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Abstract

A twofold generalization of the classical continuous Hop�eld neural network for modelling con-
strained optimization problems is proposed. On the one hand, non-quadratic cost functions are
admitted corresponding to non-linear output summation functions in the neurons. On the other
hand it is shown under which conditions various (new) types of constraints can be incorporated di-
rectly. The stability properties of several relaxation schemes are shown. If a direct incorporation of
the constraints appears to be impossible, the Hop�eld-Lagrange model can be applied, the stability
properties of which are analyzed as well. Another good way to deal with constraints is by means
of dynamic penalty terms, using mean �eld annealing in order to end up in a feasible solution. A
famous example in this context is the elastic net, although it seems impossible - contrary to what
is suggested in the literature - to derive the architecture of this network from a constrained Hop-
�eld model. Furthermore, a non-equidistant elastic net is proposed and its stability properties are
compared to those of the classical elastic network.

In addition to certain simulation results as known from the literature, most theoretical statements
of this paper are validated with simulations of toy problems while in some cases, more sophisti-
cated combinatorial optimization problems have been tried as well. In the �nal section, we discuss
the possibilities of applying the various models in the area of constrained optimization. It is also
demonstrated how the new ideas as inspired by the analysis of generalized continuous Hop�eld mod-
els, can be transferred to discrete stochastic Hop�eld models. By doing so, simulating annealing can
be exploited in other to improve the quality of solutions. The transfer also opens new avenues for
continued theoretical research.

1 Introduction

We start presenting a general outline of how Hop�eld neural networks are used in the area of
combinatorial optimization. Since the source of inspiration in this paper is supplied by the classical
continuous Hop�eld net, we next recall this model to mind. In the consecutive subsections, we
present { in a concise overview { which variations and extensions of the original model are proposed
after its appearance. All this information serves as a preparation for the rest of the paper, the
outline of which is sketched in the �nal subsection of this introduction.

1.1 Hop�eld networks, combinatorial optimization, and statistical physics

Hop�eld and allied networks have been used in applications which are modelled as an `associative
memory', and in problems emanating from the �eld of `combinatorial optimization' ever since their
conception [14, 15]. In both types of applications, an energy or cost function is minimized, while {
in case of dealing with combinatorial optimization problems { a given set of constraints should be
ful�lled as well. In the latter case, the problem can formally be stated as

minimize E(x)

subject to : C�(x) = 0; � = 1; : : : ;m; (1)

where x = (x1; x2; : : : ; xn) is the state vector or system state of the neural net, xi representing the
output neuron i, and where any C�(x) = 0 is a constraint. If the value of the state vector is such
that 8� : C�(x) = 0, we say that x represents a `valid' or `feasible' solution.

Roughly spoken, three methods are available in order to deal with the constraints. The �rst and
eldest one is the penalty approach where usually �xed and quadratic penalty functions are added
to the original cost function. In practice, it turns out very di�cult to �nd penalty weights that
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guarantee both valid and high quality solutions. In a second approach, constraints are directly
incorporated in the neural network by choosing appropriate transfer functions in the neurons. Up
till now, the applicability of this method was centered in independent, symmetric linear constraints.
A third way to grapple with the constraints, is combining the neural network with the Lagrange
multiplier method resulting in what we call a Hop�eld-Lagrange model.

All these methods can be combined with a type of `annealing' [1] where during relaxation of
the recurrent network, the `temperature' of the system is gradually lowered in order to try not to
land in a local minimum. The technique of annealing originates from an analysis of Hop�eld-type
networks using the theory of statistical mechanics [26]. In this paper however, we emphasize on a
mathematical analysis and only refer to physical interpretations if these yield relevant additional
insights. The three above-mentioned methods for resolving constrained optimization problems form
part of this analysis.

1.2 The classical continuous Hop�eld model

Applying the classical discrete [17] or classical continuous [18] Hop�eld model, the cost or energy
function to be minimized is quadratic and is expressed in the output of the neurons. In this paper
the source of inspiration is the continuous model. Then, the neurons are continuous-valued and the
continuous energy function Ec(V ) is given by

Ec(V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi

| {z }
+
X
i

Z Vi

0

g�1(v)dv

| {z }
(2)

= E(V ) + Eh(V ) : (3)

E(V ) corresponds to the cost function of equation (1), where V = (V1; V2; : : : ; Vn) 2 [0; 1]n represents
the state vector. Eh(V ), which we call the `Hop�eld term', has a statistical mechanical interpretation
based on a so-called mean �eld analysis of a stochastic Hop�eld model [16, 34, 15, 14, 35, 4]. Its
general e�ect is a displacement of the minima of E(V ) towards the interior of the state space [18]
whose magnitude depends on the current `temperature' in the system: the higher the temperature
is, the larger is the displacement towards the interior1. The motion equations corresponding to (2)
are

_Ui = �@Ec(V )

@Vi
=
X
j

wijVj + Ii � Ui; (5)

where Vi = g(Ui) should hold continuously. Ui represents the (weighted) input of neuron i. After a
random initialization, the network is generally not in an equilibrium state. Then, while maintaining
Vi = g(Ui), the input values Ui are adapted conform (5). The following theorem [18] gives conditions
for which an equilibrium state will be reached:

Theorem 1 (Hop�eld). If (wij) is a symmetric matrix and if 8i : Vi = g(Ui) is a monotone in-
creasing, di�erentiable function, then Ec is a Lyapunov function [3, 15, 14] for motion equations (5).

Under the given conditions, the theorem guarantees convergence to an equilibrium state of the
neural net where

8i : Vi = g(Ui) ^ Ui =
X
j

wijVj + Ii: (6)

1.3 The penalty model

The oldest approach for solving combinatorial optimization problems using Hop�eld models con-
sists of a so-called penalty method, sometimes called the `soft' approach [35, 29]: extra `penalty'
terms are added to the original energy function, penalizing violation of constraints. The various

1In case of choosing the sigmoid Vi = 1=(1 + exp (��Ui)) as the transfer function g(Ui), the part of
temperature is acted by 1=� and the Hop�eld term in (3) can be written as [16, 35, 4, 6, 7]

Ehs(V ) = 1
�

X
i

(Vi lnVi + (1� Vi) ln(1� Vi)): (4)

From this, the displacement of solutions towards towards the interior is recognized easily since Ehs(V ) has
one absolute minimum, precisely in the middle of the state space where 8i : Vi = 0:5.
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Figure 1: The original continuous Hop�eld network.

penalty terms are weighted with { originally { �xed weights c� (in case we shall speak of a static
penalty method) and chosen in such a way that

mX
�=1

c�C�(V ) has a minimum value , V represents a valid solution. (7)

In many cases, the chosen penalty terms are quadratic expressions. Applying a continuous Hop�eld
network, the original problem (1) is converted into

minimize Ep(V ) = E(V ) +

mX
�=1

c�C�(V ) +Eh(V ); (8)

E(V ) and Eh(V ) being given by (3). The corresponding updating rule is

_Ui = �@Ep

@Vi
=
X
j

wijVj + Ii � c�
@C�

@Vi
� Ui: (9)

Ignoring the Hop�eld term for the moment (by applying a low temperature), the energy function
Ep is a weighted sum of m+ 1 terms and a di�culty arises in determining correct weights c�. The
minimum of Ep is a compromise between ful�lling the constraints and minimizing the original cost
function E(V ). Applying this penalty approach to the travelling salesman problem (TSP) [19, 40],
the weights had to be determined by trial and error. For only a small low-dimensional region of the
parameter space valid tours were found, especially when larger problem instances were tried2.

1.4 A �rst transformation

Instead of calling V = (V1; V2; : : : ; Vn) the state vector or system state of the neural net, we here
make the generalization of calling the set fU; V g = f(U1; U2; : : : ; Un); (V1; V2; : : : ; Vn)g the system
state. At the same time, we drop the condition that the input-output characteristic Vi = g(Ui)
should hold continuously. The following theorem appears to hold [23, 4, 6, 7].

Theorem 2. The energy expression (2) can be generalized to the energy expression

Fg1(U; V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
i

UiVi �
X
i

Z Ui

0

g(u)du: (10)

If (wij) is a symmetric matrix, then any stationary point of the energy Fg1 coincides with an
equilibrium state of the continuous Hop�eld neural network. If, moreover, Fg1 is bounded below, and
if 8i : Vi = g(Ui) is a di�erentiable and monotone increasing function, then Fg1 is a Lyapunov
function for the motion equations (5).

2Aside we mention that for `constrained satisfaction problems' (by which we mean combinatorial problems
without a cost function to be minimized like the n-queen problem and the 4-coloring problem), the penalty
method has proven to be quite useful. See, e.g., [38].
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Proof. Fg1 can simply be derived from Hop�eld's original expression (2), using partial integration.
Having Vi = g(Ui), we can write

X
i

Z Vi

0

g�1(v)dv =
X
i

�
g�1(v)v

�Vi
0
�
X
i

Z Ui

g�1(0)

vdu

=
X
i

UiVi �
X
i

Z Ui

0

g(u)du+ c; (11)

where c = �Pi

R 0
g�1(0) g(u)du is an unimportant constant which may be neglected3. Substitution

of (11) in (2) yields (10). By resolving

8i : @Fg1=@Ui = 0 ^ @Fg1=@Vi = 0; (12)

the set of equilibrium conditions (6) is immediately found. Taking the time derivative of Fg1, using
the symmetry of (wij), and assuming that constantly Vi = g(Ui), we �nd

_Fg1 =
X
i

@Fg1
@Vi

_Vi +
X
i

@Fg1
@Ui

_Ui

=
X
i

��X
j

wijVj � Ii + Ui

�
_Vi +

X
i

�
Vi � g(Ui)

�
_Ui

= �
X
i

_Ui
_Vi = �

X
i

( _Ui)
2 dVi
dUi

� 0: (13)

Since Fg1 is supposed to be bounded below (which, generally4, is the case [4]), applying the motion

equations (5) constantly decreases Fg1 until 8i : _Ui = 0. ut

The given proof induces another updating scheme (also referred to in [15]):

Theorem 3. If the matrix (wij) is symmetric and positive de�nite and if Fg1 is bounded below,
then Fg1 is a Lyapunov function for the motion equations

_Vi = g(Ui)� Vi; where Ui =
X
j

wijVj + Ii: (14)

Proof. The proof again considers the time derivative of Fg1. If (wij) is symmetric and positive
de�nite and if constantly Ui =

P
j wijVj , then

_Fg1 = �
X
i

_Vi _Ui = �
X
i

_Vi
X
j

@Ui

@Vj
_Vj = �

X
i

_Vi
X
j

wij
_Vj � 0: (15)

Thus, updating conform the motion equations (14) decreases the corresponding Lyapunov function
until, �nally, 8i : _Vi = 0. ut

It is interesting to see that the conditions for which the updating rules (5) and (14) guarantee
stability are di�erent. In the �rst case, stability depends on the symmetry of (wij ) and on the
monotonicity of the transfer function chosen. In the second case, stability depends on again the
symmetry of (wij), but furthermore on the positive de�niteness of this matrix and therefore on the
general structure of the cost function E(V ) involved.

Finishing this section we observe that if the sigmoid (see footnote 1) is chosen as the transfer
function, equation (10) reduces to

Fg2(U; V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
i

UiVi � 1
�

X
i

ln(1 + exp(�Ui)): (16)

This expression (or similar ones) can also be derived using a statistical mechanical analysis of
Hop�eld neural networks using a mean �eld analysis [14, 28, 35, 4, 6, 7].

3It is not di�cult to see that g(0) = 0) c = 0.
4This issue is related to the displacement of solutions as discussed in subsection 1.2.
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1.5 Incorporating symmetric linear constraints

In order to deal with the constraints (1), one can try to incorporate them directly in the neural
network. A classical example relates to an attempt to solve the TSP [29, 10]. The transfer function
chosen was

Vi = gi(U) =
exp(�Ui)P
l exp(�Ul)

; (17)

implying the linear constraint
P

i Vi = 1. By using this transfer function, the original Hop�eld
network is generalized to a model where Vi = gi(U) is a function of U1; U2; : : : ; Un and not of Ui

alone. As in the classical Hop�eld model, an energy expression of type (3) can be derived [20, 4, 6, 7]
being

Ecc(V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
1
�

X
i

Vi lnVi; (18)

where, again, 1=� plays the part of temperature. At high temperatures, the constrained local
minima of the cost function E(V ) = � 1

2

P
i;j wijViVj �

P
i IiVi are displaced towards the point

where 8i : Vi = 1=n, since the Hop�eld term 1
�

P
i Vi lnVi of this model attains its minimal value

there. At low temperatures however, the displacement of those local minima is negligible.
Precisely like Ec(V ) can be generalized to an expression (16) using a statistical mechanical

analysis, so the energy Ecc can be transformed to a generalized version [29, 35, 42, 4, 6, 7]:

Theorem 4. If (wij) is a symmetric matrix, then the energy of the continuous Hop�eld network
submitted to the constraint (17), can be stated as

Fg3(U; V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
i

ViUi � 1
�
ln(
X
i

exp(�Ui)): (19)

The stationary points of Fg3 are found at points of the state space for which

8i : Vi = exp(�Ui)P
l exp(�Ul)

^ Ui =
X
j

wijVj + Ii: (20)

If, moreover, Fg3 is bounded below, if the transfer function as given in equation (17) is used as the
transfer function, and if, during updating, the Jacobian matrix Jg = (@gi=@Uj) �rst becomes and
then remains positive de�nite, then Fg3 is a Lyapunov function for the motion equations (5).

Proof. For a derivation of expression (19), we refer to the above-cited literature. Resolution of the
equations @Fg3=@Ui = 0; @Fg3=@Vi = 0 yields equations (20) as solutions. From the conditions as
given in the theorem it follows that, in the long run,

_Fg3 =
X
i

@Fg3
@Vi

_Vi +
X
i

@Fg3
@Ui

_Ui

=
X
i

(�
X
j

wijVj � Ii + Ui) _Vi +
X
i

(Vi � exp(�Ui)P
l exp(�Ul)

) _Ui

= �
X
i

_Ui

X
j

@Vi
@Uj

_Uj = � _UTJg _U � 0: (21)

Since Fg3 is bounded below, its value decreases constantly until 8i : _Ui = 0. ut

Again, the stationary points of an energy expression coincide with the equilibrium conditions of a
continuous Hop�eld network. Whether the general condition holds that the matrix Jg will become
and remain positive de�nite, is not easy to say. But realizing that if (17) holds and if l 6= i, then

@Vi
@Ui

= �Vi(1� Vi) > 0 and
@Vi
@Ul

= ��ViVl < 0; (22)

the symmetric matrix Jg can be written as

�

0
BBB@

V1(1� V1) �V1V2 � � � �V1Vn
�V2V1 V2(1� V2) � � � �V2Vn

...
...

...
�VnV1 �VnV2 � � � Vn(1� Vn)

1
CCCA : (23)
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Thus, all diagonal elements of Jg are positive, while all non-diagonal elements are negative. Knowing
that

P
i Vi = 1, we argue that, generally, for large n, the inequality

8i;8j;8k : ViVj << Vk(1� Vk) (24)

holds, although this statement is not always true. Nevertheless, it is not unreasonable to expect that
in many cases, the matrix Jg is dominated by the diagonal elements, making it positive de�nite5.
For these reasons, it is conjectured that the motion equations (5) turn out to be stable in many
practical applications. As in the unconstrained case, a complementary set of motion equations can
be applied.

Theorem 5. If the matrix (wij ) is symmetric and positive de�nite, then Fg3 is a Lyapunov function
for the motion equations

_Vi =
exp(�Ui)P
l exp(�Ul)

� Vi; where Ui =
X
j

wijVj + Ii: (25)

The proof is similar to the proof of theorem 3.

1.6 Other modi�cations of the classical continuous Hop�eld model

In trying to be complete in our overview, we here mention some other Hop�eld network modi-
�cations. Various still other modi�cations not discussed here, will be brought out at appropriate
places in the rest of the paper.

1.6.1 Especial transfer functions

In [38] many applications of Hop�eld networks in the area of constrained optimizations are dis-
cussed. At the same time, other types of neurons are introduced. In order to deal with undesirable
oscillations, the `hysteresis McCulloch-Pitts neuron' is proposed de�ned by

Vi =

8<
:

1 if Ui > u
0 if Ui < l

`unchanged' otherwise,
(26)

where u and l (u > l) are certain constants. In order to deal with constraints, the `maximum neuron'
is suggested de�ned by

Vi =

�
1 if Ui = maxi(U1; : : : ; Un)
0 otherwise.

(27)

An interesting suggestion for dealing with mutually dependent constraints is done in [33] where,
during relaxation of the neural network, the constraints are kept ful�lled constantly by normalizing
both rows and columns of the permutation matrix conform the principle of equation (17) using the
(iterative) `Sinkhorn' algorithm.

1.6.2 Mean �eld annealing and chaos

As we have seen, relaxation of the Hop�eld network towards an equilibrium state can be pursued
using the motion equations (5), while keeping Vi = gi(U). The precise state that will be reached
depends on (a) the cost function E(V ), (b) the initialization of the state vector V , and (c) the
Hop�eld term Eh(V ). Here, the cost function E(V ) follows from the mapping of the constrained
optimization problem onto the Hop�eld model. In trying to land in the global minimum, several
initializations of the state vector V can be tried (in fact, expert knowledge can be exploited here).
Finally, an annealing scheme called `mean �eld annealing' (MFA) [28, 29, 15, 14] { a deterministic
version of `simulated annealing' [1] { can be applied: during updating, the temperature T = 1=�
of the system is lowered gradually e�ecting the Hop�eld term and it is hoped that the system will
settle down itself in the global minimum.

In another attempt to obtain (semi-)optimal solutions, an `inhibitory self-loop' is incorporated
in the Hop�eld network yielding a chaotic Potts spin model [20]. Also in this approach, MFA is
applied.

5Under the given conditions, the symmetric matrix Jg has only positive eigenvalues.

6



1.6.3 Higher order networks

In the classical Hop�eld model, the energy expression E(V ) is con�ned to quadratic functions.
In several papers, attempts have been reported with models that admit cost functions of degree
three and higher, called `higher order networks'. In [22], a cubic expression of E(V ) is proposed
and applied on the travelling salesman problem. Although stability could not be guaranteed, the
superiority of the new model over the classical one was demonstrated experimentally.

In [37], fourth order Hop�eld networks are proposed in order to cope with the numerous con-
straints. Basically, a penalty approach was adopted here. Using gradient descent, the corresponding
motion equations were derived. It is suggested that the usually occurring `spurious states' [15, 14]
are not present using this approach.

In [12], energy expressions of any order are introduced and conditions (concerning the symmet-
ric properties of the weights) are formulated that guarantee stability of the updating scheme (5).
Simulation results demonstrate that the higher models proposed outperform the classical Hop�eld
network by the empirical observation that the `basin of attraction' [15] of the global optimal solution
is enlarged as the order of the network is increased.

The idea of applying non-quadratic cost functions also emerged in other methods of neural net
optimization like in the so-called `multiscale optimization' technique [24]. In addition to the original
�ne-scale problem, an approximated coarse-scale problem is de�ned. Then, a general scheme is
applied for alternating between the consecutive relaxation steps in both neural nets together with
a two-way information 
ow between the nets.

Finally in [41], arbitrary energy functions are admitted in a hybrid `Lagrange and Transformation'
approach6. In addition, alternative formulations of the Hop�eld term (called `barrier functions') are
proposed intended to avoid local minima in an e�cient way.

1.6.4 Iterative methods

Instead of using the motion equations (5), various people suggested iterative methods in order
to speed up relaxation of a given Hop�eld net. Although the stability properties of the iterative
updating schemes are usually di�erent, these schemes have indeed proven to converge much faster
in many cases. Quite common rules in the literature are of the type

V new
i = gi(U

old) = gi(
X
j

wijV
old
j + Ii): (28)

In the afore-mentioned paper of the previous subsection [41], a more complicated iterative scheme
is proposed where besides the neural input and output values Uj and Vj , Lagrange multipliers are
involved in the updating scheme. We further note that the Sinkhorn algorithm as mentioned is
section 1.6.1 is also an iterative algorithm that is embedded in the usual updating schemes.

1.7 Outline of the rest of the paper

In the following section, we introduce a new and very general framework for describing continuous
Hop�eld network. Here, non-quadratic cost functions are admitted as well as constraints of all kind.
We also present the result of certain simulations. In section 3, we shall dwell on the ways in which
asymmetric linear and certain non-linear constraints can actually be built-in. After this, we analyze
the Hop�eld-Lagrange model and, in a separate section, we consider elastic networks relating them
to the models discussed so-far. In the �nal section, we make our conclusions and do suggestions for
further research. Especially we shall pay attention to the possibilities of transferring the ideas as
emerged in the context of continuous Hop�eld nets towards the area of discrete stochastic Hop�eld
models.

2 The generalized continuous Hop�eld network

In the �rst part of this section, we introduce our generalization of the classical continuous Hop�eld
model, including some theorems. In the second part, we discuss some consequences of these theorems
among which the phenomenon that the new model does incorporate the classical Hop�eld model and
many of its modi�cations, as a special case. Finally we present the outcomes of several simulations.

6In this paper, we shall deal with Lagrange multipliers in section 4.
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2.1 Some theorems

It is remarkable that the motion equations (5) of the continuous unconstrained model may still be
applied using the constrained model. This poses the question whether those motion equations can
still be applied if an arbitrary transfer function of the form Vi = gi(U) = gi(U1; U2; : : : ; Un) is used.
At the same time, we change Ui =

P
j wijVj + Ii into a generalized, mostly non-linear `summation

function' of type Ui = hi(V ), where an external input Ii is still admitted. By this, the so-called
generalized continuous Hop�eld network is created, a visualization of which is given in �gure 2. It is
quite important to understand the equilibrium and stability properties of this generalized network.
The �rst of the following two theorems considers the issue concerning equilibrium.

V1g1
U1

h1

I1

V2g2
U2

h2

I2

Vngn
Un

hn

In

r

r

r

r

r

r

r

r

r
r

r

r

Figure 2: The generalized continuous Hop�eld network.

Theorem 6. Let G(U) = G(U1; U2; : : : ; Un) be a function for which

8i : @G(U)
@Ui

= gi(U); (29)

and let, in the same way, H(V ) = H(V1; V2; : : : ; Vn) be a function for which

8i : @H(V )

@Vi
= hi(V ); (30)

then any stationary point of the energy

Fg(U; V ) = �H(V ) +
X
i

UiVi �G(U) (31)

coincides with an equilibrium state of the generalized continuous Hop�eld network, de�ned by

8i : Vi = gi(U) ^ Ui = hi(V ): (32)

Proof. Resolving
8i : @Fg=@Ui = 0 ^ @Fg=@Vi = 0; (33)

the set of equilibrium conditions (32) is found. ut

The following theorem considers the above-mentioned second issue concerning stability.

Theorem 7. If Fg(U; V ) is bounded below, then the next statements hold:
(a) If, during updating, the Jacobian matrix Jg = (@gi=@Uj) �rst is (or becomes) and then remains
positive de�nite, then the energy function Fg is a Lyapunov function for the motion equations

_Ui = �@Fg
@Vi

= hi(V )� Ui; where Vi = gi(U): (34)

(b) If, during updating, the Jacobian matrix Jh = (@hi=@Vj) �rst is (or becomes) and then remains
positive de�nite, then the energy function Fg is a Lyapunov function for the motion equations

_Vi = �@Fg
@Ui

= gi(U)� Vi; where Ui = hi(V ): (35)
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(c) If, during updating, the Jacobian matrices Jg and Jh �rst are (or become) and then remain
positive de�nite, then the energy function Fg is a Lyapunov function for the motion equations

_Ui = �@Fg
@Vi

= hi(V )� Ui ^ _Vi = �@Fg
@Ui

= gi(U)� Vi: (36)

Proof. Assuming that the conditions as mentioned in (c) hold, we obtain

_Fg =
X
i

(�hi(V ) + Ui)
X
j

@Vi
@Uj

_Uj +
X
i

(Vi � gi(U))
X
j

@Ui

@Vj
_Vj

= �
X
i

_Ui

X
j

@Vi
@Uj

_Uj �
X
i

_Vi
X
j

@Ui

@Vj
_Vj

= � _UTJg _U � _V T Jh _V � 0: (37)

So, the boundedness of Fg is su�cient to guarantee convergence to a state where 8i : _Ui = _Vi = 0,
implying ful�llment of the equilibrium condition

8i : Ui = hi(V ) ^ Vi = gi(U): (38)

The proofs of the parts (a) and (b) can be performed in the same way as set out in the last part of
the proof of theorem 4. ut

2.2 Discussing the generalized model

2.2.1 Existing models that �t

It is not di�cult to see that the classical Hop�eld network of section 2 is a special case of the
generalized model introduced in this section. First of all, it is easy to verify that the original
quadratic cost function E(V ) of equation (2) ful�lls the condition (30) since in that case

8i : @H(V )

@Vi
=

@E(V )

@Vi
=
X
j

wijVj + Ii = hi(V ): (39)

Similarly, the function G(U) corresponding to the classical Hop�eld model and de�ned by equation
(10), does ful�ll the condition (29) since

8i : @G(U)
@Ui

=
@(
P

i

R Ui
0

g(u)du)

@Ui

= g(Ui) = gi(U): (40)

Therefore, theorem 6 holds for the original Hop�eld network yielding for the stationary points of
Fg the states de�ned by equation (32) which, in this case, coincide with the equilibrium states (6).

In a direct line of this we note that the conditions as given in theorem 1 are also su�cient to
proof stability of the classical network by means of theorem 7: If the matrix (wij) is symmetric and
if Vi = g(Ui) is monotone increasing and di�erentiable, then all non-diagonal elements of Jg are
zero and all diagonal elements are positive, making this matrix positive de�nite. So, stability of the
classical model has been proven conform theorem 7(a).

It is easier still to see that the Potts glasses model (which, because of the corresponding physical
phenomenon, is the usual name of the model of section 1.5) �ts in the most general framework of
this section: The expression (19) of Fg3 is a special case of the expression (31) of Fg .

We �nally note here that many other modi�cations of the classical Hop�eld model as mentioned
in subsection 1.6 like [12, 37], �t in the framework proposed, simply because the corresponding
motion equations are derived using a gradient descent in conformity with equation (34). In some
cases, even stability can be proven using theorem 7.

2.2.2 How to use the generalized model

Within the generalization introduced, much more freedom exists for con�guring continuous Hop�eld
networks. Modelling an energy expressionH(V ) is rather simple, since the corresponding summation
functions hi(V ) can be found by taking the partial derivatives conform de�nition (30). As mentioned
before, it can also be tried to proof stability of the motion equations using theorem 7.

Building-in constraints however, is much more di�cult. The transfer functions gi should meet
several requirements:
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1. gi should be chosen in conformity with condition (29).

2. The values of gi(U) should imply the validity of the constraints C�(V ) = 0 to be incorporated,
at least in the equilibrium states.

3. At `low temperatures', the energy landscape of the cost function E(V ) should not be disturbed
by the Hop�eld term Eh(V ) (the expression of which strongly relates to the transfer functions
gi at hand).

The �rst and second requirement are self-evident. The third requirement follows from an inductive
argument: it also holds for the original continuous Hop�eld model as well as for the constrained
Hop�eld model as described in sections 1.2 and 1.5 respectively7. In the next subsection we shall
show experimentally that there exist other transfer functions which appear to ful�ll the afore-
mentioned three requirements.

2.3 Simulation results concerning the generalized model

In the afore-mentioned literature on extensions of the classical Hop�eld model (section 1.6),
several examples can be found of the capabilities of the generalized model. E.g., the in [12] dis-
cussed higher order neural networks appear to represent a strong heuristic for solving the Ising
Spin (checkerboard pattern) problem. In addition, it is argued in [37] that the use of higher order
couplings between the neurons helps to avoid the usual `spurious states' [15] of the system. In [22]
it is found that especially for large problem instances the extended Hop�eld model works better:
this improved performance is attributed to the convergence with `frustration' [34], a notion from
the theory of statistical mechanics. But in spite of these (experimental) results, we do not have a
full understanding of the behavior of the generalized Hop�eld model yet. Therefore, the object of
presenting the computational results of some simulations here is simply to show that the derived
general theories are not falsi�ed by these elementary tests. At the same time, these tests yield
certain encouraging and startling outcomes opening new perspectives for future research.

2.3.1 A toy problem

The �rst problem concerns a simple test whether non-quadratic cost functions can be tackled using
the general framework. Consider the following toy problem:

minimize � V 2
1 V

3
2 + V 5

2 subject to: V1 + V2 = 1: (41)

The corresponding motion equations are

_U1 = 2V1V
3
2 � U1; (42)

_U2 = 3V 2
1 V

2
2 � 5V 4

2 � U2; (43)

where the corresponding Vi's are determined using equation (17). Taking � = 0:001, the high
temperature solution encountered is V1 = 0:5001, V2 = 0:4999. Choosing � = 50, V1 = 0:617,
V2 = 0:383 is found, which approach the exact solution in [0; 1], being V1 = 0:625 and V2 = 0:375.

2.3.2 The n-rook problem

The second test is done to get some idea on the di�erences of convergence time between updating
schemes based on the penalty approach and those based on the incorporation of constraints.

We consider the n-rook problem: given an n�n chess-board the goal is to place n non-attacking
rooks on the board. The problem is the same as the `crossbar switch scheduling' problem8. We may
map the problem on the continuous Hop�eld network as follows: if Vij represents whether a rook is
placed on the square of the chess-board with row number i and column number j, we search for a
combination of Vij -values such that the following constraints are ful�lled:

C1 =
X
i;j

X
k>j

VijVik = 0; C2 =
X
j;i

X
k>i

VijVkj = 0; C3 =
1
2 (
X
i;j

Vij � n)2 = 0: (44)

7From the statistical mechanical perspective the third requirement does raise a fundamental question:
\Which conditions should the transfer functions gi(U) ful�ll in order to guarantee that the generalized
continuous Hop�eld network can (still) be considered as a mean �eld approximation of the corresponding
stochastic Hop�eld net?". Up till now, the answer to this question has not been given.

8The crossbar switch scheduling problem has also been resolved by Takefuji [38], although he applied a
network having another type of neurons.

10



C1 = 0 implies that in any row at most one Vik 6= 0, C2 = 0 implies that in any column at most
one Vkj 6= 0. C3 = 0 in combination with C1 = C2 = 0 implies that precisely n rooks are placed
on the board. The expressions for C1; C2; and C3 can be used as penalty terms since they ful�ll
requirement (7).

Applying the penalty approach of subsection 1.3 while choosing 8� : c� = 1, convergence is
present provided �t is chosen to be small enough. E.g., in case of n = 25, � = 1000, �t = 0:0001,
we invariably found convergence to one of the approximately 1:55� 1025 solutions. Taking n = 100
with �t = 0:00005 , the system also turns out to be stable. However, the calculation time now
becomes an issue (several hours), since the neural network involved consists of 10 000 neurons,
which have to be updated sequentially.

We also solved the n-rook problem by means of a constrained model having partially built-in
symmetric linear constraints. By this, the space of admissible states is reduced from 2n

2

to 2n log
2
n.

The Vij are chosen such that

8i :
X
j

Vij = 1; (45)

implying that in every row, the sum of occupied squares of the chess-board equals one. It now
su�ces to minimize the cost function

Fc;nr(V ) = c2C2(V ) +Eh(V ): (46)

The experimental outcomes con�rm the conjecture that the constrained network behaves much
better. At low temperatures (� > 0:5), the e�ect of noise is small and the �nal neural outputs are
close to 0 or 1. If next the temperature is slightly increased, a rapid so-called `phase transition'
[15, 34] occurs: for � = 0:3, the solution values become almost equal conform Vij � 0:2500. The
convergence time is invariably only a small fraction of the convergence time of the pure penalty
method.

The values of the neurons initially seem to change in a chaotic way: the value of the Fc;nr
strongly oscillates in an unclear way. However, after a certain period, the network suddenly �nds its
way to a stable minimum, at the same time rapidly minimizing the value of the cost function. This
outcome agrees with our conjecture on stability of the constrained model as mentioned in section 1.5.

We �nally tried to resolve the n-rook problem using the Sinkhorn algorithm as mentioned in
subsection 1.6.1. By this, the state of admissible states is further reduced to n!. The Vij are chosen
such that

8i :
X
j

Vij = 1; 8j :
X
i

Vij = 1; (47)

implying that both in every row and in every column, the sum of occupied squares of the chess-board
equals one. It now su�ces to minimize the cost function....9

3 Incorporating constraints

The way how symmetric linear constraints can be built-in has already been discussed in sec-
tion 1.5. Here, we try to generalize this idea in case of having asymmetric linear and non-linear
constraints. Beforehand we make the important observation that our attempts to directly built-in
asymmetric constraints all failed because of the empirical experience that the third requirement for
the transfer functions gi (concerning no disturbance of the cost function at low temperatures; see
section 2.2.2) could not be ful�lled.

3.1 Incorporating asymmetric linear constraints

The optimization problem having one asymmetric linear constraint can be stated as

minimize E(V ) subject to :
X
i

viVi = c; (48)

where c 2 < and where every vj is supposed to be a non-zero integer10.

9This will be elaborated in the �nal version of the paper.
10In case of having real-valued vj 's, they can be approximated by a rational fraction. Then, the constraint

in (48) can be rewritten as a constraint having only integer-valued vj 's using a multiplication by the least
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3.1.1 General scheme

The basic idea behind the new approach is to realize a transformation from the given problem having
one asymmetric constraint to a problem having several symmetric constraints without increasing the
number of the motion equations of the system. The general scheme can be summarized as follows.

1. In the expression of E(V ) = E(V1; V2; : : : ; Vn), any Vi is replaced by j vi j identical neurons
Vi;j (j = 1; : : : ; j vi j) conform

Vi =
1

j vi j (Vi;1 + Vi;2 + � � �+ Vi;jvij); (49)

yielding the cost function E(V 0) = E(V1;1; : : : ; V1;jv1j; V2;1; : : : ; V2;jv2j; : : : ; Vn;1; : : : ; Vn;jvnj).

2. Using this expression E(V 0), a set of motion equations is determined by elaborating

_Ui;j = �@E(V 0)

@Vi;j
� Ui;j : (50)

3. Finally, this set of motion equations is reduced to the number of variables of the original
problem by re-substitution of Vi for any Vi;j and by re-substitution of Ui for any Ui;j . The
corresponding transfer function is given by

Vi =
c exp(�Ui)P
l j vl j exp(�Ul)

; (51)

which implies the permanent ful�llment of the constraint (48).

The �nal set of n motion equations as found in the last step, should be used to solve the given
constrained minimization problem. A formal proof of the correctness of this procedure is given in
appendix A.

3.1.2 A toy example

To illustrate the above-given scheme, we consider the following toy minimization problem:

minimize E(V ) = V 2
1 � V1V2 subject to : 2V1 + 3V2 = 1: (52)

In the �rst step, we replace 2V1 by the sum of two identical neurons V1;1 and V1;2 and, similarly,
3V2 by the sum of three identical neurons V2;1, V2;2, and V2;3. Then, the problem can be formulated
as

minimize E(V 0) = ( 12V1;1 +
1
2V1;2)

2 � ( 12V1;1 +
1
2V1;2)(

1
3V2;1 +

1
3V2;2 +

1
3V2;3) (53)

subject to : V1;1 + V1;2 + V2;1 + V2;2 + V2;3 = 1; (54)

V1;1 = V1;2 and V2;1 = V2;2 = V2;3: (55)

Note that the new cost function E(V ) has the same value as the old one. In the second step, the
corresponding motion equations of type (5) are determined:

_U1;j = �@E(V 0)

@V1;j
� U1;j = �( 12V1;1 + 1

2V1;2) +
1
2 (

1
3V2;1 +

1
3V2;2 +

1
3V2;3)� U1;j ; (56)

_U2;j = �@E(V 0)

@V2;j
� U2;j =

1
3 (

1
2V1;1 +

1
2V1;2)� U2;j ; (57)

where

Vi;j =
exp(�Ui;j)P2

l=1 exp(�U1;l) +
P3

l=1 exp(�U2;l)
: (58)

Since for any i all Vi;j are equal, it su�ces in practice to calculate only one member of every set of
the motion equations (56) and (57). In the third step, we can therefore simply re-substitute Vi for
any Vi;j and Ui for any Ui;j in these equations, yielding

_U1 = �V1 + 1
2V2 � U1; (59)

_U2 = 1
3V1 � U2; (60)

common multiple of all denominators.
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where

Vi =
exp(�Ui)

2 exp(�U1) + 3 exp(�U2)
: (61)

Choosing � = 0:001 in the simulation, the solution values V1 = 0:1999 and V2 = 0:2000 were found,
corresponding to solution values at high temperature. By choosing a low temperature � = 1000, the
solution V1 = 0:1006, V2 = 0:2663 is found, which approximates the exact one V1 = 0:1, V2 = 4=15.
Other simulations showed similar results, all in agreement with the theory.

3.2 Incorporating non-linear constraints

It can also be tried to incorporate non-linear constraints by choosing appropriate transfer func-
tions gi(U) that meet all the requirements as summed up in subsection 2.2.2. Starting with the
second requirement, we easily discovered non-linear transfer functions that implement certain con-
straints, but, when trying to integrate these functions, we never managed to �nd the corresponding
analytical expression of G(U). This also blockaded the possibility of checking the ful�llment of the
third requirement. So, up till now we were forced to con�ne ourselves to experimental checks. We
here present a successful example. Consider the toy problem:

minimize 1
2 (V1 � 2V2)

2 subject to: V 2
1 + V 2

2 = 1: (62)

It is easy to check that the exact solution of this problem is given by V1 = 2
p
0:2 � 0:8944,

V2 =
p
0:2 � 0:4472. We further note that the subspace of [0; 1]2 describing the given constraint,

consists of a curved line (instead of a right one in case of incorporating linear constraints). Using
(34), the corresponding motion equations appear to be

_U1 = �V1 + 2V2 � U1; (63)

_U2 = 2V1 � 4V2 � U2: (64)

We choose the Vi's conform

Vi =

s
exp(�Ui)P
l exp(�Ul)

: (65)

Choosing � = 0:001, the solution V1 = 0:7075, V2 = 0:7067 is found: the solution values are almost
identical (as expected at a high temperature), approximating 1

2

p
2. Taking � = 1000, the solution

V1 = 0:8943, V2 = 0:4474 is encountered: these values approximate the above-mentioned exact
solutions.

Several other toy problems showed similar behavior implying that the generalized Hop�eld net-
work has indeed certain capabilities of directly incorporating non-linear constraints, although we
do not have a full understanding of these capabilities yet. It is further conjectured that asymmetric
non-linear constraints can be tackled in the same way as has been done in case of dealing with asym-
metric linear constraints (section 3.1) by performing an appropriate transformation of the original
problem to one having symmetric constraints.

4 The Hop�eld-Lagrange model

Another way to cope with constraints is by using Lagrange multipliers, the �rst example of
which appeared in 1988 [31]. The constrained optimization problem at hand is converted into an
extremization problem. In this �rst paper however, the Hop�eld term was not part of the model.
In a paper [39] from 1989, the full integration with the continuous Hop�eld model took place in
what we call the Hop�eld-Lagrange model. Contrary to the requirement (7) used in the penalty
approach, the constraints should now be formulated conform their original de�nition (1):

8� : C�(V ) = 0 , V represents a feasible solution: (66)

The energy of the model is given by

Ehl(V; �) = E(V ) +
X
�

��C�(V ) +Eh(V ) (67)
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having the following corresponding set of di�erential equations

_Ui = �@Ehl

@Vi
=

X
j

wijVj + Ii �
X
�

��
@C�

@Vi
� Ui; (68)

_�� = +
@Ehl

@��
= C�(V ); (69)

where continuously Vi = g(Ui). Thus, the values of the Lagrange multipliers can be estimated by
the system itself by applying a gradient ascent.

4.1 Stability analysis

4.1.1 Background

Let us �rst take a simple problem in order to try to understand the trick of gradient ascent in (69).
The toy problem used is:

minimize E(V ) = V 2
1 ;

subject to : V1 � 1 = 0: (70)

Using the Hop�eld-Lagrange model with the sigmoid as transfer function, the energy function of
the type (67) here equals

Ehl;t(V; �) = V 2
1 + �1(V1 � 1) +

1

�
((1� V1) ln(1� V1) + V1 lnV1): (71)

At low temperatures, this energy expression simply reduces to

Epb;t(V; �) = V 2
1 + �1(V1 � 1); (72)

which is visualized in �gure 3. To �nd the critical point (V1; �1) = (1;�2) using a direct gradient

critical point

?

0
5 -10

-5
0

5

V1

�1

Epb;t

Figure 3: The energy landscape of V 2
1 + �1(V1 � 1).

method, we should apply a gradient descent with respect to V1 and, at the same time, a gradient
ascent with respect to �1: the result is a spiral motion towards the critical point.

4.1.2 A potential Lyapunov function

We now analyze stability of the di�erential equations (68) and (69). To do so, we adopt the stability
approach as proposed in the �rst paper [31]. Then, physics is our source of inspiration. We set up
an expression of the sum of kinetic and potential energy. Taking the di�erential equations (68) and
(69) together, one gets one second-order di�erential equation:

�Ui = �
X
j

aij
dVj
dUj

_Uj � _Ui �
X
�

C�

@C�

@Vi
; (73)

where (aij) equals

aij = �wij +
X
�

��
@2C�

@Vi@Vj
: (74)
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Expression (73) coincides with the equation for a damped harmonic motion of a spring-mass
system, where the mass equals 1, the spring constant equals 0, and the external force equals
�P� C�@C�=@Vi.

Theorem 8. If the matrix (bij) de�ned by

bij = aij
dVj
dUj

+ �ij (75)

(�ij being the Kronecker delta) �rst is or becomes and then remains positive de�nite, then the energy
function

Ekin+pot =
X
i

1
2
_U2
i +

X
i;�

Z Ui

0

C�

@C�

@Vi
du (76)

is a Lyapunov function11 for the set of motion equations (68) and (69).

Proof. Taking the time derivative of Ekin+pot and using (73) as well as the positive de�niteness
of (bij), we obtain

_Ekin+pot =
X
i

_Ui
�Ui +

X
i;�

C�

@C�

@Vi
_Ui

=
X
i

_Ui

0
@�X

j

aij
dVj
dUj

_Uj � _Ui �
X
�

C�

@C�

@Vi

1
A+

X
i;�

C�

@C�

@Vi
_Ui

= �
X
i;j

_Uiaij
dVj
dUj

_Uj �
X
i

_U2
i = �

X
i;j

_Uibij _Uj � 0: (77)

Provided Ekin+pot is bounded below (which is expected to hold in view of its de�nition), its value

constantly decreases until �nally 8i : _Ui = 0. From (68) we see that this normally implies that
8� : _�� = 0 too. We then conclude from equations (68) and (69) that a stationary point of the
Langrangian function Ehl(V; �) must have been reached under those circumstances. Or, in other
words, a constrained equilibrium point of the neural network is attained. ut

Inspection of the derivation reveals why the gradient ascent is helpful in (69): only when the sign

ip is applied, the two terms

P
i
_Ui

P
� C�@C�=@Vi cancel each other. In order to prove stability,

we should analyze the complicated matrix (bij) which in full equals

bij =

 
�wij +

X
�

��
@2C�

@Vi@Vj

!
dVj
dUj

+ �ij : (78)

Application of the Hop�eld-Lagrange model to combinatorial optimization problems yields non-
positive values for wij , so then w0

ij � �wij � 0. If we con�ne ourselves to expressions C� which are
linear functions in V , then equation (78) reduces to

bij = w0
ij

dVj
dUj

+ �ij : (79)

If the �ij -terms dominate, then (bij) is positive de�nite and stability is sure. However, it seems
impossible to formulate general conditions which guarantee stability, since the matrix elements
bij are a function of dVj=dUj and thus change dynamically during the update of the di�erential
equations. This observation explains why we called this subsection `A potential Lyapunov function'.
In practical applications, we can try to analyze matrix (bij). If this does not turn out successful, we
may rely on experimental results. However, there is a way of escape, namely, by applying quadratic
constraints. Under certain general conditions, they appear to guarantee stability in the long run at
the cost of a degeneration of the Hop�eld-Lagrange model to a type of penalty model.

11Since Ekin+pot is potential energy of the damped mass system, this function is a generalization of the
Lyapunov function introduced in [31]. There, another equation was used with a quadratic potential energy
term. This term cannot be used here because of the non-linear relationship Vi = g(Ui). The quadratic term

has to be modi�ed in the integral as shown, while _Vi is replaced by _Ui.
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4.2 Degeneration to a dynamic penalty model

4.2.1 Non-unique multipliers

We consider the Hop�eld-Lagrange model as de�ned in the beginning of this section.

Theorem 9. Let W be the subspace of [0; 1]n such that V 2W ) 8� : C�(V ) = 0 and let V 0 2W .
If the condition

8�;8i : C� = 0) @C�

@Vi
= 0 (80)

holds, then there do not exist unique numbers �01; : : : ; �
0
m such that Ehl(V; �) has a critical point in

(V 0; �0).

Proof. The condition (80) implies that all m �m submatrices of the Jacobian (130) are singular.
Conform the `Lagrange Multiplier Theorem' of appendix B, uniqueness of the numbers �01; : : : ; �

0
m

is not guaranteed. Moreover, in the critical points of Ehl as de�ned in (67), the following equations
hold: X

j

wijV
0
j + Ii �

X
�

��
@C�

@Vi
(V 0)� Ui = 0: (81)

Since 8� : @C�=@Vi(V
0) = 0, the multipliers �� may have arbitrary values in a critical point of

Ehl(V; �). ut

In the literature [10, 15, 38, 39, 40] as well as in this paper, quadratic constraints are frequently
encountered, often having the form

C�(V ) =
1
2 (
X
i�

Vi� � n�)
2 = 0; � = 1 � � �m; (82)

where any n� equals some constant. Commonly, the constraints relate to only a subset of all Vi.
So, for a constraint C�, the index i� passes through some subset N� of f1; 2; : : : ; ng. We conclude
that

@C�

@Vi
=

� P
i�
Vi� � n� if i 2 N�

0 otherwise.
(83)

It follows that condition (80) holds for the quadratic constraints (82). This implies that multi-
pliers associated with those constraints are not uniquely determined in equilibrium points of the
corresponding Hop�eld-Lagrange model.

4.2.2 Stability yet

The question may arise how the Hop�eld-Lagrange model deals with the non-determinacy of the
multipliers12. To answer that question, we again consider (67), (68) and (69) and substitute the
quadratic constraints (82). This yields

Ehl;q(V; �) = E(V ) +
X
�

��
2
(
X
i�

Vi� � n�)
2 +Eh(V ); (84)

_Ui = � @E

@Vi
�
X

�:i2S�

��(
X
i�

Vi� � n�)� Ui; (85)

_�� = 1
2 (
X
i�

Vi� � n�)
2: (86)

Theorem 10. If 8i : Vi = g(Ui) is a di�erentiable and monotone increasing function, then the set
of di�erential equations (85) and (86) is stable.

Proof. We start by making the following crucial observations:

� As long as a constraint is not ful�lled, it follows from (86) that the corresponding multiplier
increases:

_�� > 0: (87)

12This must be in a certain positive way, since the experiments as known from the literature were at least
partially successful.
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� If, at a certain moment, all constraint are ful�lled, then the motion equations (86) reduce
to _�� = 0 and the motion equations (85) reduce to (5) implying stability provided that the
transfer function is di�erentiable and monotone increasing. This implies that instability of
the system can only be caused by violation of one or more of the quadratic constraints.

We now consider the total energy Ehl;q of (84) and suppose that the system is initially unstable.
One or more constraints must then be violated and the values of the corresponding multipliers will
increase. If the instability endures, the multipliers will eventually become positive. It follows from
(84) that the contribution X

�

��
2
(
X
i�

Vi� � n�)
2 (88)

to Ehl;q then consists of only convex quadratic forms, which correspond to various parabolic `pits'
or `troughs' 13 in the energy landscape of Ehl;q. As long as the multipliers grow, the pits become
steeper and steeper. Eventually, the quadratic terms will dominate and the system will settle down
in one of the created energy pits (whose location, we realize, is more or less in
uenced by E and
Eh). In this way, the system will ultimately ful�ll all constraints and will have become stable. ut

Actually, for positive values of ��, the multiplier terms (88) ful�ll the penalty term condition (7)
and therefore act as penalty terms. As was sketched in the proof, the system itself always �nds a
feasible solution. This contrasts with the traditional penalty approach, where the experimenter may
need a lot of trials to determine appropriate penalty weights. Moreover, the penalty terms might be
`as small as possible', having the additional advantage that the original cost function is minimally
distorted. Since the penalty weights change dynamically on their journey to equilibrium, we have
met with what we term a dynamic penalty method.

4.3 Stability analysis, the generalized Hop�eld model

It is possible to extend the above-given stability analysis in case of combining the generalized
continuous Hop�eld model of section 2 with the multiplier approach of this section yielding an even
more general framework. However, this will not be shown here, since the resulting matrix analogous
to the matrix (75) appears to be very hard to analyze in practice [4].

4.4 Computational results, the unconstrained model

4.4.1 Simple optimization problems

We started by performing some simple experiments by trying various quadratic cost functions with
linear constraints. The general form was

minimize E(V ) = 1
2

nX
i=1

di(Vi � ei)
2;

subject to : a�i Vi � b�i = 0; � = 1; ::;m; (89)

with positive values for di. The cost function was always chosen such that its minimum belongs to
the state space [0; 1]n and the constraints were always taken non-contradictory. Since for this class
of problems

@2E

@Vi@Vj
= di�ij ^ @2C�

@Vi@Vj
= 0; (90)

the corresponding time derivative of the sum of kinetic and potential energy equals

_Ekin+pot;s = �
nX
i=1

(di
dVi
dUi

+ 1) _U2
i � 0: (91)

Using the sigmoid as the transfer function, we found convergence for all problem instances.

13If i� passes through the whole set f1; 2; : : : ; ng, (
P

i�
Vi� � n�)

2 represents a n-dimensional parabolic

pit. If, instead, i� passes through a proper subset of f1; 2; : : : ; ng, this quadratic expression represents a
trough in the energy landscape of Ehl;q. However, in both cases, we shall speak of pits.
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4.4.2 The weighted matching problem

We now report the results of the computations concerning the Weighted Matching Problem
(WMP) [15]. An even number of points in some space is given, where the points are linked together
in pairs. The goal is to �nd the con�guration with the minimal total length of links. Interpreting
Vij = 1 (Vij = 0) as if point i is (not) linked to point j, where 1 � i < j � n, we tried several
formulations of the constraints. Using linear constraints, the corresponding system turned out to
be unstable. Therefore, we continued by trying quadratic ones since then, stability is generally
guaranteed, as was pointed out before. The corresponding formulation of the problem is

minimize E(V ) =

n�1X
i=1

nX
j=i+1

dijVij ;

subject to:

C1;i(V ) =
1
2 (

i�1X
j=1

Vji +

nX
j=i+1

Vij � 1)2 = 0; C2;ij(V ) =
1
2Vij(1� Vij) = 0: (92)

The right-hand constraints in (92) describe the requirement that �nally, every Vij must equal either
0 or 1 since each C2;ij corresponds to a concave function whose minima are boundary extrema. The
corresponding multipliers are denoted by �ij . The multipliers corresponding to the constraints C1;i
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Figure 4: A solution of the WMP for n = 32.

are denoted by �i. All constraints (92) together enforce that every point is linked to precisely one
other point. Again, the sigmoid was the selected transfer function. The experiments showed proper
convergence. Using 32 points, the corresponding system consists of 1024 di�erential equations and
528 multipliers. The corresponding solution is visualized in �gure 4. We repeated the experiment
several times and always found solutions of similar quality.

In order to show how di�cult the stability analysis can be when using theorem 8, we determined
the matrix (75) in case of n = 4. Enumerating rows and columns in the order (1,2), (1,3), (1,4),
(2,3), (2,4), (3,4), we found:

(bwmij;kl) =

0
BBBBBBBBBBBBBBBB@

�12 �1�13 �1�14 �2�23 �2�24 0

�1�12 �13 �1�14 �3�23 0 �3�34

�1�12 �1�13 �14 0 �4�24 �4�34

�2�12 �3�13 0 �23 �2�24 �3�34

�2�12 0 �4�14 �2�23 �24 �4�34

0 �3�13 �4�14 �3�23 �4�24 �34

1
CCCCCCCCCCCCCCCCA

where

�ij = 1 + (��ij + �i + �j)
dVij
dUij

^ �ij =
dVij
dUij

: (93)
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In general, we can not prove convergence because the properties of the matrix bwm change dynami-
cally. However, stability in the initial and �nal states can easily be demonstrated. Initially, we set
all multipliers equal to 0. Then, bwm reduces to the unity matrix. On the other hand, if a feasible
solution is found in the end, then 8i; j : Vij � 0 or Vij � 1 implying that all �ij � 0. This again
implies that bwm reduces to the unity matrix. Since the unity matrix is positive de�nite, stability is
guaranteed both at the start and in the end. However, during the updating process, the situation
is much less clear.

4.4.3 The Travelling Salesman Problem

The TSP may be considered as an extension of the n-rook problem where, in addition to the
satisfaction of the constraints of the permutation matrix, a cost function (namely, the tour length of
the salesman) should be minimized. Using the Hop�eld-Lagrange model in a similar way as in [39],
we found proper convergence to feasible solutions although the quality for larger problem instances
was very poor [4]. Inspired by the success with the WMP, we tried to solve the TSP using much
more multipliers. This intervention is expected to improve the system performance because of an
increased `
exibility'. The modi�ed problem is to �nd an optimal extremum of

Ehl;u;tsp2(V; �) =
X
i;j;k

VijdikVkj+1 +
X
i

�i
2
(
X
k

Vik � 1)2 +

X
j

�j
2
(
X
k

Vkj � 1)2 +
X
i;j

�ij
2
Vij(1� Vij): (94)

The corresponding set of di�erential equations equals

_Uij = �
X
k

dik(Vkj+1 + Vkj�1)� �i(
X
k

Vik � 1)�

�j(
X
k

Vkj � 1)� �ij(
1
2 � Vij)� Uij ; (95)

_�i =
X
i

1
2 (
X
k

Vik � 1)2; _�j =
X
j

1
2 (
X
k

Vkj � 1)2; _�ij =
X
i;j

1
2Vij(1� Vij): (96)

Again, the experiments showed proper convergence. For very small problem instances we found
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Figure 5: A solution of the TSP2 for n = 32.

optimal solutions. Large problem instances also yielded feasible, but usually sub-optimal solutions.
An example is given in �gure 5, where 32 cities and 1088 multipliers were used. The quality of the
solution was certainly better than the afore-mentioned approach, although still not optimal.

4.5 Computational results, the constrained model

It is interesting to experiment with combinations of the constrained Hop�eld and the Hop�eld-
Lagrange model. Which part of the constraints is built-in and which part is tackled with multipliers,
strongly depends on the structure of the problem. E.g., in case of the WMP (section 4.4.2), the
constraints are highly interweaved and the constrained model in its original form is not at all

19



applicable. In case of the TSP, the approach can be similar to that of the n-rook problem of
section 2.3.2 using partially built-in constraints. Our experiments showed proper convergence but
unfortunately, the quality of the solutions was not better than the quality of the already described
solutions (for details, see [4]).

5 Elastic nets

For completeness we here mention some results concerning elastic nets. Elastic nets are neural
networks with a very speci�c architecture designed to solve the TSP. The main reason to include
this subject here is that in our opinion, contrary to what is suggested [35] and adopted [15, 42]
in the literature, the classical Elastic Network Algorithm (ENA) [13] can not be derived from a
constrained Hop�eld network. In our view, the ENA should be considered as a dynamic penalty
method . In addition to the analysis of the classical elastic net having a quadratic distance measure,
we present Non-equidistant Elastic Net Algorithm (NENA) using a linear distance measure. Finally,
a Hybrid Elastic Net Algorithm (HENA) is discussed.

5.1 Stochastic Hop�eld and elastic neural networks

In order to prove our claim concerning the non-relationship between elastic and (constrained)
Hop�eld neural networks, we must �rst make a short side-step to discrete stochastic Hop�eld net-
works and their mean �eld approximation. Like has been done in [35], we use Hop�eld's discrete
energy expression [17] multiplied by -1, i.e.

E(S) = 1
2

X
ij

wijSiSj +
X
i

IiSi; (97)

where S 2 f0; 1gn and all wij � 0. Making the units stochastic, the network can be analyzed
applying statistical mechanics. We concentrate on the free energy [15, 26, 14]

F = hE(S)i � TS; (98)

where T = 1=� is the temperature, where hE(S)i represents the average energy, and where S equals
the so-called entropy. A minimum of F corresponds to a thermal equilibrium state. We shall apply
the next theorem [4, 6, 7] concerning an alternative energy expression for the continuous constrained
Hop�eld model14:

Theorem 11. In mean �eld approximation, the free energy Fc of constrained stochastic binary
Hop�eld networks, submitted to the constraint

P
i Si = 1 equals

Fc(V ) = � 1
2

X
ij

wijViVj � 1
�
ln[
X
i

exp(��(
X
j

wijVj + Ii))]: (99)

The stationary points of Fc are found at state space points where

Vi = P(Si = 1 ^ 8j 6= i : Sj = 0) =
exp(��(Pj wijVj + Ii))P
l exp(��(

P
j wljVj + Il))

: (100)

Note that in mean �eld approximation, the free energy is a continuous function in V , precisely like
the energy F of the continuous Hop�eld networks in our previous sections.

We now look at the speci�c mapping of the TSP onto the stochastic discrete Hop�eld network
as used in [35]. Let Sip denote whether the salesman at time i occupies space-point p (Sip = 1) or

not (Sip = 0), then the corresponding cost function may be stated as

E(S) = 1
4

X
i

X
pq

d2pqS
i
p(S

i+1
q + Si�1

q ) + �
4

X
i

X
pq

d2pqS
i
pS

i
q : (101)

The �rst term represents the sum of distance-squares (which strongly relates to the total tour length
of the salesman), the second term penalizes the simultaneous presence of the salesman at more than

14For a detailed comparison between the various free energy expressions, we refer to [4, 6, 7].
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one position. The other constraints, which should guarantee that every city is visited once, can be
built-in `strongly' using 8i :Pj Sij = 1.

By application of theorem 11 using expression (101) for E(S), one �nds [35, 8] the free energy

Ftsp(V ) = � 1
4

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q )� �
4

X
i

X
pq

d2pqV
i
pV

i
q �

1
�

X
p

ln
�X

i

exp(��
2

X
q

d2pq(�V
i
q + V i+1

q + V i�1
q ))

�
: (102)

On the other hand, the `elastic net' algorithm [13, 15] uses the cost function

Een(x) =
�2
2

X
i

j xi+1 � xi j2 ��1
�

X
p

ln
X
j

exp(��
2

2 j xp � xj j2): (103)

Here, xi represents the i-th elastic net point and xp represents the location of city p. Application
of gradient descent on (103) yields the updating rule

�xi = �2
�
(xi+1 � 2xi + xi�1) + �1

X
p

�p(i)(xp � xi); (104)

where
�p(i) = exp(��2

2 j xp � xi j2)P
l exp(��2

2 j xp � xl j2)
(105)

and where the time-step �t = 1=� equals the current temperature T .

5.2 Why the ENA is a dynamic penalty method

In [35] a derivation of (103) from (102) is proposed while choosing �1 = �2 = 1. We here formulate
three objections against this derivation. To do so, we repeat the main steps of the proof adding
our comments after each step. First, in order to derive a free energy expression in the standard
form (98), a Taylor series expansion on the last term of (102) is applied. We try to do the same.
Taking

f(x) =
X
p

ln
�X

i

exp(xip)
�
; (106)

aip = �� �
2

X
q

d2pqV
i
q ; and hip = �� 1

2

X
q

d2pq(V
i+1
q + V i�1

q ); (107)

and using (100) (adapted to the TSP, with �� 1), we obtain [8]

f(a+ h) =
X
p

ln
�X

i

exp(aip)
�
+
X
ip

hip
@f

@xip
(aip) +O(h2) (108)

�
X
p

ln
X
i

exp
�� � �

2

X
q

d2pqV
i
q

�� �
2

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q ):

Substitution of this result in (102) yields:

Fapp(V ) = 1
4

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q )� �
4

X
i

X
pq

d2pqV
i
pV

i
q �

1
�

X
p

ln
X
i

exp
�� � �

2

X
q

d2pqV
i
q

�
: (109)

Objection 1. Since hip is proportional to �, the Taylor-approximation (108) does not hold for
high values of �. This is a fundamental objection because during the execution of the ENA, � is
increased step by step. ut

Second, a `decomposition of the particle (salesman) trajectory' is performed in [35]:

xi = <x(i)> =
X
p

xp<S
i
p> =

X
p

xpV
i
p : (110)
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x(i) is the stochastic and xi the average position of the salesman at time i. Using the decomposition,
one writes X

q

d2pqV
i
q =j xp � xi j2 : (111)

By this, a crucial transformation from a linear function in V i
p into a quadratic one in xi is achieved.

Substitution of the result in (109) (with � = �), neglect of the second term, and application of the
decomposition (110) on the �rst term of (109) �nally yield (103).

Objection 2. Careful analysis [4, 8] shows that in general

xp

xq�1

xq

xq+1

x
i

dpq�1

dpq

dpq+1
j xp � x

i j

�
�

c

c

c

c

Figure 6: An elucidation of the inequality in (112).

X
q

d2pqV
i
q =

X
q

(xp � xq)
2V i

q 6= j xp � xi j2 : (112)

The explanation is as follows. The left-hand side of inequality (112) represents the expected sum of
the distance squares between city point p and the particle position at time i, while the right-hand
side represents the square of the distance between city point p and the expected particle position
at time i. Under special conditions (e.g., if the constraints are ful�lled), the inequality sign must
be replaced by the equality sign, but in general, the inequality holds (see also �gure 6). ut

Third, energy expression (102) is a special case of a generalized free energy of type (99), whose
stationary points are solutions of

V i
p =

exp(��Pjq w
ij
pqV

j
q )P

l exp(��
P

jq w
lj
pqV

j
q )

: (113)

So, whatever the temperature may be, these stationary points are found at states where on average,
all strongly submitted (i.e., all directly built-in) constraints are ful�lled. Moreover, the stationary
points of a free energy of type (99) are often maxima [7, 8].

Objection 3. An analysis of the free energy of the ENA (section 3) yields a very di�erent view
because both terms of (103) create a set of minima. Therefore, a competition takes place between
feasibility and optimality, where the current temperature determines the overall e�ect. This corre-
sponds to the classical penalty method. A di�erence from that approach is that here { like in the
Hop�eld-Lagrange model of section 4 { the penalty weights change dynamically. Consequently, we
consider the ENA a dynamic penalty method . ut

The last observation corresponds to the theory of so-called deformable templates [30, 42], where
the corresponding Hamiltonian equals

Edt(S; x) =
�2
2

X
i

j xi+1 � xi j2 +
X
pj

Sjp j xp � xj j2 : (114)

A statistical analysis of Edt yields the free energy (103). A comparison between (103) and (114)
clari�es that the �rst energy expression is derived from the second one by adding noise exclusively
to the penalty terms. This completes our list of arguments against the suggested relationship [35]
between Hop�eld and elastic neural nets.
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5.3 An analysis of the ENA

We can analyze the ENA by inspection of the energy landscape [8]. The general behavior of the
algorithm leads to large-scale, global adjustments early on. Later on, smaller, more local re�ne-
ments occur. Equidistance is enforced by the �rst, `elastic ring term' of (103), which corresponds
to parabolic pits in the energy landscape. Feasibility is enforced by the second, `mapping term'
corresponding to pits whose width and depth depend on T . Initially, the energy landscape appears
to shelve slightly and is lowest in regions with high city density. On lowering the temperature a
little, the mapping term becomes more important: it creates steeper pits around cities. By this, the
elastic net starts to stretch out.

We next consider two potential, nearly �nal states of a problem instance with 5 permanently �xed
cities and 5 variable elastic net points, of which 4 are temporarily �xed. The energy landscape of the
remaining elastic net point is displayed. Figure 1 shows the case where 4 of the 5 cities have already
caught an elastic net point. The landscape of the 5-th ring point (that is completely dominated by
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the mapping term) exhibits a relatively large pit situated above the only non-visited city. If the
point is not too far away from the non-visited city, it can still be caught by it. It demonstrates,
that a too rapid lowering of the temperature may lead to a non-valid solution.

In �gure 2, an almost feasible, �nal solution is shown, where 3 net points coincide with 3 cities.
A 4-th elastic net point is precisely in the middle between the two close cities. Now, the mapping
term only produces some small pits. By this, the quadratic elastic ring term has become perceptible
too. Hence, the remaining elastic net point is most probably forced to a point in the middle of its
neighbors making the �nal state more or less equidistant, but not feasible!

Summarizing, it is possible to end up in a non-feasible solution if (a) the parameter T is lowered
too rapidly or if (b) two close cities have caught the same net point. It is further quite interesting
to note that in optimal annealing [1], the temperature is decreased carefully to escape from local
minima. In this case however, annealing is applied carefully just to end up in a local (namely, a
constrained) minimum. For much more details on the analysis of the ENA, we refer to [36, 4, 8].

5.4 Alternative elastic net algorithms

Various adaptations of the original ENA has been proposed, see, e.g., [11]. In order to use a correct
distance measure and at the same time, to get rid of the equidistance property, we here propose an
alternative elastic net algorithm having a linear distance measure in the energy expression (103):

Flin(x) = �2

X
i

j xi+1 � xi j ��1
�

X
p

ln
X
j

exp(��
2

2 j xp � xj j2): (115)

Applying gradient descent, the corresponding motion equations are found [8]. A self-evident analysis
shows that, like in the original ENA, the elastic net forces try to push elastic net points onto a straight
line. There is, however, an important di�erence: once a net point is situated in any point on the
straight line between its neighboring net points, it no longer feels an elastic net force. Equidistance
is not pursued anymore and the net points have more freedom to move towards cities. We therefore
conjecture that the `non-equidistant elastic net algorithm' (NENA) will �nd feasible solutions more
easily.

Since the elastic net forces are normalized by the new algorithm, a tuning problem arises. To
solve this problem, all elastic net forces are multiplied by a certain factor in order to compensate
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for the normalization. The �nal updating rule becomes:

�xi = �2
�

1
m

mX
1

j xi+1 � xi j
�

xi+1 � xi

j xi+1 � xi j +
xi�1 � xi

j xi�1 � xi j
�
+ �1

X
p

�p(i)(xp � xi):

In a last try to improve performance, we merged the ENA and the NENA into a `hybrid elastic net
algorithm' (HENA): the algorithm starts using ENA in order to get a balanced stretching out and,
after a certain number of steps, switches to NENA in order to try to guarantee feasibility.

5.5 Experiments

We started using the 5-city con�guration of section 3. Using 5 up to 12 elastic net points, the
original ENA produced only non-feasible solutions. Using 15 elastic net points, the optimal feasible
solution is always found. Using 5 elastic net points, the new NENA already produced the optimal
solution in some cases. A gradual increase of the number of elastic net points results into a rise of
the percentage of optimal solutions found. Using only 10 elastic net points, we obtained a 100%
score. We concluded that for small problem instances up till 25 cities, the here proposed NENA
performs better than the original ENA.

However, the picture started to change having 30-city problem instances. As a rule, both algo-
rithms are equally disposed to �nd a valid solution, but the quality of the solutions of the original
ENA is generally better. Trying even larger problem instances, the NENA more frequently found a
non-valid solution: inspection shows a strong lumping e�ect of net points around cities and some-
times a certain city is completely left out. Apparently, by disregarding the property of equidistance,
a new problem (that of clotting of elastic net points) has originated.

At this point, the hybrid approach of HENA comes to mind. Up to 100 cities however, we were
unable to �nd parameters which yield better solutions than the original ENA.

Summarizing we may say that the original ENA turns out to be a relatively very well balanced
dynamic penalty term algorithm.

6 Discussion and Outlook

A generalized framework for continuous Hop�eld networks has been formulated in this paper.
It can be used for resolving constrained optimization problems: non-quadratic cost functions are
admitted and under certain conditions, the constraints can directly be incorporated in the neural
network (which strongly reduces the size of the search space). If it turns out to be impossible to
directly build-in the constraints, they can be grappled with using Lagrange multipliers resulting in
what we have called the Hop�eld-Lagrange model. A last possibility to handle the constraints is to
use dynamic penalty terms. In all these cases, annealing can be applied. When dynamic penalty
terms are used, it is even possible to apply the annealing scheme exclusively to the penalty terms.
In this special case, annealing is applied to enforce relaxation to a valid solution.

In this article, we mainly focussed on mathematical analyses. In order to get a real understanding
of the performance of the models in practice, more work should be done. The theorems given here
may be helpful to analyze the stability properties of the motion equations chosen. In case of dealing
with `constrained satisfaction problems' (without a function to be optimized) we think Hop�eld
models have already proven their strength. However, in case of dealing with harder problems such
as constrained optimization problems, a lot of �ne tuning is expected to be necessary in order to
really end up in high quality solutions. We would like to underline the role of expert knowledge
here. Modelling a cost function often strongly depends on the application domain. In addition, the
initialization of the network should preferably not be done at random, but inspired by the type of
solution expected (remember, e.g., the initialization of the elastic net algorithm).

Within the area of combinatorial optimization many speci�c domains exist like scheduling [27, 37],
optimal routing [27], memory association, and image processing (segmentation and restauration)
[21, 25]. Using the (new) capabilities of the generalized model, it seems worthwhile to investigate
new mappings of the cost function in all those areas. By applying domain knowledge, it is expected
that more natural cost functions can be constructed. In particular, reducing the number of local
minima in the energy landscape and-or enlargement of the 'basins of attraction' should be tried. In
order to further limit the e�ect of local minima, `mean �eld annealing' can be applied exploiting its
`smoothing e�ect' on the original cost function. It is also appropriate to consider alternative `barrier
functions' [41].
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It can further be tried to apply iterative updating rules like the ones mentioned in section 1.6.4.
The stability properties of these schemes are often hard to analyze and sometimes worse than the
ones we considered. But in cases where these motion equations appear to be stable, their convergence
rate is often much higher.

The �nal results of the all these schemes should of course be compared to the results
achieved with other optimization methods both inside the area of neural networks (like `multi-
scale optimization' [24]) and `deformable templates' [42]) and outside this �eld (like local search [2]).

Besides doing all this, something still di�erent can be done namely trying to transfer the ideas
as emerged here (in the area of continuous neural networks) towards the world of discrete (and
stochastic) neural networks like Boltzmann machines [15, 14]. Non-quadratic cost functions and
the incorporation of constraints are probably the �rst ones to consider. Then, statistical mechanics
seems to be the most appropriate tool to analyze these generalized discrete Hop�eld networks. For
proving stability for example, the criterium of the `(detailed) balance condition' [26] can be used
to investigate under which conditions the generalized updating rules do guarantee relaxation to the
Boltzmann-Gibbs distribution [15]. In addition, various versions of simulated annealing [1] are a
natural choice for trying to �nd high-quality solutions of constrained optimization problems using
this type of neural networks.

A The proof of the correctness of the scheme of section 3.1.1

We will proof the correctness of the general scheme for building-in asymmetric linear constraints
as proposed in section 3.1.1. The original problem (48) to be solved is:

minimize E(V ) subject to:
Pn

i=1 viVi = c; (116)

where V = (V1; V2; : : : ; Vn) and every vi is an integer. By application of the mentioned scheme, this
problem is transformed into a new one de�ned by

minimize E(V 0) subject to:
Pn

i=1
vi
jvij

Pjvij
j=1 Vi;j = c ^ 8i; j; k : Vi;j = Vi;k; (117)

where
V 0 = (V1;1; : : : ; V1;jv1j; V2;1; : : : ; V2;jv2j; : : : ; Vn;1; : : : ; Vn;jvnj): (118)

In order to determine the constrained minima of the problems (116) and (117), we apply the tech-
nique of Lagrange multipliers. By doing so, two solutions sets are found which we denote as S1 and
S2 respectively.
Theorem 12. The solution sets S1 and S2 coincide.

Proof. Applying the multiplier technique, the �rst problem (116) can be formulated as �nding the
extrema of the Lagrangian function

L(V; �) = E(V ) + �(
X
i

viVi � c): (119)

The extrema are found by resolving the set of equations

@L(V; �)

@Vi
=

@E(V )

@Vi
+ �vi = 0; (120)

@L(V; �)

@�
=

X
i

viVi � c = 0: (121)

The second problem, given by (117), can be reformulated as �nding the extrema of the Lagrangian
function

L(V 0; �) = E(V 0) + �(
X
i

vi
j vi j

X
j

Vi;j � c): (122)

Here, the extrema are found by resolving the set of equations

@L(V 0; �)

@Vi;j
=

@E(V 0)

@Vi;j
+ �

vi
j vi j = 0; (123)

@L(V 0; �)

@�
=

X
i

vi
j vi j

X
j

Vi;j � c = 0: (124)
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We are now able to proof that the solutions of the last set of equations (123) and (124) precisely coin-
cide with the solutions of the set of equations (120) and (121). Using the chain rule of di�erentiation,
it follows from the de�nition of equation (49) that

@E(V 0)

@Vi;j
=

1

j vi j
@E(V )

@Vi
: (125)

By substitution of this result in equation (123) and by substitution of Vi for any Vi;j in equation
(124) as well (conform step 3 of the scheme, where j runs from 1 to j vi j), the following set of
equations is found:

@L(V 0; �)

@Vi;j
=

1

j vi j
@E(V )

@Vi
+ �

vi
j vi j = 0 (126)

@L(V 0; �)

@�
=

X
i

viVi � c = 0: (127)

Comparing the last two equations (126) and (127) to the set of equations (120) and (121), we see
that they are the same and that they therefore yield the same set of solutions. In other words, the
solution sets S1 and S2 coincide. ut

Finally, we observe that by application of the motion equations (50) together with the trans-
fer functions (51), a constrained local minimum of the (transformed) problem (117) is calculated.
By application of theorem 12, it is clear that this minimum is a local minimum of the original
problem (116) as well. This proves the correctness of the general scheme introduced.

B Lagrange multipliers

The Lagrange multiplier method is a method for analyzing constrained optimization problems
de�ned by

minimize f(x)

subject to : C�(x) = 0; � = 1; : : : ;m; (128)

where x = (x1; x2; : : : ; xn), f(x) is called the objective function, and the equations C�(x) = 0 are
the m side conditions or constraints. The Lagrangian function L is de�ned by a linear combination
of the objective function f and the m constraint functions C� conform

L(x; �) = f(x) +
X
�

��C�(x); (129)

where � = (�1; �2; : : : ; �m) and where the �i's are called Lagrange multipliers . The class of functions
whose partial derivatives are continuous, we denote by C1. The following `Lagrange multiplier theo-
rem' [3] gives a necessary condition for f to have a local extremum subject to the constraints (128):

Theorem 13. Let f 2 C1 and all functions C� 2 C1 be real functions on an open set T of Rn. Let
W be the subset of T such that x 2 W ) 8� : C�(x) = 0. Assume further that m < n and that
some m�m submatrix of the Jacobian associated with the constraint functions C� is nonsingular
at x0 2W , that is, we assume that the following Jacobian is nonsingular at x0

J(x0) =

0
B@ C1

1 (x
0) C2

1 (x
0) : : : Cm

1 (x0)
...

...
...

C1
m(x

0) C2
m(x

0) : : : Cm
m (x0)

1
CA (130)

where Cj
�(x

0) = @C�(x
0)=@xj ; j 2 f1; : : : ; ng.

If f assumes a local extremum at x0 2W , then there exist real and unique numbers �01; : : : ; �
0
m such

that the Lagrangian L(x; �) has a critical point in (x0; �0).

The proof of this theorem [3] rests on the `implicit function theorem'. The condition of the non-
singularity of the de�ned Jacobian matrix makes the vector �0 unique.
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