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Abstract In De Boer (2006) the additive decomposition of the aggregate change in a 
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1. Introduction 
  
 In a previous paper, De Boer (2006), I considered the additive decomposition of the 
aggregate change in a variable V , )0(V)1(V − , the comparison period being denoted by 
1 and the base period by 0.  
 In the framework of structural decomposition analysis (SDA), Dietzenbacher and Los 
(1998),(D&L), proved, that in case of n factors the number of possible elementary 
additive decompositions, which from a theoretical point of view are equivalent, is equal 
to n! There are (n!)/2 “mirror pairs” (base and comparison period reversed, see De Haan, 
2001), among which the pair of the polar decompositions. Each of the decompositions is 
complete, in the sense that there is no residual term, and is zero value robust, i.e. zero 
values can be dealt with. But none of them satisfies the requirement of time reversal 
which states that if we reverse base period and comparison period the decomposition 
should yield the reverse result, i.e. )]0(V)1(V[)1(V)0(V −−=− . Arithmetic averages of 
the mirror pairs can be shown to satisfy time reversal. In their empirical application D&L 
decomposed the additive change in sectoral labor costs (V) into the effects of changes in 
labor costs per unit, technical changes, and changes in final demand mix and in final 
demand levels. In their example there are 4!=24 elementary decompositions. They 
considered the arithmetic average of the two polar decompositions and the arithmetic 
average of all 24 decompositions and found out that both averages were quite close to 
each other. The disadvantage of the arithmetic average of the two polar decompositions 
is that it does not obey the requirement of factor reversal: if we reverse two factors we 
do not get the same result. This means that the order of appearance of the factors in the 
decomposition matters. The arithmetic average of all elementary decompositions meets 
the requirement of factor reversal, but the computation of n! decompositions are needed.  
 In index number theory a decomposition that obeys factor reversal is called “ideal”. In 
the previous paper I proposed to use alternatively the “ideal” Montgomery 
decomposition. For the example of D&L I showed that the results of the Montgomery 
decomposition were very close to those either obtained by means of the arithmetic 
average of the two polar decompositions or by the arithmetic average of all elementary 
decompositions. 
  In this paper I consider the multiplicative decomposition of the aggregate change in a 
variable V , i.e. )0(V/)1(V]0,1[DV = , in the framework of the D&L example. In section 2 
I link for the case of n=2 factors (price and quantity) SDA to index number theory. We 
have 2!=2 elementary decompositions: the “polar ones”, none of them satisfying the 
requirement of time reversal which, in the multiplicative case, states that if we reverse 
base period and comparison period the decomposition should yield the reciprocal result; 
i.e. 1]1,0[DV]0,1[DV =× . The commonly used solution is to take the geometric average 
of the two polar decompositions which satisfies time reversal. We show that the 
geometric average of the two polar decompositions, in case n=2 the only elementary 
decompositions, is nothing but the product of the price and quantity index of Fisher. If we 
reverse the two factors we obtain the same result: the Fisher index is ideal. But there are 
also other indices that are ideal. For the problem at hand the Sato-Vartia index is 
particularly suited and I present it in section 2 as well. Section 3 is devoted to the case of 
more than two factors. I take as example the multiplicative decomposition of the example 
of D&L and I give the formula for the elementary decompositions and of the Sato-Vartia 
decomposition. Section 4 contains the results of the Sato-Vartia decomposition and of 
the geometric average of the two polar decompositions and the geometric average of all 
decompositions. It turns out that they are remarkably close to each other. Section 5, 
finally, contains our conclusions. 
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2. Structural decomposition analysis and ideal indices in case of two factors 
 
2.1. Notation 
 
 Let )1(pi  and )0(pi denote the prices of commodity i (= 1,…,n) in comparison and base 
period, and let )1(qi  and )0(qi be the corresponding quantities. Then,  
 

)1(q)1(p)1(v iii =  and  )0(q)0(p)0(v iii =                                                                         (1) 
 
are the expenditure on commodity i (= 1,…,n) in comparison and base period, whereas 
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are total expenditure in comparison and in base period, and  
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are the shares of commodity i (=1,…,n) in comparison and base period. 
 
 Finally, we define the ratio of total expenditure in comparison and in base period: 
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2.2. Structural decomposition analysis and the “ideal” indices of Fisher 
 
 In the terminology of structural decomposition analysis we have to decompose (4) into 
its factors “price” and “quantity”. One possible solution, the so-called first polar 
decomposition, is: 
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 It is easily seen that if we reverse base and comparison period (0 to 1 and 1 to 0) that  
for the first polar decomposition (5) generally 1]1,0[DV]0,1[DV ≠× holds true. In the 
terminology of index number theory, the first polar decomposition does not meet the 
requirement of time reversal:  
 

1]1,0[DV]0,1[DV =×                                                                                                       (6) 
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 However, this is not the only possibility. By reversing the time periods in the weights (0 
to 1, and 1 to 0) we obtain the second polar decomposition: 
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  As is easily seen, the second polar decomposition, (7), does not meet the requirement 
of time reversal (6), either. The solution that is commonly adopted in structural 
decomposition analysis is to take the geometric mean of the two polar decompositions: 
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which can easily be shown to meet the requirement of time reversal. 
 
 In order to link the structural decomposition approach to the index number approach we 
rewrite (8) to: 
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 In index number theory (omitting the, commonly used, factor 100) the first term is the 
definition of the Fisher price index ( FP ), defined as the geometric mean of the price 
indices of Paasche ( PP ) and of Laspeyres ( LP ): 
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 The second term of (8) is the Fisher quantity index ( FQ ) defined as the geometric mean 
of the quantity indices of Paasche( PQ ) and Laspeyres ( LQ ): 
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 Consequently, the geometric mean of the two polar decompositions yields: 
 

FF QP]0,1[DV ×=                                                                                                          (10) 
 
 It can easily seen that if in the formula of the Fisher price index, i.e. the first term of (9), 
we reverse the factors (p to q and q to p) that we obtain the formula given in the second 
term, the Fisher quantity index. Indices that exhibit this property of factor reversal are 
called “ideal”. 
 
2.3. Another ideal index: Sato-Vartia1  
 
 Sato (1976) and, independently, Vartia (1974,1976) have discovered another pair of 
ideal price and quantity indices. In the derivation use will be made of the logarithmic 
mean2 that for two positive numbers a and b is defined as: 
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 Balk (2003) supplies a simple derivation from the identity: 
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that easily follows from the adding-up of shares to 1 (see (3)). 
 
 Consider the logarithmic mean of )1(si  and )0(si : 
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 where we changed the index of summation in the denominator from i to j. 
   
  Using definition (1) we obtain: 
 

{ }
{ }[ ] { }[ ]

∑

∑

∑

∑

=

=

=

= += n

1j
jj

ii

n

1i
ii

n

1j
jj

ii

n

1i
ii

)]0(s),1(s[L

)0(q/)1(qln)]0(s),1(s[L
 

)]0(s),1(s[L

)0(p/)1(pln)]0(s),1(s[L
)0,1(DVln         (15) 

 
  Taking the exponent, it follows from (15) that the Sato-Vartia decomposition reads: 
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  The first term in (16) is the definition of the price index of Sato-Vartia ( SVP ) and the 
second one the quantity index of Sato-Vartia ( SVQ ), so that (16) can, alternatively, be 
written as: 
 

SVSV QP]0,1[DV ×=                                                                                                       (17) 
 
 As is seen from (13), the logarithmic mean is symmetric in )1(si and )0(si , i.e. 

)]1(s),0(s[L)]0(s),1(s[L iiii = . Consequently, it easily follows from (16) that the Sato-
Vartia decomposition satisfies time reversal. Because the exponents are the same, it is 
easily seen as well, that (16) satisfies factor reversal, so that the index numbers are 
ideal. Finally, Ang et al. (1998) proved that in an empirical application zeros can be 
replaced by epsilon small positive numbers. Consequently, the Sato-Vartia 
decomposition satisfies the requirement of zero-robustness as well.  
 
3. The case of many factors: the example of Dietzenbacher and Los (D&L)   
 
3.1. The D&L model 
 
 In their application D&L used the input-output tables at basic prices for the Netherlands 
of 1986 and 1992. Defining the following vectors and matrices: 
 
w: the 214x1 vector of sectoral labor costs;  
 
u: the 214x1 vector of sectoral labor costs per unit of this sector‘s output (in money 

terms);  
 
û : the 214x214 diagonal matrix with u on the main diagonal;  
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q: the 214x1 vector of sectoral outputs;  
 
A: the 214x214 matrix of technical coefficients ija , measuring the input from sector i 

in sector j, per unit of sector j’s output; 
 
B: the 214x5 matrix of bridge coefficients jkb , measuring the fraction of the final 

demand in category k that is spent on products from sector i, describing the final 
demand mix; 

 
f: the 5x1 vector with total final demands3 in each of the five categories, i.e. private 

consumption, government consumption, exports, investments, and other items 
(imputed bank services, VAT, trade and transport margins),  

 
they consider the model: 
 

qûw =  
 

BfAqq +=  
 
of which the solution is: 
 

LBfûw =                                                                                                                      (18) 
 
where: 1)AI(L −−=  is the Leontief inverse. 
 
 In sum notation (18) reads: 
 

∑∑
= =

=
n

1j

m

1k
kjkijii fbluw           n,...,1i =                                                                              (19) 

 
            where iw , iu and kf are the typical elements of the vectors  w, u and f , respectively; and 

ijl and jkb the typical elements of the matrices L and B, respectively, whereas n=214 and 
m=5. 
 
2.2. Elementary decompositions 
 
 The change in labor cost of sector i is defined to be (see (19)): 
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 We want to decompose the second term at the right hand side of (20) into technical 

changes,
)0(l
)1(l

ij

ij ; changes in the final demand mix, 
)0(b
)1(b

jk

jk , and changes in the final 

demand levels, 
)0(f
)1(f

k

k .  

 
 A possible solution is the first polar decomposition. In order to alleviate the notation, we 
define: 
 
(i) the effects in technical changes: 
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(iii) the effects of the changes in the final demand levels: 
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  Then, we have the multiplicative decomposition: 
 

1i1i1iii DFDBDLDUDW ×××=                                                                                     (21) 
 
 However, this is only one of the 3! = 6 elementary decompositions that are distinguished 
by Dietzenbacher and Los (1998).  
 
 By inverting the time periods in the weights (0 to 1 and 1 to 0) we obtain the second 
polar decomposition that we denote by the subscript 6 (we give in the appendix the four 
other elementary decompositions that, in our software, are denoted by the subscripts 
2,…,5):  
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 Then, we have the multiplicative decomposition: 
 

6i6i6iii DFDBDLDUDW ×××=                                                                                    (22) 
 
 Neither (21), nor (22) satisfies the requirement of time reversal. As before the geometric 
mean: 
 

2/1
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2/1
6i1iii )DFDF()DBDB()DLDL(DUDW ××××××=                                 (23) 

 
satisfies time reversal, but it does not any longer satisfy factor reversal! The geometric 
mean of the two polar decompositions is not any longer “ideal” when the number of 
factors is larger than 2. This means that the order of appearance of the factors matters: if 
we would take for instance ijkjk lfb we will get another result for the geometric mean (23).  
 
 From the 6 elementary decompositions we can derive many combinations that satisfy 
time reversal, but only of them is “ideal”: the geometric mean of all 6 elementary 
decompositions: 
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but it requires the computation of six decompositions. 
 
3.4. Application of the Sato-Vartia decomposition to the D&L model 
 
 We define the shares: 
 



 10

)1(w
)1(f)1(b)1(l)1(u

)1(s
i

kjkiji
ijk =  

and 
 

)0(w
)0(f)0(b)0(l)0(u

)0(s
i

kjkiji
ijk =  

 
and the logarithmic mean: 
 

)]0(s/)1(sln[
)0(s)1(s

)]1(s),1(s[L
ijkijk

ijkijk
ijkijk

−
=  

 
  Next, we define (compare expression (16)): 
 

∑∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

= =

∏∏
= =

n

1j

m

1k
ijkijkijkijk )]0(s),1(s[L/)]0(s),1(s[L

n

1j

m

1k ij

ij
iSV )0(l

)1(l
DL  

 

∑∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

= =

∏∏
= =

n

1j

m

1k
ijkijkijkijk )]0(s),1(s[L/)]0(s),1(s[L

n

1j

m

1k jk

jk
iSV )0(b

)1(b
DB  

 
and 
 

∑∑
⎥
⎦

⎤
⎢
⎣

⎡
=

= =∏∏
= =

n

1j

m

1k
ijkijkijkijk )]0(s),1(s[L/)]0(s),1(s[Ln

1j

m

1k k

k
iSV )0(f

)1(fDF  

 
 Then, the Sato-Vartia decomposition of the ratio of sectoral labor cost of sector i reads: 
 

iSViSViSVii DFDBDLDUDW ×××=                                                                               (25) 
 
 This decomposition obviously satisfies time reversal, but also factor reversal, i.e. the 
Sato-Vartia decomposition is “ideal”. It is clear that generalization of this decomposition 
to the case of more than three factors is straightforward. 
 
To summarize this section, I prefer the use of the “ideal” Sato-Vartia approach that only 
requires one decomposition for any number of factors, rather than the use of the 
geometric mean of the two polar decompositions which is not ideal so that the order of 
appearance of the factors matters, or the use of the geometric mean of all 
decompositions that is “ideal”, but requires the computation of an ever increasing 
number of decompositions when the number of factors increases.  
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4. Results 
 
 In table 1 I give the results for nine sectors: four with a large percentage growth and five 
with large absolute growth (the results of the other sectors show the same pattern). 
 
Table 1. Results 

Sector Geometric 
mean of all 

decompositions 

standard 
deviation of all 

decompositions 

geometric mean 
of polar 

decompositions 

Sato-Vartia 
decomposition 

Sectors with largest percentage growth 
156 economic 
advising agents 

539)86(w =         1436)92(w =  664.2DW =  015.1DU =  

DL  1.640 0.0817 1.640 1.641 
DB  1.265 0.0640 1.264 1.263 
DF  1.266 0.0017 1.266 1.266 
153 computer 
services 

1245)86(w =       2842)92(w =  283.2DW =  096.1DU =  

DL  1.416 0.0380 1.417 1.416 
DB  1.151 0.0310 1.150 1.151 
DF  1.278 0.0014 1.279 1.279 
127 beverage 
serving services 
(no lodging) 

189)86(w =          416)92(w =  201.2DW =  085.1DU =  

DL  1.084 0.0140 1.084 1.082 
DB  1.433 0.0179 1.433 1.436 
DF  1.306 0.0010 1.306 1.306 
157 other 
business 
services 

1032)86(w =       2249)92(w =  179.2DW =  005.1DU =  

DL  1.384 0.0460 1.385 1.391 
DB   1.237 0.0426 1.236 1.230 
DF  1.267 0.0035 1.267 1.267 

Sectors with the largest absolute growth 
121 wholesale 
trade 

13212)86(w =    21712)92(w =  568.1DW =  144.1DU =  

DL  1.015 0.0006 1.015 1.015 
DB  1.032 0.0008 1.032 1.032 
DF  1.309 0.0007 1.309 1.309 
123 retail trade 7726)86(w =       12225)92(w =  582.1DW =  160.1DU =  
DL  0.999 0.0000 0.999 0.999 
DB  1.035 0.0000 1.035 1.035 
DF  1.320 0.0000 1.320 1.320 
146 railways, 
communication 
services, taxi 
and coach 
enterprises 

5385)86(w =       8232)92(w =  529.1DW =  049.1DU =  

DL  1.059 0.0036 1.059 1.059 
DB  1.064 0.0036 1.064 1.065 
Df  1.294 0.0006 1.294 1.294 
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171 special 
(primary) 
education (for 
handicapped 
children) 

8221)86(w =       10863)92(w =  321.1DW =  152.1DU =  

DL  0.999 0.0000 0.999 0.999 
DB  0.939 0.0000 0.939 0.939 
DF  1.223 0.0000 1.223 1.223 
162 local 
government 

6933)86(w =       9417)92(w =  358.1DW =  097.1DU =  

DL  0.973 0.0013 0.973 0.973 
DB  1.030 0.0011 1.030 1.030 
DF  1.236 0.0007 1.236 1.236 
 
In the heading for each sector I give (omitting the index i): 
 

)86(w               : sectoral labor costs in 1986; 
 

)92(w               : sectoral labor costs in 1992; 
 

)86(w
)92(wDW =   : ratio of labor costs in 1992 and1986; 

 

)86(u
)92(uDU =     : ratio of labor costs per unit of output (in money terms) in 1992 and1986, 

 
which are the same for all decompositions. 
 In the second column I give the geometric average of all decompositions; in column 
three the standard deviation are presented from which it can be inferred that the 
elementary decompositions did not vary much. Therefore, the geometric mean of the two 
polar decompositions, given in column four is very close to the geometric average of all 
decompositions. Column five, finally, contains the results for the Sato-Vartia 
decomposition which are very close to the results obtained in columns two and four. 
 I conclude that from an empirical point of view the three methods yield (almost) the 
same results. 
 
5. Concluding remarks 
 
 In this paper I have tried to argue that from a theoretical point of view the use of the 
“ideal” Sato-Vartia approach that only requires one decomposition for any number of 
factors, is to be preferred to the use of the geometric mean of the two polar 
decompositions which is not ideal so that the order of appearance of the factors matters, 
and to the use of the geometric mean of all decompositions that is “ideal”, but requires 
the computation of an ever increasing number of decompositions when the number of 
factors increases. In the example at hand it turned out that from an empirical point of 
view the three methods yielded almost the same results. 
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1 Siegel(1945) derives another ideal index. Both Balk (2003) and Ang et al. (2004) argue that its 
formula is relatively complex, see the appendix of Ang et al. in which they give the formula for 
n=4. The Montgomery-Vartia index, the multiplicative variant of the Montgomery index that De 
Boer (2006) used for the additive decomposition does not meet the requirement that it is not 
linear homogeneous in prices (quantities), see Balk (2003). 
2 The properties (Balk, 2003) are: )b,amax()b,a(L)b,amin( ≤≤ ; )b,a(L  is continuous;                                            

)b,a(L)b,a(L λ=λλ ; )a,b(L)b,a(L = ; and 
2

ba)b,a(Lab +
≤≤ . We give his footnote 1: 

“The logarithmic mean was introduced in the economics literature by Törnqvist in 1935 in an 
unpublished memo of the Bank of Finland; see Törnqvist et al.(1985) …..A proof of the fact that 

2/)ba()b,a(L)ab( 2/1 +≤≤  was provided by Lorenzen (1990)”.  
3 In De Boer (2006) it is argued that a change in stocks is not an appropriate final demand 
category and he split a stock change over all other items of the row according to the pertinent 
shares in total output. 
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Appendix The four non-polar elementary decompositions (e=2,…,5) 
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