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Abstract

In this chapter we describe the optimal set approach for sensitivity analysis for LP. We show that

optimal partitions and optimal sets remain constant between two consecutive transition-points
of the optimal value function. The advantage of using this approach instead of the classical

approach (using optimal bases) is shown. Moreover, we present an algorithm to compute the

partitions, optimal sets and the optimal value function. This is a new algorithm and uses
primal and dual optimal solutions. We also extend some of the results to parametric quadratic

programming, and discuss di�erences and resemblances with the linear programming case.
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2 Optimal Set and Optimal Partition Approach

1 Introduction

In this chapter we deal with parametric versions of linear programming (LP) and convex quadratic
programming (QP). First consider the LP problem (P ) in standard format

(P ) min
�
cTx : Ax = b; x � 0

	
;

where c; x 2 IRn, b 2 IRm, and A is an m � n matrix with full row rank. The dual problem (D) is
written as

(D) max
�
bTy : ATy + s = c; s � 0

	
;

where y 2 IRm and s 2 IRn. The input data for both problems consists of the matrix A, and the
vectors b and c.

In Chapter 4 it is shown that di�culties may arise, when the problem under consideration is degen-
erate. It is stated that the optimal basis may not be unique, that multiple optimal solutions may
exist, and that the notion of shadow price is not correctly de�ned1. In Chapter 3 strictly comple-
mentary solutions are already mentioned. These solutions, although already shown to exist in 1956
by Goldman and Tucker [10], came into view in the 1980s due to the immense popularity of interior
point methods (Den Hertog [14] and Jansen [15]). This popularity was initiated by the seminal
paper of Karmarkar [17]. G�uler and Ye [12] showed that interior point methods for LP generate a
strictly complementary solution (in the limit). This triggered interest in investigating parametric
analysis without using bases, instead making use of strictly complementary solutions (Adler and
Monteiro [1], Mehrotra and Monteiro [22], and Jansen et al. [16]). In this chapter we describe this
approach and formulate a new algorithm to compute the optimal value function, which uses primal
and dual optimal solutions.

Let us now turn to the quadratic programming formulation. The general CQP problem is given by

(QP ) min

�
cTx+

1

2
xTQx : Ax = b; � 0

�
;

where c; x 2 IRn, b 2 IRm, A an m � n matrix with full row rank and Q a symmetric positive
semide�nite n� n matrix. The Wolfe{dual of (QP ) is given by

(QD) max

�
bTy �

1

2
uTQu : AT y + s �Qu = c; s � 0

�
;

where y 2 IRm and u; s 2 IRn. The input data for both problems consists of the matrix Q, the
matrix A, and the vectors b and c. We assume that Q is positive semide�nite resulting in a convex
quadratic programming problem. Unless stated otherwise QP refers to convex quadratic program-
ming problem. It is well known that if there exist optimal solutions for (QP), then there also exist
optimal solutions for which x = u. Furthermore, it is clear that LP is a special case of QP2. In this
chapter we are only concerned with changes in the vectors b and c, A and Q are taken to be �xed.

Although sensitivity analysis and parametric programming for QP are not being performed on a
large scale, there is at least one important application on a commercial level. The well-known
Markowitz mean{variance model [20] for modern portfolio theory is formulated as a parametric QP.
The optimal value function of this parametric QP is known as the e�cient frontier. The e�cient
frontier is a useful tool, being used by various di�erent �nancial institutions for portfolio decision
problems. Recent studies on computing the e�cient frontier (see, e.g. [19, 26, 27]) all use optimal
bases. Similar di�culties w.r.t. degeneracy as in the LP case exist for QP (the optimal basis3

1See also, Gal [9] and Greenberg [11] for a survey and Rubin and Wagner [24] for an overview of practical
implications.

2Take Q to be the zero matrix.
3Note that the primal or the dual QP problem may have a solution that is not a basic solution. However if we

consider both the primal and the dual QP problem together, then, if the problem has a solution there always exists an
optimal basis (rewrite the primal and dual problem as a linear complementarity problem to see this). In this chapter
we take the freedom to speak about an optimal basis in the latter sense.



Optimal Set and Optimal Partition Approach 3

may not be unique, multiple solutions may exist, etc.). Berkelaar et al. [4] consider the e�cient
frontier as the outcome of their analysis for parametric QP using maximal complementary solutions.
Interior point methods for QP generate such a maximal complementary solution (in the limit). A
related result to this was already shown by McLinden [21] in 1980 (see also G�uler and Ye [13]).
We describe parametric analysis for QP using maximal complementary solutions in this chapter,
and again formulate an algorithm to compute the optimal value function. This algorithm uses both
primal and dual solutions and their supports.

Let us denote the optimal value of (QP ) and (QD) as z(b; c), with z(b; c) = �1 if (QP ) is unbounded
and (QD) infeasible and z(b; c) =1 if (QD) is unbounded and (QP ) infeasible. If (QP ) and (QD)
are both infeasible then z(b; c) is unde�ned. We call z the optimal value function for the data b and
c. Since LP is a special case of QP, we also denote the optimal value function for LP problems by
z(b; c) with the same conventions.

Although in the literature assumptions are often made to prevent situations concerning degeneracy,
we shall not do so here. The main tools we use are the existence of strictly complementary and
maximal complementary solutions in LP and QP respectively. Such solutions uniquely de�ne the
partition of the problem. We show that the pieces of the optimal value function correspond to
intervals for the parameter on which the partition is constant. The proposed algorithms to compute
the optimal value function are based on this key result.

This chapter is organized as follows. In Section 2 we consider a transportation (LP) example to
show that the classical approach to sensitivity analysis based on optimal bases leads to di�culties
in case of degeneracy. Section 3 describes the optimal partition and we show how this concept and
given optimal solutions can be used to characterize the optimal sets of LP and QP problems. In
Section 4 we consider parametric LP based on the optimal set approach. We omit proofs in Section
4, and postpone them to Section 5. In Section 5 we consider parametric QP. Since LP is a special
case of QP it is left to the reader to specialize the proofs to LP. Some results for LP and their proofs
can be formulated and presented di�erently or need no proof at all. Section 4 has been organized
so as to concentrate on the resemblances between parametric LP and parametric QP. For a more
detailed analysis in LP the reader is referred to Jansen et al. [15, 16]. Finally we close this chapter
by outlining how the ideas of Sections 4 and 5 can be applied to sensitivity analysis.

2 The Optimal Bases Approach - An Example

In commercial packages for LP and QP usually the possibility is o�ered to perform sensitivity
analysis. As far as we know sensitivity analysis in all existing commercial packages is based on
optimal bases. As a result, the outcome of the sensitivity analysis is often only partly correct. In
this section we show this using an example.

The classical approach to sensitivity analysis is based on pivoting methods (such as the Simplex
method for LP) for solving LP and QP problems. These methods produce a so-called basic solution

of the problem. It su�ces for our purpose to know that such a solution is determined by an optimal

basis. We only briey consider a small textbook LP problem to illustrate problems that can occur in
case of degeneracy. This example is taken from Jansen [15]. For a more detailed description we refer
to Jansen et al. [16] and Jansen [15]. To illustrate the shortcomings of the implemented sensitivity
analysis techniques we apply several commercial packages to a small LP problem.

2.1 Comparison of the classical and the new approach

Example 1 We consider a simple transportation problem with three supply and demand nodes.
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Table 1: Sensitivity analysis for a transportation problem - RHS changes

Ranges of supply and demand values

LP-package b1(2) b2(6) b3(5) b4(3) b5(3) b6(3)

CPLEX [0,3] [4,7] [1,1) [2,7] [2,5] [2,5]

LINDO [1,3] [2,1) [4,7] [2,4] [1,4] [1,7]

PC-PROG [0,1) [4,1) [3,6] [2,5] [0,5] [2,5]

XMP [0,3] [6,7] [1,1) [2,3] [2,3] [2,7]

OSL [0,3] [4,7] (�1;1) [2,7] [2,5] [2,5]

Correct range [0,1) [2,1) [1,1) [0,7] [0,7] [0,7]

min
P9

i=1 xi

s.t. x1 + x2 + x3 + x10 = 2

x4 + x5 + x6 + x11 = 6

x7 + x8 + x9 + x12 = 5

x1 + x4 + x7 � x13 = 3

x2 + x5 + x8 � x14 = 3

x3 + x6 + x9 � x15 = 3

xi � 0; i = 1; : : : ; 15.

The results of a sensitivity analysis are shown in Table 1. The columns correspond to the RHS
elements. The rows in the table correspond to �ve packages CPLEX, LINDO, PC-PROG, XMP and
OSL and show the ranges produced by these packages. The last row contains the ranges calculated
by the approach outlined in this chapter4.

The di�erent ranges in the Table 1 are due to the di�erent optimal bases that are found by the
di�erent packages. For each optimal basis the range can be calculated by examining for which values
of the RHS element the optimal basis remains constant. The table demonstrates the weaknesses of
the optimal bases approach that is implemented in the commercial packages. Sensitivity analysis is
considered to be a tool for obtaining information about the bottlenecks and degrees of freedom in
the problem. The information provided by the commercial packages is confusing and hardly allows
a solid interpretation. The di�culties lie in the fact that an optimal basis need not be unique. 3

In this chapter we show that the optimal partition of a strictly complementary solution for LP or a
maximal complementary solution for QP leads to a much more solid analysis. The reason for this is
that the optimal partition is unique for any strictly or maximal complementary solution.

3 Optimal Partitions and Optimal Sets

3.1 Linear Programming

The feasible regions of (P ) and (D) are denoted as

P := fx : Ax = b; x � 0g ;

D :=
�
(y; s) : ATy + s = c; s � 0

	
:

4The range provided by the IBM package OSL (Optimization Subroutine Library) for b3 is not a subrange of the
correct range; this must be due to a bug in OSL. The correct range for the optimal basis found by OSL should be
[1;1).
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Assuming that (P ) and (D) are both feasible, the optimal sets of (P ) and (D) are denoted as P�

and D�. We de�ne the index sets B and N by

B := fi : xi > 0 for some x 2 P�g ;

N := fi : si > 0 for some (y; s) 2 D�g :

The Duality Theorem for LP implies that B \ N = o=, and the Goldman and Tucker Theorem [10]
that

B [N = f1; 2; � � � ; ng:

So, B and N form a partition of the full index set. This (ordered) partition, denoted as � = (B;N ),
is the optimal partition of the problem (P ) and of the problem (D).

In the rest of this chapter we assume that b and c are such that (P ) and (D) have optimal solutions,
and � = (B;N ) denotes the optimal partition of both problems. By de�nition, the optimal partition
is determined by the set of optimal solutions for (P ) and (D). In this section it is made clear that,
conversely, the optimal partition provides essential information on the optimal solution sets P� and
D�.

We use the notation xB and xN to refer to the restriction of a vector x 2 IRn to the coordinate
sets B and N respectively. Similarly, AB denotes the restriction of A to the columns in B, and
AN the restriction of A to the columns in N . Now the sets P� and D� can be described in terms
of the optimal partition. The next lemma follows immediately from the Duality Theorem and the
de�nition of the optimal partition for LP and is therefore stated without proof.

Lemma 1 Let x� 2 P� and (y�; s�) 2 D�. Given the optimal partition (B;N ) of (P ) and (D), the
optimal sets of both problems are given by

P� =
�
x : x 2 P; xT s� = 0

	
= fx : x 2 P; xN = 0g ;

D� =
�
(y; s) : (y; s) 2 D; sTx� = 0

	
= f(y; s) : (y; s) 2 D; sB = 0g :

The next result deals with the dimensions of the optimal sets of (P ) and (D). Here, as usual the
(a�ne) dimension of a subset of IRk is the dimension of the smallest a�ne subspace in IRk containing
the subset.

Lemma 2 One has

dimP� = jBj � rank (AB)

dimD� = m� rank (AB)

Lemma 2 immediately implies that (P ) has a unique solution5 if and only if rank (AB) = jBj.
Clearly this happens if and only if the columns in AB are linearly independent. Also, (D) has a
unique solution if and only if rank (AB) = m, which happens if and only if the rows in AB are
linearly independent. Thus, both (P) and (D) have a unique solution if and only if AB is a basis
(the unique optimal basis).

5Notice that we speak of uniqueness of the optimal solution and not about optimal basis (which is not necessarily
unique).
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3.2 Quadratic Programming

In this section we describe analogous results, as in the preceding section, for QP. The proofs of these
results are included here and it is left to the reader to specialize these proofs to LP. The feasible
regions of (QP ) and (QD) are denoted as

QP := fx : Ax = b; x � 0g ;

QD :=
�
(u; y; s) : AT y + s �Qu = c; s � 0

	
:

We start with the Duality Theorem for QP, which is stated without proof (see, e.g. Dorn [8]).

Theorem 3 If x is feasible for (QP ) and (u; y; s) for (QD), then these solutions are optimal if and
only if Qx = Qu and xT s = 0.

Assuming that (QP ) and (QD) are both feasible, the optimal sets of (QP ) and (QD) are denoted
as QP� and QD�. These optimal sets can be characterized by maximal complementary solutions

and the corresponding partition (G�uler and Ye [13]). Let us de�ne

B := f i : xi > 0 for some x of QP� g;
N := f i : si > 0 for some (u; y; s) of QD� g;
T := f1; : : : ; ng n (B [N ):

The Duality Theorem for QP implies that B\N = o=. Note that, contrary to LP, in QP the Goldman
and Tucker Theorem [10] does not hold, T may be nonempty. So B, N and T form a partition of
the full index set. This (ordered) partition, denoted as � = (B;N; T ), is the optimal partition of the
problem (QP ) and of the problem (QD). A maximal complementary solution (x; y; s) is a solution
for which

xi > 0() i 2 B; si > 0() i 2 N:

The existence of such a solution is a consequence of the convexity of the optimal sets of (QP )
and (QD) and was introduced by McLinden [21]. He showed an important result concerning such
solutions, which was used by G�uler and Ye [13] to show that interior point methods (as Anstreicher
et al. [2], Carpenter et al. [5] and Vanderbei [25]) generate such a solution (in the limit).

In Chapter 3 the de�nition of the support of a vector was given. In this chapter we denote the
support of a vector v by �(v). Hence, given a strictly complementary or maximal complementary
solution (x�; y�; s�) we have B = �(x�) and N = �(s�).

In the rest of this chapter we assume that b and c are such that (QP ) and (QD) have optimal
solutions, and � = (B;N; T ) denote the optimal partition of both problems. By de�nition, the
optimal partition is determined by the set of optimal solutions for (QP ) and (QD). In this section
we show that, conversely, the optimal partition provides essential information on the optimal solution
sets QP� and QD�.

In the introduction we already mentioned that there exist optimal solutions for which x = u; when
useful we denote a dual optimal solution by (x; y; s) instead of (u; y; s). Later we also use the
following well-known result.

Lemma 4 Let (x�; (u�; y�; s�)) and (~x; (~u; ~y; ~s)) both be optimal solutions of (QP ) and (QD). Then
Qx� = Q~x = Qu� = Q~u, cTx� = cT ~x and bTy� = bT ~y.

Proof: Let us �rst consider the case where x� = u� and ~x = ~u. Since (x�; y�; s�) and (~x; ~y; ~s) are
both optimal, we conclude that

cTx� +
1

2
x�Qx� = bT ~y �

1

2
~xTQ~x:
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Using that AT ~y + ~s � Q~x = c and multiplying by (x�)T it follows,

1

2
(x�Qx� + ~xQ~x� 2~xQx�) = bT ~y � cTx� � ~xQx� = 0:

Thus, (x� � ~x)TQ(x� � ~x) = 0, which implies Q(x� � ~x) = 0, i.e. Qx� = Q~x, since Q is positive
semide�nite. Using that Qx� = Q~x we conclude that cTx� = cT ~x and bTy� = bT ~y. From the Duality
Theorem the proof is completed. 2

We use the notation xB , xN and xT to refer to the restriction of a vector x 2 IRn to the coordinate
sets B, N and T respectively. Similarly,AB denotes the restriction of A to the columns in B, AN the
restriction of A to the columns in N , and AT the restriction of A to the columns in T . The matrix
Q is partitioned similarly. Now the sets QP� and QD� can be described in terms of the optimal
partition. The next lemma follows immediately from the Duality Theorem and the de�nition of the
optimal partition for QP and is therefore stated without proof.

Lemma 5 Let x� 2 QP� and (u�; y�; s�) 2 QD�. Given the optimal partition (B;N; T ) of (QP )
and (QD), the optimal sets of both problems are given by

QP� =
�
x : x 2 QP ; xT s� = 0; Qx = Qu�

	
= fx : x 2 QP; xN[T = 0; Qx = Qu�g ;

QD� =
�
(u; y; s) : (u; y; s) 2 QD; sTx� = 0; Qu = Qx�

	
= f(u; y; s) : (u; y; s) 2 QD; sB[T = 0; Qu = Qx�g :

Lemma 6 Let M 2 IRn�n be a symmetric positive semide�nite matrix, partitioned according to
B;N and T . Then

N (MBB ) = N (M�B):

Proof: Let x be an arbitrary vector in IRn and partitioned according to B and �B = N [T . Then

xTMx = xTBMBBxB + 2xT�BM �BBxB + xT�BM �B �Bx �B:

The result is proven by contradiction. Suppose to the contrary that N (MBB ) 6= N (M�B). Take xB
from the null space of MBB . Then, MBBxB = 0 and M �BBxB 6= 0. Let " be given and consider
x = "�x. Furthermore let � = xT�B(2M �BBxB)) and � = xT�BM �B �Bx �B . It can easily be seen that � 6= 0

and � � 0. Now we can rewrite xTMx as follows

xTMx = "(xT�B(2M �BB�xB)) + "2(�xT�BM �B �B�x �B) = "� + "2�:

Thus, xTMx < 0 if and only if " < ��
�
. Since M is positive semide�nite we have a contradiction.

This implies the result. 2

The next result deals with the dimensions of the optimal sets of (QP ) and (QD).

Lemma 7 One has

dimQP� = jBj � rank

�
AB

QBB

�

dimQD� = m � rank

�
AT
B

AT
T

�
+ n� rank (Q):



8 Optimal Set and Optimal Partition Approach

Proof: Let a dual optimal solution u be given. Then, by Lemma 5 the optimal set of (QP ) is
given by

QP� = fx : Ax = b; xB � 0; xN[T = 0; Qx = Qug ;

and hence the smallest a�ne subspace of IRn containing QP� is given by

fx : ABxB = b; xN[T = 0; Q�BxB = Qug :

The dimension of this a�ne space is equal to the dimension of the null space of (AT
B QT

�B)
T . Since

the dimension of the null space of this matrix is given by jBj� rank ((AT
B QT

�B)
T ), the �rst statement

follows from Lemma 6.

For the proof of the second statement we use that the dual optimal set can be described as in Lemma
5. Let x be a given primal solution. Then the optimal dual set is given by

QD� =
�
(u; y; s) : AT y + s �Qu = c; sB[T = 0; sN � 0; Qu = Qx

	
:

This is equivalent to

QD� = f(u; y; s) : AT
By � (Qu)B = cB ;

AT
Ty � (Qu)T = cT ;

AT
Ny + sN � (Qu)N = cN ;

sB = 0; sT = 0; sN � 0; Qu = Qxg :

The smallest a�ne subspace containing this set is

QD� = f(u; y; s) : AT
By � (Qu)B = cB ;

AT
T y � (Qu)T = cT ;

AT
Ny + sN � (Qu)N = cN ;

sB = 0; sT = 0; Qu = Qxg :

Obviously sN is uniquely determined by y, and any y satisfying AT
By� (Qu)B = cB ; A

T
Ty� (Qu)T =

cT yields a point in the a�ne (y; s)-space. Hence the dimension of this a�ne space is equal to the
dimension of the null space of (AB AT )

T . The dimension of the null space of this matrix equals
m � rank ((AB AT )

T ). Furthermore, any u satisfying Qu = Qx yields a point in the a�ne u-space.
Hence the dimension of this a�ne space is equal to the dimension of the null space of Q, which
equals n� rank (Q). Combining these results completes the proof. 2

Note that when Q = 0 is substituted in the formulae of Lemma 7 the dimension of the dual set is
not equal to the dimension in Lemma 2. Nevertheless, the results are consistent since u is not to be
taken into account in the formula for the dimension of the dual optimal set.

In this section we have characterized the optimal sets in LP and QP by using the optimal partition.
In LP there is a one to one relation between the optimal partition and the primal and dual optimal
sets. Given an optimal partition for an LP problem, the primal and dual optimal sets can be
characterized. In QP we need the optimal partition and a dual optimal solution to characterize
the primal optimal set; and the optimal partition and a primal optimal solution to characterize the
dual optimal set. The results for parametric LP are thus obtained from parametric QP using the
characterization of the optimal sets by the optimal partition.

4 Parametric Linear Programming

In this section we investigate the e�ects of changes in the vectors b and c on the optimal value z(b; c)
of (P ) and (D). We consider one-dimensional parametric perturbations of b and c. So we want to
study

z(b+ ��b; c+ ��c);
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as a function of the parameters � and �, where �b and �c are given perturbation vectors. So, the
vectors b and c are �xed, and the variations come from the parameters � and �. We denote the
perturbed problems as (P�) and (D�), and their feasible regions as P� and D� respectively. The
dual problem of (P�) is denoted as (D�) and the dual problem of (D�) is denoted as (P�). Observe
that the feasible region of (D�) is simply D and the feasible region of (P�) is simply P. We use the
superscript � to refer to the optimal set of each of these problems. As we already mentioned in the
introduction we postpone proofs that have an analogue in QP to the next section, where we consider
parametric convex quadratic programming.

We assume that b and c are such that (P ) and (D) are both feasible. Then z(b; c) is well de�ned
and �nite. It is convenient to introduce the following notations:

b(�) := b+ ��b; c(�) := c+ ��c;

f(�) := z(b(�); c); g(�) := z(b; c(�)):

Here the domain of the parameters � and � is taken as large as possible. Let us consider the domain
of f . The function f is de�ned as long as z(b(�); c) is well de�ned. Since the feasible region of (D�)
is constant when � varies, and since we assumed that (D�) is feasible for � = 0, it follows that (D�)
is feasible for all values of �. Therefore, since f(�) is well de�ned if the dual problem (D�) has an
optimal solution and f(�) is not de�ned (or in�nity) if the dual problem (D�) is unbounded. Using
the Duality Theorem it follows that f(�) is well de�ned if and only if the primal problem (P�) is
feasible. In exactly the same way it can be understood that the domain of g consists of all � for
which (D�) is feasible (and (P�) bounded). The following theorem is well known.

Theorem 8 The domains of f and g are closed intervals on the real line.

4.1 Optimal value function and optimal sets on a linearity interval

In this section we show that the functions f(�) and g(�) are piecewise linear on their domains. The
pieces correspond to intervals where the partition is constant. For any � in the domain of f we
denote the optimal set of (P�) as P�� and the optimal set of (D�) as D��. The results in this section
are related to similar results, already obtained in 1960s by e.g. Bereanu [3], Charnes and Cooper
[6], and Kelly [18] (see also Dinkelbach [7, Chapter 5, Sections 1 and 2] and Gal [9]). The �rst
theorem shows that the dual optimal set is constant on certain intervals and that f is linear on these
intervals. This results from the fact that the optimal partition is constant on certain intervals (see
the next section) and the characterization of the optimal sets (see Lemma 1).

Theorem 9 Let �1 and �2 > �1 be such that D��1 = D��2 . Then D
�
� is constant for all � 2 [�1; �2]

and f(�) is linear on the interval [�1; �2].

From this theorem we conclude the following result giving a partition of the domain of f in intervals
on which the dual optimal set remains constant.

Theorem 10 The domain of f can be partitioned in a �nite set of subintervals such that the dual
optimal set is constant on a subinterval.

Using the former two theorems we conclude that f is convex and piecewise linear.

Theorem 11 The optimal value function f(�) is continuous, convex and piecewise linear.

The values of � where the partition of the optimal value function f(�) changes are called transition-

points of f , and any interval between two successive transition-points of f is called a linearity interval
of f . In a similar way we de�ne transition-points and linearity intervals for g. Each of the above
results on f(�) has its analogue for g(�).
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Theorem 12 Let �1 and �2 > �1 be such that P��1 = P��2 . Then P
�
� is constant for all � 2 [�1; �2]

and g(�) is linear on the interval [�1; �2].

Theorem 13 The domain of g can be partitioned in a �nite set of subintervals such that the primal
optimal set is constant on a subinterval.

Theorem 14 The optimal value function g(�) is continuous, concave and piecewise linear.

4.2 Extreme points of a linearity interval

In this section we assume that �� belongs to the interior of a linearity interval [�1; �2]. Given
an optimal solution of (D��) we show how the extreme points �1 and �2 of the linearity interval
containing �� can be found by solving two auxiliary linear optimization problems. This is stated in
the next theorem.

Theorem 15 Let �� be arbitrary and let (y�; s�) be any optimal solution of (D��). Then the extreme
points of the linearity interval [�1; �2] containing �� follow from

�1 = min
�;x

�
� : Ax = b+ ��b; x � 0; xTs� = 0

	

�2 = max
�;x

�
� : Ax = b+ ��b; x � 0; xTs� = 0

	
:

Theorem 16 Let �� be a transition-point and let (y�; s�) be a strictly complementary optimal
solution of (D��). Then the numbers �1 and �2 given by Theorem 15 satisfy �1 = �2 = ��.

Proof: If (y�; s�) is a strictly complementary optimal solution of (D��) then it uniquely determines
the optimal partition of (D��) and this partition di�ers from the optimal partition corresponding to
the optimal sets at the linearity intervals surrounding ��. Hence (y�; s�) does not belong to the
optimal sets at the linearity intervals surrounding ��. Furthermore it holds in any transition-point
that that �bTy� satis�es

�bTy� < �bTy� < �bTy+ ;

where y� belongs to the linearity interval just to the left of y and y+ belongs to the linearity interval
just to the right of y. Hence, the theorem follows. 2

The corresponding results for g are stated below.

Theorem 17 Let �� be arbitrary and let x� be any optimal solution of (P��). Then the extreme
points of the linearity interval [�1; �2] containing �� follow from

�1 = min
�;y;s

�
� : ATy + s = c+ ��c; s � 0; sTx� = 0

	
�2 = max

�;y;s

�
� : ATy + s = c + ��c; s � 0; sTx� = 0

	
:

Theorem 18 Let �� be a transition-point and let x� be a strictly complementary optimal solution
of (P��). Then the numbers �1 and �2 given by Theorem 17 satis�es �1 = �2 = ��.
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4.3 Left and right derivatives of the value function and optimal sets in a transition-

point

In this section we show that the transition-points occur exactly where the the optimal value function
is not di�erentiable. We have already seen that the optimal set remains constant on linearity
intervals. We �rst deal with the di�erentiability of f(�).

If the domain of f has a right extreme point then we may consider the right derivative at this point
to be 1, and if the domain of f has a left extreme point the left derivative at this point may be
taken �1. Then we may say that � is a transition-point of f if and only if the left and the right
derivative of f at � are di�erent. This follows from the de�nition of a transition-point. Denoting
the left and the right derivative as f 0�(�) and f 0+(�) respectively, the convexity of f implies that at
a transition-point � one has

f 0�(�) < f 0+(�):

If dom(f) has a right extreme point then it is convenient to consider the open interval at the right
of this point as a linearity interval where both f and its derivative are 1. Similarly, if dom(f) has
a left extreme point then we may consider the open interval at the left of this point as a linearity
interval where both f and its derivative are �1. Obviously, these extreme linearity intervals are
characterized by the fact that on the intervals the primal problem is infeasible and the dual problem
unbounded. The dual problem is unbounded if and only if the set D�� of optimal solutions is empty.

Theorem 19 Let � 2 dom(f) and let x� be any optimal solution of (P�). Then the derivatives at
� satisfy

f 0�(�) = min
y;s

�
�bTy : ATy + s = c; s � 0; sTx� = 0

	
f 0+(�) = max

y;s

�
�bTy : AT y + s = c; s � 0; sTx� = 0

	
:

Note that we could also have uses the de�nition of the optimal set D�� in the above theorem. The
above theorem reveals that �bTy must have the same value for all y 2 D�� and for all � 2 (�1; �2).
So we may state

Corollary 20 Let � 2 dom(f) belong to the linearity interval (�1; �2). Then one has

f 0(�) = �bTy; 8� 2 (�1; �2) ; 8y 2 D
�
�:

By continuity we may write

f(�) = bT �y + ��bT �y = b (�)
T
�y; 8� 2 [�1; �2]:

Lemma 21 Let � 2 dom(f) belong to the linearity interval (�1; �2). Moreover, let D�(�1;�2) := D��
for arbitrary � 2 (�1; �2). Then one has

D�(�1;�2) � D��1 ; D�(�1;�2) � D��2 :

Corollary 22 Let � be a nonextreme transition-point of f and let �+ belong to the open linearity
interval just to the right of � and �� to the open linearity interval just to the left of �. Then we
have

D��� � D��; D��+ � D
�
�; D��� \D

�
�+ = o=;

where the inclusions are strict.

Two other almost obvious consequences of the above results are the following corollaries.
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Corollary 23 Let � be a nonextreme transition-point of f and let �+ and �� be as de�ned in
Corollary 22. Then we have

D��� =
�
y 2 D�� : �bTy = �bTy�

	
; D��+ =

�
y 2 D�� : �bTy = �bTy+

	
:

Corollary 24 Let � be a nonextreme transition-point of f and let �+ and �� be as de�ned in
Corollary 22. Then

dimD��� < dimD��; dimD��+ < dimD��:

The picture becomes more complete now. Note that Theorem 19 is valid for any value of � in the
domain of f . The theorem re-establishes that at a `non-transition' point, where the left and right
derivative of f are equal, the value of �bTy is constant when y runs through the dual optimal set
D��. But it also makes clear that at a transition-point, where the two derivatives are di�erent, �bTy

is not constant when y runs through the dual optimal set D��. Then the extreme values of �bTy

yield the left and the right derivative of f at �; the left derivative is the minimum and the right
derivative the maximal value of �bTy when y runs through the dual optimal set D��.

The reverse of Theorem 9 also holds. This is stated in the following theorem.

Theorem 25 If f(�) is linear on the interval [�1; �2], where �1 < �2, then the dual optimal set D��
is constant for � 2 (�1; �2).

If �� is not a transition-point then there is only one linearity interval containing ��, and hence this
must be the linearity interval [�1; �2], as given by Theorem 15. It may be worthwhile to point
out that if �� is a transition-point, however, there are three linearity intervals containing ��, namely
the singleton interval [��; ��] and the two surrounding linearity intervals. In that case, the linearity
interval [�1; �2] given by Theorem 15 may be any of these three intervals, and which of the three
intervals is gotten depends on the given optimal solution (y� ; s�) of (D��). It can easily be understood
that the linearity interval at the right of �� is found if (y�; s�) happens to be optimal on the right
linearity interval. This occurs exactly when �bTy� = f 0+(

��), due to Corollary 23. Similarly, the
linearity interval at the left of �� is found if (y�; s�) is optimal on the left linearity interval and this
occurs exactly when �bTy� = f 0�(

��), also due to Corollary 23. Finally, if

f 0�(
��) < �bTy� < f 0+(

��);(1)

then we have �1 = �2 = �� in Theorem 15. The last situation seems to be most informative. It
clearly indicates that �� is a transition-point of f , which is not apparent in the other two situations.
Knowing that �� is a transition-point of f we can �nd the two one-sided derivatives of f at �� as well
as optimal solutions for the two surrounding interval at �� from Theorem 19.

Remark 1 It is interesting to consider the dual optimal set D�� when � runs from �1 to 1.
Left from the smallest transition-point (the transition-point for which � is minimal) the set D�� is
constant. It may happen that D�� is empty there, due to the absence of optimal solutions for these
small values of �. This occurs if (D�) is unbounded (which means that (P�) is infeasible) for the
values of � on the most left open linearity interval. Then, at the �rst transition-point, the set D��
increases to a larger set, and when passing to the next open linearity interval the set D�� becomes
equal to a proper subset of this enlarged set. This process repeats itself at every new transition-
point: at a transition-point of f the dual optimal set expends itself and when passing to the next
open linearity interval it shrinks to a proper subset of the enlarged set. Since the derivative of f
is monotonically increasing when � runs from �1 to 1 every new dual optimal set arising in this
way di�ers from all previous ones. In other words, every transition-point of f and every linearity
interval of f has its own dual optimal set.
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Each of the above results has a dual analogy for g(�).

Lemma 26 Let � belong to the interior of dom(g) and let �+ belong to the open linearity interval
just to the right of � and �� to the open linearity interval just to the left of �. Moreover, let
x+ 2 P�

�+
and x� 2 P�

��
. Then one has

g0�(�) = max
x

�
�cTx : x 2 P��

	
= �cTx�

g0+(�) = min
x

�
�cTx : x 2 P��

	
= �cTx+:

Theorem 27 Let � 2 dom(g) and let (y�; s�) be any optimal solution of (D�). Then the derivatives
at � satisfy

g0�(�) = max
x

�
�cTx : Ax = b; x � 0; xT s� = 0

	
g0+(�) = min

x

�
�cTx : Ax = b; x � 0; xT s� = 0

	
:

Corollary 28 Under the hypothesis of Theorem 25 one has

g0(�) = �cTx; 8� 2 (�1; �2) ; 8x 2 P
�
�:

Corollary 29 Let � 2 dom(g) belong to the linearity interval (�1; �2). Moreover, let P�(�1;�2) := P��
for arbitrary � 2 (�1; �2). Then one has

P�(�1;�2) � P
�
�1
; P�(�1;�2) � P��2 :

Corollary 30 Let � be a nonextreme transition-point of g and let �+ belong to the open linearity
interval just to the right of � and �� to the open linearity interval just to the left of �. Then we
have

P��� � P��; P��+ � P
�
�; P��� \P

�
�+ = o=;

where the inclusions are strict.

Corollary 31 Let � be a nonextreme transition-point of g and let �+ and �� be as de�ned in
Corollary 30. Then we have

P��� =
�
x 2 P�� : �cTx = �bTx�

	
;

P��+ =
�
x 2 P�� : �cTx = �bTx+

	
:

Corollary 32 Let � be a nonextreme transition-point of g and let �+ and �� be as de�ned in
Corollary 30. Then

dimP��� < dimP��; dimP��+ < dimP��:

Theorem 33 If g(�) is linear on the interval [�1; �2], where �1 < �2, then the primal optimal set
P�� is constant for � 2 (�1; �2).

4.4 Computing the optimal value function

Using the results of the previous sections, we present in this section an algorithm which yields the
optimal value function for a one-dimensional perturbation of the vector b or the vector c. We �rst
deal with a one-dimensional perturbation of the vector b with a scalar multiple of the vector �b;
we state the algorithm for the calculation of the optimal value function and that the algorithm
�nds all the transition-points and linearity intervals of it. Having done this it is clear how to treat
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a one-dimensional perturbation of the vector c; we also state the corresponding algorithm and its
convergence results.

Assume that we have given optimal solutions x� of (P ) and (y�; s�) of (D). Using the notation of
the previous sections, the problems (P�) and its dual (D�) arise by replacing the vector b by b(�) =
b+��b; the optimal value of these problems is denoted as f(�). So we have f(0) = cTx� = bTy�. The
domain of the optimal value function is (�1;1) and f(�) = 1 if and only if (D�) is unbounded.
Recall from Theorem 11 that f(�) is convex and piecewise linear. Algorithm 1 determines f on the
nonnegative part of the real line. We leave it to the reader to �nd some straightforward modi�cations
of the algorithm yielding an algorithm which generates f on the other part of the real line.

Input:

An optimal solution x� of (P );
An optimal solution (y�; s�) of (D);
a perturbation vector �b.

begin

ready:=false;
k := 1;x0 := x�; y0 := y�; s0 = s�;
Solve f 0+(0) = maxy;s

�
�bTy : ATy + s = c; s � 0; sTx0 = 0

	
;

while not ready do
begin

Solve max�;x
�
� : Ax = b+ ��b; x � 0; xT sk�1 = 0

	
;

if this problem is unbounded: ready:=true
else let (�k; x

k) be an optimal solution;
begin

Solve f 0+(�k) = maxy;s
�
�bTy : ATy + s = c; s � 0; sTxk = 0

	
;

if this problem is unbounded: ready:=true
else let (yk; sk) be an optimal solution;
k := k + 1;

end

end

end

Algorithm 1: Optimal Value Function f(�); � � 0

The following theorem states that Algorithm 1 �nds the successive transition-points of f on the
nonnegative part of the real line, as well as the slopes of f on the successive linearity intervals.

Theorem 34 Algorithm 1 terminates after a �nite number of iterations. If K is the number of
iterations upon termination, then �1; �2; � � � ; �K are the successive transition-points of f on the
nonnegative real line. The optimal value at �k (1 � k � K) is given by cTxk, and the slope of f on
the interval (�k; �k+1) (1 � k < K) by �bTyk.

From Algorithm 1 we �nd the linearity intervals and the slope of f on these intervals. The optimal
value function can now easily be drawn with these ingredients.

When perturbing the vector c with a scalar multiple of �c to c(�) = c + ��c the algorithm for
the calculation of the optimal value function g(�) can be stated as in Algorithm 2 (recall that g is
concave). Algorithm 2 �nds the successive transition-points of g on the nonnegative real line as well
as the slopes of g on the successive linearity intervals.



Optimal Set and Optimal Partition Approach 15

Input:

An optimal solution x� of (P );
An optimal solution (y�; s�) of (D);
a perturbation vector �c.

begin

ready:=false;
k := 1;x0 := x�; s0 = s�; y0 = y�

Solve g0+(0) = minx
�
�cTx : Ax = b; x � 0; xT s0 = 0

	
;

while not ready do
begin

Solve max�;y;s
�
� : AT y + s = c+ ��c; s � 0; sTxk�1 = 0

	
;

if this problem is unbounded: ready:=true
else let (�k; y

k; sk) be an optimal solution;
begin

Solve g0+(�k) = minx
�
�cTx : Ax = b; x � 0; xT sk = 0

	
;

if this problem is unbounded: ready:=true
else let xk be an optimal solution;
k := k + 1;

end

end

end

Algorithm 2: Optimal Value Function g(�); � � 0

Theorem 35 Algorithm 2 terminates after a �nite number of iterations. If K is the number of
iterations upon termination, then �1; �2; � � � ; �K are the successive transition-points of g on the
nonnegative real line. The optimal value at �k (1 � k � K) is given by bTyk, and the slope of g on
the interval (�k; �k+1) (1 � k < K) by �cTxk.

5 Parametric Quadratic Programming

In this section we start to investigate the e�ect of changes in b and c on the optimal value z(b; c) of
(QP ) and (QD). Again, as in LP, we consider one-dimensional parametric perturbations of b and
c. So we want to study

z(b+ ��b; c+ ��c);

as a function of the parameters � and �, where �b and �c are given perturbation vectors. So, again
the vectors b and c are �xed, and the variations come from the parameters � and �. The perturbed
problems are denoted as (QP�) and (QD�), and their feasible regions as QP� and QD� respectively.
The dual problem of (QP�) is denoted as (QD�) and the dual problem of (QD�) is denoted as (QP�).
Observe that the feasible region of (QD�) is simply QD and the feasible region of (QP�) is simply
QP. Again, we use the superscript � to refer to the optimal set of each of these problems.

We assume that b and c are such that (QP ) and (QD) are both feasible. Then, z(b; c) is again well
de�ned and �nite. We use the following notations again:

b(�) := b+ ��b; c(�) := c+ ��c;

f(�) := z(b(�); c); g(�) := z(b; c(�)):

The domain of the parameters � and � is again taken as large as possible. Let us consider the domain
of f . This function is de�ned as long as z(b(�); c) is well de�ned. Therefore, f(�) is well de�ned if
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the dual problem (QD�) has an optimal solution and f(�) is not de�ned (or equals in�nity) if the
dual problem (QD�) is unbounded. Using the Duality Theorem it follows that f(�) is well de�ned
if and only if the primal problem (QP�) is feasible. In exactly the same way it can be understood
that the domain of g consists of all � for which (QD�) is feasible (hence (QP�) bounded). Note
the new meaning of the functions f and g. We prefer to use the same notation as in the preceding
section. However, these functions are de�ned di�erently.

Lemma 36 The domains of f and g are convex.

Proof: We give the proof for f . The proof for g is similar and therefore omitted. Let �1; �2 2
dom(f) and �1 < � < �2. Then f(�1) and f(�2) are �nite, which means that both QP�1 and QP�2

are nonempty. Let x1 2 QP�1 and x2 2 QP�2 . Then x1 and x2 are nonnegative and

Ax1 = b+ �1�b; Ax2 = b+ �2�b:

Now consider

x := x1 +
�� �1

�2 � �1

�
x2 � x1

�
=

(�2 � �)x1 + (�� �1)x
2

�2 � �1
:

Note that x is a convex combination of x1 and x2 and hence x is nonnegative. We proceed by
showing that x 2 QP�. Using that A

�
x2 � x1

�
= (�2 � �1)�b this goes as follows:

Ax = Ax1 +
�� �1

�2 � �1
A
�
x2 � x1

�

= b+ �1�b+
�� �1

�2 � �1
(�2 � �1)�b

= b+ �1�b+ (�� �1)�b

= b+ ��b:

This proves that (QP�) is feasible and hence � 2 dom(f), completing the proof. 2

Lemma 37 The functions f and g are convex.

Proof: We present the proof only for f , the proof for g is similar. Let �1; �2 be elements of the
interior of the domain of f . Let � 2 (0; 1) be given and de�ne �� := ��1+(1��)�2. Then we have

f(��) = �

�
(b + �1�b)Ty(��) �

1

2
(x(��))TQx(��)

�
+

(1� �)

�
(b+ �2�b)Ty(��) �

1

2
(x(��))TQx(��)

�

� �f(�1) + (1� �)f(�2);

where the inequality holds since the feasible set of (QD�) is independent of �. 2

Lemma 38 The complements of the domains of f and g are open intervals of the real line.
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Proof: Let � belong to the complement of the domain of f . This means that (QD�) is unbounded.
This is equivalent to the existence of a vector z, such that

AT z � 0; (b+ ��b)Tz > 0:

Fixing z and considering � as a variable, the set of all � satisfying (b + ��b)Tz > 0 is an open
interval. For all � in this interval (QD�) is unbounded. Hence, the complement of the domain of f
is open. This concludes the proof. 2

A consequence of the last two lemmas is the next theorem (cf. Theorem 8) which requires no further
proof.

Theorem 39 The domains of f and g are closed intervals on the real line.

5.1 Optimal value function and optimal partitions on a curvy-linearity interval

In this section we show that the optimal value functions f(�) and g(�) are piecewise quadratic on
their domains. The pieces correspond to intervals where the partition is constant. In LP these
results are given in terms of the optimal primal and dual sets. In QP this is not possible since these
sets are intertwined. Neither (QP�) nor (QD�) is constant when � or � vary. The proofs for LP are
obtained by using the characterization of the optimal set by the optimal partition (see Section 6.3).
For any � in the domain of f we denote the optimal set of (QP�) as QP

�
� and the optimal set of

(QD�) as QD
�
�. The �rst theorem (cf. Theorem 9) shows that the partition is constant on certain

intervals and that f is quadratic on these intervals.

Theorem 40 Let �1 and �2 > �1 be such that ��1 = ��2 . Then �� is constant for all � 2 [�1; �2]
and f(�) is quadratic on the interval [�1; �2].

Proof: Without loss of generality we assume that �1 = 0 and �2 = 1. Let (x(�1); (u(�1); y(�1); s(�1)))
and (x(�2); (u(�2); y(�2); s(�2))) be maximal complementary solutions for the respective problems. We
assume that u(�1) = x(�1) and u(�2) = x(�2) and de�ne for � 2 (0; 1)

x(�) := (1� �)x(�1) + �x(�2);

y(�) := (1� �)y(�1) + �y(�2);

s(�) := (1� �)s(�1) + �s(�2):

(2)

It is easy to see that Ax(�) = b+ ��b and x(�) � 0. Also

AT y(�) + s(�) �Qx(�) = (1� �)c+ �c = c;

and s(�) � 0. So (x(�); y(�); s(�)) is feasible for (QP�) and (QD�). Since �0 = �1, we have
x(�)T s(�) = 0, hence the proposed solution is optimal for (QP�) and (QD�). Using the support of
x(�) and s(�), B and N respectively, and their complement T , this implies

B � B�; N � N� and T � T�:(3)

We now show that equality holds. Assuming to the contrary that T � T�, there exists a maximal
complementary solution (x(�); y(�); s(�)) of (QP�) and (QD�) such that

(x(�))i + (s(�))i > 0 for some i 2 T; i =2 T�:(4)

Let us now de�ne for � > 0
�x(�) := x(�2) + �(x(�2) � x(�1));

�y(�) := y(�2) + �(y(�2) � y(�1));

�s(�) := s(�2) + �(s(�2) � s(�1)):
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For some � > 0 small enough it holds

�x(�)B > 0; �x(�)N[T = 0; �s(�)N > 0; �s(�)B[T = 0;(5)

from which it follows that the proposed solutions are optimal for (QP1+�) and (QD1+�). Finally, we
de�ne

~x := �
1��+�

x(�) + 1��
1��+�

�x(�);

~y := �
1��+�

y(�) + 1��
1��+�

�y(�);

~s := �
1��+�

s(�) + 1��
1��+�

�s(�);

which are feasible in (QP1) and (QD1). Also,

~xT ~s =
�

1� � + �

1� �

1� �+ �

�
(x(�))T �s(�) + �x(�)T s(�)

�
:

Since (3) and (5) imply
(x(�))T �s(�) = (x(�))TN �s(�)N = 0

and
(s(�))T �x(�) = (s(�))TB�x(�)B = 0;

(~x; ~y; ~s) is optimal for (QP1) and (QD1). However, if (4) would hold, we would have a solution of
(QP1) and (QD1) with either (~x)i > 0 or (~s)i > 0 for i 2 T , contradicting the de�nition of (B;N; T ).
Thus we conclude T� = T . Using (3) the �rst part of the theorem follows.

The second part can now be proven almost straightforwardly. From the proof of the �rst part we
know that (x(�); y(�); s(�)) de�ned in (2) is optimal in (QD�) for � 2 (0; 1). Hence

f(�) = (b + ��b)Ty(�) �
1

2
x(�)TQx(�)

= f(0) + ��bTy(�1) + �bT (y(�2) � y(�1)) + �2�bT (y(�2) � y(�1)) �

�(x(�2) � x(�1))TQx(�1) �
1

2
�2(x(�2) � x(�1))TQ(x(�2) � x(�1)):

Note that

A(x(�2) � x(�1)) = �b

AT (y(�2) � y(�1)) + s(�2) � s(�1) = Q(x(�2) � x(�1)):

Multiplying the second equation with x(�2)� x(�1) respectively with x(�1), and using the �rst, gives

�bT (y(�2) � y(�1)) = (x(�2) � x(�1))TQ(x(�2) � x(�1))(6)

bT (y(�2) � y(�1)) = (x(�1))TQ(x(�2) � x(�1)):(7)

So we may write f(�) as

f(�) = f(0) + ��bTy(�1) +
1

2
�2�bT (y(�2) � y(�1)):

This concludes the proof. 2

The function f on [�1; �2] is explicitly given by the following formula

f(�) =
�2

��
(b
T
y
(�1)) �

1

2

�2

��
(x

(�1))
T
Qx

(�1) +
�1

��
(b
T
y
�2 )�

1

2

�1

��
(x

(�2))
T
Qx

(�2)+

�

��

�
c
T
(x

(�2) � x
(�1)) + (2� �1 � �2)b

T
(y

(�2) � y
(�1)) +

2�2�1

��
�b

T
(y

(�2) � y
(�1))

�

+
1

2

�2

��
�b

T
(y

(�2) � y
(�1)):

Note that we can now calculate the optimal value function between two subsequent transition-points.

Theorem 40 implies the following corollary.
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Corollary 41 If ��1 = ��2 = � then f(�) is linear on [�1; �2] if and only if Qx(�1) = Qx(�2).

Proof: Assuming again �1 = 0 and �2 = 1, we have from the proof of Theorem 40 that f(�) is
linear on [0; 1] if and only if �bT (y(�2) � y(�1)) = 0. Using (6) this is equivalent to

(x(�2) � x(�1))TQ(x(�2) � x(�1)) = 0

which holds if and only if Q(x(�2) � x(�1)). 2

As a consequence of Theorem 40 we have the following results (cf. Theorem 9 and Theorem 11.

Theorem 42 The domain of f can be partitioned in a �nite set of subintervals such that the optimal
partition is constant on a subinterval.

Proof: Since the number of possible partitions is �nite and the number of elements in the domain
of f is in�nite, it follows from Theorem 40 that the domain of f can be partitioned into (open)
subintervals on which the partition is constant, while it is di�erent in the singletons in between the
subintervals. This implies the result. 2

Theorem 43 The optimal value function f(�) is continuous, convex and piecewise quadratic.

Proof: Corollary 41 implies that on each subinterval de�ned by a partition the function f(�) is
quadratic. Since f(�) is convex (Lemma 37) it is continuous on the interior of its domain. It remains
to be shown that the optimal value function is right-continuous and left-continuous in the left and
right endpoints of the domain of f respectively. To this end we consider the left endpoint of the
domain of f (for the right endpoint the proof is similar). Let �� denote the left endpoint. Now, we
need to proof that

lim
�#��

f(�) = f(��):

Let (�x; �y; �s) denote the optimal solution at the left endpoint ��. Furthermore consider the limit of
(x(�); y(�); s(�)) for � # ��. Since the dual feasible set (QD�) is closed and is independent of �, the

limit point ~y; ~s of y(�); s(�) is dual feasible. Further the limit point ~x of the sequence x(�) is feasible
for (QP��). Since the sequences are complementary, the limit points are also complementary, hence
optimal. Applying Lemma 4 completes the proof. 2

The values of � where the partition of the optimal value function f(�) changes are called transition-

points of f , and any interval between two successive transition-points of f is called a curvy-linearity

interval of f . In a similar way we de�ne transition-points and curvy-linearity intervals for g. Each
of the above results on f(�) has its analogue for g(�). We state these results without further proof.
The omitted proofs are straightforward modi�cations of the above proofs.

Theorem 44 Let �1 and �2 > �1 be such that ��1 = ��2 . Then �� is constant for all � 2 [�1; �2]
and g(�) is quadratic on the interval [�1; �2].

Corollary 45 If ��1 = ��2 = � then g(�) is linear on [�1; �2] if and only if Qx(�1) = Qx(�2).

Theorem 46 The domain of g can be partitioned in a �nite set of subintervals such that the optimal
partition is constant on a subinterval.



20 Optimal Set and Optimal Partition Approach

−5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Fig. 1: Continuously di�erentiable value function

Theorem 47 The optimal value function g(�) is continuous, concave and piecewise quadratic.

For parametric LP, the optimal value functions f(�) and g(�) are piecewise linear and continuous
(see Theorems 11 and Theorem 14). The linearity intervals are the intervals on which the optimal
value function is linear and the solution sets are faces of the feasible set. The transition-points
exactly correspond to the transition-points of the piecewise linear optimal value function. Thus, the
optimal set changes exactly where the optimal value function is not di�erentiable. In QP, unlike LP,
the next example shows that although the optimal partition changes in certain points, the value-
function may be continuous di�erentiable in those points. Later on we show that a transition-point
always corresponds to discontinuity or nonexistence of the second order derivative.

Example 2 Consider the following parametric QP model,

Q =

�
2 0
0 1

�
; A =

�
2 1

�
; c =

�
0
1

�
; �c =

�
1
0

�
; b = 2;

B N T g(�)

� < 0 f1g f2g o= 1 + �

0 < � < 6 f1,2g o= o= 1 + �� 1
12�

2

� > 6 f2g f1g o= 4

Although the partitions in the transition-points are not given, it should be noted that these are
di�erent than in the neighbouring curvy-linearity intervals. The reader can verify that the optimal
value function is continuously di�erentiable. In Figure 1 the optimal value function is drawn. 3

5.2 Extreme points of a curvy-linearity interval

In this section we assume that �� belongs to the interior of a curvy-linearity interval [�1; �2]. Given an
optimal solution of (QD��) we show how the extreme points �1 and �2 of the curvy-linearity interval
containing �� can be found by solving two auxiliary linear optimization problems (cf. Theorem 15).
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Theorem 48 Let �� be arbitrary. Moreover, let (x�; y�; s�) be any optimal solution of (QD��) and
let x� be any optimal solution of (QP��). Furthermore, de�ne T := f1; : : : ; ngn(�(x�)[ �(s�). Then
the extreme points of the curvy-linearity interval [�1; �2] containing �� follow from

�1 = min�;x;y;s f � : Ax = b+ ��b; x � 0; xT s� = 0; xT = 0

AT y + s�Qx = c; s � 0; sT x� = 0; sT = 0
	(8)

�2 = max�;x;y;s f � : Ax = b+ ��b; x � 0; xT s� = 0; xT = 0

AT y + s�Qx = c; x � 0; sTx� = 0; sT = 0
	(9)

Proof: We only give the proof for �1. The proof for �2 goes in the same way and is therefore
omitted. We �rst show that (8) is feasible. Since (x�; y�; s�) is a primal-dual optimal solution we
can easily see that (8) is feasible for this solution with � = ��.

We proceed by considering the case where (8) is unbounded. Then for any � � �� there exists a
vector (x; y; s) which satis�es Ax = b+ ��b; x � 0; xT s� = 0; xT = 0 and ATy + s � Qx = c; s �
0; sTx� = 0; sT = 0. Now (x; y; s) is feasible for (QD�) and x is feasible for (QP�). Since x

T s = 0,
x is optimal for (QP�) and (x; y; s) is optimal for (QD�). The optimal value of both problems is
given by b(�)Ty� � 1

2 (u
�)TQu� = bTy� + ��bTy� � 1

2 (u
�)TQu�. This means that � belongs to

the curvy-linearity interval containing ��. Since this holds for any � � ��, the left boundary of this
curvy-linearity interval is �1, as it should.

It remains to deal with the case where (8) has an optimal solution, say (~�; ~x; ~y; ~s). We then have
A~x = b+ ~��b = b(~�), and AT ~y+ ~s�Q~x = c, so ~x is feasible for (QP~�). Since (~x; ~y; ~s) is feasible for
(QD~�) and ~xT ~s = 0 it follows that ~x is optimal for (QP~�) and (~x; ~y; ~s) is optimal for (QD~�). The

optimal value of both problems is given by b(~�)T ~y � 1
2
(~x)TQ~x = bT ~y + ~��bT ~y � 1

2
(~x)TQ~x. This

means that ~� belongs to the curvy-linearity interval containing ��, and thus it follows that ~� � �1.

Since every � on the curvy-linearity interval containing �� is feasible in (8) and any ~� � �1 gives a
contradiction with the de�nition of the partition, the proof is concluded. 2

The corresponding results for g are stated below.

Theorem 49 Let �� be arbitrary and let x� be any optimal solution of (QP��) and (x
�; y�; s�) be any

optimal solution of (QD��). Furthermore, de�ne T := f1; : : : ; ngn(�(x�) [ �(s�). Then the extreme
points of the curvy-linearity interval [�1; �2] containing �� follow from

�1 = min�;u;y;s f � : ATy + s �Qu = c+ ��c

s � 0; sTx� = 0; sT = 0;
Ax = b

x � 0; xT s� = 0; xT = 0
	(10)

�2 = max�;u;y;s f � : ATy + s �Qu = c+ ��c

s � 0; sTx� = 0; sT = 0;
Ax = b

x � 0; xT s� = 0; xT = 0
	(11)

5.3 Left and right derivatives of the value functionand optimal partitions in a transition-

point

In this section we show that the transition-points occur exactly where the �rst or second order

derivative of the optimal value function does not exist. Moreover, we prove that when taking
maximal complementary solutions for two parameter values in a curvy-linearity interval, a convex
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combination of these solutions is a maximal complementary solution for the corresponding parameter
value. We �rst deal with the di�erentiability of f(�) (cf. Theorem 19).

If the domain of f has a right extreme point, then we may consider the right derivative at this point
to be 1, and if the domain of f has a left extreme point, the left derivative at this point may be
taken �1. Denoting the left and the right derivative as f 0�(�) and f 0+(�) respectively, the convexity
of f implies that at a transition-point � one has

f 0�(�) � f 0+(�):

If dom(f) has a right extreme point then it is convenient to consider the open interval at the right of
this point as a curvy-linearity interval where both f and its derivative are 1. Similarly, if dom(f)
has a left extreme point then we may consider the open interval at the left of this point as a curvy-
linearity interval where both f and its derivative are �1. Obviously, these extreme curvy-linearity
intervals are characterized by the fact that on the intervals the primal problem is infeasible and the
dual problem unbounded. The dual problem is unbounded if and only if the set QD�� of optimal
solutions is empty.

Theorem 50 Let � 2 dom(f) and let x� be any optimal solution of (QP�). Moreover, let (x�; y�; s�)
be any optimal solution of (QD�). Furthermore, de�ne T := f1; : : : ; ngn(�(x�) [ �(s�). Then, the
derivatives at � satisfy

f 0�(�) = minx;y;s
�
�bTy : AT y + s � Qx = c

s � 0; sTx� = 0; sT = 0;
Ax = b+ ��b

x � 0; xT s� = 0; xT = 0
	
;

(12)

f 0+(�) = maxx;y;s
�
�bTy : AT y + s �Qx = c

s � 0; sTx� = 0; sT = 0;
Ax = b + ��b

x � 0; xT s� = 0; xT = 0
	
:

(13)

Proof: Let � 2 IR be su�ciently small. Then for any optimal solution (x(�); y(�); s(�)) of (QD�)
it holds

f(� + ") = (b+ (�+ ")�b)Ty(�+") �
1

2
(u(�+"))TQu(�+")

� (b+ ��b)Ty(�) �
1

2
u(�)TQu(�) + "�bTy(�)

= f(�) + "�bTy(�);

so the right and left derivatives at � satisfy

f 0+(�) = lim
"#0

f(� + ") � f(�)

"
� �bTy(�);

f 0�(�) = lim
""0

f(� + ") � f(�)

"
� �bTy(�):

If f is di�erentiable at � then we necessarily have f 0(�) = �bTy(�) for any optimal solution y(�)
of (QD�). Otherwise, note that the objective value of each y feasible in (QD�) as a function of �
is linear with slope �bTy. Since f is assumed to be not di�erentiable in � there must be di�erent
optimal solutions with di�erent slope. We restrict to proving (13), the proof of (12) is analogous.
Let us consider a maximal complementary solution (u+(�); y+(�); s+(�)) of (QD�+�). Let � > 0 be
chosen to assure that f(�) is di�erentiable in � + �. Furthermore, let us denote u(�), y(�) and
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s(�), the optimal solution used in the upper part of the proof, by u, y and s. It easily follows that
f 0(� + �) = �bTy+(�). Since f 0 is increasing (f is convex) we conclude that

�bTy � f 0�(�) � �bTy+(�) = f 0(�+ �):

Taking the limit of � # 0, it holds

�bTy � f 0�(�) � �bTy+;(14)

where y+ denotes the limit of y+(�) when � # 0. Since, f is continuous, we conclude that (u+; y+; s+)
is optimal in (QD�). Thus, it is feasible in (13). From (14) we conclude that y+ should be optimal
in (13), but y was already an optimal solution of (13). Thus, �bTy+ = �bTy which completes the
proof. For (12) an analogous argument holds.

It remains to deal with the case where � is an extreme point of dom(f). One may easily verify that
if � is the left extreme point of dom(f) then we can repeat the above arguments. Thus it remains
to prove the theorem if � is the right extreme point of dom(f). Since f 0+(�) = 1 in that case, we
need to show that the above maximization problem (13) is unbounded.

Suppose that (13) is not unbounded. Then the problem and its dual have optimal solutions. The
dual problem is given by

min
�;�;�;

�
cT � + (b+ ��b)T� : A� = �b; � + x� � 0

AT� � Q� + �s� � 0
	
:

We conclude that there exists a vector � 2 IRn and a scalar � such that A� = �b; Q� = 0; �+�x� � 0.
This implies that we cannot have �i < 0 and x�i = 0. In other words,

x�i = 0) �i � 0:

As a consequence, there exists a positive " such that �x := x� + "� � 0. Now we have

A�x = A (x� + "�) = Ax� + "A� = b+ (� + ") �b:

Thus we �nd that (QP�+") admits �x as a feasible point. This contradicts the assumption that � is
the right extreme point of dom(f). We conclude that (13) is unbounded, proving the theorem. 2

Corollary 51 Let � 2 dom(f) belong to the curvy-linearity interval (�1; �2). Then one has

f 0(�) = �bTy; 8� 2 (�1; �2) ; 8(x; y; s) 2 QD
�
�; x 2 QP

�
�:

It is important to note here that the dual optimal set changes. In LP this set is independent of �.
The next theorem states that on a curvy-linearity interval, a convex combination of two maximal
complementary solutions is a maximal complementary solution on this interval again. In LP we
have a stronger result; the dual optimal set remains constant on a linearity interval.

Theorem 52 Let �1; �2 2 dom(f). Furthermore, let (x(1); y(1); s(1)) and (x(2); y(2); s(2)) denote
the corresponding maximal complementary solutions of (QP�1 ), (QD�1) and (QP�2) (QD�2) respec-
tively. De�ne for � 2 [�1; �2]

x(�) := (1� �)x(1) + �x(2)

y(�) := (1� �)y(1) + �y(2)

s(�) := (1� �)s(1) + �s(2)

Then, the parameters �1; �2 belong to the same curvy-linearity interval if and only x(�); y(�); s(�))
are maximal complementary and optimal solutions of (QP�) and (QD�).
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Proof: [)] : Let 0 < �1; �2 < 1 be arbitrary. Consider (x(�1); y(�1); s(�1)) and (x(�2); y(�2); s(�2)).
We want to show that ��1 = ��2 . To this end, suppose xi(�1) = 0, this means that (x(1))i = (x(2))i =
0. So xi(�2) = 0. Thus N�1 [ T�1 = N�2 [ T�2 , which indicates that B�1 = B�2 . Now suppose that
sk(�1) = 0, which means that (s(1))k = (s(2))k = 0. Thus, sk(�2) = 0. So, B�1 [ T�1 = B�2 [ T�2 .
Hence, N�1 = N�2 . Combining these results, we must also have T�1 = T�2 , which completes the
proof.
[(] : See the proof of Theorem 40. 2

The next lemma (cf. Lemma 22{24) shows a property of strictly complementary solutions of (12),
that is needed later on.

Lemma 53 Let � be a transition-point of f and let �+ belong to the open curvy-linearity interval
just to the right of � and �� to the open curvy-linearity interval just to the left of �. Let (x�; y�; s�)
be a strictly complementary solution of (13) at �. Then we have

�(x�) � B�+ ; �(s
�) � N�+

�(x�) � B�� ; �(s
�) � N��

Proof: We prove only the �rst part, the second part goes analogously. Without loss of gener-
alization we assume that � = 0 and that the corresponding optimal partition is given by partition
�� = (B�; N�; T�); further assume that the curvy-linearity interval to the right of zero contains
�+ = 1 with partition ��+ = (B�+ ; N�+ ; T�+).

On (0; 1] the partition is constant, hence convex combinations of maximal complementary solutions
for two values in this interval are optimal in between these two values (cf. (2)). Taking limit to
zero implies the existence of (x; y; s), optimal in (QP�) and (QD�), with �(x) � B�+ , �(s) � N�+

and �bTy = f 0+(0) = �bTy�. Since (x�; y�; s�) and (x; y; s) are both optimal in (QP�) and (QD�),
Lemma 4 implies

(x�)T s(�
+) = (x�)T (c +Qx(�

+) � ATy(�
+))

= cTx+ xTQx(�
+) � xTATy(�

+)

= xT s(�
+) = 0;

and

(x(�
+))T s� = (x(�

+))T (c+ Qx� �ATy�)

= (x(�
+))T (c+ Qx) � (b+�b)Ty�

= (x(�
+))T (c+ Qx) � (b+�b)Ty

= (x(�
+))T (c+ Qx�ATy)

= (x(�
+))T s = 0:

Consider now for � 2 (0; 1)

x(") = (1� ")x� + " x(�
+);

y(") = (1� ")y� + " y(�
+);

s(") = (1� ")s� + " s(�
+);

then x(") and s(") are feasible and complementary in (QP") and (QD"), hence optimal. So it holds
�(x�) � B�+ and �(s�) � N�+ . The second part can be proven analogously. 2
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Note that the inclusions of Lemma 53 hold everywhere. From Theorem 50 we easily obtain the
following corollary.

Corollary 54 Let � be a transition-point of f . Let (x�; y�; s�) be a strictly complementary solution
of (13) at �. Then we have

�(x�) � B�; �(s
�) � N�

An analogous result holds for any strictly complementary solution of (12). The proofs of the results
in Section 6.4.3, concerning the inclusions for the optimal sets, follow from the observation that
the support of the solutions (x�; s�) in Lemma 53 and Corollary 54 are equal to the partition on
the curvy-linearity interval just to the right of �. So, in Lemma 53 we have equality for LP, and
Corollary 54 states the same as Corollary 21. The additional results we have in LP, do not hold for
QP.

The picture becomes more complete now. Note that Theorem 50 is valid for any value of � in the
domain of f . The theorem re-establishes that at a `non-transition' point, where the left and right
derivative of f are equal, the value of �bTy is constant when y runs through the optimal sets QD��
and QP��. But it also makes clear that at a transition-point, where the two derivatives might be
di�erent, �bTy is not constant when y runs through the optimal sets. Then the extreme values of
�bTy yield the left and the right derivative of f at �; the left derivative is the minimum and the
right derivative the maximal value of �bTy when y runs through the optimal sets. Note that in LP,
the solution y corresponding to the maximal value of �bTy is optimal on the linearity interval just
to the right of �, whereas the solution y corresponding to the minimum value of �bTy is optimal
on the linearity interval just to the left of �. Therefore, these solutions y are necessarily di�erent
and hence the left and right derivatives of f di�er in a transition-point. In QP, the solutions y
corresponding to the maximal and minimum value of �bTy are not necessarily di�erent, and hence
the left and the right derivative of f may be equal in a transition-point. The next theorem states
that the transition-points of the optimal value function occur exactly where the �rst or second order
derivative does not exist.

Theorem 55 The transition-points of the optimal value function f(�) occur exactly where its �rst
or second order derivative does not exist.

Proof: Let � denote a transition-point of f . Without loss of generality, we assume that � = 0.
Moreover, let �+ = 1 belong to the curvy-linearity interval just to the right of � and let �� =
�1 belong to the curvy-linearity interval just to the left of �. Suppose to the contrary that the
optimal value function is quadratic on [�1; 1], while the partition is �0 for � = 0, ��1 on [�1; 0)
and �1 on (0; 1]. Since the optimal value function is di�erentiable in � = 0, it follows from the
proof of Lemma 53 that x(") := (1 � ")x(�1) + "x(0) is optimal in (QP"�1) for " 2 (0; 1), while
x(") := (1 � ")x(0) + "x(�1) is optimal in (QP") for " 2 (0; 1). Since the derivative of the optimal
value function is linear on [�1; 1] it follows that (x(�1)+ x(1))=2 is optimal in (QPll1). This implies
B1[B�1 � B0. Similarly one shows N1[N�1 � N0. Combining this result with Lemma53 it follows
B1 = B�1 = B0 and N1 = N�1 = N0 contradicting the assumption. This implies the theorem. 2

As as consequence of Theorem 55 we obtain the analogue of Theorem 25, which can be stated
without proof.

Theorem 56 If f(�) is quadratic on the interval [�1; �2], where �1 < �2, then the optimal partition
�� is constant for � 2 (�1; �2).

The next example illustrates that f is not continuously di�erentiable in general.
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Fig. 2: Non{di�erentiable value function

Example 3 Consider the parametric QP model with data c = 0,

Q =

2
4 3 3 �1

3 11 23
�1 23 75

3
5 ; A =

�
1 1 1
1 3 5

�
; b =

�
1
0

�
; �b =

�
0
1

�
:

At � = 3 the primal optimal solution is unique, whereas the dual optimal solution is not unique.

B N T f(�)

3 < � < 5 f2,3g f1g o= 321
2 � 24�+ 5�2

2 < � < 3 f1,2g f3g o= 21
2 � 2�+ �2

3
2 < � < 2 f1,2,3g o= o= 1

2 +
1
2�

2

1 < � < 3
2

f1,3g f2g o= 5� 6�+ 21
2�

2

The reader can verify that the optimal value function is not continuously di�erentiable at � = 3.
Figure 2 illustrates this. 3

Remark 2 It is interesting to consider the partition �� when � runs from �1 to 1. At the �rst
transition-point, the sets B� and N� increase to a larger set, and when passing to the next open
curvy-linearity interval the sets B� and N� become equal to a subset of these enlarged sets. This
process repeats itself at every new transition-point: at a transition-point of f the sets B� and N�

expand themselves and when passing to the next open curvy-linearity interval they shrink to subsets
of the enlarged sets. Since the derivative of f is monotonically increasing when � runs from �1 to
1 every new set B� and every new set N� arising in this way di�ers from all previous ones. In other
words, every transition-point of f and every curvy-linearity interval of f has its own partition.

To obtain the partition in a neighbouring curvy-linearity interval we have to solve an auxiliary self-
dual QP problem. This is contrary to the LP case, where the partition follows as a byproduct of
computing the left and right derivatives (see Theorem 19, and Theorem 27). In the next theorem
this auxiliary self-dual problem is formulated.
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Theorem 57 Consider the situation as in Lemma 53. Let (x�; s�) belong to a strictly complemen-
tary solution of (13) for � = 0, and de�ne B := �(x�), N := �(s�), T := f1; : : : ; ng n (B [ N ).
Consider

minx;s;y
�
��bT y + xTQx : Ax = �b; xT s� = 0; xT � 0;

AT y+ s�Qx = 0; sT x� = 0; sT � 0
	(15)

and let (~x; ~y; ~s) be a maximal complementary solution of (15). Then B1 = B [ fi : x�i > 0g,
N1 = N [ fi : s�i > 0g, and T1 = f1; : : : ; ng n (B1 [N1).

Proof: It is easy to check that for a feasible solution of (15)

��bTy + xTQx = xT (Qx�ATy) = xT s = xTT sT � 0:

The dual of (15) is given by

max
�;x;�;�

�
�bT� � xTQx : A� = �b; �N = 0; �T � 0

AT � + � +Q� � 2Qx = 0; �B = 0; �T � 0;
	
;

and for a feasible solution it holds

�bT� � xTQx = �TA� � xTQx = ��T� � (� � x)TQ(� � x) � 0:

Consequently, the optimal value of (15), if it exists, is zero. Consider the assignment

x = � = x(1) � x�; s = � = s(1) � s�; y = � = y(1) � y�;

which satis�es the �rst two linear equalities in (15). Using the fact that B � B1 and N � N1

(Lemma 53) it follows

xN = x
(1)
N � x�N = 0; xT = x

(1)
T � x�T = x

(1)
T � 0;

and

sB = s
(1)
B � s�B = 0; sT = s

(1)
T � s�T = s

(1)
T � 0;

and so xTT sT = 0, implying that the assignment is an optimal solution. The fact that (x(1); s(1)) is
maximal complementary implies that the assignment must be maximal complementary in (15) as
well, implying the result. 2

We state the dual analogies of the above results without further proof. The omitted proofs are
straightforward modi�cations of the above proofs.

Theorem 58 Let � 2 dom(g) and let (x�; y�; s�) be any optimal solution of (QD�) and let x� be
any optimal solution of (QP�). Then, the derivatives at � satisfy

g0�(�) = minx;y;s
�
�cTx : ATy + s� Qx = c+ ��c

s � 0; sTx� = 0; sT = 0;
Ax = b; x � 0
xT s� = 0; xT = 0

	
;

(16)

g0+(�) = maxx;y;s
�
�cTx : ATy + s� Qx = c+ ��c

s � 0; sTx� = 0; sT = 0;
Ax = b; x � 0
xT s� = 0; xT = 0

	
:

(17)
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Corollary 59 Let � 2 dom(g) belong to the curvy-linearity interval (�1; �2). Then one has

g0(�) = �cTx; 8� 2 (�1; �2) ; 8x 2 QP
�
�; (x; y; s) 2 QD

�
�:

Theorem 60 Let �1; �2 2 dom(g). Furthermore, let (x(1); y(1); s(1)) and (x(2); y(2); s(2)) denote
the corresponding maximal complementary solutions of (QP�1 ), (QD�1 ) and (QP�2 ),(QD�2) respec-
tively. De�ne for � 2 [�1; �2]

x(�) := (1� �)x(1) + �x(2);

y(�) := (1� �)y(1) + �y(2);

s(�) := (1� �)s(1) + �s(2):

Then, the parameters �1; �2 belong to the same curvy-linearity interval if and only if (x(�); y(�); s(�))
are maximal complementary and optimal solutions of (QP�) and (QD�).

Lemma 61 Let � be a transition-point of g and let �+ belong to the open curvy-linearity interval
just to the right of � and �� to the open curvy-linearity interval just to the left of �. Let (x�; y�; s�)
be a strictly complementary solution of (17) at �. Then we have

�(x�) � B�+ ; �(s
�) � N�+

�(x�) � B�� ; �(s
�) � N��

Corollary 62 Let � be a transition-point of g. Let (x�; y�; s�) be a strictly complementary solution
of (17) at �. Then we have

�(x�) � B�; �(s
�) � N�

Theorem 63 If g(�) is quadratic on the interval [�1; �2], where �1 < �2, then the optimal partition
�� is constant for � 2 (�1; �2).

For g(�) we have an additional corollary, which easily follows from Theorem 58. When Q is positive
de�nite, it is easy to show that x is unique. Hence g(�) is continuously di�erentiable.

Corollary 64 Let Q be positive de�nite, then g(�) is continuously di�erentiable.

Note that Corollary 64 results from the fact that the primal and dual QP problems are not symmetric.
Positive de�niteness of Q is not a necessary condition for g(�) to be continuously di�erentiable.

Theorem 65 Consider the situation as in Lemma 61. Let (x�; s�) be a strictly complementary
solution of (17) for � = 0, and de�ne B := �(x�), N := �(s�), T := f1; : : : ; ngn(B [N ). Consider

minx;y;s f �cTx+ xTQx : Ax = 0; xT s� = 0; xT � 0;

AT y+ s�Qx = �c; sTx� = 0; sT � 0g;
(18)

and let (~x; ~y; ~s) be a maximal complementary solution. Then, B1 = B [ fi : ~xi > 0g, N1 = N [ fi :
~s�i > 0g and T1 = f1; : : : ; ngn(B1 [N1).

5.4 Computing the optimal value function

Using the results of the previous sections, we present in this section an algorithm which yields the
optimal value function for a one-dimensional perturbation of the vector b or the vector c. We �rst
deal with a one-dimensional perturbation of the vector b with a scalar multiple of the vector �b; we
state the algorithm for the calculation of the optimal value function and that the algorithm �nds
all the transition-points and curvy-linearity intervals of it. Having done this it is clear how to treat
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Input:

An optimal solution (x�; y�; s�) of (QD);
An optimal solution x� of (QP );
a perturbation vector �b.

begin

ready:=false;
k := 1;x0 := x�; y0 := y�; s0 = s�;
Solve (13) with � = 0.
while not ready do
begin

Solve (9) with s� = sk�1 and x� = xk�1 and
T = f1; : : : ; ngn(�(x�) [ �(s�)).
if this problem is unbounded: ready:=true
else let (�k; x

k; yk; sk) be an optimal solution;
begin

Solve (13) with x� = xk and s� = sk and
T = f1; : : : ; ngn(�(x�) [ �(s�)).
if this problem is unbounded: ready:=true
else let (xk; yk; sk) be an optimal solution;
begin

Solve (15) with x� = xk and s� = sk and
T = f1; : : : ; ngn(�(x�) [ �(s�)).
let (~x; ~s) be an optimal solution;
de�ne xk := xk + "~x, sk := sk + "~s,
where " is choosen to assure that
�(x�) = B1 and �(s�) = N1

k := k + 1;
end

end

end

end

Algorithm 3: The Optimal Value Function f(�); � � 0

a one-dimensional perturbation of the vector c; we also state the corresponding algorithm and its
convergence results.

Assume that we have given optimal solutions x� of (QP ) and (x�; y�; s�) of (QD). Using the
notation of the previous sections, the problems (QP�) and its dual (QD�) arise by replacing the
vector b by b(�) = b + ��b; the optimal value of these problems is denoted as f(�). So we have
f(0) = cTx�+ 1

2x
�TQx� = bTy� � 1

2x
�TQx�. The domain of the optimal value function is (�1;1)

and f(�) =1 if and only if (QD�) is unbounded. Recall from Theorem 43 that f(�) is convex and
piecewise quadratic. In Algorithm 3 we present the algorithmwhich determines f on the nonnegative
part of the real line.

The following theorem states that Algorithm 3 �nds the successive transition-points of f on the
nonnegative part of real line, as well as the slopes of f on the successive curvy-linearity intervals.

Theorem 66 Algorithm 3 terminates after a �nite number of iterations. If K is the number of
iterations upon termination, then �1; �2; � � � ; �K are the successive transition-points of f on the
nonnegative real line. The optimal value at �k (1 � k � K) is given by cTxk + 1

2(x
k)TQxk, and the
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second-order derivative of f on the interval (�k; �k+1) (1 � k < K) by �bT�y
��

.

Proof: In the �rst iteration the algorithm starts by solving 9 where s0 is the slack vector in
the given optimal solution (x0; y0; s0) = (x�; y�; s�) of (QD) = (QD0). This problem is feasible,
because (QP ) and (QD) have an optimal solution (x�; y�; s�) and (�; x; y; s) = (0; x�; y�; s�) satis�es
the constraints. So the �rst auxiliary problem is either unbounded or it has an optimal solution
(�1; x

1; y1; s1). By Theorem 48 �1 is equal to the extreme point at the right of the curvy-linearity
interval containing 0. If the problem is unbounded (when �1 =1) then f is quadratic on (0;1) and
the algorithm stops; otherwise �1 is the �rst transition-point right from 0. (Note that it may happen
that �1 = 0. This certainly occurs if 0 is a transition-point of f and the starting solution (x�; y�; s�)
is maximal complementary.) Clearly x1 is primal feasible at � = �1. Since (x

1; y1; s1) is dual feasible
at � = �1 and (x1)T s1 = 0 we see that x1 is optimal for (QP�1). Hence f(�1) = cTx1+ 1

2
(x1)TQx1.

Also observe that (x1; y1; s1) is dual optimal at �1. (This also follows from Corollary 21.)

Assuming that the second case occurs, when the above problem has an optimal solution, the algo-
rithm proceeds by solving a second auxiliary problem (13). By Theorem 50 the maximal value is
equal to the derivative of f at the right of �1. If the problem is unbounded then �1 is the largest
transition-point of f on (0;1) and f(�) =1 for � > �1. In that case we are done and the algorithm
stops. In the other case, when the problem is bounded, the optimal solution (x1; y1; s1) is such that
�bTy1 is equal to the right derivative of f , by Theorem 50. The second derivative follows from the
explicit formula for the optimal value function. To obtain the correct input for the next iteration
we need to solve (15). This selfdual QP produces the partition on the neighbouring curvy-linearity
interval. Thus we can start the second iteration and proceed as in the �rst iteration. Since each
iteration produces a curvy-linearity interval, and f has only �nitely many of such intervals, the
algorithm terminates after a �nite number of iterations. 2

The part of the optimal value function to the left of �1 can be computed analogously. With respect
to the complexity of the algorithm we mention that each subproblem can be solved in polynomial
time with an interior point algorithm. However, even in LP there can be exponentially many
transition-points (Murty [23]).

When perturbing the vector c with a scalar multiple of �c to c(�) = c + ��c the algorithm for
the calculation of the optimal value function g(�) can be stated as in Algorithm 4 (recall that g is
concave).

Algorithm 4 �nds the successive transition-points of g on the nonnegative real line as well as the
slopes of g on the successive curvy-linearity intervals. The proof uses similar arguments as the proof
of Theorem 66 and is therefore omitted.

Theorem 67 The algorithm terminates after a �nite number of iterations. If K is the number
of iterations upon termination, then �1; �2; � � � ; �K are the successive transition-points of g on the
nonnegative real line. The optimal value at �k (1 � k � K) is given by bTyk � 1

2
(xk)Qxk, and the

second order derivative of g on the interval (�k; �k+1) (1 � k < K) by �cT�x
��

.

6 Single Element Perturbation

Sensitivity analysis (see also Gal [9]) is a special case of parametric programming, where we consider
only local information, i.e. ranges and shadow prices on one speci�c linearity or curvy-linearity
interval. In this section we will consider single element perturbation which is also a special case
of parametric analysis, where only one element of b, or c, is perturbed (see, e.g., Gal [9]). So, the
perturbation vector is a unit vector. The derivative of the optimal value function to an element of
b is called the shadow price and the corresponding linearity interval the range of the element of b.
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Input:

An optimal solution x� of (QP );
An optimal solution (x�; y�; s�) of (QD);
a perturbation vector �c.

begin

ready:=false;
k := 1;x0 := x�; y0 := y�; s0 = s�;
Solve (17) with � = 0.
while not ready do
begin

Solve (11) with s� = sk�1 and x� = xk�1 and
T = f1; : : : ; ngn(�(x�) [ �(s�)).
if this problem is unbounded: ready:=true
else let (�k; x

k; yk; sk) be an optimal solution;
begin

Solve (17) with x� = xk and s� = sk and
T = f1; : : : ; ngn(�(x�) [ �(s�)).
if this problem is unbounded: ready:=true
else let (xk; yk; sk) be an optimal solution;
begin

Solve (15) with x� = xk and s� = sk and
T = f1; : : : ; ngn(�(x�) [ �(s�)).
let (~x; ~s) be an optimal solution;
de�ne xk := xk + "~x, sk := sk + "~s,
where " is choosen to assure that

�(x�) = B1 and �(s�) = N1

k := k + 1;
end

end

end

end

Algorithm 4: The Optimal Value Function g(�); � � 0
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When dealing with single element perturbations the aim is to �nd the shadow prices and ranges of
all elements in b and c. The current value of an element of b may be either a transition-point or not.
In the latter case the element of b belongs to an open linearity interval and the range of the element
of b is this closed linearity interval and the corresponding shadow price is the slope of the optimal
value function on this interval. Returning to our example in Section 6.2, we note that the ranges
resulting from the classical approach (optimal bases) are subranges of the corresponding linearity
intervals. Hence, on linearity intervals the optimal partition remains constant, whereas the optimal
basis may change on such intervals.

If there is a transition-point, then we have two shadow prices, the left shadow price, which is the left
derivative of the optimal value function at the current value, and the right shadow price, the right
derivative of the optimal value function at the current value. In this section we briey outline how
the results in this chapter can be used to perform single element perturbation for LP. The single
element perturbation for QP is left to the reader.

6.1 Ranges and shadow prices

Let x� be an optimal solution of (P ) and (y�; s�) an optimal solution of (D). Denoting ei as the
i-th unit vector (1 � i � m), the range of element bi of b is simply the linearity interval of the
optimal value function z(b + �ei; c) which contains zero. Using Theorem 15, the extreme points of
this linearity interval follow by minimizing and maximizing � over the set

�
� : Ax = b+ �ei; x � 0; xT s� = 0

	
:

Considering element bi of b as a variable, the range of bi follows by minimizing and maximizing bi
over the set �

bi : Ax = b; x � 0; xT s� = 0
	
:(19)

For the shadow prices of bi we use Theorem 19. The left and the right shadow price of bi follow by
minimizing and maximizing respectively eTi y = yi over the set�

yi : ATy + s = c; s � 0; sTx� = 0
	
:(20)

Similarly, the range of element cj of c is equal to the linearity interval of the optimal value function
z(b; c + �ej) which contains zero. Changing cj into a variable, and using Theorem 17 the extreme
points of this linearity interval follow by minimizing and maximizing cj over the set�

cj : ATy + s = c; s � 0; sTx� = 0
	
:(21)

For the shadow prices of cj we use Theorem 27. The left and the right shadow price of cj follow by
minimizing and maximizing respectively eTj x = xj over the set

�
xj : Ax = b; x � 0; xT s� = 0

	
:(22)

Let us notice the following. If bi is not a transition-point, which becomes evident if the extreme
values in (19) both di�er from bi, then we know that the left and right shadow prices of bi are the
same and these are given by y�i . So, in that case there is no need to solve (20). On the other hand,
when bi is a transition-point, then it is clear from the discussion following Theorem 25 that there
are three possibilities. When determining the range of bi by solving (19) the result may be one of
the two linearity intervals surrounding bi; in that case y�i is the shadow price of bi on this interval.
This happens if and only if the given optimal solution y� is such that y�i is an extreme value in
the set (20). The third possibility is that the extreme values in the set (19) are both equal to bi.
This certainly occurs if y� is a strictly complementary solution of (D). In each of the three cases
it becomes clear, that after having solved (19), bi is a transition-point. The left and right shadow
prices at bi can be found by determining the extreme values of (20). It is clear that similar remarks
apply to the range and shadow prices of the elements of the vector c.
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6.2 Using strictly complementary solutions

The formulas for the ranges and the shadow prices of the elements of b and c can be simpli�ed when
the given optimal solutions x� of (P ) and (y�; s�) of (D) are strictly complementary. Let (B;N )
denote the optimal partition of (P ) and (D). Then we have x�B > 0; x�N = 0 and s�B = 0; s�N > 0.
As a consequence, we have xT s� = 0 in (19) and (22) if and only if xN = 0. Similarly, sTx� = 0
holds in (20) and (21) if and only if sB = 0.

Using this we can reformulate (19) and (20) as

fbi : Ax = b; xB � 0; xN = 0g ;

�
yi : AT y + s = c; sB = 0; sN � 0

	
:

Similarly, (21) and (22) can be rewritten as

�
cj : ATy + s = c; sB = 0; sN � 0

	
;

fxj : Ax = b; xB � 0; xN = 0g :

7 Summary and Conclusions

Up till now sensitivity analysis and parametric programming for LP and QP were biased by Simplex-
based algorithms. The uprise of interior point methods in the last ten years made it necessary to
reconsider the theory of sensitivity analysis and parametric programming. The classical theory is
mainly based on the use of an optimal basis. It is well known that optimal bases lead to some major
drawbacks in the case of degeneracy of the problem (see Ward and Wendell [28]). This chapter
o�ers an approach which overcomes such di�culties and in which any primal{dual optimal solution
can be used to perform a parametric analysis for LP. Our results are based on the property that
either the primal or the dual optimal set remains constant when the objective vector or the RHS-
vector is varied. The presented algorithms can be used in combination with any method for solving
linear programs. In the QP-case the so-called optimal partition of the problem is needed in the
analysis. In this situation interior point methods provide the natural framework for computations
and implementations, since interior point methods generate such a partition (in the limit).

We characterize the optimal value function of parametric linear and parametric quadratic programs
in terms of certain segments (linearity resp. curvy-linearity intervals) and transition-points. We show
how these segments relate to intervals on which the optimal set and the optimal partition (in linear
programs) or the optimal partition (in quadratic programs) remains constant. Moreover algorithms
are presented for computing these segments and the optimal value function on these segments.
The presented algorithms are new and show promising results as preliminary computations and
experiments in Matlab

6 have pointed out.
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