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Abstract

In a circular city model, I consider network design and pricing decisions for a
single fast transport connection that faces competition from a slower but better
accessible transport mode. To access the fast transport network individuals have
to make complementary trips by slow mode. This fact has interesting implications
on the location decisions. I show that in the presence of competition the profit-
maximizing and socially optimal decision would be to cluster the two stations. By
contrast, in the absence of competition both a profit-maximizing firm and a social
planner would locate the two stations on opposite sides of the circle.
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1 Introduction

In many countries privatization and deregulation of transport industries raises a lot of

opposition. One of the greatest fears is that a privatized transport firm would change

its network structure, that is, the location of their stations and the connections between

cities, such that some cities would be deprived of a good connection to other cities. Indeed

the events after the deregulation of the U.S. airline industry in 1978 have shown that this

is not unlikely. Since 1978 almost all airline carriers have transformed their U.S. networks

into hub-and-spoke networks. As a result, most airline passengers can not reach their

destination directly. Moreover, the hub-and-spoke network structure has raised concerns

on market dominance at hub airports1.

Although the emergence of hub-and-spoke networks has been analyzed extensively,

the airline literature typically ignores the presence of competing transport modes. This

approach is reasonable in the case of the U.S. airline industry, as the distance between

cities in the U.S. is large and the railway industry in the U.S. does not offer a feasible

alternative to airline travel. However, in Europe and Japan the situation is different due

to the availability of a network of high-speed train connections. Furthermore, competition

from other transport modes is even more important in other transport industries. For

example, railway transport has always faced fierce competition from transport by car,

since the speed of a train and a car is comparable. In urban areas, underground transport

faces competition from bus and tram services. One should note that these competing

transport networks differ in speed and accessibility. Typically the faster transport mode

is less accessible than the slower transport mode.

With the current wave of deregulation in other transport industries than the airline

industry, it is necessary to understand network design decisions in case a transport net-

1A hub-and-spoke network is a network in which one airport, the hub, has direct connections to
all other airports, while all other airports, the spoke airports, are only connected to the hub airport.
Hendricks, Piccione & Tan (1995) show that under economies of density either the empty network, the
hub-and-spoke network or the point-to-point network is optimal. Hendricks, Piccione & Tan (1997) show
that a hub-and-spoke network may prevent entry into a hub-to-spoke market. Borenstein (1989) shows
that route and airport dominance enable carriers to raise prices.
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work operator faces competition from other transport services. In this paper I therefore

introduce a model in which I consider the station locations and the price a network oper-

ator would charge, when individuals also have the alternative to travel through a slower

but better accessible competing transport network.

The model is simple but reasonable, and it provides interesting results and intuition

for the role of competing transport networks in network design. Individuals live and work

at random locations on a circular city and they need to travel between their home and

work. Each combination of home location and work place, therefore, constitutes a trip,

having an origin and a destination. An individual can make a trip by a slow transport

mode around the circle, either clockwise or counterclockwise. Alternatively he or she can

use the fast transport system to cross the circle. It is crucial that slow mode transport

is necessary to access the fast transport network. Hence, a trip by fast mode consists of

three complementary journeys; a trip by slow mode from home to the departure station,

a trip by fast mode from station to station, and finally a trip by slow mode from the

terminating station to the work place. In this model I first derive demand for the fast

transport connection. For that purpose I derive the size of the market area for the fast

connection, which I define as the set of trips for which a fast transport connection is

preferred. This definition differs from the usual interpretation of a market area as being

a region around a station.

Next, I derive the main result of the paper. I consider location and pricing decision in

case the fast transport connection is operated by a profit-maximizing firm. Contrary to

intuition, I show that the stations of the fast connection are not located on opposite sides

of the circle but somewhat closer. Hence, the monopolist typically clusters the stations.

This tendency of clustering becomes stronger if competition from the slow transport mode

is stronger. In an extreme case, when there is little difference between the velocity of a fast

connection and a slow connection, the distance between the two stations is only one sixth

of the circle (Figure 1). On the other hand, in the absence of competition the stations are

located symmetrically on the circle. I also consider the socially optimal locations of the

two stations. Again, the stations are not located on opposite sides of the circle. However
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station 1 

station 2 

1/6 

Figure 1: A fast transport network in the circular city where the distance between the
stations is 1/6 of the circle.

the distance between the socially optimal locations is larger than the distance between the

monopolist’s optimal locations, since a social planner is also concerned about the benefit

from a trip. The intuition behind these results is that competition is more severe for trips

whose origin and destination is between the two stations, than for trips whose origin and

destination is in the hinterland of the two stations. In case the stations are located on

opposite sides of the circle, there is no hinterland and competition creeps in from both

sides of the circle. Hence, the firm has an incentive to cluster the stations such that it

obtains an area where competition is absent.

Literature that considers location decisions of transport networks is sparse. The model

in this paper is indeed the first model that introduces competition between transport

networks of different speed and density to analyze the impact on location decisions. There

is some related literature. Braid (1989) uses the linear city model to find the optimal

locations of bridges across a river, where individuals live on one side of the river and

work on the other side. Also, Crampton (2000) uses the linear city model to compute

optimal urban-rail station spacing. However, in these two papers it is assumed that

transportation across a bridge or by train occurs instantaneously without any costs, while

in my paper individuals still face transportation costs and a fare that are increasing in

distance when they use a fast transportation connection. This difference is crucial in
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the analysis of the design of the transport network. There is also some literature that

consider the market areas that competing transport firms serve, when the transportation

costs between transport modes differ (Hyson & Hyson 1950, Niérat 1997). However, in

this literature the network structure is given, while in this paper decisions on the network

design are the primary focus of the analysis.

The structure of the paper is as follows. In Section 2 I lay out the model and I derive

the demand function for the fast transport connection. In Section 3 I assume that the

fast transport network is operated by a profit-maximizing firm, and I derive the optimal

fare and station locations for the firm. Next, in Section 4, I assume that a social planner

chooses the location of the two stations and the optimal fare. Finally, in Section 5 I

conclude.

2 The model

In this section I describe the transportation model. Infinitesimal individuals are uniformly

distributed with density 1 on a circle C of unit circumference. All individuals travel to one

random destination that is also uniformly distributed on the circle. This destination is

independent of the location of the individuals. Together, the set of individual’s locations

and the set of destinations form the set of trips T = C × C.

To make a trip, an individual can choose between two transport modes, a ’slow’ trans-

port mode or a ’fast’ transport mode. I assume that the slow mode is offered competitively

at price 0, and that all individuals can access the slow mode network directly from their

location. Furthermore, I assume that the time costs are linear in distance, and that every

trip yields a value u to the individual. Hence an individual on a trip (x, y) ∈ T obtains

a utility of

US(x, y) = u− g |y − x| ,

if he chooses the slow mode. Here g > 0 is the marginal time cost of travelling by slow

mode, and the distance |y − x| is the shortest arc length between x and y. Note that the

longest distance a traveller could make is a trip where the destination is opposite to the
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starting point. Hence, the utility of a trip is bounded from below by US(x, 1
2
) = u− g/2.

I assume that u is high enough to persuade all individuals to travel, that is, u ≥ g/2.

On the other hand, an individual might choose the fast mode for her trip. I assume that

the fast mode network consists of only one (two-way) connection between two stations,

located at z1 and z2 on the circle. Hence, only individuals on a trip (z1, z2) (or (z2, z1)

in the opposite direction) can access their destination directly through the fast mode

network. All other individuals have to travel by slow mode first to and then from the

stations to complete a trip. I therefore assume that the utility of a trip (x, y) ∈ T to an

individual x travelling to y by fast mode is

UF (x, y; d, p) = u− fd− p− g |zi − x| − g |y − zj| ,

where i, j ∈ {1, 2}, i 6= j are chosen such that |zi − x| + |y − zj| is minimal. Here

d ≡ |z2 − z1| is the distance between the two stations, f is the marginal time cost of

travelling on the fast mode connection, 0 < f < g, and p ≥ 0 is the fare (price) of the

fast connection.

In Figure 2 I illustrate the transportation costs of the two travel mode options for a

trip from x to y, where the upper and lower half of the figure only differ in the destination

y. The solid arrow in the two pictures illustrates a trip from x to y by slow mode. The

transportation cost of such a trip is g |y − x|. On the other hand, the three dotted arrows

illustrate a trip from x to y by fast mode, which consists of three different journeys with

a total cost of g |z1 − x|+ fd + p + g |y − z2|. Note that for the trip (x, y) in the bottom

picture an individual incurs a cost for a journey from z2 to y both for the fast mode option

as for the slow mode option.

2.1 Demand

I now derive the demand for fast mode transport when prices and station locations are

given. The procedure is similar to that in spatial models. However, derivation of the

market area is more complicated, because the utility an individual obtains depends both

on the location of the individual as on its destination. Hence, for each home location
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a) the destination is between the stations 

b) the destination is behind the stations 

Figure 2: Transportation costs in two competing transport networks.
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there is a different region of workplaces for which the fast mode is preferred. Moreover,

it turns out that the market area is not lying symmetrically around a station. I therefore

introduce the following notation. I define a location x to be between the stations if x lies

on the shortest arc length between z1 and z2, such that |z2 − x| + |x− z1| = d. On the

other hand, a location x is behind the stations if x lies on the longest arc length between

z1 and z2, such that |z2 − x| + |x− z1| = 1 − d. Note that if z1 and z2 are on opposite

sides of the circle x is both between and behind the stations.

First I assume that an individual on a trip (x, y) ∈ T prefers the fast mode if and only

if

UF (x, y; d, p) ≥ US(x, y).

or equivalently

|y − x| − |zi − x| − |y − zj| ≥ fd + p

g
. (1)

for i, j such that |zi − x| + |y − zj| is minimal. It follows that an individual will only

choose the fast transport mode if the fast transport connection offers a ’shortcut’ to

transportation by slow mode, that is, travelling from home to station i and then from

station j to the workplace involves a shorter distance than travelling directly from home

to work. Note that it immediately follows that the distance of the trip |y − x| can not be

too small. Hence, there are always trips where travel by slow mode is preferred.

Let me now consider the market area for the fast mode, which is the set of trips

TF ⊂ T where the fast mode connection is preferred to the slow mode network. This

area can be split into four parts. First I consider the trips (x, y) ∈ TF , where both x

and y are located between the stations (Figure 2a). Because the stations are chosen such

that |zi − x| + |y − zj| is minimal, it must hold that |zi − x| + |y − x| + |y − zj| = d.

Substituting into (1) and rewriting, it becomes clear that the fast mode is preferred as

long as

|zi − x|+ |y − zj| ≤ 1

2g
(gd− fd− p). (2)

It immediately follows that both |zi − x| ≤ (gd−fd−p)/2g and |y − zj| ≤ (gd−fd−p)/2g.

In the second case, suppose that x is between the stations but the destination y is

behind the stations (Figure 2b). Since the distance |y − x| is the length of the shortest
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path between x and y, it holds that

|y − x| = min{ |y − zi|+ |zi − x| , |y − zj|+ |zj − x| }.

Substituting into (1) the decision criterium becomes

|y − zi| − |y − zj| ≥ fd + p

g
and (3)

|x− zj| − |x− zi| ≥ fd + p

g
. (4)

Because x is between the stations, and y is behind, (3) and (4) can be rewritten as

|y − zj| ≤ 1

2
− d +

1

2g
(gd− fd− p),

and

|x− zi| ≤ 1

2g
(gd− fd− p). (5)

Given some starting point between the stations, x, cases 1 and 2 define a range of desti-

nations for which the fast mode is preferred. This range is drawn in Figure 3a. The size

of the range is

1/2− d + 2x̂− |zi − x| ,

where

x̂ ≡ x̂(p, d) ≡ 1

2g
(gd− fd− p). (6)

Consider now the third case, where x is behind but y is between the stations. This

case is equivalent to the second case, except that starting and destination points are

interchanged. Hence, in this case, (x, y) ∈ TF if and only if

|x− zi| ≤ 1

2
− d + x̂, (7)

and

|y − zj| ≤ x̂. (8)

The fourth and last case considers a trip (x, y) where both x and y are behind the

stations. In this case

|y − x| = min{ 1− d− |y − zj| − |zi − x| , d + |y − zj|+ |zi − x| }. (9)
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a) x is between the stations 
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Figure 3: Range of destination for which the fast mode is preferred, given some starting
point, x.
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Substituting (9) into (1) and rewriting, the condition for (x, y) ∈ TF becomes

|zi − x|+ |y − zj| ≤ 1

2
− d + x̂, (10)

and

x̂ ≥ 0. (11)

Cases 3 and 4 also constitute a range of destinations for which the fast mode is preferred

whenever the starting point x is behind the stations. This range is shown in Figure 3b.

Again, the size of this range is 1/2− d + 2x̂− |zi − x|.
Now that I have found the market area, I can derive the demand function. The

following proposition states the demand function.

Proposition 1 Consider the transportation model of Section 2. If the distance between

the stations is d, and the fare of a fast mode connection is p with p ≤ gd − fd, then

demand is given by

D(p, d) = 6x̂2 + 6x̂(1/2− d) + (1/2− d)2,

where

x̂ ≡ x̂(p, d) ≡ 1

2g
(gd− fd− p).

If p > gd− fd, then D(p, d) = 0.

Proof: Consider a trip (x, y) ∈ TF , and suppose that p ≤ gd− fd, such that x̂ ≥ 0. From

(2) and (5) it follows that if x is between the stations then |zi − x| ≤ x̂. On the other

hand, if x is behind the stations, equations (7) and (10) imply that |zi − x| ≤ 1/2−d+ x̂.

Moreover, for a trip originating at x the size of the range of destinations y, such that

(x, y) ∈ TF , is

1/2− d + 2x̂(p; d)− |zi − x| ,

where x̂ ≡ x̂(p; d) is given in (6). Hence, because there are two stations, demand is given
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p 

gd-fd 

O 3(g/2-fd)2/2g2-(1/2-d)2/2 (1/2-d)2 

Figure 4: Demand function in the transport model.

by

D(p, d) = 2

∫ x̂

0

1/2− d + 2x̂− x dx

+2

∫ x̂+1/2−d

0

1/2− d + 2x̂− x dx

= 6x̂2 + 6x̂(1/2− d) + (1/2− d)2.

Furthermore, if p > gd− fd, then x̂ < 0, and one of the conditions (2), (5), (8) or (11) is

violated. Hence, if p > gd− fd, then the set TF is empty. Q.E.D.

Figure 4 shows a typical demand function. The demand function is a quadratic func-

tion in p and d, and for all feasible prices 0 ≤ p ≤ gd − fd the demand function is

downward sloping and convex in p. Hence, the demand function has a familiar shape,

except that there is an upperbound for p. If p = gd− fd, then

D(gd− fd, d) = (1/2− d)2,

while demand collapses to zero if p becomes larger than gd− fd.
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3 Profit maximizing location and pricing

In this section I consider the optimal price and location in case the fast mode network is

operated by a monopolist. To focus on the demand side I assume that a firm operating

the connection incurs no costs.

I derive the optimal price and location for the monopolist operator. The monopolist

maximizes profits

π(p, d) =

{
pD(p, d) if 0 ≤ p ≤ gd− fd
0 otherwise.

Since the fast mode’s comparative advantage is greater the larger is d, one would expect

that the optimal location of the two stations for the monopolist would be such that the

stations are located on the opposite site of the circle, such that d = 1/2. However, the

following proposition shows that this is not true.

Proposition 2 Consider the distance dM between the two stations and price pM that

maximize monopoly profits. The optimal price is

pM =
g − f

6

and the optimal distance is dM = 1/6 for f < g ≤ 3f , and

dM =
g2 − f 2 − 2gf

2g2 − 6f 2

for g ≥ 3f .

The proof follows from standard constrained optimization and is given in the Appendix.

Note that dM is continuous in g, even at g = 3f , and that dM → 1/2 whenever g →∞.

Why do the stations not lie on opposite sides of the circle? The answer is hidden in the

nature of competition in this transport model. Competition between the two transport

modes is more severe for trips starting and ending between the two stations. In this

case the length of the trip |y − x| is typically smaller than the distance between the two

stations (Figure 2a). For these trips, the slow mode becomes an attractive alternative if

the price of the fast mode increases or if the start or destination of the trip is located

further away from the stations.

13



However, the fast mode network virtually does not face any competition for trips

between the station’s hinterlands, which are the locations behind the two stations. The

reason is simple. Suppose that for a trip to station 2, (x, z2) the fast mode is optimal.

If the destination of a trip (x, y) is further away from x than station 2 (Figure 2b), an

additional travel distance has to be covered. However, this additional travel distance

is in both cases made by slow mode transport and therefore the additional travel costs

does not depend on the choice of transport mode. Hence, if fast mode transport has a

comparative advantage for a trip to station 2, it also has a comparative advantage for

all trips to the hinterland of station 2. Clearly the size of the hinterland weighs heavily

on the monopolist’s demand. This can also be seen from Figure 3. Demand from the

hinterland is however bounded, as it becomes attractive to use the slow mode network in

the opposite direction, if the destination is located far away in the hinterland.

It now becomes clear why demand is not maximal when the stations are located on

opposite sides of the circle. In this case the stations lack a big hinterland, as the fast

mode network faces competition from the slow mode network from both sides of the

circle. Only if the stations are located closer, the fast mode network is able to create

and serve a hinterland, where competition from the slow mode network is less severe.

Following this reasoning, one might think that it is optimal to minimize the distance of

the stations. However, if the distance becomes smaller, the reservation price for a trip

from station to station, gd − fd, decreases. At some point, a smaller distance between

the two stations has to be combined with lower prices, which has a negative impact on

profits, and as a result the optimal distance is bounded from below.

Note that the above result depends on the competitiveness of the transport modes. As

g increases or if f decreases the slow mode becomes less competitive, and therefore there

is less reason for the fast network operator to take competition from slow mode transport

into account. Therefore, if g → ∞ or if f → 0, then the distance between the stations

goes to a half.
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4 Social welfare

Since the optimal station locations from a monopolist’s view are quite surprising, one

wonders if results differ when the firm is operated by a social planner. Therefore, I turn

to the question what price a social planner would set, and what station locations he would

choose. I assume that a social planner maximizes the social welfare function

W (p; d) = π(p; d) + CS(p; d),

where CS(p; d) is aggregate consumer surplus.

Consumer surplus has a simple structure. Consider first CSS, the consumer surplus

in case all travellers choose the slow mode, that is if p > gd− fd. Then

CSS = 2

∫ 1/2

0

u− gx dx = u− 1

4
g.

If p < gd − fd, such that some travellers choose the fast mode, the consumer surplus

must be higher than CSS. This extra surplus that travellers obtain from using the fast

mode network is given by the usual consumer surplus triangle under the demand function

D(p; d). That is

CS(p, d) = CSS +

∫ gd−fd

p

D(s; d) ds

and one can apply the usual social welfare analysis in a partial equilibrium model. Hence,

at the social optimum, price equals marginal cost, that is pS = 0, and social welfare is

given by

W (0; d) = 0 + CSS +

∫ gd−fd

0

6{x̂(p, d)}2 + 6x̂(p, d)(1/2− d) + (1/2− d)2 dp

= CSS + 2g

∫ (gd−fd)/2g

0

6x2 + 6x(1/2− d) + (1/2− d)2 dx

= u− g/4 + 2gx0

(
2x2

0 + 3x0(1/2− d) + (1/2− d)2
)
,

where x0 = (gd− fd)/2g.

I now turn to the socially optimal distance between the stations, dS. The first order

derivative of the welfare function is given by

∂W (0; d)

∂d
= −6fx2

0 + (2g − 6f)x0(1/2− d) + (g − f)(1/2− d)2.

15



Note that if d = 0, then ∂W/∂d = (g−f)/4 > 0, and if d = 1/2, then ∂W/∂d = −6fx2
0 <

0. Since the welfare function is a cubic function in d, the optimal distance dS must be

between 0 and 1/2. Solving ∂W/∂d = 0 after some manipulations, it turns out that the

only optimal solution is

dS =
g

g + 3f +
√

g2 + 3f 2
.

It is easy to check that dS > 1/6 for g > f . Furthermore

dS >
g

2g + 3f
>

g2 − f 2 − 2gf

2g2 − 6f 2
= dM .

Hence, I have the following proposition

Proposition 3 For all g > f , the distance between the two stations that maximizes social

welfare, dS, and the distance between the stations that maximizes firm’s profits, dM , are

such that

dM < dS < 1/2.

So a social planner would not locate the stations on opposite sides of the circle either.

This is in line with the monopolist’s decision. However, from the point of view of the

social planner, the monopolist separates the stations too little. The reason is as follows.

A social planner is not only concerned about the level of demand for the fast connection,

but also about the utility individuals obtain. This utility depends on the reduction in

transport costs due to availability of a fast transport connection. The individual that

benefits the most from the fast mode connection is an individual making a trip from

station to station, (zi, zj), in which case the cost reduction is

UF (z1, z2; d, 0)− US(z1, z2) = gd− fd.

Hence, the greater the distance between the stations, the higher is this maximum cost

reduction, and this effect pushes the socially optimal distance, dS, away from the monop-

olist’s optimal distance, dM .

That the socially optimal distance between the stations is still smaller than a half is

not directly obvious given that the maximum cost reduction is increasing in d. The reason
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of this result lies in the fact that more individuals obtain the maximum cost reduction if

d gets smaller. In fact all individuals making a trip from the hinterland of station i to

the hinterland of station j obtain the maximal cost reduction of gd − fd, as long as the

stations are between the origin and destination of the trip. That is, if (x, y) is such that

|y − x| = |zi − x|+ d + |y − zj| then

UF (x, y; d, 0)− US(x, y) = gd− fd.

The reason is already explained in the monopoly case. If the fast mode has a comparative

advantage on a trip from station to station, it also has the same comparative advantage

on a trip from the hinterland of a station to the hinterland of the other station since

travelling behind a station is always made by slow mode. Hence the cost of travelling

behind a station adds up to the transportation costs whatever transport mode is chosen.

If d = 1/2 then the stations lack a big hinterland. In fact, if d = 1/2, then the maximum

cost reduction in only obtained for a trip from station to station, and consequently the

cost reduction effect becomes second order. Hence, social welfare is not optimal if d = 1/2.

5 Conclusion

In this paper I have shown that a simple transportation model with competing transport

modes can give interesting insights into the optimal network design of a transport network.

Competition from a slower, but more accessible transport network incites a monopolist

transport operator not to locate the stations on opposite sides of the circle, as the size of

the hinterland increases if the stations are located closer to each other. This incentive to

diminish the distance between stations is also present for a social planner; however, it is

stronger for a monopolist than for a social planner. On the other hand, if the difference

in speed between the slow and the fast mode is very large, competition is not an issue

and the fast mode operator locates its stations near opposite sides of the circle.

Of course, the model I have presented uses strong assumptions and future research

should try to generalize and extend this restricted model to analyze a broader range of

issues in transport economics. To my opinion, the most interesting extension would be to
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solve the transportation model for n stations and endogenize the number of stations and

connections. Such an extension could be used to analyze the impact of new technologies

on the density and the structure of transportation networks. To see the relevance of such

issues, consider the history of railway industries. In the beginning of the 20th century

railway transport was by far the most efficient transport method for longer distances.

However, in course of the 20th century it has lost its comparative advantage to airplane

and car. This has resulted in a reduction of stations and connections in the railway

network. Nowadays, the railway industry is coming back with the introduction of high-

speed trains, reviving the competition between airline and railroad travel. It is not clear

what the implications on airline networks are. A model of competing transport networks

with an endogenous number of stations could shed more light on this issue.

A Appendix

Proof of Proposition 2: For the moment, allow d = 0 in the feasible set F , such that

F = {(p, d) ∈ R2 | 0 ≤ d ≤ 1/2; 0 ≤ p ≤ gd− fd }.

Then the monopolist solves the optimization problem

maxp≥0,d≥0 pD(p, d)
s.t. p ≤ (g − f)d
and d ≤ 1/2.

(12)

Note that the feasible set F is closed and bounded with linear restrictions, and that the

profit function pD(p, d) is continuously differentiable at p and d. Hence, for any value of

f and g, 0 < f < g, a maximum exists and the optimal solution satisfies the Kuhn-Tucker

first order conditions.

It is easy to check that d > 0 and p > 0. Hence the first order conditions are given by

p
∂D(p; d)

∂p
+ D(p; d)− λ = 0, (13)

p
∂D(p; d)

∂d
+ λ(g − f)− µ = 0, (14)
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p ≤ (g − f)d and λ(gd− fd− p) = 0, (15)

d ≤ 1/2 and µ(1/2− d) = 0, (16)

for some λ ≥ 0 and µ ≥ 0. Remember that x̂ ≡ x̂(p; d) ≡ 1
2g

(gd − fd − p). Conditions

(13) and (14) can be rewritten as

λ = 18x̂2 +
1

g
(18g− 6f)x̂(1/2− d) +

1

g
(4g− 3f)(1/2− d)2− 3

g − f

2g
(2x̂ + 1/2− d), (17)

and

µ = λ(g − f) +
p

g
{ (g − 3f)(1/2− d)− 6fx̂ }. (18)

Now suppose that both λ = 0 and µ = 0. Then by (18)

x̂ =
g − 3f

6f
(1/2− d). (19)

It is immediately clear that if g < 3f condition (15) is violated. Substituting (19) into

(17) and solving, one obtains

d =
g2 − f 2 − 2gf

2g2 − 6f 2
or d = 1/2.

After some manipulations it follows from (19) that if d = g2−f2−2gf
2g2−6f2 , then p = (g − f)/6,

and if d = 1/2, then p = (g − f)/2. These are two solution candidates in case g ≥ 3f ,

λ = 0 and µ = 0.

Now suppose that λ > 0, but µ = 0. Then p = gd− fd by condition (15) and x̂ = 0.

By equations (17) and (18)

λ = (1/2− d)2 − 3d
g − f

g
(1/2− d) = 2d(1/2− d)− 3d

g − f

g
(1/2− d).

Solving for d, one gets d = 1/2 or d = 1/6. If d = 1/2, then λ = 0, a contradiction, and

if d = 1/6 then p = (g − f)/6. Note that for d = 1/6, λ > 0 if and only if g < 3f .

Now suppose that µ > 0, but λ = 0. Then d = 1/2 and by (18)

µ = −6
f

g
px̂(p, 1/2) ≤ 0.
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This is a contradiction.

Finally, suppose that µ > 0 and λ > 0. Then d = 1/2 and p = (g − f)/2. However,

substituting these values into (17) one gets λ = 0, again a contradiction.

Summarizing, if g < 3f , then the only solution candidate is d = 1/6 and p = (g−f)/6.

If g ≤ 3f there are two candidates, d = 1/2 and d = g2−f2−2gf
2g2−6f2 . However, for d = 1/2

and p = (g − f)/2, profits are zero, while for d = g2−f2−2gf
2g2−6f2 and p = (g − f)/6 profits are

strictly positive. Hence, d = 1/2 and p = (g − f)/2 can not be a maximum.

For each value of g we now have a single remaining candidate that satisfies the first

order conditions. Since a solution exists, this candidate must be the maximum. That is,

if g < 3f , then dM = 1/6 and pM = (g − f)/6. If g ≤ 3f , then dM = g2−f2−2gf
2g2−6f2 , and

pM = (g − f)/6. Note that if g = 3f , then dM = 1/6. Q.E.D.

References

Borenstein, S. (1989), ‘Hubs and high fares: dominance and market power in the u.s.

airline industry’, RAND Journal of Economics 20(3), 344–365.

Braid, R. M. (1989), ‘The optimal locations of multiple bridges, connecting facilities, or

product varieties’, Journal of Regional Science 29(1), 63–70.

Crampton, G. R. (2000), ‘Urban economic structure and the optimal rail system’, Urban

Studies 37(3), 623–632.

Hendricks, K., Piccione, M. & Tan, G. (1995), ‘The economics of hubs: The case of

monopoly’, Review Of Economic Studies 62(1), 83–99.

Hendricks, K., Piccione, M. & Tan, G. (1997), ‘Entry and exit in hub-spoke networks’,

Rand Journal Of Economics 28(2), 291–303.

Hyson, C. & Hyson, W. (1950), ‘The economic law of market areas’, Quarterly Journal

of Economics 64(2), 319–327.

20
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