 2

⎤⎦ ,

where rows and columns respectively refer to the border numbers for n = 3

and n = 4, while HM(3) boils down to:

5 4 3
12
11
10
9

⎡⎢⎢⎣
2 0 0
0 2 0
0 4 4
0 0 8

⎤⎥⎥⎦ ,

where the columns refer to the possible border numbers for n = 3, and where

the rows refer to the border sums for n = 3, as explained next.

Recall that bn(x(n)) is one-to-one related to the distance between the

diagonal and the p-p plot that runs through x(n). This implies that the sum

over all border numbers passed through to complete the p-p plot is uniquely

related to the surface between the p-p plot and the diagonal. These border

sums are included as the last column in Figure 6, with the related history

numbers in brackets. Border sums are by definition uniquely related to the

different values of the HWM index, in this case for n = 3. There are four
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distinct border sums that corresponds to the four different values of the HWM

index as given in Lemma 3: (1, 7/9, 5/9, 3/9)
p
3/ 8. Their respective relative

frequencies then equal the probabilities that the concomitant border sums

emerge, which follow from their history numbers: (2/20, 2/20, 8/20/8/20).

QED

7 Appendix B Critical percentiles

7.1 K = 2, unbalanced samples, no ties

7.2 K = 3, ..., 15, balanced samples, no ties
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n 3 4 5 6 7 8 9 10 11
3 0.612
4 0.546 0.530
5 0.502 0.522 0.538
6 0.511 0.516 0.495 0.529
7 0.518 0.513 0.512 0.514 0.515
8 0.492 0.510 0.510 0.501 0.518 0.500
9 0.528 0.508 0.498 0.498 0.501 0.505 0.511
10 0.516 0.507 0.511 0.506 0.505 0.502 0.508 0.514
11 0.501 0.506 0.504 0.508 0.512 0.509 0.506 0.502 0.494
12 0.516 0.505 0.501 0.500 0.508 0.506 0.504 0.506 0.502
13 0.503 0.505 0.512 0.498 0.504 0.502 0.503 0.512 0.504
14 0.495 0.504 0.498 0.505 0.496 0.504 0.508 0.513 0.504
15 0.509 0.503 0.512 0.506 0.502 0.505 0.502 0.504 0.498
16 0.497 0.503 0.508 0.500 0.504 0.505 0.500 0.500 0.505
17 0.507 0.501 0.501 0.510 0.508 0.508 0.508 0.502 0.512
18 0.510 0.503 0.506 0.511 0.506 0.498 0.507 0.507 0.505
19 0.499 0.503 0.508 0.506 0.500 0.502 0.499 0.499 0.506
20 0.501 0.502 0.505 0.507 0.510 0.509 0.501 0.503 0.513
n 12 13 14 15 16 17 18 19 20
12 0.510
13 0.500 0.505
14 0.508 0.509 0.499
15 0.502 0.508 0.510 0.505
16 0.506 0.506 0.501 0.500 0.508
17 0.502 0.502 0.501 0.504 0.507 0.499
18 0.505 0.498 0.501 0.508 0.495 0.502 0.500
19 0.499 0.506 0.506 0.503 0.506 0.504 0.502 0.499
20 0.505 0.502 0.502 0.505 0.511 0.500 0.495 0.509 0.506

Table 6: Simulated critical values at percentile 90 for unbalanced samples ab-
sent ties. The underlying distribution consists of 10,000 independent HWM
index values that are computed for samples that are drawn from a standard
normal distribution. Note that the joint number of sample entries must be
at least 6 for percentile 90 to be defined properly.
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n 3 4 5 6 7 8 9 10 11
4 0.655 0.619
5 0.593 0.596 0.601
6 0.550 0.581 0.606 0.577
7 0.587 0.570 0.581 0.599 0.592
8 0.577 0.587 0.596 0.582 0.587 0.594
9 0.583 0.601 0.578 0.586 0.583 0.575 0.589
10 0.608 0.592 0.584 0.581 0.583 0.580 0.595 0.581
11 0.582 0.584 0.590 0.584 0.593 0.587 0.578 0.583 0.591
12 0.570 0.577 0.595 0.583 0.584 0.593 0.588 0.585 0.590
13 0.580 0.582 0.599 0.572 0.578 0.578 0.581 0.588 0.586
14 0.569 0.576 0.576 0.580 0.584 0.584 0.594 0.587 0.596
15 0.580 0.565 0.590 0.587 0.582 0.590 0.589 0.588 0.578
16 0.569 0.587 0.586 0.588 0.591 0.586 0.583 0.587 0.580
17 0.579 0.582 0.573 0.585 0.589 0.593 0.587 0.587 0.592
18 0.584 0.578 0.593 0.589 0.588 0.583 0.590 0.585 0.587
19 0.583 0.579 0.577 0.581 0.576 0.590 0.579 0.579 0.582
20 0.569 0.589 0.585 0.579 0.591 0.589 0.584 0.587 0.593
n 12 13 14 15 16 17 18 19 20
12 0.578
13 0.591 0.581
14 0.590 0.586 0.594
15 0.591 0.594 0.589 0.590
16 0.586 0.592 0.586 0.591 0.586
17 0.585 0.575 0.582 0.592 0.585 0.580
18 0.584 0.577 0.581 0.583 0.576 0.580 0.593
19 0.583 0.587 0.587 0.585 0.591 0.584 0.580 0.585
20 0.586 0.583 0.583 0.586 0.589 0.583 0.581 0.598 0.585

Table 7: Simulated critical values at percentile 95 for unbalanced samples ab-
sent ties. The underlying distribution consists of 10,000 independent HWM
index values that are computed for samples that are drawn from a standard
normal distribution. Note that the joint number of sample entries must be
at least 7 for percentile 95 to be defined properly.
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n 3 4 5 6 7 8 9 10 11
5 0.685 0.671 0.664
6 0.629 0.645 0.661 0.674
7 0.656 0.627 0.659 0.642 0.668
8 0.615 0.663 0.658 0.656 0.656 0.656
9 0.639 0.647 0.657 0.650 0.646 0.657 0.642
10 0.658 0.651 0.657 0.645 0.667 0.659 0.653 0.648
11 0.641 0.662 0.657 0.657 0.673 0.660 0.663 0.645 0.649
12 0.645 0.650 0.658 0.653 0.651 0.662 0.658 0.662 0.655
13 0.661 0.673 0.658 0.635 0.648 0.655 0.660 0.660 0.655
14 0.636 0.661 0.658 0.645 0.661 0.665 0.662 0.670 0.662
15 0.650 0.630 0.658 0.646 0.655 0.662 0.659 0.653 0.660
16 0.635 0.643 0.647 0.653 0.650 0.659 0.659 0.660 0.640
17 0.642 0.635 0.643 0.661 0.646 0.656 0.660 0.655 0.670
18 0.653 0.653 0.659 0.648 0.659 0.654 0.650 0.662 0.673
19 0.635 0.646 0.644 0.643 0.655 0.664 0.658 0.649 0.651
20 0.646 0.662 0.660 0.657 0.667 0.663 0.651 0.658 0.666
n 12 13 14 15 16 17 18 19 20
12 0.646
13 0.657 0.671
14 0.664 0.656 0.675
15 0.666 0.670 0.663 0.663
16 0.668 0.662 0.659 0.661 0.663
17 0.658 0.654 0.654 0.661 0.664 0.661
18 0.671 0.657 0.657 0.657 0.647 0.655 0.667
19 0.662 0.669 0.651 0.655 0.666 0.654 0.658 0.662
20 0.658 0.659 0.656 0.664 0.662 0.651 0.658 0.672 0.656

Table 8: Simulated critical values at percentile 97.5 for unbalanced sam-
ples absent ties. The underlying distribution consists of 10,000 independent
HWM index values that are computed for samples that are drawn from a
standard normal distribution. Note that the joint number of sample entries
must be at least 8 for percentile 97.5 to be defined properly.
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n 3 4 5 6 7 8 9 10 11
5 0.745 0.727
6 0.707 0.710 0.716 0.722
7 0.725 0.684 0.708 0.728 0.745
8 0.739 0.714 0.702 0.733 0.729 0.719
9 0.694 0.740 0.737 0.738 0.740 0.743 0.746
10 0.709 0.718 0.730 0.742 0.745 0.738 0.747 0.760
11 0.675 0.740 0.725 0.746 0.766 0.734 0.730 0.728 0.727
12 0.689 0.722 0.720 0.722 0.726 0.730 0.756 0.743 0.744
13 0.701 0.740 0.745 0.727 0.738 0.749 0.753 0.750 0.743
14 0.711 0.724 0.740 0.732 0.727 0.745 0.755 0.759 0.754
15 0.692 0.711 0.736 0.736 0.739 0.742 0.747 0.746 0.740
16 0.702 0.727 0.715 0.718 0.749 0.740 0.717 0.744 0.740
17 0.705 0.714 0.728 0.743 0.720 0.737 0.737 0.738 0.767
18 0.713 0.729 0.725 0.727 0.737 0.735 0.726 0.758 0.760
19 0.696 0.718 0.723 0.731 0.746 0.749 0.730 0.727 0.739
20 0.700 0.730 0.740 0.734 0.755 0.747 0.734 0.762 0.751
n 12 13 14 15 16 17 18 19 20
12 0.731
13 0.737 0.762
14 0.741 0.743 0.756
15 0.757 0.773 0.743 0.736
16 0.750 0.753 0.734 0.753 0.740
17 0.741 0.743 0.736 0.747 0.760 0.741
18 0.758 0.751 0.746 0.750 0.738 0.744 0.750
19 0.737 0.759 0.736 0.747 0.756 0.747 0.747 0.764
20 0.745 0.734 0.748 0.742 0.743 0.739 0.737 0.756 0.743

Table 9: Simulated critical values at percentile 99 for unbalanced samples ab-
sent ties. The underlying distribution consists of 10,000 independent HWM
index values that are computed for samples that are drawn from a standard
normal distribution. Note that the joint number of sample entries must be
at least 9 for percentile 99 to be defined properly.
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n 3 4 5 6 7 8 9 10 50 100
K
3 0.720 0.706 0.706 0.704 0.710 0.696 0.703 0.705 0.692 0.701
4 0.841 0.840 0.843 0.843 0.840 0.841 0.838 0.837 0.839 0.841
5 0.948 0.951 0.951 0.949 0.953 0.952 0.950 0.953 0.950 0.956
6 1.040 1.045 1.049 1.049 1.048 1.045 1.047 1.052 1.045 1.048
7 1.127 1.133 1.133 1.138 1.135 1.131 1.134 1.138 1.136 1.141
8 1.202 1.214 1.214 1.213 1.215 1.208 1.211 1.217 1.212 1.220
9 1.276 1.286 1.289 1.285 1.288 1.285 1.282 1.288 1.287 1.292
10 1.343 1.354 1.357 1.351 1.355 1.352 1.353 1.357 1.357 1.363
11 1.406 1.418 1.421 1.416 1.422 1.418 1.420 1.421 1.428 1.423
12 1.469 1.478 1.483 1.479 1.482 1.481 1.483 1.484 1.491 1.485
13 1.528 1.538 1.539 1.538 1.540 1.540 1.544 1.545 1.549 1.541
14 1.583 1.592 1.595 1.594 1.596 1.598 1.598 1.598 1.604 1.601
15 1.635 1.643 1.648 1.650 1.648 1.650 1.652 1.653 1.660 1.656

Table 10: Simulated values of the HWM index at percentile 90 under A1*
- A2*. The underlying distribution consists of 10,000 independent HWM
index values that are computed for samples that are drawn from a standard
normal distribution.

n 3 4 5 6 7 8 9 10 50 100
K
3 0.753 0.762 0.779 0.773 0.778 0.770 0.774 0.780 0.776 0.773
4 0.886 0.900 0.904 0.909 0.906 0.906 0.904 0.911 0.910 0.915
5 0.993 1.004 1.012 1.016 1.011 1.015 1.013 1.020 1.025 1.020
6 1.087 1.102 1.109 1.109 1.111 1.111 1.109 1.117 1.121 1.122
7 1.177 1.189 1.191 1.198 1.198 1.197 1.199 1.202 1.204 1.211
8 1.254 1.267 1.273 1.273 1.276 1.280 1.278 1.276 1.283 1.294
9 1.327 1.341 1.346 1.346 1.350 1.347 1.350 1.352 1.361 1.365
10 1.395 1.406 1.411 1.414 1.422 1.419 1.417 1.425 1.431 1.430
11 1.454 1.474 1.477 1.480 1.485 1.484 1.484 1.489 1.497 1.494
12 1.518 1.535 1.536 1.539 1.542 1.545 1.545 1.548 1.559 1.551
13 1.576 1.590 1.597 1.598 1.601 1.603 1.603 1.609 1.618 1.611
14 1.631 1.644 1.654 1.655 1.655 1.661 1.660 1.665 1.671 1.667
15 1.684 1.699 1.706 1.712 1.709 1.713 1.713 1.719 1.726 1.720

Table 11: Simulated values of the HWM index at percentile 95 under A1*
- A2*. The underlying distribution consists of 10,000 independent HWM
index values that are computed for samples that are drawn from a standard
normal distribution.

44



n 3 4 5 6 7 8 9 10 50 100
K
3 0.805 0.820 0.834 0.831 0.841 0.832 0.831 0.840 0.848 0.844
4 0.926 0.947 0.961 0.964 0.965 0.957 0.961 0.967 0.978 0.978
5 1.035 1.052 1.066 1.074 1.068 1.072 1.072 1.083 1.093 1.087
6 1.127 1.149 1.159 1.168 1.166 1.172 1.170 1.175 1.184 1.189
7 1.214 1.236 1.241 1.252 1.260 1.254 1.255 1.257 1.269 1.274
8 1.294 1.311 1.328 1.327 1.330 1.338 1.334 1.336 1.346 1.356
9 1.366 1.385 1.392 1.398 1.405 1.405 1.408 1.410 1.419 1.425
10 1.434 1.455 1.457 1.473 1.476 1.472 1.473 1.480 1.489 1.487
11 1.500 1.521 1.526 1.533 1.540 1.543 1.534 1.544 1.561 1.549
12 1.557 1.580 1.586 1.594 1.603 1.605 1.597 1.604 1.621 1.609
13 1.617 1.637 1.647 1.651 1.658 1.665 1.658 1.663 1.681 1.670
14 1.671 1.692 1.706 1.707 1.707 1.718 1.715 1.716 1.740 1.730
15 1.727 1.747 1.755 1.764 1.761 1.772 1.771 1.773 1.790 1.785

Table 12: Simulated values of the HWM index at percentile 97.5 under A1*
- A2*. The underlying distribution consists of 10,000 independent HWM
index values that are computed for samples that are drawn from a standard
normal distribution.

n 3 4 5 6 7 8 9 10 50 100
K
3 0.839 0.874 0.888 0.896 0.909 0.900 0.906 0.917 0.919 0.930
4 0.968 1.008 1.013 1.024 1.033 1.027 1.037 1.042 1.057 1.055
5 1.082 1.111 1.125 1.135 1.142 1.144 1.138 1.150 1.172 1.169
6 1.174 1.208 1.212 1.225 1.233 1.247 1.244 1.246 1.256 1.254
7 1.259 1.287 1.301 1.310 1.318 1.327 1.329 1.327 1.341 1.341
8 1.333 1.371 1.382 1.394 1.392 1.393 1.406 1.394 1.416 1.422
9 1.412 1.434 1.454 1.464 1.470 1.479 1.470 1.472 1.494 1.490
10 1.477 1.505 1.522 1.532 1.534 1.543 1.532 1.551 1.557 1.547
11 1.545 1.574 1.585 1.600 1.599 1.603 1.600 1.612 1.636 1.623
12 1.609 1.628 1.645 1.658 1.660 1.664 1.667 1.670 1.700 1.686
13 1.665 1.685 1.704 1.714 1.719 1.724 1.728 1.727 1.757 1.740
14 1.721 1.748 1.758 1.771 1.767 1.784 1.784 1.782 1.805 1.805
15 1.783 1.801 1.814 1.821 1.822 1.836 1.836 1.833 1.859 1.860

Table 13: Simulated values of the HWM index at percentile 99 under A1*
- A2*. The underlying distribution consists of 10,000 independent HWM
index values that are computed for samples that are drawn from a standard
normal distribution.
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