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ated with VACTERL are described in literature. In addition to 
this literature review of genomic variation in published VAC-
TERL association patients, we describe CNVs present in 68 
VACTERL association patients collected in our institution. De 
novo variations ( 1 30 kb) are absent in our VACTERL associa-
tion cohort. However, we identified recurrent rare CNVs 
which, although inherited, could point to mechanisms or bi-
ological processes contributing to this constellation of de-
velopmental defects.  Copyright © 2012 S. Karger AG, Basel 

 Copy number analysis has proven to be a powerful tool 
for identifying genes and genomic regions that contribute 
to the occurrence of congenital malformations. Common 
copy number variations (CNVs), regions of variable DNA 
gains or losses, account for a significant proportion of the 
healthy human genome [Iafrate et al., 2004; Sebat et al., 
2004]. Most CNVs are inherited polymorphisms that 
have no appreciable effect on health. However, there are 
many examples of de novo or rare CNVs that have clear-
ly been associated with human diseases, e.g. Wolf-
Hirschhorn syndrome (OMIM 194190) and 22q11.2 dele-
tion syndrome (OMIM 192430) [Girirajan et al., 2011]. 
Pathologic CNVs are often larger ( 1 500 kb) in size and 
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 Abstract 

 Copy number variations (CNVs), either DNA gains or losses, 
have been found at common regions throughout the human 
genome. Most CNVs neither have a pathogenic significance 
nor result in disease-related phenotypes but, instead, reflect 
the normal population variance. However, larger CNVs, 
which often arise de novo, are frequently associated with hu-
man disease. A genetic contribution has long been suspect-
ed in VACTERL (Vertebral, Anal, Cardiac, TracheoEsophageal 
fistula, Renal and Limb anomalies) association. The anoma-
lies observed in this association overlap with several mono-
genetic conditions associated with mutations in specific 
genes, e.g. Townes Brocks  (SALL1) , Feingold syndrome  (MYCN)  
or Fanconi anemia. So far VACTERL association has typically 
been considered a diagnosis of exclusion. Identifying recur-
rent or de novo genomic variations in individuals with VAC-
TERL association could make it easier to distinguish VACTERL 
association from other syndromes and could provide insight 
into disease mechanisms. Sporadically, de novo CNVs associ-
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are usually not inherited from an unaffected parent 
[Miller et al., 2010].

  Implementation of new molecular cytogenetic tech-
niques, such as microarray-based comparative genomic 
hybridization and single nucleotide polymorphism ar-
rays, has revealed previously unidentified genotypic ab-
errations which can now be correlated with phenotypic 
anomalies. As a result, numerous publications have im-
plicated specific pathogenic CNVs in intellectual disabil-
ity, congenital anomalies such as cleft lip, microcephaly, 
renal malformations [Southard et al., 2012], and neuro-
logical conditions including autism and schizophrenia 
[Girirajan et al., 2011]. It may very well be that, as in oth-
er congenital anomalies, there is a role for pathogenic 
CNVs in VACTERL association (OMIM 192350) etiol-
ogy.

  VACTERL association is a heterogeneous condition 
defined by 6 core structural defects (Vertebral, Anal, Car-
diac, TracheaEsophageal fistula, Renal and Limb anoma-
lies) which occur together more commonly than would 
be expected by chance alone.

  These defects are also observed in several other mono-
genetic conditions caused by intragenic mutations, e.g. 
Townes-Brocks syndrome (OMIM 107480;  SALL1 ) – 
whose features include imperforate anus, cardiac defects, 
renal anomalies, and hand defects, most often affecting 
the thumb – and Feingold syndrome (OMIM 164280; 
 MYCN ) – whose features can include esophageal atresia, 
cardiac anomalies, renal anomalies, and abnormalities
of the hand and fingers [Solomon, 2011]. In addition to 
gene mutations, CNVs have been described as causal 
 factor in several VACTERL-like syndromes. These in-
clude Goldenhar/OAVS (OMIM 141400) [Huang et al., 
2010], Townes-Brocks syndrome [Bardakjian et al., 2009], 
X-linked VACTERL-H (OMIM 314390) [Chung et al., 
2011], MURCS association (OMIM 601076) [Uliana et al., 
2008], OEIS complex (OMIM 258040) [Kosaki et al., 
2005; El-Hattab et al., 2010], TAR syndrome (OMIM 
274000) [Klopocki et al., 2007], 13q32 deletion syndrome 
[Walsh et al., 2001], and 22q11.2 deletion syndrome [Ryan 
et al., 1997].

  Due to the abundance of overlapping defects in vari-
ous organs, the scarcity of known causal factors and its 
heterogeneous phenotype, VACTERL association is typi-
cally considered a diagnosis of exclusion. In general, the 
diagnosis is made when at least 3 of the 6 associated core 
defects are present  and  all other phenotypical overlap-
ping syndromes have been excluded [Solomon et al., 
2012].

  The role of genetics in VACTERL association has long 
been suspected. VACTERL is usually a sporadic finding, 
but familial cases do exist [Hilger et al., 2012]. Moreover, 
in about 9% of VACTERL patients one of the relatives has 
1 of the 6 core VACTERL features [Solomon et al., 2010b]. 
In some rare cases, genetic defects have been described, 
such as a polyalanine expansion [Wessels et al., 2010], nu-
clear [Damian et al., 1996; Garcia-Barceló et al., 2008; 
Szumska et al., 2008] or mtDNA [Thauvin-Robinet et al., 
2006; Solomon et al., 2011] mutations, and numerical or 
structural chromosome aberrations [Shaw-Smith, 2006; 
Felix et al., 2007; Solomon et al., 2010a]. The resolution to 
detect these chromosomal anomalies has increased sig-
nificantly with the introduction of micro-array technol-
ogy, as current technologies allow detection of genomic 
imbalances down to only a few kb in size. Although the 
role of CNV and chromosomal aberrations in congenital 
anomalies is well established, little is known of their role 
in VACTERL association etiology. It is possible that re-
current or de novo genomic variations contribute to the 
development of some cases of VACTERL association. 
Identifying such changes could make it easier to distin-
guish VACTERL association from other syndromes and 
other potentially related conditions and could provide in-
sight into disease mechanisms.

  Materials and Methods 

 Literature Review 
 We reviewed the literature to identify both numerical or struc-

tural chromosomal anomalies and copy number variations de-
scribed in individuals with VACTERL association. We followed 
the inclusion criteria for VACTERL association (3 or more of the 
core VACTERL elements,  fig. 1 ) and excluded the patients with a 
confirmed genetic syndrome.

  Study Population 
 Since 1988, the Erasmus MC – Sophia Children’s Hospital De-

partment of Pediatric Surgery unit has been collecting clinical 
data and, when possible, DNA, from VACTERL patients. This co-
hort is part of a larger esophageal atresia and/or tracheoesopha-
geal fistula (EA/TEF) cohort (n = 567) in which patient sampling 
and registration are based on the existence of either EA/TEF re-
gardless of additional anomalies. Patients were selected using the 
same criteria as for the literature review. In total, DNA from 68 
out of 121 VACTERL patients was analyzed for copy number vari-
ations.

  Analysis of Copy Number Variation 
 CNV analysis was performed using Illumine 12-HumanCy-

toSNP, Human 610-Quad or Omni Express Bead Chips (Illumina 
Inc., San Diego, Calif., USA) according to manufacturer’s instruc-
tions. Arrays are processed according to their manufacturer’s 
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standard protocol. Normalized output was generated with Illu-
mina’s Genome Studio program (Illumina) and CNV was visual-
ized in Nexus CN6.1. (Biodiscovery Inc, El Segundo, Calif., USA). 
Inheritance of CNVs was determined only if they were larger than 
30 kb, contained genes and were either unique or had a low fre-
quency in the general population.

  Results and Discussion 

 Published CNVs Identified in Patients with VACTERL 
Association 
 No large studies looking for CNVs in individuals with 

VACTERL association have been published. However, 
several case reports have been published that describe 
chromosomal anomalies and recurrent and de novo 
CNVs in VACTERL patients ( table 1 ). Most of the pub-
lished de novo genetic anomalies that have been identi-
fied in individuals with VACTERL association are unique. 
However, some changes are recurrent and have been 
identified in more than one VACTERL patient.

  The first is on chromosome 17 where 2 overlapping 
deletions have been reported affecting chromosome band 
17q23 in both patients. This region contains many genes, 
but includes 2 candidate genes,  TBX2  and  TBX4 , which 
encode T-box transcription factors. Heterozygous loss of 
function mutations in  TBX4  have been shown to cause 
small patella syndrome (OMIM 147891), an autosomal 
dominant skeletal dysplasia characterized by patellar 
aplasia or hypoplasia and by anomalies of the pelvis and 

feet [Bongers et al., 2004].  TBX2  has not been implicated 
in human disease, but homozygous  Tbx2  knockout mice 
are embryonic lethal and have cardiac anomalies and 
polydactyly [Harrelson et al., 2004].

  The second shared locus is chromosomal band 8q24.3, 
which is duplicated in 2 individuals with VACTERL. This 
locus harbours many genes including  GLI4  that encodes 
a member of the krueppel C2H2-type zinc-finger protein 
family. Although the exact function of GLI4 has not been 
determined, we note that  Gli2  –/–  and  Gli3  –/–  mice have a 
VACTERL phenotype [Kim et al., 2001]. Therefore, we 
consider  GLI4  to be an excellent candidate gene.

  CNVs Identified in the Rotterdam VACTERL Cohort 
 In the Rotterdam VACTERL cohort, we did not ob-

serve any clearly de novo CNVs. However, one VACTERL 
patient with trachea agenesis had a maternally inherited 
488-kb 16p12.1 deletion and a 3.7-Mb deletion on chro-
mosome 5q11.2 [de Jong et al., 2010]. The 5q11.2 deletion 
was not inherited from the mother. There was no DNA 
available from the unknown sperm donor. Several genes 
are located in this large deletion. Among the top ranked 
genes by the Endeavour gene prioritization tool are 
 ITGA1,  which regulates mesenchymal stem cell prolifera-
tion [Ekholm et al., 2002] and  FST ,   an activin-binding 
protein.

  Although de novo CNVs were not identified, all of the 
patients in this cohort had one or more large ( 1 100 kb) 
CNVs ( fig. 2 ). Most of these CNVs were known polymor-
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  Fig. 1.  Inclusion criteria.  a  In total 45% of the EA/TEF cohort had 1 core component (TEF) and 27% had one 
additional core element. 163 patients out of 567 (21%) entries in the Rotterdam EA/TEF cohort met the criteria 
for VACTERL association.  b  42 Patients had a confirmed genetic syndrome (7%) and were excluded from the 
VACTERL cohort. 
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phisms whose frequencies in normal controls make them 
unlikely to contribute to VACTERL association. Howev-
er, we observed 3 regions with CNVs which are rarely 
seen in the general population but were shared by more 
than one of our VACTERL patients ( table 1 ). These recur-
ring variations can point to pathways or mechanisms in-
volved in disease etiology, especially when they have an 
extremely low frequency in the general population.

  The first of these rare recurrent CNV in our cohort 
consisted of maternally inherited 300-kb duplications in 
band 10q25.3. This region contains the actin-binding 
LIM protein family member 1 gene  (ABLIM1)  which en-

codes a protein that may play a role in binding cytoplas-
matic proteins to the actin cytoskeleton [Roof et al., 1997]. 
Interestingly, Arrington et al. [2010] found a 451-kb in-
terstitial deletion on chromosome 3q28 involving only 
the LIM domain containing preferred translocation part-
ner in lipoma  (LPP)  gene in an individual with esopha-
geal atresia with tracheoesophageal fistula, hypospadia, 
cardiac, renal, and rib anomalies. This change was not 
found in the individual’s mother, but a paternal sample 
was not available, making it impossible to determine if 
this was a de novo change or was inherited from an unaf-
fected family member. In our cohort, no CNVs affecting 

Table 1. C hromosomal anomalies, recurring and de novo CNVs seen in VACTERL patients

Chromosome Type Remarks (hg18) Inheritance Reference

1q41 gain ** de novo –
2q37.3 gain ** de novo –
2q22–q24.2 deletion del(2)(q22q24.2) de novo Woods et al., 1993
3q28 loss chr3:189,395,885–189,951,376 de novo Arrington et al., 2010
5q11 loss chr5:51,185,650–55,001,348 ICSI; father NA de Jong et al., 2010
6q25.3–q27 loss * NA –
6q13–q15 deletion del(6)(q13q15) de novo McNeal et al., 1977
7 duplication trisomy 7 de novo Schinzel, 2001
8q24.22–q24.3 gain * NA –
8q24.3 gain ** de novo –
10q22–qter duplication dup(10)(q22) de novo Field et al., 1983
10q25.3 gain chr10:116,250,268–116,546,953 inherited-mat
10q25.3 gain chr10:116,261,258–116,515,586 inherited-mat
11q23–qter duplication 47,XY+der(22)t(11;22)(q23;q11.2) de novo Prieto et al., 2007
12 duplication r(12) de novo Cinti et al., 2001
13,r(13) duplication trisomy 13 de novo Felix et al., 2007; Lorentz et al., 2002
16p12.1 loss chr16:21,854,140–22,342,140 inherited-mat de Jong et al., 2010
16q24.1 loss chr16:82,908,199–86,405,076 de novo Stankiewicz et al., 2009
17q23.2–q24.3 deletion del(17)(q23.2q24.3) de novo Levin et al., 1995
17q22–q23.3 deletion del(17)(q22q23.3) de novo Marsh et al., 2000
18q12.1 loss * NA –
18q22.2–qter deletion del(18)(q22.2) de novo Dowton et al., 1997
18,r(18) duplication trisomy 18 de novo Felix et al., 2007; van der Veken et al., 2010
21 duplication trisomy 21 de novo Felix et al., 2007
22q11.2 gain chr22:17,281,004–19,792,353 de novo Schramm et al., 2011
22q11.2 gain chr22:17,017,139–18,665,833 inherited-mat
22pter–q11.2 duplication 47,XY+der(22)t(11;22)(q23;q11.2) de novo Prieto et al., 2007
X duplication triple X de novo Brosens et al., 2012
Xp22.3 gain chrX:242,432–1,318,727 inherited-pat Brosens et al., 2012
Xp22.3 gain chrX:327,015–1,889,115 inherited-mat Brosens et al., 2012

* Abstract Shin et al. [2011], American Society of Human Genetics; ** abstract Hilger et al. [2012], European Society of Human 
Genetics; NA = data not available; mat = maternal; pat = paternal; ICSI = intracytoplasmic sperm injection; recurrent CNV in bold.
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 LPP  were identified [Hernández-García et al., 2012], but 
the presence of deletions affecting both  ABLIM1  and  LPP  
in some VACTERL association patients (e.g. esophageal 
atresia with tracheoesophageal fistula, hypospadia, 
horseshoe kidneys, hemivertebrae, and urinary reflux) 
suggests that disturbances of the cytoskeleton may con-
tribute to VACTERL phenotypes.

  The second recurring CNV was a duplication affect-
ing chromosome 22q11.2. The patient affected with all of 
the 6 core VACTERL features and her mother had a 
22q11.2 micro duplication overlapping 1.4 Mb of the de 
novo duplication in a VACTERL patient described by 

Schramm et al. [2011]. This patient had vertebral fusion, 
anal atresia, right-sided duplicated kidney, and addition-
al non-VACTERL deformations.

  The third recurring CNV involves a gain of the short 
stature homeobox-containing gene  (SHOX) , which plays 
an important role in limb development [Vickerman et al., 
2011]. Duplications involving  SHOX  were identified in 2 
VACTERL patients; both had limb anomalies and esoph-
ageal atresia with tracheoesophageal fistula [unpubl. ob-
servations]. Moreover, one of the 2 patients had horseshoe 
kidneys, hypospadia and dysmorphic features and the 
second patient an atrial septum defect. The duplications 

  Fig. 2.  CNVs in the Rotterdam cohort and recurring published 
CNV and structural chromosomal anomalies. In this karyogram, 
our institution’s unique and rare (underlined) gain (blue) and loss 
(red) are depicted alongside the chromosomal bands in which 
they are located. Common polymorphisms are not visualized. At 

3 loci, recurrent gains either from literature (8q24.3), in our co-
hort (10q25.3) or both (22q11) (blue regions on ideogram). Two 
published recurrent chromosomal anomalies lead to a deletion of 
band 17q23 (red region on ideogram). With arrows, de novo CNVs 
are depicted. 
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