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Introduction

Introduction

It has been established that unheralded acute coronary syndromes are common initial 

manifestations of coronary atherosclerosis and that most such events arise from sites with 

non-flow limiting coronary atherosclerosis 1,2. Histopathological studies have 

retrospectively suggested that plaque composition is a crucial determinant of the propensity 

of atherosclerotic lesions to rupture. Recently, a study including a large series of victims of 

sudden cardiac death showed that 60 % of acute coronary thrombi had ruptured thin-cap 

fibroatheroma (TCFA) lesions as a substrate. Furthermore, 70 % of those patients had 

additional TCFAs in their coronary tree that had not ruptured 5. A large (avascular, 

hypocellular, lipid-rich) necrotic core, a thin fibrous cap with inflammatory infiltration and 

paucity of smooth muscle cells, and the presence of expansive (positive) remodeling have 

been identified as the major criteria to define TCFA lesions 6,7-10. Detection of these non-

obstructive, lipid rich, high-risk plaques may have an important impact on the prevention of 

acute myocardial infarction and sudden death. 

Angiography has been for decades the gold standard to assess the morphology and severity 

of atherosclerotic lesions in the coronary tree. Nevertheless, quantitative angiographic 

measurements can be deceptive since this technique only allows the assessment of the 

shape of the lumen 3. In turn, atherosclerosis is a disease of the vessel wall and, due to the 

compensatory expansive remodelling effect, the lumen area remains unaffected until final 

stages of the disease 4.

Intravascular Ultrasound (IVUS) is a safe catheter-based diagnostic tool that provides a 

real-time, high-resolution, tomographic view of coronary arteries 5. It thereby enables the 

assessment of morphology, severity and extension of coronary plaque.
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There are basically two types of commercially available IVUS imaging catheters: a single-

element mechanically rotational transducer and a phased-array electronical system. 

Differences between these catheters regarding plaque size and composition are explored in 

chapter 2.1. 

In vivo plaque characterization through visual interpretation of gray-scale IVUS is sub-

optimal, especially when assessing heterogeneous, lipid-rich plaques 6.  Low echo-

reflectance plaques are considered “soft” or lipid-rich. The accuracy of gray-scale IVUS for 

discriminating lipid from fibrous tissue is limited since in addition to large amounts of 

extracellular lipids (low echo-reflective areas), the lipid core contains cholesterol crystals, 

necrotic debris and microcalcifications (highly echoreflective areas) 6.

On the contrary, spectral analysis of IVUS RF data (IVUS-VH) has demonstrated its 

potential to provide an objective and accurate assessment of coronary plaque composition 

8,9,10.

By means of the frequency domain analysis of the RF data, tissue maps that classify plaque 

into four major components were constructed 8. In preliminary in vitro studies, four 

histological plaque components were correlated with a specific spectrum of the 

radiofrequency signal 8,10. These different plaque components were assigned colour codes. 

Calcified, fibrous, fibrolipidic and necrotic core regions were labelled white, green, 

greenish-yellow and red respectively. IVUS RF data analysis may follow the progression of 

the disease not only with regards to its volume, but to its composition as well 11,12. In 

addition, this novel IVUS application may potentially refine risk stratification strategies, 

and allow a more comprehensive pathophysiologic approach towards natural history 

studies.
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In the present thesis, work has been done to explore the in vivo accuracy of intravascular 

ultrasound radiofrequency data analysis (IVUS-VH) for the assessment of plaque 

composition. To accomplish this, we have investigated the geometrical accuracy of the 

technique (chapter 2.2) and its reproducibility (chapter 2.3). In addition, we have carried 

out an extensive program to help enlighten it´s potential clinical value. For that purpose, we 

have confronted our results to previous histo-pathological and clinical knowledge as an 

indirect validation of the technique. IVUS-VH was therefore used to describe the extent, 

distribution, morphology and composition of coronary atherosclerosis in non-intervened 

coronary arteries (chapter 3). Chapter 4 explores the association between flow dynamics 

and plaque composition. 

The correlation between composition and demographical data is evaluated in chapter 5.

Since IVUS-VH is a tool able to detect 2 major components of the plaque vulnerability

criteria, this thesis would not be complete without exploring this area. The global 

characteristics of plaque rupture are discussed in chapter 6.1, whereas chapter 8.1 explores 

the relationship between coronary remodeling and plaque composition. Chapters 7.1 and 

7.2 explore the prevalence and distribution of a histological surrogate of TCFA in vivo. 

Since IVUS-VH and palpography (mechanical strain imaging) utilize the same source data 

(radiofrequency data analysis), information regarding both techniques might be obtained 

using the same pullback, potentially increasing the prognostic value of certain seemingly 

pejorative plaque characteristics assessed in prospective natural history studies. We 

therefore explored the agreement between compositional and mechanical imaging in vivo 

on chapter 9.2. Other attempts to correlate other different invasive imaging techniques are 

discussed on chapters 9.3 and 10.1. 
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A second very important piece of the thesis is part V, where the effect of statins and ACE-

inhibitors on coronary atherosclerosis is explored.

To conclude, the aim of this thesis was threefold: 1) to explore in vivo the size, 

morphology, distribution and composition of coronary atherosclerosis; 2) to explore 

potential histological surrogates of plaque vulnerability as well as to help find a role for the 

technique in the clinical setting; 3) to assess in vivo the effect of conventional medical 

interventions on plaque size and composition.
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HISTORY

Intravascular ultrasound (IVUS) has a relatively short yet highly prolific history that started in 

the late 80’s. Early studies already demonstrated that the extension and severity of coronary 

atherosclerosis might be greatly underestimated with angiography, whereas highly accurate 

measurements could be obtained using IVUS (1-3). Later, plaque characterization by means 

of the visual assessment was attempted and correlation with histopathology offered 

questionable results (4-6). Moving forward to the core of the past decade, interventional 

cardiologists sought to find an application of IVUS in the catheterization laboratory. As a 

result, several studies evaluated the potential of IVUS as an adjunctive tool for guiding 

percutaneous coronary interventions. IVUS has thereafter aided the evolution of angioplasty 

providing insights about the morphology of atherosclerotic plaque (7), the mechanisms 

involved in the restenotic process (8-11), the assessment of lesion severity (12-15) and 

complications (9,16) and the guidance of percutaneous coronary interventions (17-21). 

More recently, IVUS has emerged as a highly accurate tool for the serial assessment of the 

natural history of coronary atherosclerosis and to evaluate the effect of different conventional 

and emerging drug therapies in the progression of atherosclerosis (22-27). Finally, the 

contemporary and future application of IVUS is linked to the study of different applications of 

the analysis of radiofrequency data, both for the improvement of plaque characterization 

(28,29) and for the assessment of mechanical properties of plaques (30,31). Overall, such 

insightful analysis of the radiofrequency data might potentially aid the detection of plaques 

with certain allegedly high-risk characteristics (32,33) and monitor their natural history in 

prospective natural history studies. 
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THE TECHNOLOGY 

Intravascular Ultrasound (IVUS) is a catheter-based diagnostic tool that provides a real-time, 

high-resolution, tomographic view of coronary arteries. It thereby enables the assessment of 

morphology, severity and extension of coronary plaque. There are basically two types of 

commercially available IVUS imaging catheters: a single-element mechanically rotational 

transducer and a phased-array electronical system. Mechanical systems comprise flexible 

cable with a single rotation transducer that revolves at 30 revolutions per second emitting and 

receiving ultrasound signals every 1º increment. Such catheters are covered with an 

echolucent outer sheath to prevent direct contact of the ultrasound element with the vessel 

wall. Phased-array catheters contain a 64-element annular array that enables a coordinated 

emission of the ultrasound signal.  

Mechanical and phased-array catheters have relative advantages and disadvantages. 

Mechanical catheters have higher resolution but display specific artifacts such as non-uniform 

rotational distortion. In addition, far field imaging can be more problematic with mechanical 

catheters due to amplified attenuation and enhanced blood backscatter. On the other hand, 

phased-array catheters have lower resolution resulting in inferior near-field imaging and as 

they are not pulled-back within a sheath, are more susceptible to non-uniform pullback speed 

particularly in tortuous vessels.

Currently, the use of automated pullbacks has overcome the manual interrogation of the 

vessels, in particular since the former allows volumetrical determination of direct (lumen and 

vessel) and indirect (e.g. plaque, neointima) measurements.   
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SAFETY

IVUS has been widely performed over the past 2 decades without significant or frequent 

adverse effects. In a recent large study who evaluated the long-term safety of IVUS, coronary 

spasm (easily reversed with intracoronary administration of nitrates) occurred in 1.9% of 

procedures and IVUS was not found to accelerate atherosclerosis.(34) 

LIMITATIONS OF ANGIOGRAPHY 

Quantitative angiographic measurements can be misleading since this technique only allows 

the evaluation of the profile of the lumen (35). Compensatory expansive remodelled 

coronaries may present a significant increase in the burden of atherosclerotic plaque without 

evident changes in the degree of stenosis (2). Such phenomenon may impair the visual 

interpretation of this technique, yielding to significant inter-observer variability and poor in 

vitro correlation (36). Coronary atherosclerosis is commonly a diffuse disease of the vessel 

wall, involving long segments of the coronaries, rarely sparing segments. The diffuse 

distribution of plaque has lead to misinterpretation of angiography, eventually having the 

appearance of small reference vessels with minimal disease (35). Such masking of the true 

severity and extension of the disease has been clearly depicted by Mintz el al, who showed 

that reference segments of treated lesions had a mean plaque burden of 51% (37).

Vessel foreshortening, irregular plaque distribution and irregular lumen geometry are all 

additional factors that further impair the accuracy of angiographic measurements.  



Chapter  1.1

26 5

QUANTITATIVE and QUALITATIVE IVUS 

Contour detection at the leading edge of both the lumen and the media-adventitia interface 

(external elastic membrane, EEM) allows the assessment of 2 direct measurements (lumen 

and vessel area). From these contours, plaque volume [n� m=1 (Vesselarea - Lumenarea )*d;

where n refers to number of images, m to image and d to distance between images] and 

plaque burden [(Vesselarea – Lumenarea/Vesselarea) x 100] can be estimated.  

Several other area measurements can be obtained with IVUS. Minimum and maximum lumen 

diameter, minimum and maximal and plaque thickness and lumen and plaque eccentricity 

(38). It is noteworthy that since the leading edge of the media is not well defined, IVUS 

measurements cannot determine the real (histological) plaque area delineated by the internal 

elastic membrane. Hence, the area enclosed within the EEM and lumen contours is solely a 

surrogate of the plaque area, comprising the media as well. However, the inclusion of the 

media into the plaque area does not affect the measurements, since it represents a negligible 

fraction of the “plaque plus media”. 

In addition to its precise quantitative measurements, IVUS has been used as a tool to 

characterize in-vivo the composition of coronary plaques. Initially, this was attempted by 

means of the visual judgement of the images (5). Using this approach, plaques were 

qualitatively defined as soft (echolucent), fibrous (plaques with intermediate echogenicity 

between soft and highly echogenic plaques), mixed (plaques containing more than one 

acoustical subtype) or calcified (38).

It has been recognized that its value for identification of specific plaque components, 

particularly of lipid rich plaques, is limited (6). Nevertheless, IVUS remains a highly accurate 

tool regarding calcium detection (39). Dense calcium deposits reflect the entire ultrasound 

energy, thus causing a phenomenon called acoustic shadowing.
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Coronary plaque characterization has currently evolved to a more automated approach, 

leading to more accurate results (40,41). More recently, spectral analysis of IVUS 

radiofrequency (RF) data has emerged as a promising tool to accurately and quantitatively 

assess the individual components of plaques (28). Accurate characterization in vivo using 

IVUS RF data analysis has the potential to allow the assessment of the effects of 

pharmacological therapies on the coronary arteries, thereby enabling a better understanding of 

the disease and further development of new pharmacologic interventions (42). 
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PROGRESSION-REGRESSION

Several angiographic studies have extensively explored the efficacy of lipid-lowering 

therapies to slow coronary plaque progression. A meta-analysis of such studies has concluded 

that the magnitude of the antiatherosclerotic effects is small compared with the effects of 

statins on the prevention of cardiovascular events (43). Such clinical-angiographic 

discordance has been initially attributed to the aforementioned limitations of angiography, 

leading investigators to pursue the conductance of progression-regression studies with the aid 

of IVUS (44). Thereafter, several serial studies evaluated the impact of different medical 

strategies on the atherosclerotic burden over time with the aid of IVUS (26,40,45). However, 

results are still conflicting, showing no definitive differences in plaque volume over time thus 

reinforcing the discrepancies between the observed clinical benefit of medical therapies and 

the absence of a significant impact on plaque progression. Two major theories might explain 

such discrepancy. First, although IVUS provides accurate morphometric measurements, 

several factors such as intra and inter-observer variability, different position of the catheter, 

severely calcified vessels and artifacts can impair the reproducibility of serial measurements 

(46-48). Secondly, it has been established that the histological composition of coronary 

plaques can precipitate atherothrombotic events regardless of the hemodynamical compromise 

of the lesion (49,50). 

Whether the striking discordance between the clinical effects of validated anti-atherosclerotic 

therapies and their effects on plaque volume is due to a significant change in plaque 

composition or to deficiencies in the methodology of IVUS studies remains unknown. 

Nevertheless, recent studies have shed some light by showing significant changes in plaque 

composition with no alteration in the plaque burden (29,40).
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VULNERABLE PLAQUE 

Major improvements in the management and diagnosis of patients with coronary artery 

disease have been accomplished. Still, a large number of victims who are apparently healthy 

die suddenly without prior symptom (51,52). Most of these events are related to plaque 

rupture (PR) and subsequent thrombotic occlusion at the site of non-flow limiting 

atherosclerotic lesions in epicardial coronary arteries (50,53). In addition, silent PR and its 

subsequent wound healing accelerate plaque growth and are a more frequent feature in 

arteries with less severe luminal narrowing (54). These dire consequences of PR have brought 

about the development of several catheter-based techniques with the potential to detect in vivo

vulnerability features of coronary atherosclerotic plaques (33,55-57).

The detection of ruptured plaques by IVUS has been recently reported by several investigators 

(58-61). In these studies, PR was found to be ubiquitous in culprit vessels of acute myocardial 

infarction patients (59,61). Nevertheless, though less frequent, PR was also a common finding 

in non-culprit vessels and even in stable patients (58,59).  In addition, in agreement with 

angiographical findings, PR was non-uniformly distributed throughout the coronary tree, 

showing a clear clustering pattern involving particularly the proximal segments and sparing 

the distal segments and the left main coronary artery (60,62). Finally, the presence of PR has 

also been associated with high levels of CRP (61).

Although these studies have provided valuable data regarding morphologic features of already 

ruptured plaques, it is important to stress that they do not provide evidence about the 

prospective detection of rupture-prone plaques.

Histological characteristics of thin-cap fibroatheroma (TCFA), the major predecessor of 

plaque rupture, have been extensively described (52,63,64). Indeed, an expert consensus 
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document has established the major criteria for defining TCFA being: 1) the presence of a 

lipid-rich atheromatous core, 2) a thin fibrous cap with macrophage infiltration and decreased 

smooth muscle cell content and 3) expansive remodeling (65).

IVUS RF data analysis: IVUS-VH and Palpography 

As aforementioned, plaque characterization through visual interpretation of gray-scale IVUS 

is sub-optimal, especially when assessing heterogeneous, lipid-rich plaques (6).  Low echo-

reflectance plaques are considered “soft” or lipid-rich. However, the accuracy of gray-scale 

IVUS for discriminating lipid from fibrous tissue is limited since in addition to large amounts 

of extracellular lipids (low echo-reflective areas), the lipid core contains cholesterol crystals, 

necrotic debris and microcalcifications (highly echoreflective areas) (66).  

On the contrary, spectral analysis of IVUS RF data (IVUS-VH) has demonstrated its potential 

to provide an objective and accurate assessment of coronary plaque composition (28,29,67).  

By means of the frequency domain analysis of the RF data, tissue maps that classify plaque 

into four major components were constructed (28). In preliminary in vitro studies, four 

histological plaque components were correlated with a specific spectrum of the 

radiofrequency signal (28,67). These different plaque components were assigned colour 

codes. Calcified, fibrous, fibrolipidic and necrotic core regions were labelled white, green, 

greenish-yellow and red respectively (figure 1). IVUS RF data analysis may follow the 

progression of the disease not only with regards to its volume, but to its composition as well 

(29,42). In addition, this novel IVUS application may potentially refine risk stratification 

strategies, and allow a more comprehensive pathophysiologic approach towards natural 

history studies. Recently, using this technique, we have identified in vivo a surrogate of TCFA 

(IVUS-derived thin-cap fibroatheroma, IDTCFA) as a more prevalent finding in ACS than in 
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stable angina patients. In addition, the distribution of IDTCFA lesions along the coronary 

vessels was clearly clustered (33). 

Although the most accepted threshold to define a cap as “thin” has been set at 65 µm (68), a 

number of important ex vivo studies have used a higher (> 200 µm) thresholds (32,69,70). It 

is well established that significant tissue shrinkage occurs during tissue fixation (71). 

Furthermore, post-mortem contraction of arteries is an additional confounding factor (72). 

Since the axial resolution of IVUS RF data is between 100-150 µm, we assumed that the 

absence of visible fibrous tissue overlying a necrotic core suggested a cap thickness of below 

100-150 µm and used the absence of such tissue to define a thin fibrous cap (73). 

The eccentric accumulation of a lipid-rich necrotic core within the vessel wall is usually 

separated from the lumen by a thin fibrous cap. This observation led to the hypothesis that 

vulnerable lesions might have mechanical properties that differ from those of chronic stable 

lesions. Indeed, both plaque rupture and increased inflammatory markers have been reported 

to occur more frequently in regions and patients with increased mechanical stress (55,74,75).. 

The palpography rationale is that, at a defined pressure, soft tissue (lipid-rich) components 

will deform more than hard tissue components (fibrous-calcified) (30). Images obtained at 

different pressure levels and compared to determine the local tissue compression. The radial 

strain in the tissue is calculated by cross-correlation techniques on the radio frequency signal 

and can be displayed as a colour-coded image (figure 1) (30). The sensitivity and specificity 

to detect vulnerable plaques has recently been assessed in post-mortem human coronary 

arteries where vulnerable plaques were detected with a sensitivity of 88% and a specificity of 

89% (32). In addition to ex-vivo studies, this technique has also been tested in-vivo, where 

palpography detected a high incidence of deformable plaques in ACS patients. 
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Coronary remodelling 

Coronary artery remodelling was initially described by Glagov as a compensatory 

enlargement of the coronary arteries in response to an increase in plaque area (2). This 

concept has later evolved to a dynamic theory where vessels may also experience shrinkage in 

response to plaque growth (76). Several studies have associated positive (expansive) 

remodelling to an increase in inflammatory marker levels, larger necrotic cores, pronounced 

medial thinning and worse clinical presentation (77-80). IVUS has been utilized to assess the 

relationship between vascular remodelling and plaque composition (81-84). More recently, 

we have shown a significantly larger necrotic core content in positively remodelled lesions, 

whereas the fibrotic burden of plaques was inversely correlated with the remodelling index 

(85).

It is important though to stress that, ideally, the presence of coronary remodelling should be 

established by serial determinations (86). 

SHEAR STRESS 

Carotid and coronary studies have used MRI and IVUS to show that atherosclerosis has a 

tendency to arise more frequently in low-oscillatory shear stress regions such as in inner 

curvature of non-branching segments and opposite to the flow-divider at bifurcations (87-90).  

The pathophysiology of such phenomenon can be explained by the fact that low-oscillatory 

shear stress induces a loss of the physiological flow-oriented alignment of the endothelial 

cells, thus causing an enhancement of the expression of adhesion molecules and a weakening 

of cell junctions, ultimately leading to an increase in permeability to lipids and macrophages 

(91-94). Shear stress can be calculated by a combined approach using IVUS and angiography 

(90). Indeed, the relation between shear stress and plaque vulnerability is currently subject of 

intensive research efforts (94). 
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FUTURE DIRECTIONS 

Since IVUS-VH and palpography utilize the same source data (radiofrequency data analysis), 

information regarding both techniques might be obtained using the same pullback (figure 1); 

potentially increasing the prognostic value of certain seemingly pejorative plaque 

characteristics assessed in prospective natural history studies. Other future avenue is the 

imaging of the vasa vasorum, which can now be achieved using micro bubble-contrast 

enhanced IVUS, thus enabling the measurement of activity and inflammation within plaques 

(95).

As pictured along the chapter, IVUS has numerous applications that have supported the 

development and progress of interventional cardiology through the past decades. Towards the 

future, we foresee a pivotal role of IVUS for the detection of vulnerable plaque and the 

assessment of the effect of emergent medical strategies both related to plaque volume and 

composition. The utility of IVUS for carotid imaging has been less exploited and limited to 

the guidance of percutaneous coronary interventions (96). This was driven by the excellent 

imaging quality provided by non-invasive B-mode carotid ultrasound.    

However, the rising body of investigations using IVUS for the detection of vulnerable plaque 

might promote a more universal application of the technique potentially including imaging of 

mild carotid artery atherosclerosis (97). 
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FIGURES

Figure 1  

Matched cross-section of a left anterior coronary artery imaged by conventional (gray-scale) 

IVUS (a), IVUS-VH (b) and palpography (c). 

IVUS-VH colour-coding labels calcified, fibrous, fibrolipidic and necrotic core regions as 

white, green, greenish-yellow and red respectively. For palpography, the calculated local 

strain is also colour-coded, from blue (for 0% strain) through yellow (for 2% strain) via red.  

a b c
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Figure 2.  

Intravascular ultrasound (IVUS) transducer at the internal carotid artery (a, arrow indicates 

transducer location). Panel b shows a seemingly normal contrast angiography. IVUS (c) and 

corresponding MRA (d) cross-sections of the carotid bifurcation are shown. Wide eccentric 

plaque (between arrows) is seen similarly on both IVUS and magnetic resonance 

angiography.

(Extracted with permission from Rasanen, H. T. et al. Stroke 1999;30:827-833)�
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INTRODUCTION

Cardiovascular disease is a major cause of morbidi-
ty and mortality in the western hemisphere.1 Despite
major advances in the management and diagnosis of
patients with coronary artery disease, a large number
of victims who are apparently healthy die suddenly
without prior symptoms.2,3 Most of these events are re-
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lated to plaque rupture and subsequent thrombotic oc-
clusion at the site of non-flow limiting atherosclerotic
lesions in epicardial coronary arteries.4,5 In addition,
silent plaque rupture and its subsequent wound healing
accelerate plaque growth and are a more frequent fea-
ture in arteries with less severe luminal narrowing.6

According to histological studies, plaque composi-
tion plays a central role in the pathogenesis of epicar-
dial occlusion, irrespective of the severity of the un-
derlying stenosis.5

THE IMAGING TARGET:THE THIN-CAP
FIBROATHEROMA 

Recently, retrospective studies have identified mor-
phological and compositional characteristics of

Sudden cardiac death or unheralded acute coronary
syndromes are common initial manifestations of coronary
atherosclerosis and most such events occur at sites of
non-flow limiting coronary atherosclerosis. Autopsy data
suggests that plaque composition is a key determinant of
the propensity of atherosclerotic lesions to provoke clini-
cal events. Most of these events are related to plaque
rupture and subsequent thrombotic occlusion at the site
of non-flow limiting atherosclerotic lesions in epicardial
coronary arteries. Detection of these non-obstructive, lipid
rich, high-risk plaques may have an important impact on
the prevention of acute myocardial infarction and sudden
death. Currently, there are several intravascular tools ca-
pable of locally evaluating determinants of plaque vulne-
rability such as the size of the lipid core, thickness of the
fibrous cap, inflammation within the cap and positive re-
modeling. These new modalities have the potential to pro-
vide insights into the pathophysiology of the natural his-
tory of coronary plaque by means of prospective studies.

Key words: Vulnerable plaque. Coronary artery disea-
se. Intravascular techniques.

Nuevas tendencias en la evaluación de la placa
vulnerable mediante técnicas de cateterismo

La muerte súbita y los síndromes coronarios agudos
son, frecuentemente, manifestaciones iniciales de la car-
diopatía isquémica. Estudios post mórtem han indicado
que la composición de las placas ateromatosas es un
factor determinante para la predisposición de las lesiones
coronarias a la rotura y el subsiguiente evento clínico. La
mayor parte de estos eventos está relacionada con la ro-
tura de placas ateromatosas situadas en lesiones hemo-
dinámicamente no significativas. La detección de estas
placas no obstructivas, pero ricas en lípidos, podría tener
un gran impacto en la prevención del infarto y la muerte
súbita. Actualmente, hay diversas técnicas intravascula-
res capaces de evaluar distintos determinantes de vulne-
rabilidad coronaria localmente, tales como el tamaño del
core lipídico, el grosor y la inflamación de la cápsula fibro-
sa y el remodelamiento positivo.

Mediante la conducción de estudios prospectivos, es-
tas nuevas modalidades poseen el potencial para proveer
in vivo información acerca de la fisiopatología de la histo-
ria natural de la aterosclerosis coronaria. 

Palabras clave: Placa vulnerable. Enfermedad corona-
ria. Técnicas intravasculares.
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plaques prone to rupture.7,8 This has lead to a new
classification of coronary lesions that depicts plaque
progression in a more comprehensive manner.8

Thin-cap fibro atheroma (TCFA) lesions, the most
prevalent predecessor of plaque rupture, are composed
of a lipid-rich atheromatous core, a thin (£65 mm) fi-
brous cap with macrophage and lymphocyte infiltra-
tion, decreased smooth muscle cell content and expan-
sive remodeling.8,9

Detection of these non-obstructive, lipid rich, high-
risk plaques may have an important impact on the pre-
vention of acute myocardial infarction and sudden
death.

Although angiography can identify obstructive as
well as complex lesions,10 it is restricted to the visua-
lization of the coronary lumen and is unable to visua-
lize the coronary wall. Thus, features as vessel remo-
deling or plaque composition are missed. Recently, a
post-mortem study evaluated the geometrical aspect of
the vessel wall and showed a relationship between lo-
cal alterations of vessel size and plaque stability.11

Currently, there are several intravascular tools capa-
ble of locally evaluating determinants of plaque vul-
nerability such as the size of the lipid core, thickness
of the fibrous cap, inflammation within the cap and
positive remodelling.

A recent study proposed a critical cap thickness of
<65 micron based on post mortem histomorphome-
try.12 However, in vivo the threshold for defining a
fibrous cap as thin should probably be higher than
65 mm for several reasons. First, it is well esta-
blished that general tissue shrinkage can not be
avoided during histologic fixation which implies de-
hydration processes.13,14 Furthermore, circumferen-
tial stress at the luminal border of the plaque in-
creases critically when cap thickness is less than
approximately 150 mm.15

We summarize the current status of imaging tech-
niques that have the potential to detect the vulnerable
plaque features in vivo and may allow risk stratifica-
tion in a specific individual and ultimately guide sys-
temic and local preventive strategies.9,16-20

INTRAVASCULAR ULTRASOUND 

Gray scale IntraVascular UltraSound (IVUS) is an
invasive diagnostic tool that provides a real-time, high-
resolution, tomographic view of coronary arteries. It
thereby enables the assessment of morphology, severi-
ty and extension of coronary plaque.

IVUS is currently the only imaging modality that
can provide in vivo information regarding temporal
changes in the atherosclerotic plaque size.21

Qualitative plaque characterization is based on the
echogenicity of the received ultrasound signal, whe-
reas echolucent zones reflect lipid-rich tissue and
highly reflective structures with dorsal shadowing cal-
cified tissue. Nevertheless, plaque characterization
through visual interpretation of gray-scale IVUS is im-
precise, specially when assessing heterogeneous, lipid-
rich plaques.22

Axial resolution is limited to 100-200 mm thus im-
pairing the ability of detecting thin fibrous caps.
Notwithstanding, for the aforementioned reasons, we
believe that the threshold for defining a fibrous cap as
thin should be higher than 65 mm.

The detection of vulnerable plaques by IVUS is
mainly based on a series of case reports.23-26 These re-
ports describe morphologic features of already rup-
tured plaques but not the prospective detection of rup-
ture-prone plaques. Nevertheless, one prospective
study showed that large eccentric plaques containing
an echolucent zone by IVUS were found to be at in-
creased risk of instability even though the lumen area
was preserved at the time of initial study.27

ROLE OF VESSEL REMODELING

Vascular remodeling was described by Glagov as a
compensatory enlargement of the coronary arteries in
response to an increase in plaque area.28 Several stu-
dies showed an increase level of inflammatory mar-
ker levels, larger lipid cores and pronounced medial
thinning in positive remodeled vessels.11,29,30 This
concept has further evolved to a dynamic theory
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TABLE. Comparison of Catheter-Based Techniques for Detection of Individual Features of Vulnerable Plaque

Technique Thin-Cap Detection Inflammation Lipid Core Remodeling

Intravascular ultrasound + - + +++
Echogenecity - - + -
Palpography ++ ++ + -
Virtual histology ++ - +++ +++
Optical coherence tomography +++ + + -
Thermography - +++ - -
Angioscopy - - ++ - 
Intravascular MRI - - ++ -
Spectroscopy - ++ ++ -
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where vessels may also shrink in response to plaque
growth.31 This remodeling modality has been related
to a more stable phenotype and clinical presenta-
tion.11,29,32,33 Recently, the relationship between vascu-
lar remodeling and plaque composition was assessed
using IVUS.34-36 In these studies, the remodeling index
for soft lesions was significantly higher than those
for fibrous/mixed and calcified lesions.34-36 It is note-
worthy though, that most studies evaluating this phe-
nomenon are of cross sectional design. Since atheros-
clerosis is usually a diffuse disease, finding a fully
non-diseased reference is not guaranteed. Therefore,
the early presence of remodeling in the reference site
can’t be ruled out.

QUANTITATIVE IVUS ECHOGENICITY
ASSESSMENT

We recently developed a computer-aided, gray-scale
value, analysis program for plaque characterization.37

Based on the mean gray level (brightness) of the ad-
ventitia, plaque is classified as more (hyperechogenic)
or less bright (hypoechogenic) in relation to the adven-
titia (Figure 1). The percentage of hypoechogenic
plaque is calculated for the entire region of interest
and for slices with significant plaque. In the carotid
circulation, plaque echogenicity, measured noninva-
sively, has been related to the histological components
of plaque.38-41 Furthermore, carotid plaque echolucen-
cy (low echogenicity) was associated with future neu-
rological events.42-44 IVUS-based plaque characteriza-
tion in the coronary circulation requires invasive
assessment and has been less extensively studied. A
recent study showed that treatment with atorvastatin
resulted in quantifiable changes in coronary plaque
echogenicity, compatible with changes in plaque com-
position.45 These findings offered a potential explana-

tion for the clinical efficacy of statins despite only
modest effects on plaque volume.21,46 Both ex vivo and
clinical studies that will provide validation data about
the technique are currently in progress.

Intravascular Ultrasound Elastography 
and Palpography

An important patho-morphologic feature of vulnera-
ble plaque is 

the eccentric accumulation of a lipid-rich necrotic
core within the vessel wall, separated from the lumen
by a thin fibrous cap. This observation led to the hy-
pothesis that vulnerable lesions might have mechani-
cal properties that differ from those of chronic stable
lesions. Intravascular ultrasound elastography and pal-
pography are techniques that allow the assessment of
local mechanical tissue properties.19,47

At a defined pressure, soft tissue (lipid-rich) com-
ponents will deform more than hard tissue compo-
nents (fibrous-calcified).48 In coronaries, the tissue of
interest is the vessel wall, whereas the blood pressure
with its physiologic, systolic and diastolic changes
during the heart cycle is used as the excitation force.
Images obtained at different pressure levels are com-
pared to determine the local tissue compression. The
radial strain in the tissue is calculated by cross-corre-
lation techniques on the radio frequency signal and
can be displayed as a colour-coded image.48 The sen-
sitivity and specificity to detect vulnerable plaques
has recently been assessed in post-mortem human
coronary arteries where vulnerable plaques were de-
tected with a sensitivity of 88% and a specificity of
89% (Figure 2).19 In addition to ex-vivo studies, this
technique has also been tested in vivo, where palpo-
graphy detected a high incidence of deformable
plaques in acute coronary syndrome (ACS) patients.

Rodríguez-Granillo GA, et al. New Insights Towards Catheter-Based Identification of Vulnerable Plaque
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Figure 1. IVUS echogenecity: the ad-
ventitia is defined as tissue outside the
external elastic membrane. For all non-
shadowed adventitia pixels, the mean
value and standard deviation are calcu-
lated. To observe the suitability, a nor-
mal distribution curve based on the
same mean and standard deviation
histogram is created. Hypoechogenic
areas are colored red and hyperecho-
genic areas green.
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Furthermore, the number of highly deformable le-
sions was correlated to the clinical presentation and
levels of C-reactive protein.47

The main limitation of the technique is that it de-
pends on the quality and stability of the coronary pres-
sure signal. Accordingly, it might be disturbed by high
heart rates and rhythm disturbances.

Virtual Histology

Gray-scale IVUS is of limited value for identifica-
tion of specific plaque components.49 Calcified and
dense fibrous tissues usually are highly echo-reflec-
tive thus calcified areas are commonly overestimated.
On the other hand, low echo-reflectance plaques are
considered “soft” or lipid-rich. However, the accura-
cy of gray-scale IVUS for discriminating lipid from
fibrous tissue is limited since in addition to large
amounts of extracellular lipids (low echo-reflective
areas), the lipid core contains cholesterol crystals,
necrotic debris and microcalcifications (highly echo-
reflective areas).8

A recently introduced technique (IVUS-Virtual His-
tologyTM [IVUS-VH], Volcano Therapeutics, Rancho
Cordova, CA) that uses the substrate (frequency do-
main analysis) of the IVUS radiofrequency (RF) data
rather than the envelope (amplitude), has demonstrated
its potential to provide an objective and accurate as-
sessment of coronary plaque composition in studies of
explanted human coronary segments.20

IVUS-VH uses spectral analysis of IVUS radiofre-
quency data to construct tissue maps that classify
plaque into four major components. In preliminary in
vitro studies, four histological plaque components (fi-
brous, fibrolipidic, lipid core, and calcium) were cor-
related with a specific spectrum of the radiofrequency
signal.20,50 These different plaque components were as-
signed color codes. Calcified, fibrous, fibrolipidic, and
lipid core regions were labeled white, green, greenish-
yellow, and red respectively (Figure 3).

IVUS studies have failed to conclusively demons-
trate regression in plaque burden over time.21,51,52

IVUS-VH has, though, the potential to follow the pro-
gression of the disease not only with regards to its vo-
lume, but to its composition as well.53 Moreover, this
tool could also be helpful in evaluating the effect of
both conventional and emerging therapeutic interven-
tions.

With regards to vulnerable plaque detection, IVUS-
VH allows an accurate and quantitative assessment of
2 of the main features of the TCFA: lipid core and po-
sitive remodeling.

A main limitation of this technique is its inability to
detect thin fibrous caps. However, as aforementioned
we believe that the threshold for defining a thin fibrous
cap should be higher than 65 mm.

Optical Coherence Tomography

Optical coherence tomography (OCT) is an ima-
ging technique that allows high-resolution (axial re-
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Figure 2. Vulnerable plaque marked in
IVUS (A), elastogram (B), macrophage
staining (C), and collagen staining (D).
In the elastogram, a vulnerable plaque
is indicated by a high strain on the sur-
face. In the corresponding histology, a
high amount of macrophages (C) is vi-
sible with a thin cap (D) and a lipid
pool (LP). (Schaar et al. Circulation.
2003;108:2636.)
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solution of 15 mm) imaging in biological systems.54

Accordingly, OCT has the capacity to allow in vivo,
real time visualization of a thin fibrous cap. OCT
imaging is based on low coherence near infrared light
that is emitted by a superluminescent diode. A center
wave length around 1300 nm is used since it mini-
mizes the energy absorption in the light beam caused
by protein, water, haemoglobin, and lipids. The light
waves are reflected by the internal microstructures
within biological tissues as a result of their differing
optical indices. 

Animal and Post-mortem studies demonstrated the
accuracy of OCT in comparison to histology.55-57

These studies showed that OCT can detect both nor-
mal and pathologic artery structures (Figure 4).57 Re-
cent in vivo data have shown that OCT can differenti-
ate different plaque types and suggested the possibility
of detection of macrophages in atherosclerotic
plaques.58,59

In our experience, TCFA with low-reflecting necro-
tic cores covered by highly reflecting thin (mean 50
mm) fibrous caps cap can be visualized in patients
scheduled for percutaneous coronary intervention
(PCI).60

The high resolution of OCT offers the potential to
detect TCFA in living patients.59,60 OCT imaging, how-
ever, is limited by the relative shallow penetration
depth that hampers imaging of the entire vessel wall in
medium and large vessels large vessels, and the need
to clear the artery from blood during imaging causing
transient ischemia of the studied region.

Intravascular Thermography

The rationale to measure vascular temperature is
based on the observation that atherosclerosis is ac-
companied by inflammation. Vulnerable plaques
have been associated with increased macrophage ac-
tivity, metabolism and inflammation.61 Based on

these findings the hypothesis was generated that
these “activated” macrophages produce thermal
energy, which might be detected on the surface of
these atherosclerotic lesions. Infrared and contact-
sensor thermographies are the most important inva-
sive methods (Figure 5). The contact thermographic
methods seem to be the most feasible at the present
time, mainly due to the difficulties of infrared radia-
tion to penetrate the flowing blood to detect vessel
wall temperature. A small study of 19 patients that
included patients with stable angina, unstable angi-
na, and with acute myocardial infarction reported
temperature heterogeneity in human atherosclerotic
coronary plaques.62 Intracoronary temperature was
assessed using a dedicated catheter. In most coro-
nary segments with atherosclerotic plaques a rise in
temperature was seen as compared to coronary seg-
ments with a normal vessel wall. Temperature diffe-
rences between an atherosclerotic plaque and a nor-
mal vessel wall increased progressively from
patients with stable angina to patients with acute
myocardial infarction with a maximum temperature
difference to the background temperature of
1.5±0.7°C. However, there are somewhat conflicting
published and unpublished reports with other ther-
mography devices (circular basket or self expanding
arms) that have documented a much lower hetero-
geneity of temperature distribution. The most likely
explanation for this discrepancy in temperature
observations might be related to the difference in
catheter design and the way coronary flow is affec-
ted.

These preliminary findings about the thermal status
of atherosclerotic plaques seem promising. However,
accurate temperature evaluation requires direct contact
of the thermistors with the vessel wall, carrying the
potential risk of endothelial damage. In addition, the
cooling effect caused by blood flow may hamper data
interpretation.63
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Figure 3. Serial histological sectioning
of a coronary vessel. The middle and
below panels depict the cross-correla-
tion with Virtual HistologyTM and
gray-scale IVUS respectively. Calcified,
fibrous, fibrolipidic and lipid core re-
gions are labeled white, green, green-
ish-yellow and red respectively.
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Angioscopy

This technique allows real-time direct visualization
of coronary plaques (Figure 6). Ex vivo validation of
angioscopy was performed by Thieme et al, who
compared angioscopic observations with histologic
samples obtained by coronary atherectomy. In this
study, yellow plaques were related to atheromatous
lesions.64 These findings were confirmed in clinical
studies, where lipid-rich, rupture-prone plaques were
easily detected by angioscopy as yellow plaques, and
found more commonly in acute coronary syn-
dromes.65 Furthermore, angioscopy has shown in-

triguing results in the prediction of acute coronary
syndromes.65

Despite these encouraging findings, this technique
examines solely the luminal surface of the intima.
Thus, key TCFA features such as thickness of the cap,
lipid core content, and remodelling can not be as-
sessed. In addition, blood must be cleared away from
the view causing transient ischemia of the studied re-
gion.

RAMAN SPECTROSCOPY

Raman spectroscopy is a technique that can charac-
terize the chemical composition by means of the Ra-
man effect.66 This effect is created when incident light
excites molecules in a tissue sample, which scatter
light in a different wave length. This change in wave
length called the “Raman effect” is dependent on the
chemical components of the tissue sample. Thus, Ra-
man spectroscopy can provide quantitative informa-
tion about molecular composition of a sample.67 The
spectra obtained require post-processing to differentia-
te between plaque components (Figure 7). In vitro
studies have demonstrated that diagnostic algorithms
allow the discrimination of coronary arterial tissue in 3
categories: non-atherosclerotic, non-calcified and cal-
cified plaques.67

The main limitations of the technique are the inabi-
lity to provide geometrical information, the narrow
penetration depth (1.0 to 1.5 mm) and the absorbance
of the laser light by the blood.

INTRAVASCULAR MAGNETIC RESONANCE
IMAGING 

Intravascular magnetic resonance imaging (MRI)
is another potential approach to determine plaque
composition based on the diffusion properties of the
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Figure 5. Dedicated thermography ca-
theter with 5 thermistors in contact to
the vessel wall showing significant hete-
rogeneity in the measurements compati-
ble with increased macrophage activity,
metabolism, and inflammation.

Figure 4. Optical coherence tomography of a non-flow limiting lesion
showing a “swiss-cheese” vessel wall suggestive of a thin-cap fibroat-
heroma.
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analyzed tissue. MRI can determine the presence of
lipid within the arterial wall. Current technology for
intravascular MRI consists of a self-contained MRI
probe that allows sequential scanning of different
vessels sectors. The lipid-content within a sector is
determined and the data is displayed color-coded
(yellow corresponds to high lipid content within the
region of interest, blue to low lipid-content [Figure
8]).

The intravascular MRI system has been evaluated in
ex-vivo human carotid tissue, aortic tissue and coro-
nary arteries to correlate MRI findings with histology.
In ex vivo aortic studies the MRI correctly predicted
the histologic results in 15 of 16 aortic cases, and in
ex-vivo coronary arteries 16 of 18 lesions were cor-
rectly predicted, including the diagnosis of 3 thin cap
fibroatheromas.68,69 In vivo feasibility is currently un-
der investigation in a multi-center trial.

FUTURE PERSPECTIVES

It has previously been shown that a multifocal insta-
bility process is present in acute coronary syn-
dromes.26,70 Rioufol et al demonstrated in ACS patients
that at least one plaque rupture is found away from the
culprit lesion in 80% of the patients, away from the
culprit artery in 71% and in the 2 non-culprit arteries
in 12.5%.26

The large number of high-risk lesions found through-
out the coronary tree by means of angiography,71 an-
gioscopy,70 IVUS,26 and palpography47 in addition to the
unpredictability of the natural history of such lesions
and  the uncertainty about if vulnerable plaque charac-
teristics might subsequently lead to fatal or non-fatal is-

chemic events, suggests that potential local preventive
strategies could not be cost-effective. 

However, high-risk “yellow” plaques identified in
stable patients by angioscopy have been found predic-
tors of ischemic events.65 Accordingly, a systemic ap-
proach including intensive statin therapy could be a
reasonable approach to “cool-down” the inflammatory
burden.

Although enormously promising, catheter-based
techniques need more extensive validation and an ap-
propriate vulnerable plaque model is yet to be deve-
loped. In addition, these techniques interrogate the
coronary arteries in a localized manner, whereas in-
flammation is distributed throughout the whole coro-
nary tree.72

These new modalities have the potential to provide
insights into pathophysiology in studies of the natural
history of coronary plaque. Furthermore, they may
provide surrogate endpoints. Finally, the combination
between novel imaging techniques and the assessment
of circulating biomarkers could have a potential role in
patient risk stratification and eventually offer the po-
tential to allow the effect of conventional and emer-
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Figure 6. Patient with anterior myocardial infarction. Angioscopic ima-
ges of the culprit lesion (8 and 9) and of all the yellow plaques in the
non-culprit segments are presented. Thrombus was detected over the
yellow plaque in the culprit segment. (Asakura et al. J Am Coll Cardiol.
2001;37:1284-8.)

Figure 7. Raman spectrum from atheromatous plaque and model fit
(A). The increase of the relative weights of the chemical components
FC and CE, as compared with intimal fibroplasia, corresponds to the
presence of an atheromatous core under a fibrous cap (B, bar indica-
tes 100 mm). An abundance of lipid-laden foam cells (open arrows)
and FC crystal clefts (solid arrows) is visible in the atheromatous core
(C, bar indicates 25 mm). (Romer et al. Circulation. 1998;97:878-85.)
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ging pharmacologic interventions with novel mecha-
nisms of action as well.53
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Abstract

Background: Both mechanical and phased-array catheters are used in clinical trials to assess quantitative
parameters. Only limited evaluation of the in vivo agreement of volumetrical measurements between such
systems has been performed, despite the fact that such information is essential for the conduction of
atherosclerosis regression trials. Methods and results: We prospectively evaluated the agreement in mor-
phometric measurements and intravascular ultrasound (IVUS)-based plaque characterization between a
40 MHz rotating transducer (3.2 F Atlantis, Boston Scientific Corp.) and a 20 MHz phased-array catheter
(2.9 F Eagle Eye, Volcano Therapeutics, Rancho Cordova, California) in 16 patients. Lumen
(7.3 ± 2.0 mm2 vs. 6.7 ± 1.8 mm2, p = 0.001) and vessel (11.8 ± 3.3 mm2 vs. 11.0 ± 2.9 mm2,
p = 0.02) cross-sectional areas (CSA) were significantly greater with the 20 MHz system. Plaque CSA
measurements showed no significant difference between systems (4.4 ± 2.3 mm2 vs. 4.4 ± 2.1). The rel-
ative differences were less than 10% for the three variables. On IVUS-based tissue characterization (13
patients), calculated percentage hypoechogenic volume was significantly higher for the 20 MHz system
(96.7 ± 2.38 vs. 88.4 ± 5.53, p < 0.0001). Conclusions: Quantitative IVUS analyses display significant
catheter type-dependent variability. It is unclear whether the variability reflects overestimation of mea-
surements with the phased-array or underestimation with the mechanical system. Although plaque
burden measurements did not differ significantly between systems, it appears prudent to recommend the
use of a single system for progression/regression studies.

Introduction

Intravascular ultrasound (IVUS) allows a high
resolution tomographic assessment of the coro-
nary artery and provides accurate measurements
of both lumen and vessel wall dimensions. Ini-
tially used in interventional cardiology for diag-
nostic and interventional procedures, IVUS has
more recently been used as a tool to assess ath-
erosclerosis progression/regression in single and

multicenter studies, given its ability to accurately
quantify the presence and extent of plaque for-
mation [1–3]. In addition, plaque characterization
using gray-scale IVUS and the spectral analysis
of the raw radiofrequency data is subject to
intensive research [4–6]. Currently, a number of
IVUS systems are commercially available and
there is limited in vivo data regarding the agree-
ment between mechanical and phased-array
catheters although this information is valuable
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for the conductance of multicenter progression/
regression studies. Previous in vitro and in vivo
data showed significant variability between differ-
ent catheters in quantitative and tissue character-
ization data [7–9]. The purpose of this study was to
compare in vivo the quantitative coronary ultra-
sound measurements and plaque characterization
with mechanical and phased-array catheters.

Materials and methods

Patient population

Patients were eligible if they had a de novo, non-
significant (angiographically <50%) stenosis in a
native coronary artery. Patients were excluded
from the study if any of the following conditions
were present: (1) presentation with acute coronary
syndrome, (2) vessel tortuosity (3) calcified vessels.
The institutional ethics committee approved the
study protocol and written informed consent was
obtained from all patients.

IVUS imaging systems

Two commercially available systems were used: a
single-element, 40 MHz rotating transducer (3.2 F
Atlantis, Boston Scientific Corp.), and a 20 MHz
phased-array catheter (2.9 F Eagle Eye, Volcano
Therapeutics, Rancho Cordova, California).

Vessel interrogation

IVUS was performed after intracoronary admin-
istration of nitrates. Cine runs, before and during
contrast injection, were performed to define the
position of the IVUS catheter ‡10 mm distal to a
clear anatomical landmark. Using an automated
pullback device, the transducer of the phased array
catheter was withdrawn at a continuous speed of
0.5 mm/s until the ostium of the study vessel was
seen. Subsequently, the same procedure was per-
formed with the other IVUS imaging catheter
using a different automated pullback device (Bos-
ton Scientific Corp, Santa Clara, USA) at the same
speed. IVUS data was stored on S-VHS videotape.
The videotapes were digitized on a computer

system, transformed into the DICOM medical
image standard and stored on an IVUS Picture
Archiving and Communications System (PACS).

IVUS analysis

Quantitative coronary ultrasound (QCU) analysis
was performed by a core laboratory (Cardialysis
BV, Rotterdam, The Netherlands) using validated
software (Curad, version 3.1, Wijk bij Duurstede,
The Netherlands). IVUS analysts were not aware
of the purpose of the study. The regions of interest
(ROI) were matched simultaneously for the two
systems and selected by an independent observer
who did not participate in the contour detection
and subsequent analysis. The borders of the
external elastic membrane (EEM) and the lumen–
intima interface were determined with manual
planimetry and enclosed a volume that was defined
as the coronary plaque plus media volume. Lumen
(LCSA), vessel (VCSA), and plaque (PCSA) cross
sectional areas (CSA) were evaluated. Plaque CSA
was calculated as:

PCSA ¼ Vesselarea � Lumenarea

IVUS tissue characterization

In addition to volumetric parameters, IVUS also
provides information on plaque echogenicity, a
potential source of information on plaque com-
position. The acoustic characterization of a coro-
nary plaque has been investigated by in vitro and
in vivo studies that support a role for echogenicity
as a predictor of histological plaque composition
[1, 6, 10–12]. In the present study, we used a
computer-aided grey scale value analysis program
for plaque characterization [13]. Using the mean
grey level of the adventitia as a threshold, five
main tissue types can be characterized (Figure 3):
(1) hypoechogenic tissue has a mean grey level
lower than that of the adventitia, (2) hyperecho-
genic tissue, defined as tissue with a mean grey
value higher than that of the adventitia, (3) calci-
fied tissue, defined as a tissue with a mean grey
value higher than that of the adventitia with
associated acoustic shadowing, (4) unknown
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tissue, defined as tissue shadowed by calcification
and (5) ‘upper tissue’, defined as tissue that has a
mean grey value higher than the mean adventitial
intensity plus two times its standard deviation
but is not typical calcified tissue with acoustic
shadowing. The percentage of hypoechogenic
plaque was calculated for the entire ROI, exclud-
ing ‘upper tissue’.

Statistical analysis

Results are reported as mean ± standard devia-
tion. Bland–Altman plots were constructed in
order to assess the agreement between measure-
ments with both types of catheter [14]. This
method plots the mean against the difference in
measurements between catheters. Limits of agree-
ment were set by adding two SDs to the mean
difference for the upper limit and by substracting
two SDs from the mean difference for the lower
limit. A p value of less than 0.05 indicated statis-
tical significance.

Results

Sixteen patients were included in the analysis.
The mean age was 64 ± 9 years (range 49–82),
9 patients (56.3%) were males. The study vessel
location was RCA 4 (25%), LCX 5 (31%) and
LAD 7 (44%). Table 1 shows CSA measurements
with the two systems. Lumen (7.3 ± 2.0 mm2 vs
6.7 ± 1.8 mm2, p = 0.001) and vessel
(11.8 ± 3.3 mm2 vs. 11.0 ± 2.9 mm2, p = 0.02)
CSAs were significantly larger with the 20 MHz.
PCSA measurements showed no significant

difference between systems (4.4 ± 2.3 mm2 vs
4.4 ± 2.1, p = NS). The relative differences were
less than 10% for the 3 variables. Bland–Altman
plots for LCSA, VCSA and PCSA are shown in
Figure 1 (a, b, c).

Tissue characterization

Paired tissue characterization data was available
for 13 patients. The percent hypoechogenic vol-
ume was significantly higher with the 20 MHz
system (96.7 ± 2.38 vs. 88.4 ± 5.53, p<0.0001).
Figure 2 shows the systematic difference between
both systems.

Discussion

IVUS is currently been employed as a tool to assess
atherosclerosis progression/regression in longitu-
dinal studies [6, 15–17]. As the impact of drug
therapies on the atherosclerotic plaque burden over
time is relatively small, highly reproducible IVUS
measurements are essential. A number of IVUS
systems are commercially available and the
potential impact of inter-catheter variability, in this
setting, has not been extensively studied. Mechan-
ical and phased-array catheters have relative
advantages and disadvantages. Mechanical cathe-
ters have higher resolution but display specific
artifacts such as non-uniform rotational distortion.
In addition, far field imaging can be more prob-
lematic with mechanical catheters due to amplified
attenuation and enhanced blood backscatter. On
the other hand, phased-array catheters have lower
resolution resulting in inferior near-field imaging
and as they are not pulled-back within a sheath, are
more susceptible to non-uniform pullback speed
particularly in tortuous vessels.
Three studies explored the variability between

such systems and results were not determinant [7,
18, 19].
In an in vitro study conducted by Schoenhagen

et al., two mechanical and two phased-array cath-
eters were compared. The largest difference in
measurements compared to a phantom model was
found with a 30 MHz mechanical catheter [18]. In
the study of Hiro et al., the phased array system

Table 1. Cross-sectional area measurements for two different

IVUS imaging catheter systems (n:16).

Length LCSA VCSA PCSA

20 MHz 37.1 ± 16.8 7.3 ± 2.0 11.8 ± 3.3 4.4 ± 2.3

40 MHz 35.7 ± 15.7 6.7 ± 1.8 11.0 ± 2.9 4.4 ± 2.1

Absolute D 1.4 ± 2.2 0.6 ± 0.7 0.7 ± 0.9 0.1 ± 0.4

Relative D 3.0 ± 5.8 9.3 ± 8.7 5.9 ± 6.7 )1.4 ± 13.4

p value 0.023 0.001 0.005 NS

LCSA, VCSA and PCSA refer to lumen, vessel and plaque

cross-sectional areas.

y ( , p )
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showed a tendency towards a higher correlation
with histology in comparison tomechanical systems
[8].
The present in vivo study shows a slight sys-

tematic difference in lumen and vessel area mea-
surements between the 20 MHz and the 40 MHz

catheters. These results are consistent with previ-
ously reported in vivo data [19] . It remains unclear
whether such variability is caused by an overesti-
mation of measurements with the phased-array
system, or by an underestimation by the mechan-
ical system. It is noteworthy, yet expected, that
measurements in vessels with mild disease were
subject to greater variability (Figure 1a).
Plaque burden measurements, a key endpoint

for atherosclerosis progression/regression trials,
showed no difference between the two systems [16].
Similar results have been shown between different
mechanical catheters[9]. Notwithstanding, the
variability shown in direct measurements, albeit
low (<10%), is not insignificant when taking into

Figure 1. (a) Bland–Altman plot where the X axis shows the

mean lumen cross sectional area (LCSA, mm2), and the Y axis

shows the difference between the LCSA measurements by 20

and 40 MHz. Thin discontinuous lines show limits of agree-

ment (upper limit 1.95 mm2 and lower limit )0.65 mm2). (b)
Bland–Altman plot where the X axis shows the mean vessel

cross sectional area (VCSA, mm2), and the Y axis shows the

difference between the VCSA measurements by 20 and

40 MHz. Thin discontinuous lines show limits of agreement

(upper limit 2.42 mm2 and lower limit )1.0 mm2). (c) Bland–
Altman plot where the X axis shows the mean plaque cross

sectional area (PCSA, mm2), and the Y axis shows the differ-

ence between the PCSA measurements by 20 and 40 MHz. Thin

discontinuous lines show limits of agreement (upper limit

1.0 mm2 and lower limit )0.88 mm2).
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Figure 2. This plot shows the individual (n:13) hypoechogenic

volume (%) for the two systems. The percentage hypoechogenic

volume was significantly and systematically higher in the

20 MHz system (96.7 ± 2.38 vs. 88.4 ± 5.53, p < 0.0001).
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Figure 3. Cross-sectional and longitudinal views of a matched region of interest with 40 (a) and 20 (b) MHz. The adventitia is defined

as tissue outside the external elastic membrane. For all non-shadowed adventitia pixels, the mean value and standard deviation are

calculated. To observe the suitability, a normal distribution curve based on the same mean and standard deviation histogram is

created. Hypoechogenic areas are colored red (dark circle) and hyperechogenic areas green (lighter spots).

Colour figures on pages 441-449
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account the relatively small changes observed with
drug therapies on plaque burden over time and
therefore might contribute to a misinterpretation
of their real biological effects.
Our results confirm that the precision required

for accurate assessment of modest drug effects
could be compromised when different IVUS sys-
tems are used in a single study.
Furthermore, the differences shown between

catheters are comparable to those previously
shown on intra and inter-observer variability [20].
We thus believe that the use of the same IVUS
system for longitudinal assessments should be
encouraged in order to achieve optimal quality
standards [21].
However, the use of a single IVUS system for

the conduction of multicenter studies is not easy in
practice and it has been previously established that
calibration equation methods can correct for dif-
ferences between catheters.
In line with the morphometric measurements,

tissue characterization data with the 20 MHz
catheter showed systematically higher hypoecho-
genic volumes and percentages. It is well known
that mechanical catheters have increased acoustic
power since they send all the energy in the same
direction. Conversely, phased-array catheters send
the energy in multiple directions, attenuating their
acoustic power. Accordingly, this could potentially
be the source for such difference.

Conclusions

In this in vivo study where we evaluated the
agreement between two different catheter designs,
plaque burden measurements, a key endpoint for
atherosclerosis progression/regression trials,
showed no difference between the two systems.
However, a significant and systematic variability
was detected in direct measurements. Tissue
characterization yielded a similar systematic dif-
ference between catheters.
It remains unclear whether the difference is

caused by an overestimation of measurements with
the phased-array system, or by an underestimation
by the mechanical system. Nevertheless, until this
issue is further explored, we consider that the use

of a single IVUS system should be recommended
for serial studies.

Limitations

The number of patients included in this study was
small. However, the conductance of large in vivo
studies of this type is difficult due to obvious eth-
ical issues. The relatively small amount of plaque
in some patients influenced the results as clearly
shown in the Bland–Altman plots. Finally, the
present study data was processed as analog (video
tape). Digital processing could have improved the
results. However, we chose the former processing
since it is the most commonly used.
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Geometrical Validation of Intravascular Ultrasound
Radiofrequency Data Analysis (Virtual Histology)

Acquired With a 30 MHz Boston Scientific
Corporation Imaging Catheter

Gastón A. Rodriguez-Granillo, MD, Nico Bruining, PhD, Eugene Mc Fadden, MD,
Jurgen M.R. Ligthart, Jiro Aoki, MD, Evelyn Regar, MD, PhD,
Pim de Feyter, MD, PhD, and Patrick W. Serruys,* MD, PhD

Recently, the plaque characterization field was explored with the use of the substrate
(frequency domain analysis) rather than the envelope (amplitude or gray-scale imaging)
of the intravascular ultrasound (IVUS) radiofrequency data. However, there is no data
about the agreement of quantitative outcome between the two methods. The aim of this
study was to assess the correlation and agreement between quantitative coronary ultra-
sound and the geometrical measurements provided by the spectral analysis of ultra-
sound radiofrequency data [IVUS-Virtual Histology (IVUS-VH), Volcano Therapeutics).
Twenty-five patients were included in this study. The IVUS catheter used was a commer-
cially available mechanical sector scanner (Ultracross 2.9 Fr 30 MHz catheter, Boston
Scientific) covered with an outer sheath. IVUS-VH significantly underestimated lumen
[relative difference (RD) 5 14.8 6 5.6; P < 0.001], vessel (RD 5 14.1 6 4.8; P < 0.001), and
plaque (RD 5 11.5 6 10.8; P < 0.001) cross-sectional areas (CSAs). Nevertheless, when
adjusted for the ultrasound propagation delay caused by the sheath, relative differences
of measurements were remarkably low (0.49% 6 6.3%, P 5 0.64 for lumen; 2.33% 6

4.6%, P 5 0.007 for vessel; and 4.2% 6 10.4%, P 5 0.005 for plaque CSA). These data
suggest that the volumetric output of the IVUS-VH software underestimates measure-
ments when acquired with a 30 MHz catheter. However, after applying a mathematical
adjustment method for the ultrasound propagation delay caused by the outer sheath of
the 30 MHz catheter, relative differences of direct measurements were negligible. These
results suggest that ultrasound radiofrequency data analysis could provide, aside from
precise compositional data, an accurate geometrical output. ' 2005 Wiley-Liss, Inc.

Key words: ultrasonography; atherosclerosis; imaging

INTRODUCTION

Intravascular ultrasound (IVUS) provides a tomo-
graphic view of coronary arteries, thereby facilitating
the assessment of morphology, severity, and extension
of a certain lesion. In addition, it enables the operator
to choose more accurately the device size [1–3]. Sev-
eral IVUS studies using different therapeutic strategies
were recently conducted to assess progression/regres-
sion of plaque and showed a discordance between the
clinical effects of validated therapies and their effects
on plaque burden [4–6]. However, since stability of
atherosclerotic plaques has been linked to their histo-
logical composition [7], precise plaque characterization
could provide important additional information and
become a target for future drug therapies. In vitro
studies have shown that accurate visual interpretation

of IVUS gray-scale images for plaque composition is
limited [8]. Recently, an ex vivo validation study
showed that plaque characterization with the use of the
substrate (frequency domain analysis) rather than the
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envelope (amplitude) of the IVUS radiofrequency data
was feasible and four plaque types (fibrous, fibrolipi-
dic, lipid-core, and calcium) as defined by histology
could be correlated with a specific spectrum of the
radiofrequency signal [9]. In the present study, we
evaluated the agreement between the output of a vali-
dated (Curad, version 3.1; Wijk bij Duurstede, The
Netherlands) standard gray-scale quantitative coronary
ultrasound (QCU) software and the geometrical meas-
urements (lumen, vessel, and plaque) provided by
ultrasound radiofrequency data analysis (IVUS-Virtual
Histology; Volcano Therapeutics, Rancho Cordova,
CA) of the same region of interest (ROI).

MATERIALS AND METHODS

Patient Population

The study population consisted of a subset of 25
patients who were referred for percutaneous interven-
tion and where IVUS-Virtual Histology (VH) was per-
formed in addition to conventional IVUS in a noncul-
prit vessel. The study protocol was approved by the
institutional ethics committee and a written informed
consent was obtained from all patients.

Intravascular Ultrasound

The IVUS catheter used was a commercially available
mechanical sector scanner (Ultracross 2.9 Fr 30 MHz
catheter; Boston Scientific, Santa Clara, CA) covered
with a 127 mm outer sheath to prevent direct contact
of the ultrasound element to the vessel wall. IVUS
was performed prior to any interventions. Using an
automated pullback device, the transducer was with-
drawn at a continuous speed of 0.5 mm/sec. Cine runs
before and during contrast injection were performed to
define the position of the IVUS catheter before the
pullback was started. IVUS data were acquired after
the intracoronary administration of isosorbide dinitrate
and the data were stored on S-VHS videotape. The
videotapes were digitized on a computer system, trans-
formed into the DICOM medical image standard, and
stored on an IVUS Picture Archiving and Communica-
tions System (PACS).
QCU analysis was performed by the core laboratory

(Cardialysis, Rotterdam, The Netherlands) using vali-
dated semiautomatic contour detection software
(Curad, version 3.1; Wijk bij Duurstede, The Nether-
lands). The IntelliGate image-based gating method was
applied to eliminate catheter-induced image artifacts
by retrospectively selecting end-diastolic frames [10].
Contour detection was performed using a longitudinal
view and correcting each cross-sectional area (CSA)
contours using a cross-sectional view. Whenever side
branches were encountered throughout the ROI, the

semiautomatic contour detection software interpolated
the contours. The borders of the external elastic mem-
brane (EEM) and the lumen-intima interface enclosed
a volume that was defined as the coronary plaque plus
media volume.

Virtual Histology

In vivo experience. Extensive methodological
details about the technique have been described else-
where [9]. Briefly, IVUS-VH is a catheter-based tech-
nique that uses the spectral analysis of the radiofre-
quency data to reconstruct tissue maps with the aim to
provide classification of plaque composition.
IVUS-VH derives its data from the RF output of a

conventional IVUS console and is ECG-gated for accu-
rate data analysis. The RF and ECG signal were trans-
ferred from the Boston Scientific Galaxy ultrasound
console to a dedicated IVUS-VH platform (Volcano
Therapeutics).
The IVUS-VH data were stored on a CD-ROM and

sent to the core laboratory (Cardialysis) for offline ana-
lysis. IVUS B-mode images were reconstructed from
the RF data by custom software (IVUSLab; Volcano
Therapeutics). Subsequently, manual contour detection
of both the lumen and the media-adventitia interface
was performed. Cross-sectional view was used for this
purpose. Side branches were eliminated from the anal-
ysis drawing the lumen contour over the media. The
IVUSLab software provides geometrical (Table I) and
compositional information for each frame (cross-sec-
tional area) of the pullback.
In preliminary in vitro studies, four plaque types

(fibrous, fibrolipid, lipid-necrotic, and calcium) as
defined by histology could be correlated with a specific
spectrum of the radiofrequency signal [9,11]. The differ-
ent plaque components are assigned color codes; fibrous,
fibrolipidic, lipid-core, and calcified regions are labeled
green, greenish-yellow, red, and white, respectively.

Region of Interest Correlation

Once the ROI was visually matched with the QCU
using identifiable anatomic landmarks (side branches
and ostium of the vessel), volumetrical data were cor-
related.
Ex vivo experience. In addition, we measured a

phantom model using conventional IVUS and IVUS-
VH. The phantom model consisted of one 5 mm steel
ring (deviation < 1%) mounted in a transparent syn-
thetic housing. The outer sheath of the catheter was
straightened in the opening of the phantom and the
ultrasound element was positioned in the center of the
steel ring. As a transporter of the ultrasound waves,
we used a fluid mixture containing 90% degassed water

Geometrical Validation of Virtual Histology 515
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and 10% ethanol as the ex vivo substitute for blood.
The room temperature was 228C, resulting in an ultra-
sound propagation speed of approximately 1.548 mm/
sec [12]. Gray-scale images and RF data were stored on
CD-ROM and submitted for analysis using IVUSLab
(for RF data) and Curad (QCU) softwares. Semiauto-
matic contour detection of the inner surface of the ring
was independently performed in the three systems
(Galaxy, Curad, and IVUSLab).

Statistical Analysis

Measurements are expressed as mean 6 standard
deviation. A P value < 0.05 was considered statisti-
cally significant. In addition to Pearson correlation
coefficient, the degree of agreement between both tech-
niques was assessed using Bland-Altman analysis plots
[13]. The limits of agreement were determined by the
mean difference between both techniques 6 2 standard
deviations.

RESULTS

In Vivo Results

The mean age was 59.1 6 11.5; 20 (80%) were
male. Twenty-five vessels were interrogated with
IVUS: LAD 13 (52%), LCx 4 (16%), and RCA 8
(32%). The measured length was 32.76 6 13.9 with
the QCU software and 31.89 6 13.8 with IVUS-VH
(P ¼ 0.006). There was a high correlation between
measurements [Pearson correlation coefficient (r) for
lumen r ¼ 0.99; vessel r ¼ 0.99; plaque r ¼ 0.98].
Nevertheless, IVUS-VH software significantly underes-
timated lumen (8.28 6 2.9 vs. 9.62 6 3.25; P <
0.001), vessel (13.99 6 4.1 vs. 16.09 6 4.7; P <
0.001), and plaque (5.70 6 2.2 vs. 6.47 6 2.6;
P < 0.001) cross-sectional areas. Moreover, the rela-
tive differences were 14.8% 6 5.6%, 14.1% 6 4.8%,
and 11.50% 6 10.8% for lumen, vessel, and plaque
CSAs, respectively.

Phantom Results

As depicted in Table II, the results of the in vitro
study showed a significant underestimation of measure-
ments using IVUS-VH with respect to the Galaxy and
the Curad (QCU) software.
Such in vivo and in vitro underestimation of mea-

surements with IVUS-VH software raised the presump-
tion that the attenuation suffered by the ultrasound
propagation speed while crossing the sheath was not
accounted for in the IVUSLab software, thus delaying
the ultrasound signal and potentially affecting the
results [12]. Such suspicion was confirmed by the
manufacturer. Accordingly, an adjustment method for
30 MHz Boston Scientific catheters described by
Bruining et al. [12] was applied to the in vivo and in
vitro results.
Adjusted for the ultrasound propagation delay

caused by the sheath, relative differences of direct
measurements (0.49% 6 6.3% for lumen, P ¼ 0.64;
2.33 6 4.6 for vessel, P ¼ 0.007 CSAs) decreased up
to less than 3%, while an indirect measurement such
as plaque area decreased up to 4.2% 6 10.4% (P ¼
0.005) (Table III). Bland-Altman analysis plots of the
adjusted measurements are depicted in Figure 1A, B,
and C for lumen, vessel, and plaque CSA (expressed
as mean), respectively.

DISCUSSION

Previous in vitro validation of quantitative coronary
ultrasound has shown a high correlation with histology
samples [1,14,15]. Nevertheless, accurate plaque char-
acterization with IVUS, particularly of lipid-rich plaques,
remains an unresolved issue [15]. Ultrasound radio-
frequency data analysis has the potential to characterize
coronary plaque composition accurately, thereby enabling
the physicians to follow the progression of coronary artery
disease in a given patient not only in a quantitative but also
inaqualitativemanner.
The present study is the first where the geometrical

output of ultrasound radiofrequency data analysis was
compared with standard gray-scale QCU data. The out-

TABLE I. Comparison of QCU With IVUS-VH Geometrical
Measurements (n = 25)

LCSA

(mm2)

VCSA

(mm2)

PCSA

(mm2) Length

QCU 9.62 6 3.5 16.09 6 4.7 6.47 6 2.6 32.76 6 13.9

IVUS-VH 8.28 6 2.9 13.99 6 4.1 5.70 6 2.2 31.89 6 13.8

Absolute

delta 1.34 6 0.7 2.10 6 0.9 0.77 6 0.7 0.44 6 0.7

Relative

delta (%) 14.8 6 5.6 14.1 6 4.8 11.50 6 10.8 2.76 6 4.6

P < 0.001 < 0.001 < 0.001 0.006

TABLE II. In Vitro Validation

Diameter

(mm)

Areas

(mm2)

Absolute

difference

Relative

difference

(%)

mm mm2 mm mm2

Phantom 5 19.63

Galaxy I 4.8 18.09 0.2 1.54 4 7.8

QCU 4.83 18.34 0.17 1.29 3.4 6.6

IVUS-VH 4.63 16.89 0.37 2.74 7.4 14.0
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come of both techniques are highly correlated. How-
ever, lumen, vessel, and plaque areas were systemati-
cally underestimated with IVUS-VH software.
The source of such variability was identified as the

ultrasound propagation speed delay caused by the outer
sheath of the 30 MHz catheter [12]. Accordingly, we
applied a mathematical adjustment method previously
developed by our group, achieving negligible relative
differences of direct measurements. It is noteworthy
that such algorithm is not applicable to plaque mea-
surements. The adjusted plaque area is the difference
between the adjusted vessel and lumen areas. As
expected and previously described by Peters et al.
[16], direct measurements (lumen and vessel area) are
less subject to variability than derived measurements
(plaque area).
IVUS-VH is a novel imaging technique with no

intention to replace QCU. The purpose of this study
was to demonstrate that ultrasound radiofrequency data
analysis obtained with a 30 MHz catheter provides,
aside from accurate compositional data [9] and with
the aid of an adjustment algorithm, an accurate geo-
metrical output.

Study Limitations

The study included a small patient population. As
earlier, acquisition and analysis were done using differ-
ent methodologies. This could have had an impact on
the final results. Moreover, gating was performed in a
different manner. We cannot disregard this fact as a
potential source of diversity between measurements. In
addition, we cannot rule out an influence of the inter-
observer variability in the results. Finally, the steel
ring used in the phantom cause hard reflections, poten-
tially leading to a blooming effect that could impair
accurate measurements. Nevertheless, softer materials
are more affected by temperature [12].
These data suggest that the volumetric output of the

IVUS-VH software underestimates measurements when
acquired with a 30 MHz catheter. However, after
applying a mathematical adjustment method for the
ultrasound propagation delay caused by the outer
sheath of the 30 MHz catheter [12], relative differen-
ces of direct measurements were negligible. These
results suggest that ultrasound radiofrequency data

analysis could provide, aside from precise composi-
tional data [9], an accurate geometrical output.
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Abstract

Objectives: The purpose of this study was to assess in vivo the reproducibility of tissue characterization
using spectral analysis of intravascular ultrasound (IVUS) radiofrequency data (IVUS-VH). Back-
ground: Despite the need for reproducibility data to design longitudinal studies, such information remains
unexplored. Methods and results: IVUS-VH (Volcano Corp., Rancho Cordova, USA) was performed in
patients referred for elective percutaneous intervention and in whom a non-intervened vessel was judged
suitable for a safe IVUS interrogation. The IVUS catheters used were commercially available catheters
(20 MHz, Volcano Corp., Rancho Cordova, USA). Following IVUS-VH acquisition, and after the dis-
engagement and re-engagement of the guiding catheter, an additional acquisition was performed using a
new IVUS catheter. Fifteen patients with 16 non-significant lesions were assessed by 2 independent
observers. The relative inter-catheter differences regarding geometrical measurements were negligible for
both observers. The inter-catheter relative difference in plaque cross-sectional area (CSA) was 3.2% for
observer 1 and 0.5% for observer 2. The limits of agreement for (observer 1 measurements) lumen, vessel,
plaque and plaque burden measurements were 0.82, )1.10 mm2; 0.80, )0.66 mm2; 1.08, )0.66 mm2; and
5.83, )3.89%; respectively. Limits of agreement for calcium, fibrous, fibrolipidic and necrotic core CSA
measurements were 0.22, )0.25 mm2; 1.02, )0.71 mm2; 0.61, )0.65 mm2; and 0.43, )0.38 mm2 respectively.
Regarding the inter-observer agreement, the limits of agreement for lumen, vessel, plaque and plaque
burden measurements were 2.61, )2.09 mm2; 2.20–3.03 mm2; 1.70, )3.04 mm2; and 9.16, )16.41%;
respectively, and for calcium, fibrous, fibrolipidic and necrotic core measurements of 0.08, )0.09 mm2; 0.89,
)1.28 mm2; 0.74, )1.06 mm2; and 0.16, )0.20 mm2; respectively. Conclusions: The present study demon-
strates that the geometrical and compositional output of IVUS-VH is acceptably reproducible.

Introduction

Intravascular ultrasound (IVUS) imaging has been
shown to provide safe, accurate, real-time, tomo-
graphic measurements of coronary vessels in vivo

[1–4]. Over the past decade, IVUS has been used to
describe the extent, severity, distribution, and
morphology of coronary atherosclerosis [5–7].
Furthermore, several studies have evaluated the
temporal effect of conventional and novel medical
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therapies on plaque progression by means of IVUS
[8–10].
Since the fate of coronary atherosclerotic plaques
has been related to their histological composition
[11], precise in-vivo tissue characterization could
provide important additional information and be-
come a target for future drug therapy studies.
In-vitro studies have shown that visual inter-
pretation of IVUS gray-scale images for plaque
characterization is imprecise, in particular when
assessing heterogeneous, lipid-rich plaques [12].
This has lead investigators to explore the radio-
frequency data analysis, a potential source for
in-vivo tissue characterization. Indeed, a recent
ex-vivo study on explanted coronary segments
showed that plaque characterization using spectral
analysis of IVUS radiofrequency data (IVUS-VH)
was feasible and provided a high predictive accu-
racy to estimate the composition of atherosclerotic
plaques [13]. Several in-vivo studies have been
conducted thereafter using this approach [14–17].
Nevertheless, although prior knowledge about the
reproducibility of measurements are essential for
the internal validity of any study using this tech-
nique, to date, only indirect evidence on the
reproducibility of the technique is available [18].
Accordingly, we sought to study the inter-observer
and inter-catheter agreement of IVUS-VH mea-
surements at a single time-point.

Methods

Patient population

This was a single-center prospective, investigators-
driven study that sought to explore in vivo the
reproducibility of spectral analysis of IVUS ra-
diofrequency data (IVUS-VH, Volcano Corp.,
Rancho Cordova, USA). The study population
consisted of consecutive patients that were referred
for elective percutaneous intervention and in
whom a non-intervened vessel was judged suitable
for a safe IVUS interrogation of a vessel segment
of at least 30 mm.
Exclusion criteria included the presence of severe
calcification, vessel tortuosity, and haemodynamic
instability. The study protocol was approved by the

institutional ethics committee and a written in-
formed consent was obtained from all patients.

IVUS-VH

IVUS-VH evaluates different spectral parameters
of the radiofrequency data (Y-intercept, minimum
power, maximum power, mid-band power, fre-
quency at minimum power, frequency at maxi-
mum power, slope, etc.) to construct tissue maps
that classify plaque into four major components.
In preliminary in vitro studies, four histological
plaque components (fibrous, fibrolipidic, necrotic
core and calcium) were correlated with a specific
spectrum of the radiofrequency signal [13]. These
different plaque components were assigned color
codes. Calcified, fibrous, fibrolipidic and necrotic
core regions were labeled white, green, greenish-
yellow and red respectively.

IVUS-VH acquisition

The IVUS catheters used were commercially
available phased array catheters (Eagle Eye
GoldTM 2.9 F 20 MHz, Volcano Corp., Rancho
Cordova, USA). The catheter probe was advanced
at least 10 mm distal to a clearly visible side-branch
and angiographic cine runs, before and during
contrast injection, were performed to define the
position of the IVUS catheter before the pullback
was started. Using an automated pullback device,
the transducer was withdrawn at a continuous
speed of 0.5 mm/s. IVUS-VH acquisition was
ECG-gated and acquired using a dedicated console
(Volcano Corporation, Rancho Cordova, USA).
IVUS-VH data was acquired after intra-coronary
administration of isosorbide dinitrate and data was
stored on DVD. Subsequently, and after the dis-
engagement and re-engagement of the guiding
catheter, the same procedure was performed using
a new catheter (Eagle Eye GoldTM 2.9 F 20 MHz,
Volcano Corp., Rancho Cordova, USA) and with
the same side-branches as landmarks.

IVUS-VH analysis

IVUS-VH analysis was performed by an indepen-
dent core laboratory (Cardialysis BV, Rotterdam,
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The Netherlands) using a semi-automatic contour
detection software (IVUSLab 4.4, Volcano Corp.,
Rancho Cordova, USA). A region of interest
(ROI) was identified using the inner side of two
clear side-branches as reference and avoiding the
presence of large side-branches within the ROI.
Subsequently, the same ROI was identified in the
other catheter’s acquisition using side-by-side
longitudinal and cross-sectional, contour-free
views.
Contour detection of the lumen and the media-
adventitia interface was performed by 2 indepen-
dent experienced IVUS analysts. The same 2 IVUS
analysts re-analyzed the same cases, leading to the
possibility of multiple comparisons: 2 sets (observ-
ers 1 and 2) of intra-catheter agreement, and 1 set of
inter-observer agreement [observer 1 (catheters 1
and 2) vs. observer 2 (catheters 1 and 2)].
The contours of the external elastic membrane
(EEM) and the lumen–intima interface enclosed
an area that was defined as the coronary plaque
plus media area. Geometrical and compositional
data were obtained for each cross-sectional area
(CSA) and an average was calculated for each
ROI. Plaque burden was calculated as [(EEMarea
� Lumenarea=EEMareaÞ � 100]. The lumen and
vessel eccentricity indexes were calculated dividing
the minimum (lumen and vessel, respectively)
diameter by the maximum diameter, whereas the
plaque eccentricity index was calculated dividing
the minimum plaque thickness by the maximum
plaque thickness.

Statistical analysis

Discrete variables are presented as counts and
percentages. Continuous variables are presented as
means ± SD. The inter-observer and inter-cathe-
ter agreement were assessed using Bland–Altman
plots [19]. This method plots the mean against the
difference in measurements. Limits of agreement
were determined by adding two standard devia-
tions to the mean difference for the upper limit and
by substracting two standard deviations from the
mean difference for the lower limit. A two-sided
p value of less than 0.05 indicated statistical
significance.

Results

Fifteen consecutive patients with 16 non-signifi-
cant lesions were included in the study. Baseline
characteristics of the patients included are depicted
in Table 1. The study vessel was the left anterior
descending in 9 patients (60.0%), the left circum-
flex in 5 (33.3%), and the right coronary artery in 1
patient (6.7%). There were no peri-procedural
complications.

Inter-catheter agreement

The studied length determined by landmarks was
19.71±10.5 mm for catheter 1 and 21.01±11.1
mm for catheter 2 (p=0.32). Geometrical and
compositional data of matched ROIs interrogated
with IVUS-VH using 2 subsequent 20 MHz cath-
eters are extensively depicted in Tables 2 and 3.
The relative inter-catheter differences regarding
geometrical measurements were negligible for both
observers. Of note, the inter-catheter relative dif-
ference in plaque CSA was 3.2% for observer 1
and 0.5% for observer 2. Only other less common
indirect measurements such as plaque eccentricity
and plaque minimal thickness showed relative
differences >5%. Compositional measurements
showed higher relative differences, although not

Table 1. Study population (n=15).

n (%)

Age (years±SD) 63.1±8.6

Male sex 8 (53.3)

Diabetes 2 (13.3)

Hypertension 11 (73.3)

Current smoking 1 (6.7)

Previous smoking 5 (33.3)

Hypercholesterolemia 8 (53.3)

Family history of coronary disease 9 (60.0)

Lipid lowering agents 11 (73.3)

Clinical presentation

Stable angina 14 (93.3)

Unstable angina 1 (6.7)

Study vessel

Left anterior descending 9 (60.0)

Left circumflex 5 (33.3)

Right coronary artery 1 (6.7)



Chapter  2.3

84

exceeding 10%, except from calcium (11%) for
observer 1 and fibrolipidic tissue (13%) for
observer 2 (Table 3). Indeed, Bland–Altman plots
showed a good inter-catheter agreement for
geometrical (Figure 1) and compositional (Fig-
ure 2) measurements. The limits of agreement for
(observer 1 measurements) lumen, vessel, plaque
and plaque burden measurements were 0.82,
)1.10 mm2; 0.80, )0.66 mm2; 1.08, )0.66 mm2;
and 5.83, )3.89%; respectively. Limits of agree-
ment for calcium, fibrous, fibrolipidic and necrotic
core CSA measurements were 0.22, )0.25 mm2;
1.02, )0.71 mm2; 0.61, )0.65 mm2; and 0.43,
)0.38 mm2 respectively.

Inter-observer agreement

For the assessment of the inter-observer agree-
ment, a comparison between the same matched
cross-sections (653 frames for catheter 1 and 663
frames for catheter 2) were analyzed by 2 inde-
pendent observers. These 2 datasets were merged
resulting in a paired inter-observer agreement
evaluation of 1316 frames.
Inter-observer differences were larger than the
inter-catheter measurements (performed by the
same observer). This was particularly noticed in
indirect measurements such as plaque CSA (10%),
plaque minimal thickness (53%) and plaque

Table 2. Mean CSA geometrical measurements of matched ROI with two subsequent 20 MHz IVUS imaging catheters (n:16).

Catheter 1 Catheter 2 Absolute D Relative D (%)

Observer 1

Lumen CSA (mm2) 11.08±3.5 10.94±3.5 0.14±0.5 1.3

Lumen max. diameter (mm) 4.03±0.7 4.01±0.6 0.02±0.1 0.4

Lumen min. diameter (mm) 3.37±0.6 3.34±0.6 0.03±0.1 0.9

Lumen mean diameter (mm) 3.69±0.6 3.67±0.6 0.02±0.1 0.6

Lumen eccentricity 0.84±0.0 0.83±0.0 0.00±0.0 0.5

Vessel CSA (mm2) 17.40±4.0 17.46±4.0 0.07±0.4 0.4

Vessel max. diameter (mm) 4.92±0.6 4.93±0.6 0.01±0.1 0.3

Vessel min. diameter (mm) 4.36±0.6 4.37±0.6 0.01±0.1 0.2

Vessel mean diameter (mm) 4.63±0.6 4.64±0.6 0.01±0.0 0.2

Vessel eccentricity 0.89±0.0 0.89±0.0 0.00±0.0 0.1

Plaque CSA (mm2) 6.32±2.0 6.53±2.1 0.21±0.4 3.2

Plaque max. thickness (mm) 1.01±0.2 1.02±0.2 0.01±0.1 0.7

Plaque min. thickness (mm) 0.09±0.1 0.09±0.1 0.01±0.0 8.2

Plaque eccentricity (mm) 0.09±0.1 0.10±0.1 0.01±0.0 10.0

Plaque burden (%) 36.80±9.9 37.77±9.9 0.97±2.4 2.6

Observer 2

Lumen CSA (mm2) 10.66±3.8 10.67±3.8 0.01±0.4 0.1

Lumen max. diameter (mm) 3.90±0.7 3.91±0.7 0.01±0.1 0.2

Lumen min. diameter (mm) 3.34±0.6 3.33±0.6 0.01±0.1 0.3

Lumen mean diameter (mm) 3.61±0.6 3.61±0.7 0.00±0.1 0.0

Lumen eccentricity 0.86±0.0 0.85±0.0 0.01±0.0 0.6

Vessel CSA (mm2) 17.76±4.0 17.80±4.0 0.05±0.4 0.3

Vessel max. diameter (mm) 4.95±0.6 4.96±0.6 0.01±0.1 0.3

Vessel min. diameter (mm) 4.41±0.6 4.42±0.6 0.01±0.1 0.1

Vessel mean diameter (mm) 4.68±0.6 4.69±0.6 0.01±0.0 0.1

Vessel eccentricity 0.89±0.0 0.89±0.0 0.00±0.0 0.1

Plaque CSA (mm2) 7.10±2.1 7.13±2.2 0.03±0.4 0.5

Plaque max. thickness (mm) 1.05±0.2 1.04±0.3 0.00±0.1 0.2

Plaque min. thickness (mm) 0.16±0.1 0.16±0.1 0.01±0.0 4.7

Plaque eccentricity (mm) 0.16±0.1 0.17±0.1 0.01±0.0 6.7

Plaque burden (%) 40.75±10.7 40.93±11.2 0.19±1.8 0.5

LCSA, VCSA and PCSA refer to lumen, vessel and plaque CSAs. Plaque burden was calculated as [(EEMarea � Lumenarea=
EEMareaÞ � 100].
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Table 3. Mean CSA compositional measurements of matched ROI with two subsequent 20 MHz IVUS imaging catheters (n:16).

Catheter 1 Catheter 2 Absolute D Relative D (%)

Observer 1

Calcium CSA (mm2) 0.17±0.3 0.16±0.2 0.01±0.1 8.0

Calcium (%) 4.27±5.2 3.82±3.8 0.45±2.6 11.1

Fibrous CSA (mm2) 1.96±1.0 2.11±1.1 0.16±0.4 7.7

Fibrous (%) 60.37±9.2 62.15±8.7 1.78±10.0 2.9

Fibrolipidic CSA (mm2) 0.66±0.4 0.63±0.3 0.02±0.3 3.5

Fibrolipidic (%) 21.10±9.8 19.58±7.0 1.53±8.3 7.5

Necrotic core CSA (mm2) 0.40±0.4 0.43±0.4 0.02±0.2 5.7

Necrotic core (%) 11.27±6.8 10.87±6.6 0.40±5.4 3.6

Observer 2

Calcium CSA (mm2) 0.17±0.3 0.16±0.2 0.01±0.1 8.7

Calcium (%) 4.08±5.0 3.74±3.4 0.34±2.4 8.7

Fibrous CSA (mm2) 2.21±1.1 2.28±1.2 0.07±0.4 3.1

Fibrous (%) 58.12±10.5 60.63±7.9 2.51±10.1 4.2

Fibrolipidic CSA (mm2) 0.88±0.6 0.77±0.4 0.11±0.4 13.1

Fibrolipidic (%) 22.97±11.7 20.95±10.8 2.01±9.6 9.2

Necrotic core CSA (mm2) 0.42±0.4 0.45±0.5 0.03±0.2 6.1

Necrotic core (%) 10.75±6.9 11.02±6.5 0.26±5.5 2.4

LCSA, VCSA and PCSA refer to lumen, vessel and plaque CSAs. Plaque burden was calculated as [(EEMarea � Lumenarea=
EEMareaÞ � 100].
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Figure 1. Bland–Altman plots depicting the (observer 1) agreement between catheters for geometrical measurements (n=16).
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eccentricity (54%). The largest relative difference
was found in fibrolipidic measurements (Table 4).
Narrow limits of agreement and few outliers
(Figures 3 and 4) were found between observers
both for geometrical (limits of agreement for lu-
men, vessel, plaque and plaque burden measure-
ments of 2.61, )2.09 mm2; 2.20–3.03 mm2; 1.70,
)3.04 mm2; and 9.16, )16.41%; respectively) and
compositional (limits of agreement for calcium,
fibrous, fibrolipidic and necrotic core measure-
ments of 0.08, )0.09 mm2; 0.89, )1.28 mm2; 0.74,
)1.06 mm2; and 0.16, )0.20 mm2; respectively)
measurements. It is noteworthy that the fibrous
and fibrolipidic CSA measurements were highly
accurate when assessing cross-sections with small
fibrous or fibrolipidic content (Figure 4).

Discussion

Over the past few years, IVUShas been employed as
a tool to assess the temporal effect of conventional

and novel drug therapies on coronary plaque size in
longitudinal studies [8, 20]. More recently, the dis-
cordance between the beneficial clinical effects of
secondary prevention strategies and their effect on
plaque volume had lead investigators to explore a
potential significant effect on plaque composition
[21].
Tissue characterization by means of IVUS ra-
diofrequency (RF) data analysis is a potential tool
to enable an accurate evaluation of the composition
of coronary plaques [13]. Several investigators have
explored the potential of RF data analysis in vivo
and reported promising findings [15–17, 22, 23].
This technique has the potential to detect temporal
changes in plaque composition and therefore stud-
ies have been conducted to assess the effect of con-
ventional drug therapies on the phenotype of
coronary atherosclerosis [18, 22, 23]. In addition,
there are currently several large trials being con-
ducted with the aim to assess the natural history of
high-risk plaques by means of this technique.
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Figure 2. Bland–Altman plots depicting the (observer 1) agreement between catheters for compositional measurements (n=16).
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As the impact of drug therapies on the athero-
sclerotic plaque burden and composition over time
is relatively small, highly reproducible IVUS-VH
measurements are essential. Despite such pivotal
need for reproducibility data to address the sta-
bility of the technique, such studies are lacking.
Only indirect evidence of reproducibility has been
reported such as a study conducted by our group
to assess the 6-month change in plaque composi-
tion with no controlled therapeutic intervention
[18], and the study conducted by Kawasaki et al.
who reported the intra and inter-observer vari-
ability of measurements performed using the same
pullback [22].
The present study has a unique characteristic
since we used two catheters of the same kind at the
same time-point, thus simulating the scenario of a
longitudinal study.
The main finding of the present study was that
IVUS-VH measurements had an acceptable

reproducibility. As expected, compositional mea-
surements were more variable than geometrical
measurements. Nevertheless, it is noteworthy that
inter-catheter differences were predominantly
lower than 10%, highly correlated and showed a
good agreement. Of note, necrotic core measure-
ments, probably the most relevant component of
coronary plaques and currently subject of intense
research, showed an excellent inter-catheter and
inter-observer agreement. This has a major
importance since the temporal change of such
component could potentially become an imaging
endpoint of longitudinal studies. Similarly, cal-
cium measurements, another important compo-
nent of atherosclerotic plaques, showed good
inter-catheter and inter-observer agreement. The
relatively high inter-observer variability of some
IVUS-VH variables raises some caution and
should be taken into consideration when
performing longitudinal studies analyzed by

Table 4. Geometrical and compositional measurements of matched CSAs between different observers (n:1316).

Observer 1 Observer 2 Absolute D Relative D (%)

Geometrical data

Lumen CSA (mm2) 10.83±3.8 10.51±4.0 0.26±1.2 2.5

Lumen max. diameter (mm) 3.96±0.7 3.86±0.8 0.08±0.4 2.1

Lumen min. diameter (mm) 3.34±0.6 3.31±0.7 0.01±0.3 0.2

Lumen mean diameter (mm) 3.65±0.7 3.58±0.7 0.04±0.3 1.1

Lumen eccentricity 0.84±0.1 0.86±0.1 0.02±0.1 2.3

Vessel CSA (mm2) 16.90±4.2 17.22±4.3 0.41±1.3 2.4

Vessel max. diameter (mm) 4.84±0.6 4.87±0.6 0.06±0.4 1.1

Vessel min. diameter (mm) 4.30±0.6 4.35±0.6 0.08±0.3 1.7

Vessel mean diameter (mm) 4.56±0.6 4.61±0.6 0.07±0.3 1.5

Vessel eccentricity 0.89±0.1 0.89±0.1 0.01±0.1 1.1

Plaque CSA (mm2) 6.07±2.3 6.72±2.3 0.67±1.2 10.3

Plaque max. thickness (mm) 0.96±0.3 1.01±0.3 0.03±0.2 3.4

Plaque min. thickness (mm) 0.09±0.1 0.16±0.1 0.07±0.1 53.3

Plaque eccentricity (mm) 0.09±0.1 0.16±0.1 0.07±0.1 53.6

Plaque burden (%) 36.62±12.2 40.07±12.5 3.63±6.4 9.5

Compositional data

Calcium CSA (mm2) 0.12±0.2 0.12±0.2 0.00±0.0 2.9

Calcium (%) 3.66±6.4 3.51±6.0 0.13±2.4 3.7

Fibrous CSA (mm2) 1.86±1.3 2.05±1.3 0.20±0.5 10.2

Fibrous (%) 61.48±18.2 60.05±18.2 1.10±14.3 1.8

Fibrolipidic CSA (mm2) 0.60±0.5 0.75±0.7 0.16±0.5 23.5

Fibrolipidic (%) 22.34±14.0 22.09±15.3 1.86±11.8 8.8

Necrotic core CSA (mm2) 0.35±0.4 0.37±0.4 0.02±0.1 6.3

Necrotic core (%) 10.45±10.1 10.22±9.8 0.17±5.7 1.6

LCSA, VCSA and PCSA refer to lumen, vessel and plaque CSAs. Plaque burden was calculated as [(EEMarea ) Lumenarea /EEMarea)�
100].
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Figure 3. Bland–Altman plots showing the inter-observer agreement for geometrical measurements (n=1316).
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Figure 4. Bland–Altman plots showing the inter-observer agreement for compositional measurements (n=1316).
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core laboratories. Overall, the inter-catheter and
inter-observer differences shown might provide
boundaries over which changes are statistically
significant.
It is evident yet worth mentioning that precise
contour detection probably has an essential role in
the reproducibility of IVUS-VH measurements.
The inter-observer relative difference in plaque
CSA measurements was 10%, the commonly ac-
cepted threshold. This gives an additive value to
our study, since it provides a ‘‘real-world’’ scenario

that can aid investigators to perform precise power
calculations for longitudinal studies.
Finally, although we aimed at studying non-
tortuous and non-severely calcified vessels,
phased-array IVUS imaging catheters are devoid
from a covering sheath and pullbacks are therefore
occasionally prone to be non-uniform. This clearly
has an impact on determination of the size and
composition of atherosclerotic plaques and needs
to be taken into consideration for the design of
longitudinal studies (Figure 5).

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Non-uniform pullback

C
ro

ss
-s

ec
tio

na
l a

re
a 

(m
m

2)
C

S
A

 (
m

m
2)

0

1

2

3

4

5

6

7

1 7

13 19 25 31 37 43 49 55 61 67

0

1

2

3

4

5

6

7

1 8

15 22 29 36 43 50 57 64 71 78

C
S

A
 (

m
m

2)

Catheter 1 Catheter 2

Catheter 1 Catheter 2

Uniform pullback

Frame number Frame number

Frame number Frame number

0

1

2

3

4

5

6

7

C
S

A
 (

m
m

2)
C

S
A

 (
m

m
2)

Figure 5. Sequential plotting of a matched ROI interrogated with two catheters. The mean CSA (y axis) of each plaque component is

colour-coded (calcium: white, fibrous: green, fibrolipidic: greenish-yellow and necrotic core: red). This figure shows an example of the

impact of non-uniform pullbacks on geometrical and compositional measurements.
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Limitations

The studied population was relatively small. Nev-
ertheless, the conductance of large in vivo studies
of this nature is complicated due to obvious ethical
issues. The selection of a population of patients
with non-tortuous and non-severely calcified ves-
sels was driven by the aim to study the reproduc-
ibility of the technique itself, not of the pullback
device. Nevertheless, as shown in Figure 5, the
impact of non-uniform pullback speed was not
negligible potentially influencing the results.

Conclusions

The present study demonstrates that the geomet-
rical and compositional output of IVUS-VH is
acceptably reproducible. In addition, by providing
a ‘‘real-world’’ scenario, this study can aid inves-
tigators to perform precise power calculations for
longitudinal studies.
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Methodological considerations and approach to cross-technique
comparisons using in vivo coronary plaque characterization based on
intravascular ultrasound radiofrequency data analysis: insights from
the Integrated Biomarker and Imaging Study (IBIS)
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Abstract
Grey scale intravascular ultrasound (IVUS) is a valuable clinical tool to assess the extent and severity of coronary atheroma.
However, it cannot reliably identify plaques with a high-risk of future clinical events. Serial IVUS studies to assess the
progression and/or regression of atherosclerotic plaques demonstrated only modest effects, of pharmacological intervention
on plaque burden, even when clinical efficacy is documented. Spectral analysis of radiofrequency ultrasound data (IVUS-
virtual histologyTM (IVUS-VH), Volcano Therapeutics, Rancho Cordova, CA) has the potential to characterize accurately
plaque composition. The Integrated Biomarker and Imaging Study (IBIS) evaluated both invasive and non-invasive imaging
techniques along with the assessment of novel biomarkers to characterize sub-clinical atherosclerosis. IVUS-VH was not
included at the start of the IBIS protocol. The purpose of this paper is to describe the methodology we used to obtain and
analyse IVUS-VH images and the approach to cross-correlations with the other techniques.

Key Words: Intravascular ultrasound, imaging, atherosclerosis, biomarker

Introduction

Atherosclerosis is a systemic disease whose clinical

sequelae are unpredictable and only weakly related

to its extent or severity. Atherosclerotic plaque

stability appears to be influenced more by the

histological composition of plaque than by

stenosis severity and pathological studies have

related specific coronary plaque characteristics

such as the presence of a thin-cap fibroatheroma

(TCFA) with a lipid-rich core, often associated

with expansive remodelling, to fatal ischemic

events [1–4]. However, conventional imaging tech-

niques such as coronary angiography or intravascular

ultrasonography (IVUS) cannot reliably identify

such ‘high-risk’ plaques prospectively [5]. The

potential of novel coronary imaging techniques to

refine risk stratification is the subject of intensive

research effort, reflecting the growing emphasis on

preventing the ischemic consequences of coronary

atherosclerosis.

A recently introduced technique (IVUS-virtual

histologyTM (IVUS-VH), Volcano Therapeutics,

Rancho Cordova, CA) that uses the substrate

(frequency domain analysis) of the IVUS radio-

frequency (RF) data rather than the envelope

(amplitude), has demonstrated its potential to

provide an objective and accurate assessment of

coronary plaque composition [6].

Serial-imaging studies, with use of IVUS, have

become the preferred technique to assess the effects

of pharmacological, and other, interventions

designed to retard progression or induce regression

of coronary atherosclerotic plaques. Such studies

have shown a marked discordance between the

clinical effects of validated therapies and their effects

on plaque volume [7–11]. For statin therapy, it has

been postulated, based on serial measurements of

plaque echogenicity, that changes in plaque

composition may provide an explanation for this

paradox [8]. In this context, the advent of catheter-

based technologies, such as IVUS-VH, that provide
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the means to assess changes in plaque composition

through time, are being explored in research

settings.

The Integrated Biomarker and Imaging Study

(IBIS) evaluated both invasive (angiography, quan-

titative intravascular ultrasound), IVUS based tech-

niques (tissue echogenicity and palpography) and

non-invasive (MSCT) imaging techniques in con-

junction with the assessment of novel biomarkers to

characterize sub-clinical atherosclerosis. IVUS-VH

became available to us during the course of the IBIS

protocol; the purpose of this paper is to describe the

methodology we used to perform and interpret

IVUS-VH, and to correlate reliably IVUS-VH

findings in a predefined region of interest with

findings on other imaging techniques. In addition,

we tested the accuracy of the calibration of the

technique.

Methods

This pilot study was prospective, observational,

single centre, and investigator-initiated. Patients

with stable angina, unstable angina, non-ST seg-

ment elevation or ST segment elevation myocardial

infarction, referred for percutaneous intervention,

were eligible for inclusion. Major clinical exclusion

criteria included significant renal dysfunction (crea-

tinine more than 2 mg/dl), prior coronary interven-

tion in the region of interest, life expectancy less than

one year or factors that made follow-up difficult.

Major imaging-related exclusion criteria included

coronary anatomy that precluded safe intravascular

ultrasonographic examination of a suitable region of

interest or criteria that precluded acquisition of

diagnostic non-invasive angiographic images (irre-

gular heart rhythm or inability to hold breath for

20 seconds). The Medical Ethics Committee of the

Erasmus University approved the study protocol and

all patients gave written informed consent. The

coronary study vessel, preferentially a vessel not

targeted for intervention, was, in order of preference,

the left anterior descending, right and circumflex

coronary arteries. At the discretion of the operator, a

second artery could be studied. The region of

interest was defined on the basis of identifiable

landmarks, such as branches or the vessel origin.

Intracoronary ultrasound

The IVUS catheter used was a commercially

available mechanical sector scanner (UltracrossTM

2.9F 30 MHz catheter or CVIS AtlantisTM SR Pro

2.5F 40 MHz catheter, Boston Scientific, Santa

Clara, USA). Using an automated pullback device,

the transducer was withdrawn at a continuous speed

of 0.5 mm/second. Cine runs, before and during

contrast injection, were performed to define the

position of the IVUS catheter before the pullback

was started. IVUS data were acquired after the

intracoronary administration of nitrates. Data were

stored on S- VHS videotape. The videotapes were

digitized on a computer system, transformed into the

DICOM medical image standard and archived.

QCU analysis was performed by the core labora-

tory (Cardialysis BV, Rotterdam, The Netherlands)

using validated software (Curad, version 3.1, Wijk

bij Duurstede, The Netherlands). The

IntelliGateTM image-based gating method was

applied. to eliminate catheter-induced image artefacts,

by retrospectively selecting end-diastolic frames [12].

After performing QCU, the borders of the external

elastic membrane (EEM) and the lumen-intima

interface enclose a volume that was defined as the

coronary plaque plus media volume. Significant

plaque was defined as a plaque plus media

area>50% of the cross-sectional area circumscribed

by the external elastic membrane (EEM).

Virtual histology: rationale and acquisition

Extensive detail regarding the validation of the

technique on explanted human coronary segments

has previously been reported [6]. Briefly, IVUS-VH

uses spectral analysis of IVUS radiofrequency data

to construct tissue maps that classify plaque into

four major components. In preliminary in vitro

studies, four histological plaque components

(fibrous, fibro-lipid, lipid-necrotic and calcium)

were correlated with a specific spectrum of the

radiofrequency signal [6,13]. These different plaque

components were assigned colour codes. Calcified,

fibrous, fibrolipidic and lipid-necrotic regions were

labelled white, green, greenish-yellow and red

respectively.

IVUS-VH data will be acquired using a contin-

uous ECG-gated IVUS pullback (0.5 mm per

second) with a commercially available mechanical

sector scanner (UltracrossTM 2.9F 30 MHz cathe-

ter, Boston Scientific, Santa Clara, CA), by a

dedicated IVUS-VH platform (Volcano

Therapeutics, Rancho Cordova, CA). The IVUS

VH data will be stored on a CD-ROM and sent to

the imaging core laboratory for offline analysis by

a single observer unaware of patient data. IVUS

B-mode images will be reconstructed from the

RF data by custom software (IVUSLab,

Volcano Therapeutics, Rancho Cordova, CA).

Subsequently, manual contour detection of both

the lumen and the media-adventitia interface will be

performed.

Calibration

Manual calibration was performed after removal of

the catheter by placing the transducer in a fluid

container in the centre of a plexi-glass phantom to

obtain a homogeneous echogenic radiofrequency
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signal circumference around the catheter. We

assessed the effect of different calibrations on the

observed results for plaque composition results,

within the same frozen ROIs, in 15 consecutive

vessels.

Definitions

The tissue enclosed by the external elastic mem-

brane and lumen-intima interface was defined as

plaque+media for geometrical data and plaque.

Plaque area refers to Vesselarea2Lumenarea.

Region of interest (ROI) identification

Ideally, we aim to study a common ROI>30 mm

long determined by identifiable anatomic landmarks

on IVUS. The IVUS-VH software (IVUSLab) allows

simultaneous viewing of both the longitudinal and

cross-sectional views. This facilitates accurate defi-

nition of the ROI and of specific spots within this

region.

Using longitudinal (Figure 1) and cross-

sectional (Figure 2) views to identify anatomical

landmarks such as side branches, veins, the

pericardium, and muscle strands, correlation

between IVUS-VH and other technologies such

as QCU and palpography can be readily

accomplished.

Correlations

IVUS-VH with quantitative coronary ultrasound

(QCU)

Once the ROI is visually matched with the QCU,

geometrical data from both techniques can be

correlated. Lumen, vessel and plaque CSA’s

will be assessed as well as percent area stenosis.

In addition to Pearson correlation coefficients,

the degree of agreement between both techniques

was assessed using Bland Altman analysis

plots [14].

IVUS-VH with palpography

Palpography is a technique that allows the assess-

ment of the mechanical properties (deformability) of

coronary plaques by measuring the relative displace-

ments of radiofrequency signals, recorded during

IVUS acquisition, at 2 different pressure levels

[15,16]. A recent in vitro study demonstrated the

diagnostic potential of palpography to identify thin

cap fibroatheromas [15].

We will explore the potential correlation between

lipid core content and high strain pattern within

matched ROIs. In addition, using the longitudinal

and cross-sectional views, individual high and low

strain spots can be located in the IVUS-VH software

thereby allowing correlations with areas classified as

predominantly (>40% of the CSA) consisting of
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Figure 1. (a) Longitudinal view of the LAD obtained with an UltracrossTM 2.9F 30 MHz IVUS imaging catheter showing distal and

proximal references of the Region of Interest (ROI) in strong lines. Thin lines correspond to sub-segmentation analysis of the ROI.

(b) Longitudinal view of the same ROI displayed with the IVUS-VH software, with the same distal and proximal references.
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fibrous or lipid core components respectively on

IVUS-VH (Figure 3).

IVUS-VH with blood analysis

In addition to the correlation with novel imaging

techniques, blood was obtained to perform detailed

analysis of standard lipid profiles as well as classic

and novel biomarkers and lipoproteins.

The mean CSA of the lipid core, a key composi-

tional factor as it contains thrombogenic material rich

in tissue factor [17], will be the main point of reference

for correlation with HDL and LDL. In addition, the

lipid core will also be correlated with novel pro-

inflammatory markers high sensitive-C reactive pro-

tein, interleukin-6, tumour necrosis factor-a, and

novel markers (lipoprotein phospholipase A2 activity,

soluble CD40 ligand , N-terminal pro-brain natriure-

tic peptide and matrix-metalloproteinase-9)

Paired IVUS-VH

Patients will be followed-up at six months with the

same imaging and blood analysis as at baseline.

Accordingly, geometrical (plaque progression/

regression/remodelling index) and compositional

(delta of the different components) assessments of

the plaque at six-month follow-up could be per-

formed. Changes in plaque composition will be

presented in delta mean CSA for each one of the

four different components.

Since the IBIS is an observational study, these

results will provide some insights regarding in vivo

reproducibility of the technique.

IVUS-VH with multislice spiral computed tomography

(MSCT)

All scans will be performed on a 16-row detector

scanner (Sensation 16, Straton, Siemens,
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Figure 2. Upper panel: distal reference of the Region of Interest (ROI) showing the same cross-sectional area (CSA) with: (a) conventional

ultrasound, (b) radiofrequency data, and (c) reconstruction of the Virtual HistologyTM images, where green is fibrous tissue, greenish-

yellow is fibrolipidic, red is lipid core and white is calcium. Lower panel: proximal reference of the ROI showing the same CSA with: (a)

conventional ultrasound, (b) radiofrequency data, and (c) reconstruction of the Virtual HistologyTM images.

Figure 3. (a) Longitudinal view of a LAD obtained with an UltracrossTM 2.9F 30 MHz IVUS imaging catheter. The yellow line points out

the cross-sectional area (CSA) of interest, and (b, c and d) respectively show palpography, conventional IVUS and Virtual HistologyTM

reconstruction of such CSA.
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Forchheim, Germany). The region of interest will be

identified on multi-planar reconstructions, based on

anatomic landmarks and subdivided in 5 mm seg-

ments. The ability to detect calcium with MSCT

and IVUS-VH will be assessed. Calcification in

MSCT is defined by the presence of high-density

components (w130 Hounsfield Unit).

IVUS-VH with grey-scale tissue characterization

With the aid of a computer-aided grey-scale value

analysis program for plaque characterization [18],

IVUS can also provide information on tissue

characterization, therefore becoming a potential

source of information on plaque composition.

Accordingly, we will evaluate the correlation

and agreement in the assessment of plaque char-

acterization using RF data analysis and grey-scale

IVUS.

Additional correlations

In a small subset of patients, a method based on a

combination of IVUS and computational fluid

dynamics that enables to calculate the regional shear

stress was performed and will allow us to correlate

the plaque composition with the regional shear stress

[19]. IVUS-VH compositional results will also be

correlated with patient’s demographics.

Results

Manual calibration variability

Manual calibration was performed after the proce-

dure by an experienced IVUS technician. Two good

quality calibrations (homogeneous echogenic radio-

frequency signal circumference around the catheter)

were obtained per pullback for 15 consecutive frozen

(same contours) ROIs. The average difference in

calcium, fibrous, fibrolipidic and lipid core

volumes between calibrations for the same ROI is

shown in Table 3. There were no significant

difference in calcium, fibrous and fibrolipidic

volumes, but there was a trend for the difference in

lipid core volume.

Interpretation of the results

These results suggest that there is an imperceptible

(for the naked eye) variability in the radiofrequency

data between same quality calibrations. As this

technology is aimed to assess changes in plaque

composition, such differences could be amplified

when applied to different catheters and it have a

significant impact.

Therefore, to account for catheter-to-catheter

variability manual calibration is currently been

replaced by a technique known as ‘Blind

Deconvolution’. Blind deconvolution is an iterative

algorithm that deconvolves the catheter transfer

function from the backscatter, thus enabling auto-

mated data normalization [20,21]. All upcoming

IVUS-VH data will require such automated calibra-

tion. This algorithm will be incorporated in the

IVUS-VH software and applied to the RF data for

reconstruction.
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Table 3. Difference in plaque composition within the same frozen

ROI with two same quality calibrations (n: 15).

Volumes (mm3):

Mean D between

calibrations p value

Calcium 0.014¡1.5 NS

Fibrous 20.24¡6.3 NS

Fibrolipidic 21.24¡7.73 NS

Lipid core 1.50¡2.88 0.06

Table 1. Geometrical output of the IVUS-VH software for:

(a) Region of interest:

Mean lumen CSA

Mean vessel CSA

Mean plaque CSA

Mean percent area obstruction

Lumen volume

Vessel volume

Plaque volume

(b) For each frame:

Lumen CSA

Lumen perimeter length

Lumen maximun diameter

Lumen minimum diameter

Lumen eccentricity (min/max)

Vessel CSA

Plaque CSA

Plaque maximum thickness

Plaque minimum thickness

Plaque eccentricity (min/max)

Mean percent area obstruction

CSA: cross-sectional area (mean). Plaque area refers to

Vesselarea2Lumenarea. Plaque area obstruction refers to

Vesselarea2Lumenarea/Vesselarea,6100.

Table 2. Compositional output of the IVUS-VH software for:

(a) Region of interest:

Calcium volume (mm3)

Fibrous volume (mm3)

Fibrolipidic volume (mm3)

Lipid core volume (mm3)

(b) For each frame:

Calcium CSA (mm2)

Calcium % CSA

Fibrous CSA (mm2)

Fibrous % CSA

Fibrolipidic CSA (mm2)

Fibro-Lipidic % CSA

Lipid Core CSA (mm2)

Lipid Core % CSA

CSA: cross-sectional area (mean).
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Discussion

Half of cardiac deaths in the western countries are

sudden [22] and 73% of these deaths have clear

evidence of plaque rupture and overlying thrombosis

[23]. Non flow-limiting lesions are the most frequent

substrate of culprit plaques [24]. Therefore, the

detection of such plaques might have an important

impact in the prevention of acute myocardial

infarction and sudden cardiac death. Although

angiography can identify obstructive lesions as well

as complex lesions [25], this technique still only

assesses the lumen of the coronaries and dismisses

the significant impact of vessel remodelling as well as

plaque composition. Recently, a post-mortem study

evaluated the geometrical aspect of the vessel wall

and showed a relationship between local alterations

of vessel size and plaque stability [26]. In addition,

new coming tissue characterization techniques and

other catheter-based techniques with the potential of

detecting features of TCFA [6,15,27,28], along with

the measurement of blood biomarkers of inflamma-

tion and oxidation could aid us in the difficult task of

having a multiple targeted approach for the assess-

ment of a coronary artery. Nevertheless, there are

many drawbacks for this kind of approach. Catheter-

based techniques need more extensive validation and

an appropriate vulnerable plaque model is yet to be

developed. In addition, these techniques interrogate

the coronary arteries in a localized manner, whereas

inflammation is distributed throughout the whole

coronary tree [29].

Plaque characterization through visual interpreta-

tion of grey-scale IVUS is poorly accurate, in

particular when assessing heterogeneous, lipid-rich

plaques [5]. Calcified and dense fibrous tissues

usually are highly echo-reflective thus calcified areas

are commonly overestimated. However, low echo-

reflectance plaques are considered ‘soft’. However,

in addition to large amounts of extracellular lipids,

the lipid core contains cholesterol crystals, necrotic

debris and microcalcifications [30].

In contrast, spectral analysis of the RF data has

shown potential to provide detailed quantitative

information on plaque composition and it has been

validated in studies of explanted human coronary

segments [6].

IVUS studies have failed to conclusively demon-

strate regression in plaque burden throughout time

[7–11], although IVUS-VH has the potential of

characterizing the vessel wall composition thereby

allowing us to follow not only the progression of the

disease not only in a quantitative, but also in a

qualitative manner. Moreover, this tool could also be

helpful in evaluating the effect of both conventional

and future drug therapies.

Accordingly, a natural history study of these

plaques is needed in order to understand the

progression of the disease as well as the significance

of the different components of the IBIS ‘puzzle’.
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Longitudinal change in plaque composition

Clinical research

Distance from the ostium as an independent
determinant of coronary plaque composition in vivo:
an intravascular ultrasound study based radiofrequency
data analysis in humans

Marco Valgimigli, Gastón A. Rodriguez-Granillo, Héctor M. Garcia-Garcia, Patrizia Malagutti,
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Aims Relative plaque composition, more than its morphology alone, is thought to play a pivotal role
in determining propensity to vulnerability. Thus, we investigated in vivo whether the distance from
coronary ostium to plaque location independently affects plaque composition in humans. This may
help explaining the recently reported non-uniform distribution of culprit lesions along the vessel in
acute coronary syndromes.
Methods and results In 51 consecutive patients (45 men), aged 38–76 years (mean age: 58 + 10), a non-
culprit vessel was investigated through spectral analysis of IVUS radiofrequency data (IVUS-Virtual His-
tologyTM). The study vessel was the left anterior descending artery in 23 (45%) patients; the circumflex
artery in nine (18%), and right coronary artery in 19 (37%). The overall length of the region of interest,
subsequently divided into 10 mm segments, was 41.5 + 13 mm long (range: 30.2–78.4). No significant
change was observed in terms of relative plaque composition along the vessel with respect to
fibrous, fibrolipidic, and calcified tissue, whereas the percentage of lipid core resulted to be increased
in the first (median: 8.75%; IQR: 5.7–18) vs. the third (median: 6.1%; IQR: 3.2–12) (P ¼ 0.036) and fourth
(median: 4.5%; IQR: 2.4–7.9) (P ¼ 0.006) segment. At multivariable regression analysis, distance from
the ostium resulted to be an independent predictor of relative lipid content [b ¼20.28 (95%CI:
20.15, 20.41)], together with older age, unstable presentation, no use of statin, and presence of
diabetes mellitus.
Conclusion Plaque distance from the coronary ostium, as an independent determinant of relative lipid
content, is potentially associated to plaque vulnerability in humans.

KEYWORDS
Plaque;

Lipid core;

Imaging;

Vulnerable plaque;

Virtual histology

Coronary plaque rupture or erosion, by triggering local
thrombosis is thought to play a pivotal role in the genesis
of acute coronary syndromes (ACS) and sudden death.1,2

A series of landmark angiographic studies in the mid-1980s
demonstrated that nearly two-thirds of all myocardial
infarction originate from non-flow limiting atherosclerotic
lesions and prior angiographic studies focusing on plaque
morphology alone failed to identify quiescent plaques
prone to rapidly progress or rupture.3–7

Consequently, the mechanical and biological properties of
coronary plaques, which overall reflect plaque composition,
along with systemic inflammation has mainly been targeted
for the diagnosis and treatment of plaque instability.8

Epidemiological studies in patients with ST-segment
elevation myocardial infarction (STEMI) report that sites of
occlusion are not uniformly distributed throughout each of

the major epicardial coronary arteries but tended to
cluster within the proximal third of each of the vessels.9,10

Accordingly, despite the recognition that several factors
involved in the pathogenesis of plaque vulnerability are
widespread,11–14 local trigger(s) should be also targeted to
explain the presence of high-risk coronary spots.15

Plaque composition, favouring propensity to vulnerability,
might also be non-uniformly distributed along each coronary
vessel. This might explain the higher likelihood for plaque
erosion or rupture to occur proximally in the coronary tree.

To investigate this hypothesis, the non-culprit, non-
treated vessel containing angiographically non-obstructive
(,50%) lesions was systematically investigated to assess
plaque composition through spectral analysis of IVUS radio-
frequency data [IVUS-Virtual HistologyTM (IVUS-VH)] in
consecutive patients referred to our institution for percuta-
neous coronary intervention (PCI).

Our findings support for the first time to the best of our
knowledge in vivo the hypothesis that plaque composition

& The European Society of Cardiology 2006. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org

* Corresponding author. Tel: þ31 10 4635260; fax: þ31 10 4369154.
E-mail address: p.w.j.c.serruys@erasmusmc.nl

European Heart Journal
doi:10.1093/eurheartj/ehi716

European Heart Journal Advance Access published January 13, 2006



Chapter  3.1

108

in humans may differ in relation to plaque localization along
the coronary tree.

Methods

Study protocol and patients enrolment

This was a single-center, investigators-driven, observational pro-
spective study aimed to evaluate the distribution of plaque
composition along the coronary vessel in consecutive patients
referred to our institution for elective or urgent PCI, in whom the
non-culprit, non-treated vessel was judged suitable for a safe
IVUS 30 mm-pullback or more, based on angiographic (absence of
the following: .50% stenotic disease, extensive calcification,
severe vessel tortuosity) and clinical (haemodynamic stability)
findings. According to the protocol, not more than one vessel-per
patient could be evaluated and the region of interest (ROI), sub-
sequently divided into 10 mm segments, had to start from the
coronary ostium. Thus, an analysable interrogated vessel length of
at least 30 mm, starting from coronary ostium, was the main
selection criterion, once the patient was included in the study.

In the group of patients presenting with an ACS, the culprit lesion
has been categorized as complex or non-complex, based on angio-
graphic findings as previously described.12

This protocol was approved by the Hospital Ethics Committee and
is in accordance with the declaration of Helsinki. Written informed
consent was obtained from every patient.

IVUS-VH acquisition and analysis

Details regarding the validation of the technique, on explanted
human coronary segments, have previously been reported.16

Briefly, IVUS-VH uses spectral analysis of IVUS radiofrequency data
to construct tissue maps that classify plaque into four major com-
ponents. In preliminary in vitro studies, four histological plaque
components (fibrous, fibro-lipid, lipid core, and calcium) were cor-
related with a specific spectrum of the radiofrequency signal.16

These different plaque components were assigned colour codes.
Calcified, fibrous, fibrolipidic, and lipid-necrotic regions were
labelled white, green, greenish-yellow, and red, respectively.17

IVUS-VH data was acquired after intracoronary administration of
nitrates using a continuous pullback (0.5 mm/s) with a commercially
available mechanical sector scanner (UltracrossTM 2.9F 30 MHz cath-
eter, Boston Scientific, Santa Clara, CA), by a dedicated IVUS-VH
console (Volcano Therapeutics, Rancho Cordova, CA). The IVUS-VH
data were stored on a CD-ROM and sent to the imaging core lab
for offline analysis. IVUS B-mode images were reconstructed from
the RF data by customized software (IVUSLab, Volcano Thera-
peutics, Rancho Cordova, CA).17 Manual contour detection of both
the lumen and the media-adventitia interface was performed and
the RF data was normalized using a technique known as ‘Blind
Deconvolution’, an iterative algorithm that deconvolves the
catheter transfer function from the backscatter, thus accounting
for catheter-to-catheter variability.18,19

Statistical analysis

The sample size was calculated on the assumption that plaques
located in the proximal segment of the coronary artery, defined as
the first 10 mm coronary segment, would display a mean lipid
content of around 40%, with a sigma of around 35% based on previous
findings,20 with a lipid content of 10% in the distal plaques, defined as
those located beyond the first 20 mm from the coronary ostium. To
detect this effect size with 80% power and a type-I error (alpha) of
0.05, 48 patients were required. Four main models were constructed
based on the number of 10 mm segments that were included.

Model 1 comprised three 10 mm segments available in all patients
included.
Model 2 comprised four 10 mm segments available in 43 patients.

Models 3 and 4, composed of five and six 10 mm segments in 20 and
11 patients, respectively, were considered as exploratory analysis
because of limited sample size.

Values are expressed as mean + SD and median and inter-quartile
range (IQR) as appropriate.

As all cross-sectional areas (CSA) provided by IVUS analysis, were
shown to have a non-normal distribution at Kolmogorov–Smirnov
goodness-of-fit test, they were log-transformed before analysis.
Similarly, to all percentages relative to stenosis rate and plaque
composition were applied an arcsin transformation.21 Comparisons
between the two groups were performed with the Student’s t-test.
Fisher’s exact test was used for categorical variables. Comparisons
among 10 mm segments were accomplished through a general
linear mixed model with a compound symmetry correlation struc-
ture and the intercept as only random effect. Maximum likelihood
method was adopted to estimate parameters in the models. Linear
contrasts were applied to evaluate effects of distance, analysed as
dummy variable, on the studied parameters. Post hoc comparisons
were systematically performed by Turkey honest significance
difference test.22

Because of limited statistical power in models 3 and 4, the multi-
variable analysis regarding both clinical presentation and plaque
location along the vessel, along with the interaction between the
two was restricted to models 1 and 2.

In order to establish the determinants of lipid relative content in
the plaques in our model and confirm distance from the coronary
ostium as an independent predictor of relative lipid content, a uni-
variate (including age, sex, history of hypertension, hypercholester-
olaemia, cardiovascular disorders in the family, diabetes mellitus,
levels of LDL, HDL, and triglycerides, use of statin, coronary
vessel analysed, clinical presentation, and distance for the ostium
stratified into 10 mm segments) and multivariable (with all variables
showing a P-value of �0.1 at univariate analysis) linear mixed model
using percentage of lipid content in all 10 mm segments, analysed as
outcome variable, was also applied.

All statistical tests were two-tailed. Probability was significant at
a level of ,0.05. Statistical analysis was performed using Statistica
6.1 Software (Statsoft Inc.) and R-language (R Foundation).

Results

From 16 April 2003 to 10 September 2004, 67 patients were
prospectively included in the protocol. Sixteen patients
were subsequently excluded from the final analysis
because of short (,30 mm) IVUS pullback in 10, poor IVUS
quality in two and lack of coronary plaque at IVUS investi-
gation in four patients. Thus, 51 patients (45 men), aged
38–76 years (mean age: 58 + 10) constituted the final
patient population. Their baseline characteristics are pro-
vided in Table 1. Overall, 33 patients were affected by
stable angina (SA), whereas the remaining 18 patients
were admitted to hospital because of a non-ST-elevation
ACS. In the SA group, the mean Cardiovascular Canadian
Score was 2 + 1, whereas the TIMI risk score, the percen-
tage of patients with troponin T above upper limit of
normal (0.02 mg/L) and the delay from symptoms onset to
PCI were 4 + 2, 56% and 4+3 days in the ACS group,
respectively. In the ACS group, the culprit lesion was
located in the proximal coronary segments in 13 (72%)
patients, including 6 (33%) in the left anterior descending
artery (LAD), four (22%) in the circumflex artery (CFX),
and three (17%) in the right coronary artery (RCA), while
in the remaining five (28%) patients the culprit lesion was
located in the mid or distal segment of the coronary
vessels. Overall, 11 out of 18 identified culprit lesions in
the ACS group satisfied the criteria for complex lesions
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based on angiographic findings. The study vessel was the LAD
artery in 23 (45%) patients, the CFX in nine (18%), and RCA in
19 (37%). The overall length of the ROI was 41.5 + 13 mm
long [(range: 30.2–78.4) (41 + 13 in SA group vs. 42 + 13
in ACS group, P ¼ 0.6)]. The results regarding quantitative
coronary IVUS analysis in the whole population, stratified
into 10 mm vessel length (paired-segment analysis), are
reported in Table 2. Lumen CSA significantly decreased
every 10 mm in model 1, whereas this happened starting
from the third segment, as compared with first coronary
tract, in model 2.

As compared with ostial 10 mm segment, vessel CSA
resulted to be decreased in the third and fourth segment
in models 1 and 2, respectively, whereas plaque CSA reduc-
tion reached statistical significance only in the fourth
segment of model 2. Distance from the coronary ostium
did not affect the percentage of stenosis. The third and
fourth models, restricted to a progressively lower number
of patients but based on a longer vessel length, mainly
confirmed the trends observed in the first two models.

Change in plaque composition along
the study vessel

The results regarding quantitative coronary plaque compo-
sition analysis are reported in Table 3.

Fibrous tissue was the most prevalent component of
plaque composition in each 10 mm segment throughout the
four models considered, followed by fibrolipidic tissue,
lipidic core, and calcium.

No significant change was observed in terms of relative
plaque composition passing from the most proximal to
those progressively more distally located segments along
the vessel with respect to fibrous, fibrolipidic, and calcified
tissue. Conversely, the percentage of lipid core resulted to
be increased in the first [(mean: 13%; 95%CI: 10, 16),
(median: 8.75%; IQR: 5.7, 18)] with respect to the third
segment [(mean: 8.7%; 95%CI: 6.5, 11), (median: 6.2%;
IQR: 2.6, 12.1)] in model 1 (P, 0.05; primary endpoint)
and to third [(mean: 8.4%; 95%CI: 6, 11), (median: 6.1%;
IQR: 3.2–12)] (P, 0.05) and fourth [(mean: 6.8%; 95%CI:
4, 9.6), (median: 4.5%; IQR: 2.4–7.9)] (P, 0.01) segment
in model 2 (Figure 3). A similar shift in relative plaque
composition along the vessel was observed in models 3 and
4. Interestingly, ACS patients presenting with the culprit
lesion located in the proximal segment of the coronary
artery did not differ in terms of relative plaque distribution
along the vessel with respect to those with culprit lesion
sited in the mid of distal tract.

Clinical presentation and change in plaque
composition along the study vessel

No significant change in calcium content with respect to
clinical presentation (stable vs. unstable) was observed
(data not shown). In model 1, fibrous plaque content was
overall significantly increased in stable (68%) [95%CI: 65%,
71%] vs. unstable (63%) [95%CI: 59%, 64.7%] group,
whereas a decrease in stable (17%) [95%CI: 16%, 19%] vs.
unstable (22%) [95%CI: 20%, 24%] patients was observed for

Table 1 Study population

Variables Patients

All
(n ¼ 51)

SA Group
(n ¼ 33)

ACS Group
(n ¼ 18)

Age (years) 58 + 10 56 + 12 59 + 9
Males, no. (%) 45 (88) 28 (85) 16 (94)
Weight (kg) 80 + 9 80 + 8 81 + 9
Height (cm) 174 + 7 174 + 7 175 + 8
BMI (kg/m2) 27 + 4 27 + 3 28 + 5
Diabetes, no. (%) 12 (23) 8 (24) 4 (22)
Hypertension, no. (%) 20 (39) 14 (42) 6 (33)
Current smokers, no. (%) 19 (37) 13 (39) 6 (33)
Previous smoker, no. (%) 16 (31) 9 (27) 7 (39)

Medical history, no. (%)
CABG 3 (6) 2 (6) 1 (6)
PCI 11 (22) 8 (24) 3 (17)
ACS 23 (45) 18 (54) 5 (28)

Medical treatment at entry, no. (%)a

Aspirin 51 (100) 33 (100) 18 (100)
Clopidogrel 51 (100) 51 (100) 18 (100)
Statin 38 (75) 25 (76) 13 (72)
ACE-inhibitor 40 (78) 30 (91) 10 (56)
b-Blocker 48 (94) 32 (97) 16 (89)

Plus–minus values are means + SD. BMI, Body mass index; CABG, coronary artery bypass grafting;
ACE, angiotensin converting enzyme.

The SA group was well matched (P-value .0.3) with the ACS group with respect to all variables
reported earlier.

aFor this analysis we considered all medications administered in the previous 4 or more days. At dis-
charge all patients except one were taking statins.
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fibrolipid content when all 227 segments were pooled
together (P ¼ 0.03 and P ¼ 0.006, respectively). However,
when distance from the ostium, stratified into 10 mm
segments, was also inserted into the model, only trends
towards increase in fibrous and decrease in fibrolipidic
content in stable vs. unstable patients were observed,
which did not reach statistical significance. This was
confirmed in model 2. In contrary, even when analysed
simultaneously, both plaque location along the vessel
(P ¼ 0.044 and P ¼ 0.002 for models 1 and 2, respectively)
and clinical presentation (stable vs. unstable) (P ¼ 0.01
and P ¼ 0.004 for models 1 and 2, respectively) resulted to
be independent predictors of lipid content (Figures 1B
and 2B) after adjustment for age, sex, diabetic status,
type of coronary artery analysed, and use of statin.
Finally, in order to evaluate whether the shift in lipid
content along the vessel was influenced by clinical presen-
tation, the interplay between these two main determinants
of lipid content was investigated, but no statistical
interaction emerged between plaque location and lipid
core content (P ¼ 0.8 and P ¼ 0.49 for models 1 and 2,
respectively).

Distance from the ostium as an independent
predictor of lipid content

In Table 4 the variables found to be associated to the rela-
tive lipid content along the vessel are shown. The lipid

core in the most distally located coronary segment
(segment 3) in model 1 was significantly lower compared
with segment 1, taken as a reference, independently from
all other identified predictors. When all 227 segments
were included in the model, distance from the ostium, stra-
tified into 10 mm segments, resulted to be an independent
predictor of relative lipid content along vessel wall,
together with older age, unstable presentation, no use of
statin, and the presence of diabetes mellitus. In keeping
with the results obtained at the post hoc analysis, after
adjusting for clinical presentation, relative lipid content in
segment 1 did not differ from segment 2 [b 20.08 (95%CI:
20.28, 0.116)], while it did so starting from segment 3 [b
20.22 (95%CI: b 0.39, b 0.05)], with a progressively lower
b-value for segment 4 [b 20.34 (95%CI: 20.39, 20.05)]
and 5 [b 20.38 (95%CI: 20.55, 20.21)].

Discussion

Several lines of research in the last decades have clearly
pointed out how factors involved in pathogenesis and pro-
gression of atherosclerotic lesions are widespread through-
out the circulatory bed.8,11,12,14,23,24

As a corollary to this, evidence that a single pharmaco-
logical or mechanical treatment, when applied locally, is
able to affect progression of coronary atherosclerosis is
weak and not conclusive.25 On the other hand, systemic

Table 2 Quantitative vessel analysis at IVUS

Coronary segments Mean cross-sectional areas (mm2) Stenosis (%)

Lumen Vessel Plaque

Model 1; n ¼ 51
18 (0–10 mm) 9.4 + 3.6 17.1 + 8.1 7.3 + 3.7 41.4 + 10.5
28 (10–20 mm) 7.8 + 2.9† 15.7 + 7.8 7.2 + 3.4 46 + 12
38 (20–30 mm) 7.1 + 2.8‡ 14.2 + 8‡ 6.2 + 2.7 45 + 11
P-value 0.002 0.01 0.12 0.08

Model 2; n ¼ 43
18 (0–10 mm) 9.3 + 3.6 17.4 + 8.6 7.6 + 3.9 42 + 11
28 (10–20 mm) 7.7 + 2.7 15.9 + 8.2 7.3 + 3.5 46 + 12
38 (20–30 mm) 7 + 2.6* 14.5 + 8.7 6.3 + 2.8 45 + 11.2
48 (30–40 mm) 6.4 + 2.7‡ 13.5 + 9.7‡ 6 + 3.4† 45.3 + 12.4
P-value 0.0002 0.001 0.02 0.4

Model 3; n ¼ 20
18 (0–10 mm) 10.4 + 4.3 20.5 + 11.5 9 + 5.2 39.8 + 10.5
28 (10–20 mm) 8.8 + 2.8 19 + 11 8.2 + 4.7 41.7 + 12
38 (20–30 mm) 8 + 2.9 17.4 + 12 6.9 + 3 42 + 10
48 (30–40 mm) 7.3 + 3.2 16.5 + 13.3 6.8 + 4.2 42 + 12
58 (40–50 mm) 7 + 2.9 16.2 + 15 5.7 + 2.3 41 + 11.4
P-value 0.07 0.12 0.054 0.98

Model 4; n ¼ 11
18 (0–10 mm) 10.7 + 2.8 19.3 + 2.7 8.6 + 2.1 45 + 7.8
28 (10–20 mm) 9.3 + 3.7 18 + 4 8.6 + 2.4 49 + 10
38 (20–30 mm) 8.6 + 2.3 16.8 + 4.6 8.2 + 2.4 48 + 8.3
48 (30–40 mm) 8.3 + 2.2 17.1 + 5 8.8 + 2.8 51 + 5.7
58 (40–50 mm) 7.5 + 2.5 15.3 + 4.9 7.8 + 2.6 51.3 + 4.8
68 (50–60 mm) 6.7 + 2.6† 13 + 4 6.2 + 2 48.2 + 9.7
P-value 0.023 0.06 0.063 0.4

*P, 0.01; †P , 0.05; ‡P, 0.001 as compared with segment 1 at post hoc analysis.
Results are given as mean + SD.
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therapy, such as an intensive lipid-lowering treatment, has
been convincingly shown to be able to stop atherosclerotic
disease progression and even induce coronary lesions
regression in some studies.26–30 The same paradigm is
thought to be true for factors involved in atherosclerotic
lesions vulnerability, albeit probably in a more elusive
way.25

These findings should be combined, however, with the evi-
dence provided by recent epidemiological studies, which
corroborate the hypothesis according to which sites of
occlusions are not uniformly distributed throughout the
coronary tree, rather they show a tendency to cluster in
partially predictable hot spots located within the proximal
third of each coronary vessels.9,10

Thus, the interplay among systemic and local factors able
to promote progression and vulnerability of atherosclerotic
coronary lesions should be probably both targeted in the
attempt to control the chronic and acute consequences of
coronary atherosclerosis.15

Among local factors known to affect genesis and pro-
gression of coronary atherosclerotic lesions, shear stress
(SS) has been extensively investigated.

Fluid SS, acting on genes ‘sensitive’ to local haemo-
dynamic forces, is known to elicit a large number of
humoural, metabolic, and structural responses in endo-
thelial cells (EC).31 Low SS on ECs partially explains the
local arterial susceptibility to atherosclerosis, as low SS

enhances the oxidation of lipids and their accumulation in
the intima.31,32

Moreover, fluid turbulence in itself is able to directly
activate platelets, thus possibly playing a pivotal role in
thrombogenesis as well.33

It is tempting to speculate that other local factors
could play additional roles in modulating progression
and instability of atherosclerotic lesions in coronary
arteries. Among them, pathological studies have
suggested that the distribution of thin-cap atheromas,
which are lipid rich core plaques known to be at particu-
larly high-risk for rupture, are not uniformly distributed
along the coronary vessels in post-mortem examin-
ations.34 Rather, they cluster in the proximal segments
of the three main coronary arteries, which is in keeping
with the longitudinal distribution of both ruptured and
healed plaques.34

This non-uniform distribution of vulnerable plaques in
humans could partially explain the clustering of occlusive
culprit lesion in the proximal or middle tract of coronary
arteries. In this regard, we hypothesized that plaque compo-
sition was also not uniformly distributed in vivo in humans in
patients with symptomatic coronary disease. Thanks to a
recently developed technology based on spectral analysis
of IVUS radiofrequency data (IVUS-VH),16,17 we prospec-
tively evaluated whether plaque composition is indepen-
dently affected by the distance from coronary ostium in a

Table 3 Plaque composition stratified into 10 mm segments

Coronary segments Plaque composition (%)

Calcium Fibrous Fibrolipidic Lipid core

Model 1; n ¼ 51
18 (0–10 mm) 0.69 (0.26–1.98) 67.1 (60–74.4) 16.86 (11.2–24) 8.8 (5.7–18)
28 (10–20 mm) 0.67 (0.3–1.58) 68.3 (60–77) 18.1 (12.7–23.1) 9.6 (4.3–15.1)
38 (20–30 mm) 0.79 (0.37–1.82) 69 (64–78) 18.7 (13.4–25.3) 6.2 (2.6–12.1)*
P-value 0.67 0.40 0.84 0.039

Model 2; n ¼ 43
18 (0–10 mm) 0.76 (0.28–2.3) 64.7 (59.3–74) 17.7 (13.4–24.5) 8.01 (5.7–18)
28 (10–20 mm) 0.70 (0.4–1.58) 66.9 (57.9–77) 18.6 (14–24.4) 10 (4.2–16.7)
38 (20–30 mm) 0.75 (0.37–1.82) 69 (63.9–77.8) 19.8 (14.3–25.4) 6.1 (3.5–12)*
48 (30–40 mm) 0.48 (0.09–1.5) 68.7 (60.8–75) 21.1 (17–28.2) 4.5 (2.4–8)†

P-value 0.36 0.55 0.63 0.0058

Model 3; n ¼ 20
18 (0–10 mm) 0.77 (0.5–2.6) 71.4 (49.7–76.4) 17.3 (13.4–23.7) 8 (6–25)
28 (10–20 mm) 0.49 (0.18–1.15) 72.3 (57.9–79.59) 17.2 (100–22.7) 9.3 (4.1–14.6)
38 (20–30 mm) 0.87 (0.1–2.4) 69.3 (61.1–79.6) 17.4 (13.1–25.3) 6.8 (4.1–12)
48 (30–40 mm) 0.9 (0.2–2.6) 67.8 (57.1–77.6) 19.1 (17.4–30) 6.1 (3–8.3)
58 (40–50 mm) 0.65 (0–1) 75.3 (60.6–81.4) 16.4 (14.5–32.6) 3.5 (0.7–5.8)*
P-value 0.14 0.8 0.71 0.039

Model 4; n ¼ 11
18 (0–10 mm) 0.3(0.2–1.6) 74.1 (61–79) 20.8 (16–28) 5.97 (2.25–12)
28 (10–20 mm) 0.8 (0.4–1) 74 (64–79) 20.5 (18–22) 5.7 (3–13)
38 (20–30 mm) 0.54 (0.13–1.6) 75.1 (70–80) 18.5 (16.8–22) 5 (2.8–6.5)
48 (30–40 mm) 0.63 (0.1–1.8) 75.7 (66–77) 21 (20–27) 3.4 (92.4–5.7)
58 (40–50 mm) 0.38 (0.1–1.3) 73.1 (67–81) 21.2 (15–27) 3.2 (2.7–5.3)
68 (50–60 mm) 0.37 (0–0.8) 77.3 (66–79) 24 (19–28) 2.7 (1–4.3)*
P-value 0.65 0.78 0.98 0.036

* P, 0.05; †P , 0.01 as compared with segment 1 at post hoc analysis.
Results are given as median (IQR).
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consecutive series of patients. Our findings support the
concept that coronary plaques located in the proximal
tract (�20 mm) of coronary vessels are relatively richer in
lipid content with respect to those more distally located,
independently from clinical presentation. In this regard,
the magnitude of lipid content appeared to be relatively
higher in patients presenting with clinical instability but
no interaction emerged in our model between clinical pres-
entation and lipid content, suggesting that the relative
change in plaque composition along the vessel is a well-
preserved phenotype in both groups of patients. Moreover,
distance from the coronary ostium resulted to be an inde-
pendent predictor of relative lipid content along the
vessel wall in our regression model, together with age,
unstable presentation, presence of diabetes mellitus, and
no use of statin.

Our current findings should be regarded as an attempt to
extend the pathophysiological knowledge on plaque vulner-
ability, mainly because of the well-known linkage between
plaque composition and risk of plaque rupture or
erosion.34–36 Thus, this might contribute to explain the
higher likelihood for plaque erosion or rupture to occur
proximally in the coronary tree. Moreover, the finding
that coronary plaques show a relatively higher lipid
content if proximally located along the longitudinal axis
of the vessel with respect to those more distally located
might elicit new methodological issues in future inves-
tigations. In particular, hypothesizing that plaque
progression/regression studies accomplished through
aggressive lipid-lowering regimen would mainly affect the
lipid content in the plaque, it seems reasonable to
believe that the relative effect of the tested medication
observed at IVUS investigation in terms of overall plaque
CSA, could differ in relation to the localization of ROI

with respect to the coronary ostium. This could bear
special hazard particularly in those studies having limited
ROI length.37

An interesting finding of our study was that the percen-
tage of stenosis did not differ in relation to the distance
from the ostium, whereas plaque area was progressively
smaller moving form proximal to distal segments. This
might be explained by the interplay between the physio-
logical proximal–distal tapering of the coronary vessel
and the higher propensity of the proximal segments to
undergo positive remodelling with respect to those
located more distally. This seems to be in keeping with
our recent findings that positive remodelling is indeed
more pronounced in lipid-rich coronary segments.38

Limitations of the study

As exploratory-pilot investigation, our current findings
should be regarded as provisional. In particular, to assess
relatively minor changes in plaque composition along longi-
tudinal vessel axis, such as that observed for fibrous tissue,
or for highly dispersed data such as for relative calcium
content, a bigger, properly powered, sample size is clearly
needed. Similarly, the observed insignificant trends for
fibrous tissue to be increased and fibrolipidic content to be
decreased in stable vs. unstable patients may reflect a
type-II error. Our results mainly apply to the first 40 mm of
the three main coronary arteries, whereas the longitudinal
pattern of shift in coronary plaque composition in coronary
segments more distally located or in left main coronary
artery should be evaluated in studies specifically designed
for such an aim. In particular, in keeping with our primary
endpoint, the only comparison for which this study was
properly powered for is the one between the first and the

Figure 1 Relative change in plaque composition with respect to segment 1. Starting from segment 3, relative lipid content showed a progressive decrease with
respect to ostial segment (segment 1) taken as a reference. Relative changes in segments 2 and 3 were calculated using model 1, whereas for the relative change
in segments 4, 5, and 6, models 2, 3, and 4 were employed, respectively. All relative changes are expressed as mean value and standard deviation.
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third segment in model 1. All other analyses, including the
tests for four models and all post hoc comparisons should
be regarded as exploratory. Despite careful examination of
all angiograms, we cannot completely rule out the
possibility that patients with a higher number of IVUS inter-
rogated 10 mm segments had a more favourable coronary
anatomy as compared with those in whom a long pull-back
could not been obtained.

Relevant to this point, it is the fact that: (i) plaque com-
position in the first three coronary segments did not differ in
patients with 30 mm pull back length as compared with
those in whom a longer IVUS pull back was obtained; and
(ii) the change in plaque composition along the study
vessel was remarkably consistent in all the four models
analysed.

We failed to find sex-related differences in the proximal–
distal pattern of plaque composition. However, the great
majority (88%) of patients enrolled were males, which

Table 4 Predictors of plaque lipid content at uni- and multi-
variate analysis in model 1

Variables Beta-values (95% CI) P-values

Univariate analysis
Age (years) 20.12 20.25, 0.008 0.069
Sex (M vs. F) 0.029 20.101, 0.16 0.66
Smoking status 0.022 20.108, 0.15 0.7

Previous history of
Hypertension 0.048 20.08, 0.16 0.48
CVD in the family 20.038 20.16, 0.082 0.56
Hypercholesterolaemia 0.08 20.032, 0.197 0.21
Diabetes mellitus 0.14 0.023, 0.257 0.041
ACS 0.044 20.086, 0.174 0.50
Coronary

revascularization
20.15 20.2, 20.028 0.02

Coronary vessela 0.038 21.93, 2.008 0.5
ACS at presentation 0.25 0.11, 0.39 0.0032
LDL (mg/dL) 0.09 20.04, 0.22 0.42
HDL (mg/dL) 20.12 20.25, 0.01 0.067
Triglycerides (mg/dL) 0.04 20.09, 0.17 0.78
Use of statin 20.25 20.37, 20.12 0.0001
Distance from ostiumb 20.32 20.45, 20.30 ,0.0001

Multivariable analysisc

Distance from ostiumb 20.28 20.15, 241 ,0.0001
Age (years) 20.26 20.12, 240 0.0004
ACS at presentation 0.16 0.03, 0.29 0.005
Use of statin 20.18 20.36, 0.004 0.057
Diabetes mellitus 0.21 0.07, 0.34 0.003
Coronary

revascularization
20.07 20.02, 0.12 0.46

HDL (mg/dL) 20.02 20.05, 0.21 0.84

CVD, cardiovascular disease; LDL, low-density lipoprotein; HDL, high-
density lipoprotein.

aAnalysed as left anterior descending vs. circumflex vs. right coronary
artery

bAnalysed as segment 1 taken as a reference vs. segment 3.
cAdjusted R2 ¼ 0.36 for the model.

Figure 2 Per-segment distribution of relative lipid content in the study
population. Per-segment distribution of relative lipid contents both in the
whole population and stable vs. unstable patients in model 1 (A) and 2 (B).
Bars indicate median values in the whole population. As shown in Table 3,
relative lipid content significantly decreased in the whole population in
segment 3 in model 1 and in segments 3 and 4 in model 2 with respect to
segment 1 at post hoc analysis.

Figure 3 IVUS-VH CSA along a coronary vessel. IVUS-VH cross-sectional areas
in a representative patient showing the change in plaque composition
(calcium: white; fibrous: green; fibrolipidic: greenish-yellow; and lipid
core: red) along the longitudinal axis of the vessel. LM, left main coronary
artery; CFX, circumflex artery; LAD, left anterior descending artery. The dis-
tance between the cross-sectional area and the ostium of the vessel is
reported in millimetres (mm).
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calls for future studies with more balanced sex-distribution
to properly address this gender issue.

Finally, it should not undergo unnoticed that the
proportion of lipid core content predicted by our multi-
variable regression model, despite highly significant, was
far from being optimal. This means that future investi-
gations should probably aim to increase the capability to
predict relative lipid content in coronary plaques taking
a broader set of possible independent predictors into
account.

Conclusion

Our study provides proof of concept for a non-uniform
longitudinal distribution of plaque composition mainly in
terms of lipid core content along the main coronary arteries
in vivo in humans. The clinical and pathophysiological
meaning of this observation and whether it could help
explaining the non-uniform distribution of vulnerable
plaques along the coronary vessel remains unclear. Future
studies are needed to extend and possibly confirm our
current findings.

Conflict of interest: none declared.
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ABSTRACT 

Objective: To investigate whether plaques located in the left main stem (LMS) differ in 

terms of necrotic core content from those sited in the proximal tract of the left coronary 

artery. Background: Plaque composition, favoring propensity to vulnerability, might be 

non-uniformly distributed along the vessel. This might explain the higher likelihood for 

plaque erosion or rupture to occur in the proximal but not in the distal tracts of the coronary 

artery or in LMS. Methods: 72 patients were prospectively included: 48 (32 men; mean 

age: 57±11), [25 with stable angina (SA); 23 affected by acute coronary syndromes (ACS)] 

underwent a satisfactory non-culprit vessel investigation through spectral analysis of IVUS 

radiofrequency data (IVUS-Virtual HistologyTM). The region of interest was subsequently 

divided into LMS and LMS carina, followed by six consecutive non-overlapping 6 mm-

segments in left anterior descending (LAD) artery in 34 or in circumflex artery (CFX) in 14 

patients. Results: Necrotic core content (%) i) was minimal in LMS [median (IQR): 4.6 (2-

7)]; peaked in the first 6-mm coronary segment [11.8 (8-16); p<0.01], while it then 

progressively decreased distally; ii) was overall higher in ACS [11.4 (5.5-19.8) than SA 

patients [7.3 (3.2-12.9)]; (p<0.001); iii) was largely independent from plaque size and iv) 

did not correlate to systemic levels of CRP or lipid profile. Conclusions: Plaques located in 

the LMS carry minimal necrotic content. Thus, they mimic the distal but not the proximal 

tract of the left coronary artery where plaque rupture or vessel occlusion occurs more 

frequently.

Key Words: Plaque – necrotic core – Imaging – vulnerable plaque – Virtual histology
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ABSTRACT 

Objective: To investigate whether plaques located in the left main stem (LMS) differ in 

terms of necrotic core content from those sited in the proximal tract of the left coronary 

artery. Background: Plaque composition, favoring propensity to vulnerability, might be 

non-uniformly distributed along the vessel. This might explain the higher likelihood for 

plaque erosion or rupture to occur in the proximal but not in the distal tracts of the coronary 

artery or in LMS. Methods: 72 patients were prospectively included: 48 (32 men; mean 

age: 57±11), [25 with stable angina (SA); 23 affected by acute coronary syndromes (ACS)] 

underwent a satisfactory non-culprit vessel investigation through spectral analysis of IVUS 

radiofrequency data (IVUS-Virtual HistologyTM). The region of interest was subsequently 

divided into LMS and LMS carina, followed by six consecutive non-overlapping 6 mm-

segments in left anterior descending (LAD) artery in 34 or in circumflex artery (CFX) in 14 

patients. Results: Necrotic core content (%) i) was minimal in LMS [median (IQR): 4.6 (2-

7)]; peaked in the first 6-mm coronary segment [11.8 (8-16); p<0.01], while it then 

progressively decreased distally; ii) was overall higher in ACS [11.4 (5.5-19.8) than SA 

patients [7.3 (3.2-12.9)]; (p<0.001); iii) was largely independent from plaque size and iv) 

did not correlate to systemic levels of CRP or lipid profile. Conclusions: Plaques located in 

the LMS carry minimal necrotic content. Thus, they mimic the distal but not the proximal 

tract of the left coronary artery where plaque rupture or vessel occlusion occurs more 

frequently.

Key Words: Plaque – necrotic core – Imaging – vulnerable plaque – Virtual histology

3

CONDENSED ABSTRACT 

In 48 patients [25 with stable angina; 23 affected by acute coronary syndromes] who 

underwent spectral analysis of IVUS radiofrequency data (IVUS-Virtual HistologyTM),

necrotic core content was minimal in left main stem (LMS), peaked in the first 6-mm 

coronary segment, while it then progressively decreased distally; suggesting that plaques 

located in the LMS, by carrying minimal necrotic content, mimic the distal but not the 

proximal tract of the left coronary artery where plaque rupture or vessel occlusion occurs 

more frequently. 
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ABBREVIATIONS LIST 

ACS: acute coronary syndrome 

CRP: C-reactive protein 

CFX: circumflex artery 

HDL: high-density lipoprotein cholesterol 

IVUS: Intravascular ultrasound 

LMS: left main stem 

LAD: left anterior descending artery 

LDL: low-density lipoprotein cholesterol 

STEMI: ST-segment elevation myocardial infarction 

VH: virtual histology 
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ABBREVIATIONS LIST 

ACS: acute coronary syndrome 

CRP: C-reactive protein 

CFX: circumflex artery 

HDL: high-density lipoprotein cholesterol 

IVUS: Intravascular ultrasound 

LMS: left main stem 

LAD: left anterior descending artery 

LDL: low-density lipoprotein cholesterol 

STEMI: ST-segment elevation myocardial infarction 

VH: virtual histology 
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INTRODUCTION

The distribution of ruptured or prone to rupture plaques is known to be non-uniform throughout the 

coronary tree(1-5). Pathological studies have suggested the so called “thin-cap atheromas” 

−necrotic rich core plaques at high risk for rupture− are infrequent in the left main stem (LMS) and 

in the distal tracts of the coronary vessels, while they group together with ruptured and healed 

plaques in the proximal segments of the three main coronary arteries(1). 

Similarly i) angiographic studies in patients with ST-segment elevation myocardial 

infarction (STEMI) have recently shown that sites of occlusion are clustered within the proximal 

third of each of the vessels(2,3) and ii) intravascular ultrasound (IVUS) analyses have observed that 

plaque rupture rarely occurs in the LMS or the distal part of the coronary arteries, whereas it is far 

more common in the proximal part of the coronary vessels(4), especially in the left anterior 

descending artery (5). 

The reasons why vulnerable or ruptured plaques tend to spare the LMS and distal segments 

of the left coronary vessels remain poorly understood. Plaque composition, favoring propensity to 

vulnerability(6-8), might also be non-uniformly distributed along the coronary arteries. 

We sought to investigate whether the plaques located in the LMS, which are known to be at 

low probability of rupture, differ in terms of composition from those sited in the proximal tract of 

left anterior descending or circumflex artery, where rupture or occlusion occurs more frequently. 

This may contribute establishing in vivo the role of plaque composition as key determinant of 

vulnerability in humans. In this context, the role of clinical presentation, length of LMS, lipid 

profile and systemic level of C-reactive protein were also investigated. 
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METHODS

Study Protocol and Patients Enrolment 

This was a single-centre, investigators-driven, observational study aimed to evaluate the 

distribution of plaque composition along the left coronary artery in consecutive patients referred to 

our institution for elective or urgent PCI, in whom the non-culprit, non-treated vessel was judged 

suitable for a safe IVUS 35 mm-pullback or more, based on angiographic (absence of the following: 

>50% stenotic disease, extensive calcification, severe vessel tortuosity) and clinical (haemodynamic 

stability) findings.

According to the protocol, not more than one vessel-per patient could be evaluated and the 

region of interest (ROI) was subsequently divided into the following coronary segments: LMS and 

LMS carina, based on anatomical landmarks, followed by six consecutive non-overlapping 6 mm-

segments, with the first one to be started at the coronary ostium of either left anterior descending or 

circumflex artery. The length chosen for those coronary segments located distally to the LMS carina 

was based on the median length of LMS in the study population.

To ensure that the ostial-proximal part of the LMS was included in the IVUS pullback and 

to rule out the occurrence of deep intubation by the guiding catheter, the last part of the pullback 

was filmed and each angiogram carefully inspected before patient inclusion. An analyzable 

interrogated vessel length of at least 35 mm beyond LMS carina, starting from coronary ostium, 

was the main selection criterion, once the patient was included in the study. This protocol was 

approved by the hospital ethics committee and is in accordance with the declaration of Helsinki. 

Written informed consent was obtained from every patient. 

IVUS-VH Acquisition and Analysis 

Details regarding the validation of the technique, on explanted human coronary segments, 

have previously been reported (9). Briefly, IVUS radiofrequency data (IVUS-Virtual HistologyTM)
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uses spectral analysis of IVUS radiofrequency data to construct tissue maps that classify plaque into 

four major components. In preliminary in vitro studies, four histological plaque components 

(fibrous, fibro-lipid, necrotic core and calcium) were correlated with a specific spectrum of the 

radiofrequency signal (9). These different plaque components were assigned color codes. Calcified, 

fibrous, fibrolipidic and necrotic core regions were labeled white, green, greenish-yellow and red 

respectively(10).

IVUS-VH data was acquired after intracoronary administration of nitrates using a 

continuous pullback (0.5 mm per second) with commercially available mechanical sector scanners 

(UltracrossTM 30 MHz catheter, Boston Scientific, Santa Clara, CA-USA- or Eagle EyeTM 20 MHz 

catheter, Volcano Corporation, Rancho Cordova, USA), by a dedicated IVUS-VH console (Volcano 

Therapeutics, Rancho Cordova, CA). The IVUS VH data were stored on a CD-ROM/DVD and sent 

to the imaging core lab for offline analysis (Cardialysis). IVUS B-mode images were reconstructed 

from the RF data by customized software and contour detection was performed using cross-

sectional views with a semi-automatic contour detection software to provide geometrical and 

compositional output (IvusLab 3.0 for 30 MHz acquisitions and IvusLab 4.4 for 20 MHz 

acquisitions respectively; Volcano Corporation, Rancho Cordova, USA)(10).  

The contours of the external elastic membrane (EEM) and the lumen-intima interface 

enclosed an area that was defined as the coronary plaque plus media area. Plaque burden was 

calculated as [(EEMarea - Lumenarea / EEMarea) X 100]. Plaque eccentricity was defined as minimum 

plaque thickness divided by maximum plaque thickness. Geometrical and compositional data were 

obtained for each cross-sectional area (CSA) and an average was calculated for each coronary and 

for the total coronary tree. RF data was normalized using a technique known as “Blind 

Deconvolution”, an iterative algorithm that deconvolves the catheter transfer function from the 

backscatter, thus accounting for catheter-to-catheter variability (11,12).

Biochemical measures 
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Antecubital venous blood was collected from all patients at entry, left in ice for 45 min, 

centrifuged at 1700×g at 4°C for 15 min and serum obtained finally stored at –80°C. High-sensitive 

(hs) C-reactive protein (CRP) was measured in serum using a commercially available kit (N High 

Sensitivity CRP, Dade Behring, Marburg, Germany). Plasma concentrations of total cholesterol, 

high-density lipoprotein cholesterol (HDL), and triglycerides were measured in the local laboratory. 

The Friedewald formula was used to derive low-density lipoprotein cholesterol (LDL) levels.  

Statistical Analysis 

The sample size was calculated on the assumption that plaques located in the most proximal 

6-mm segment of the LAD or CFX, would display a mean necrotic core content of approximately 

10% and a standard deviation of 10%, based on previous findings(13), with a relative necrotic core 

content of around 5% in plaques located in the LMS. To detect this effect size with 80% power and 

a type I error (alpha) of 0.05, at least 46 patients were required (model 1). Model 2 was also created 

to explore whether in patients with LMS length beyond median value (long LMS cohort) plaque 

composition differs in the proximal compared to the distal tract of the LMS. No formal sample size 

was calculated for model 2 as it was meant to be a hypothesis generating analysis.

Values are expressed as mean±SD and median and interquartile range (IQR) whenever 

appropriate. Since all cross sectional areas, provided by IVUS analysis, were shown to have a non-

normal distribution at Kolmogorov-Smirnov goodness-of-fit test, they were log-transformed before 

analysis. Similarly, to all percentages relative to stenosis rate and plaque composition an arcsin 

transformation was applied (14). Assumptions for normality were checked after transformation 

based on a p-value >0.20 at Kolmogorov-Smirnov test and on visual assessment of Q-Q plots of 

residuals.

Comparisons between the two groups were performed with the Student’s t-test. Fisher’s 

exact test was used for categorical variables. Comparisons among coronary segments were 

accomplished through a general linear mixed model and post hoc comparisons by Tukey honest 
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significance difference test(15). Spearman’s correlation coefficients were used to detect any 

association between variables. Probability was significant at a level of <0.05. Statistical analysis 

was performed using Statistica 6.1 Software (Statsoft Inc.) and R-language (R Foundation). 
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RESULTS

From 11 December 2003 to 27 July 2005, seventy-two patients were prospectively included 

in the protocol. Twenty-four patients were subsequently excluded from the final analysis due to 

short (< 36 mm) IVUS pullback in 16, uncertainty regarding the true interface lumen-vessel wall 

based on IVUS grey-scale in 4 and occurrence of angiographically confirmed deep intubation of the 

guiding catheter during the pullback in 4 patients. Thus, 48 patients (32 men), aged 30 to 75 years 

(mean age: 57±11) constituted the final patient population. Their baseline characteristics are 

provided in Table 1.

The study vessel was the LMS and left anterior descending (LAD) artery in 34 (71%) 

patients and LMS and circumflex artery (CFX) in 14 (29%). The overall LMS length was 7.49±4

mm [median (IQR): 6 (4.8-9.3); range: 3.4-20]; (7.3±4 in SA group vs. 7.8±5 in ACS group, 

p=0.64). Lumen and vessel cross sectional area (CSA) decreased significantly starting from the first 

6-mm segment of the coronary artery as compared to LMS (table 2). Plaque CSA in the LMS was 

significantly increased only compared to the most distal 6-mm segment. The degree of plaque 

eccentricity was relatively constant throughout the vessel except in the LMS carina, where it 

resulted to be higher compared to both the LMS and the coronary segments distal to the first one. 

Plaque burden did not change along the vessel in model 1, despite a trend being progressively 

increased from proximal to distal.  

Model 2 (Table 2), in which LMS has been stratified into the proximal and distal segment 

after selection of those patients (n=24) with long LMS (length >6 mm), mainly confirmed the trends 

observed along the vessels in model 1.  

Change in plaque composition along the study vessel 

Fibrous tissue was the most prevalent component of plaque composition in each analyzed 

segment throughout the two models, followed by fibrolipidic tissue, necrotic core and calcium 

(table 3). No significant change was observed in terms of relative plaque composition throughout 
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the study vessel with respect to fibrous and calcified tissue content. The percentage of fibrolipidic 

tissue decreased in the second and third 6-mm segment when contrasted to the LMS. When 

compared to the 6th coronary segment, however, no difference emerged among the vessel tracts in 

terms of fibrolipidic content at post-hoc analysis.

The necrotic core increased significantly in the first, second and third 6-mm segment 

compared to the LMS. When the most distal segment of the study vessel was taken as reference, the 

necrotic core remained greater in both the first and second 6-mm segment at post-hoc analysis. As 

shown in figure 1, the necrotic core was the plaque component with the highest relative change 

along the vessel (Figure 1). Changes in terms of plaque composition in model 2 are shown in table 

3.

Change in plaque composition according to clinical presentation 

No significant change in calcium, fibrous and fibrolipidic content with respect to clinical 

presentation (stable vs. unstable) was observed when all 384 coronary segments were pooled 

together (Figure 2). Necrotic core (%) was significantly increased in patients with [median (IQR): 

11.4 (5.5-19.8)] as compared to those [median (IQR): 7.3 (3.2-12.9)] without ACS (p<0.001) 

(Figure 2). After introducing anatomical location stratified into eight coronary segments in the 

model, the increase in necrotic core in ACS patients was mainly confined to the LMS [6.9 (2.6-9.4) 

vs. 3.5 (1.4-6.2) in stable patients; p=0.02], in the first [14.9 (7.7-19.6) vs. 11.5 (4.9-17.3) in stable 

patients; p=0.03], second [12.2 (5.5-16.1) vs. 9.4 (5.1-20.6) in stable patients; p=0.03] and third 6-

mm coronary segment [11.4 (5.4-15) vs. 8 (3.6-14.4) in stable patients; p=0.04]. However, the 

statistical interaction between necrotic core and the anatomical location of the segments did not 

reach the significance (p=0.12).  

LMS length as a predictor of plaque composition along the study vessel  
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Patients were stratified into two groups based on median LMS length (short LMS ≤ 6 mm 

and long LMS >6 mm). These two groups did not differ in terms of baseline and procedural 

characteristics. When each coronary segment was separately analyzed, no difference emerged 

between the two groups for IVUS-derived quantitative vessel analysis. The same held true if all 384 

coronary segments were cumulatively considered independently from their anatomical location. 

Calcium, fibrous and fibrolipid content did not differ between the two groups (data not shown). The 

pattern of necrotic distribution in relation to LMS length is shown in figure 3.

Correlations

In a segment-based analysis, necrotic core was largely independent from plaque area 

(r=0.17; p=0.06; R2=0.09). Similarly, we failed to find an association between necrotic core content 

and C-reactive protein levels (r=0.09, p=0.8), level of LDL (p=0.11, p=0.23) or HDL (r=-0.2, 

p=0.4) at entry. However, there was a significant, although weak, direct correlation between 

necrotic core and cholesterol/HDL ratio (r=0.18, p=0.01; R2=0.1).
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DISCUSSION 

There is increasing evidence that the distribution of ruptured or prone to ruptured plaques is 

not uniform along the coronary vessel: they cluster in the proximal tract of the three major coronary 

vessels while they tend to spare both the LMS and distal segments of coronary arteries(4,16).  

These findings have been recently confirmed by mapping the distribution of angiographic sites of 

occlusive or non-occlusive culprit lesions along the coronary arteries in patients with ST segment 

elevation acute coronary syndromes(2,3).  

The reason why vulnerable plaques show a tendency to cluster in partially predictable hot

spots located within the proximal tracts of coronary vessel is largely unknown. Atherosclerotic 

plaques also cluster within the proximal portions of the three major coronaries(17-20). Thus, the 

risk to undergo rupture may be identical for each coronary plaque independently from its 

anatomical location, being rupture simply more likely to occur where atherosclerotic plaques are 

more frequently clustered(21). This may easily explain the non-uniform distribution of ruptured or 

prone to rupture plaques without calling into question the idea that plaque rupture is partially a site-

specific phenomenon.  

Alternatively, plaques located within the proximal third of each coronary may harbour some 

specific hallmark of vulnerability which makes them individually more likely to undergo rupture.  

To gain some insights into this topic of debate, we hypothesized that plaque necrotic core content, 

which is a well-known determinant of vulnerability(7,8,22), may differ along the coronary vessel, 

being greater at the spots where plaque rupture is known to be more frequent. 

Our main findings can be summarized as follows: 

1) The plaque necrotic content was minimal in the LMS, particularly in the most proximal 

tract, while it peaked in the first 6-mm segments after the ostium of the two major left 

coronaries, progressively decreasing towards the more distal segments. 
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2) The plaque CSA was largely unrelated to necrotic core content throughout the left coronary 

vessel. This statement is supported by the absence of correlation between necrotic content in 

plaques and plaque CSA at the segment-based analysis and by the observation that plaque 

CSA showed a progressive increase in the distal-proximal direction along the vessel whereas 

plaque necrotic content did not.

3) The necrotic core was higher in patients with clinical instability, presenting with ACS 

compared to those affected by stable atherosclerotic disease.  

4) The necrotic content was not related to systemic inflammatory status, as measured by a well 

recognized prognostic marker of inflammation such as C-reactive protein nor LDL or HDL 

alone, while it showed a significant although weak correlation to cholesterol/HDL ratio.

5) The length of left main trunk was shown to affect the distribution of necrotic core along the 

vessel. In patients with long LMS, necrotic core content peaked immediately in the first 

coronary segment after LMS and rapidly decreased distally. Conversely, the necrotic core 

content peaked in the second 6-mm segment in patients with short LMS and it resulted to be 

increased in the two most distally analyzed segments compared to the long LMS group.  

It is tempting to speculate that the observed clustering of ruptured or prone to rupture plaques 

in the proximal segment of each coronary artery is not just a simple reflection of the non-uniform 

distribution of atherosclerosis along the coronary vessel. The necrotic content of those plaques 

located in these proximal segments, independent of their size, was higher, both compared to the 

LMS and to those segments which are more distally located. The plaques located within the 

proximal segments of the left coronary artery, being relatively richer in necrotic content, may 

undergo rupture more easily than those located in the LMS or in the distal tracts of the vessel.

Some preliminary unpublished findings by our group suggest that plaque necrotic core 

content, as assessed through IVUS-VH, may be the only independent predictor for mechanically 

deformable regions (high-strain spots)(23) throughout the coronary arteries in humans. Thus, when 
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our findings are put in perspective of current evidence, they support the idea that vulnerability may 

cluster in necro-lipid-rich regions throughout the vessel. 

Necrotic core content in the present study was higher in patients with ACS, suggesting again 

that plaque composition in itself may play a pivotal role in determining vulnerability. Interestingly, 

it was recently reported that when rupture of coronary plaques occurs in the LMS, the distal half of 

LMS is more likely to be involved (24). Our findings that the distal LMS tends to harbour a greater 

necrotic core content compared to proximal half, together with the well established role of shear 

stress in bifurcated lesions(25), may contribute to explain the non-uniform distribution of plaque 

rupture even within the LMS.  

The reasons why the plaque necrotic core seems to exceed in the proximal as compared to 

the distal tracts of the coronary vessel or the LMS remain speculative at the present time. Low-

oscillatory shear stress is known to induce a loss of the physiological flow-oriented alignment of the 

endothelial cells, an enhancement of the expression of adhesion molecules and a weakening of cell 

junctions, ultimately leading to an increase in permeability to lipids and macrophages(25). The 

segments located in the first few centimetres of the coronary arteries, due to flow turbulence 

generated by high velocity blood impacting against anatomical flow dividers(26), may be more 

exposed to low-oscillatory shear stress compared to the most proximal (i.e. LMS) or more distal 

coronary segments, thus possibly explaining our present findings(27). Concomitant quantitative 

measurement of shear stress and plaque composition along coronary vessels in vivo would be 

pivotal in corroborating this working hypothesis.

Limitations of the Study 

Based on previous findings and the well known role of necrotic core content in determining 

vulnerability(6-8,22), our investigation was primarily focused on the distribution of necrotic core 

content along the left coronary artery. In order to assess relatively minor changes in plaque 
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composition along the longitudinal artery axis, such as that observed for fibrous tissue, a bigger 

properly powered sample size is clearly needed. In keeping with previous considerations, all other 

analyses and comparisons performed in the current manuscript should be regarded as exploratory 

and hypothesis-generating since we cannot rule out the possibility that inflation of type I error due 

to multiple comparisons may have confounded our results. 

In our study the operators were left free to wire the most suitable vessel for the IVUS 

pullback, provided it was supplying a major left ventricle territory. This resulted in the 

predominance of LAD as region of interest, while the CFX artery was mainly investigated in those 

patients presenting with small or tortuous LAD. The distribution of necrotic core along the vessel 

did not differ in LAD as compared to CFX. The same held true for other studied plaque 

components. However, the applied selection process may have biased this comparison. Thus, 

whether the distribution of plaque composition may differ in relation to the studied vessel remains 

to be tested. Similarly, in order to maximize patients’ safety and avoid potential IVUS-related 

complications, individuals with severe angiographic calcification were excluded. Despite this 

decision may have clearly contributed to generate some selection bias, the distribution of calcium 

along the coronary vessel intriguingly mirrored the one observed for the necrotic core. Further 

studies are needed to investigate the specific role of calcium content in determining plaque 

vulnerability.

Patients with proximal occlusions have bigger MI and thus they are more likely to present to 

hospital and be referred for angioplasty. Similarly, myocardial infarction due to LMS as culprit 

artery may often result in immediate death. Thus, it may be argued that a selection bias might have 

artificially increased the prevalence of patients with culprit lesions located in the proximal 

compared to distal tracts of coronaries or LMS. This is obviously theoretical possible. However, for 

the following reasons, we believe that this possibility is relatively unlikely:  
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A. The Necrotic core in our series clustered in the same coronary spots where previous 

studies, based on post-mortem examination, found a higher prevalence of ruptured or 

healed plaques.  

B. Our results are based on the investigation of the non-culprit vessel. Thus, they are 

potentially less prone to suffer from clinical selection due to the location of the culprit 

lesion in the culprit vessel.  

C. Although it seems to be exacerbated in patients presenting with clinical instability, the 

non-uniform distribution of plaque composition along the vessel has been observed also 

in patients with stable coronary disease, in whom the selection bias due to the 

importance of the culprit lesion is less obvious, at least for the comparison LMS vs. 

proximal tracts of LAD or CFX.  

Thus, based on these considerations, we think that our findings, especially when put in the 

context of previous evidence(1-5), may help reinforcing the notion that there may be some hot spots 

along the coronary vessel which are per se more prone to develop vulnerable plaque and as such 

undergo plaque rupture.

Summary and Conclusions 

Plaque composition was found to be not uniformly distributed along the left coronary artery with a 

progressive increase in necrotic core starting from the proximal half of the LMS to the most 

proximal segments of the LAD or CFX, followed by a steady decline towards those segments which 

are more distally located along the vessel. The necrotic core appeared to be increased in patients 

with ACS, especially in the LMS and in the three proximal coronary segments of LAD or CFX, 

while it did not correlate with the CRP or lipid profile. The relatively site-specificity of necrotic 

core content towards the proximal segment of the left coronary artery is in keeping with the 

increasing evidence that a clear clustering of ruptured or prone to rupture plaques occurs in humans 

within this region (2,3,5). Our findings i) reinforce the notion the plaque composition may be a 
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major determinant for and subsequently a potential target of plaque vulnerability in humans and ii) 

call for prospective evaluation of the independent role of plaque composition on long-term outcome 

in patients with established coronary artery disease. 
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Figure Legends 

Figure 1. Change in plaque composition along the left coronary artery

A: plaque composition in terms of median necrotic, fibro-lipid, fibrous and calcium core content 

expressed in absolute values along the left coronary vessel. In B the percentage of each plaque 

components are reported with respect to left main coronary artery (LMS) taken as reference. All 

analyses are based on model 1. 

Figure 2. Plaque composition in relation to clinical presentation 

Plaque composition on a per segment based analysis in patients with stable angina (stable pts) or 

with acute coronary syndromes (ACS) (unstable pts). The necrotic core (%) was significantly 

increased in patients with [median (IQR): 11.4 (5.5-19.8)] as compared to those [median (IQR): 7.3 

(3.2-12.9)] without ACS.

*: p<0.001 vs. stable pts. 

Figure 3. Necrotic core distribution along the left coronary artery according to the length of 

LMS

The necrotic core peaked in the first and in the second 6-mm segment in patients with long (above 

median value) and short left main coronary artery (LMS), respectively. After the peak, the necrotic 

core decrease was more pronounced in the long than in the short LMS group. As a consequence, the 

necrotic core content resulted to be significantly increased in the fifth and sixth 6-mm segments in 

the short as compared to the long LMS group.  

*: p<0.05 vs. short LMS. 

Figure 4. Correlation between arcsin transformed plaque cross sectional area (CSA) and log 

transformed necrotic core content 
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Table 1. Study Population

Patients

Variables All
(N=48) 

SA
Group

(N=25) 

ACS
Group

(N=23) 
P-Value*

   
Age (ys) 57±11 58±11 57±12 0.81
Males, no. (%) 32 (67) 16 (64) 16 (65) >0.99 
Weight (kg) 82±12 81±12 84±12 0.36
Height (cm) 174±9 173±8 176±10 0.28
BMI (kg/m2) 27±3 27±4 27±2 0.81
Diabetes, no. (%) 11 (23) 5 (20) 6 (26) 0.75 
Hypertension, no. (%) 37 (77) 20 (80) 17 (74) >0.99 
Current Smokers, no. (%) 19 (40) 8 (32) 11 (48) 0.32 
Previous Smoker, no. (%) 16 (33) 9 (36) 7 (30) 0.50 
     
C-reactive protein (mg/l) 29±48 12.7±15 38±58 0.19
Low density lipoprotein (mmol/l) 3.09±1.22 3.26±1.3 2.9±1.3 0.44
High density lipoprotein (mmol/l) 1.22±0.5 1.30±0.6 1.14±0.4 0.39
Cholesterol/HDL ratio 4.26±1.49 4.26±1.5 4.25±1.2 0.99

    
Medical History, no. (%)     

CABG 2(4) 2 (6) 0 (0) 0.29 
PCI 11 (23) 8 (32) 3 (13) 0.32 
Acute Coronary Syndrome 18 (37) 10 (40) 8 (35) >0.99 

    

Medical Treatment, no. (%)     

Aspirin 48 (100) 25 (100) 23 (100) >0.99 
Clopidogrel 48 (100) 25 (100) 23 (100) >0.99 
Statin 42 (88) 23(92) 19 (83) 0.84 
ACE-inhibitor 40 (83) 25 (100) 15 (65) 0.39 
β-Blocker 42 (88) 23 (92) 19 (83) 0.84 

    
Plus-minus values are means±SD.
BMI: Body mass index, SA: Stable angina, ACS: acute coronary syndrome.  
CABG: coronary artery bypass grafting, PCI: percutaneous coronary intervention, ACE: 
angiotensin converting enzyme 
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Chapter 4. Eff ect of shear stress on plaque composition.

4.1)  Plaque Composition and its Relationship with 

Acknowledged Shear Stress Patterns in Coronary 

Arteries. 

J Am Coll Cardiol. 2006 Feb 21;47(4):884-5. 

Rodriguez Granillo GA, García-García HM, Wentzel JJ, 

et al.
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Shear stress and plaque composition in the left main

CORRESPONDENCE
Research Correspondence

Plaque Composition and its Relationship With
Acknowledged Shear Stress Patterns in Coronary Arteries

To the Editor: Several studies in coronary and peripheral arteries
have demonstrated that atherosclerosis has a tendency to arise
more frequently in low-oscillatory shear stress (LOSS) regions
such as in inner curvature of nonbranching segments and opposite
to the flow divider (FD) at bifurcations (1–3). In particular,
atherosclerotic disease has certain predilection for the outer wall of
the left main coronary artery bifurcation, sparing the FD (2).
Intravascular ultrasound (IVUS) has been used to describe the
extent, distribution, and profile of plaques in the proximal left
anterior descending coronary artery (LAD) (2). Nevertheless, in
vivo data regarding tissue composition of this region remain
unknown. Furthermore, to date, no study has explored the char-
acteristics of plaques located in the proximal LAD compared to the
left main coronary artery (LMCA). In the present study, we sought
to explore the morphologic and compositional characteristics of
plaque located at an acknowledged LOSS area (outer wall of the
ostial LAD [OLAD]) and compare them to the characteristics of
plaque located at an average shear stress region (distal LMCA
[DLMCA]).

This prospective investigators-driven study included patients
where the LAD was interrogated before any intervention using
IVUS radiofrequency data (RFD) analysis (IVUS-VH; Volcano
Therapeutics, Rancho Cordova, California). The IVUS-VH
uses spectral analysis of IVUS RFD to construct tissue maps

that were correlated with a specific spectrum of the RFD and
assigned color codes (Fig. 1) (4). The IVUS-VH was performed
with 30-MHz (Ultracross; Boston Scientific, Santa Clara,
California) and 20-MHz (Eagle Eye; Volcano Therapeutics)
catheters, and contour detection was determined using previ-
ously reported methodology (5). Informed consent was obtained
from all patients. Plaque eccentricity was defined as the ratio of
maximal to minimal plaque thickness (1). Plaque burden was
defined as ([EEMarea � lumenarea]/EEMarea) � 100. The
carina of the bifurcation was identified as the frame immediately
distal to the take-off of the circumflex.

The maximal plaque thickness (MPT) was calculated at this
level and spatially located according to a circumference ranging
from 0° to 360°, being the inner and opposite part of the carina at
0° and 180°, respectively. Lesions were therefore prospectively
divided into two groups, according to their localization in the outer
(from 91° to 271°) or inner (from 270° to 90°) hemisphere of the
carina.

Two regions were prospectively identified and their morphology
and composition compared. The OLAD was defined as the carina
and the immediate 3-mm distal segment, because the flow in this
area is still influenced by the bifurcation (6). Similarly, the
DLMCA was identified as the 3-mm segment immediately

Figure 1. Intravascular ultrasound cross-section images from the carina of the left anterior descending coronary artery and of the left main coronary artery.
The left side shows the reconstructed grayscale, and the right side shows the color-coded data (green � fibrous; yellow-green � fibrolipidic; red � necrotic
core; white � calcium) provided by the IVUS-VH unit (Volcano Therapeutics, Rancho Cordova, California). LCx � left circumflex artery; MPT �
maximal plaque thickness.

Journal of the American College of Cardiology Vol. 47, No. 4, 2006
© 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00
Published by Elsevier Inc.

Colour figures on pages 441-449



Chapter  4.1

150

proximal to the bifurcation. Compositional and geometrical data
were expressed as mean percentages.

Discrete variables are presented as counts and percentages.
Continuous variables are presented as mean � SD. Differences in
means among groups were analyzed by two-sample t test. A p value
of �0.05 (two-sided) was considered to indicate statistical signif-
icance.

Forty-four patients were finally included in the analysis. The
clinical presentation was stable angina in 23 patients (52.3%),
unstable angina in 10 patients (22.7%) and acute myocardial
infarction in 11 patients (5%); the mean age of the patients was
58.8 � 11.5 years, and 33 patients (75%) were male. Geometric
and compositional comparative results between the OLAD and
the DLMCA are depicted in Table 1. Plaque burden was larger in
the OLAD than in the DLMCA (45.5 � 10.2% vs. 36.4 � 10.8%;
p � 0.0001). OLAD plaques presented more calcified (4.13 �
5.1% vs. 1.28 � 2.0%; p � 0.0001) and necrotic (12.36 � 9.2% vs.
7.90 � 8.6%, p � 0.0001) core content.

The MPT was located in the outer hemisphere of the carina in
77.3% (n � 34) of the cases and the mean angle was 170.7 � 60.6°.
Only one case presented the MPT at 0 degrees. Necrotic core
content was larger in outer than in inner lesions (14.4 � 10.0% vs.
6.3 � 6.9%; p � 0.02).

The current investigation extends earlier findings on atheroma
distribution in the LAD by comparing in vivo plaque burden and
composition in acknowledged areas of low and average shear stress.
It has been previously established that an inverse relationship exists
between LOSS and thickness of the vessel wall (3). The patho-
physiology of such phenomena can briefly be explained by the fact
that LOSS induces a loss of the physiologic flow-oriented align-
ment of the endothelial cells, thus causing an enhancement of the
expression of adhesion molecules and a weakening of cell junc-
tions, ultimately leading to an increase in permeability to lipids and
macrophages (3,7–9). The results of the present study are in line
with histopathologic data, showing higher concentrations of ne-
crotic core and calcium in an acknowledged area subject to LOSS.
Such difference may be driven by the lipid leakage present in these
areas (8). The high lipid load in addition to the eccentric
characteristics of the atheroma would potentially render these
plaques more susceptible to rupture (10). Conversely, the more
stable phenotype observed in DLMCA lesions supports the low
incidence of atherothrombotic events at this level (11). Finally,
these results may provide another potential explanation for the
higher risk of restenosis after percutaneous coronary intervention
of bifurcation lesions.

In summary, we found that OLAD atherosclerotic plaques
present larger plaque burden, eccentricity, and MPT than
DLMCA plaques. In addition, a larger calcified and necrotic core
content was found distal to the circumflex take-off. Lesions were
predominantly located in the outer wall of the carina, and such
location was associated with larger necrotic core content.

Gastón A. Rodriguez-Granillo, MD
Héctor M. García-García, MD
Jolanda Wentzel, PhD
Marco Valgimigli, MD
Keiichi Tsuchida, MD
Wim van der Giessen, MD, PhD
Peter de Jaegere, MD, PhD
Evelyn Regar, MD, PhD
Pim J. de Feyter, MD, PhD
*Patrick W. Serruys, MD, PhD, FACC

*Thoraxcenter, Bd406
Dr. Molewaterplein 40
3015-GD Rotterdam
the Netherlands
E-mail: p.w.j.c.serruys@erasmusmc.nl

doi:10.1016/j.jacc.2005.11.027

REFERENCES

1. Jeremias A, Huegel H, Lee DP, et al. Spatial orientation of athero-
sclerotic plaque in nonbranching coronary artery segments. Athero-
sclerosis 2000;152:209–15.

2. Kimura BJ, Russo RJ, Bhargava V, McDaniel MB, Peterson KL,
DeMaria AN. Atheroma morphology and distribution in proximal left
anterior descending coronary artery: in vivo observations. J Am Coll
Cardiol 1996;27:825–31.

3. Kornet L, Hoeks AP, Lambregts J, Reneman RS. In the femoral artery
bifurcation, differences in mean wall shear stress within subjects are
associated with different intima-media thicknesses. Arterioscler
Thromb Vasc Biol 1999;19:2933–9.

4. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince
DG. Coronary plaque classification with intravascular ultrasound
radiofrequency data analysis. Circulation 2002;106:2200–6.

5. Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, et al.
Coronary artery remodelling is related to plaque composition. Heart
2005 Jun 17; [Epub ahead of print].

6. Gijsen F, Thury A, Lamers B, Wentzel JJ, Schuurbiers JCH, Serruys
PW, Slager CJ. 3D plaque distribution and its relationship to shear
stress in a human coronary artery bifurcation in vivo. Presented at:
Summer Bioengineering Conference, June 22–26, 2005 Vail, Colo-
rado.

7. Berceli SA, Warty VS, Sheppeck RA, Mandarino WA, Tanksale SK,
Borovetz HS. Hemodynamics and low density lipoprotein metabo-
lism. Rates of low density lipoprotein incorporation and degradation
along medial and lateral walls of the rabbit aorto-iliac bifurcation.
Arteriosclerosis 1990;10:686–94.

8. Kaazempur-Mofrad MR, Isasi AG, Younis HF, et al. Characteriza-
tion of the atherosclerotic carotid bifurcation using MRI, finite
element modeling, and histology. Ann Biomed Eng 2004;32:932–46.

9. Slager CJ, Wentzel J, Gijsen FJH, Schuurbiers JCH, van der Wal AC,
van der Steen AFW, Serruys PW. The role of shear stress in the
generation of rupture-prone vulnerable plaques. Nat Clin Pract 2005;
2:401–7.

10. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation
1995;92:657–71.

11. Wang JC, Normand SL, Mauri L, Kuntz RE. Coronary artery spatial
distribution of acute myocardial infarction occlusions. Circulation
2004;110:278–84.

Table 1. Volumetrical and Compositional Comparative Results
Between the Ostial Left Anterior Descending Coronary Artery
(OLAD) and the Distal Left Main Coronary Artery (DLMCA)

OLAD DLMCA p Value

Plaque burden (%) 45.5 � 10.2 36.4 � 10.8 �0.0001
Plaque eccentricity 14.5 � 11.6 10.4 � 7.6 0.05
Max. plaque thickness (mm) 1.24 � 0.4 1.04 � 0.3 0.002
Necrotic core (%) 12.4 � 9.2 7.9 � 8.6 �0.0001
Calcium (%) 4.1 � 5.1 1.3 � 2.0 �0.0001
Fibrous (%) 64.5 � 13.6 64.9 � 13.3 0.82
Fibrolipidic (%) 18.4 � 11.8 24.9 � 12.8 0.005

Values are presented as mean � SD. Plaque eccentricity was defined as the ratio of
maximal to minimal plaque thickness. Plaque burden was defined as ([EEMarea �
lumenarea]/EEMarea) � 100.
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ABBREVIATIONS 

ACS- Acute coronary syndrome 

EEM- External elastic membrane  

CSA – Cross sectional area 

IVUS- Intravascular Ultrasound 

NC – Necrotic core 

NO - Nitric oxide

SMC- Smooth muscle cells  

SS - Shear stress

VH- Virtual histology 
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INTRODUCTION

Atherothrombosis in coronary arteries is the corollary of inflammation, deposit of cholesterol 

and thrombus formation. An encroaching atherosclerotic plaque has an impact on the pattern 

of the blood flow. Indeed, the upstream endothelium sites of the plaque is under high-shear 

stress (SS), whereas at the downstream endothelium low-SS prevails1. Furthermore, 

atherosclerotic plaque composition varies greatly2, being the macrophages concentration 

higher in the upstream part and the smooth muscle cells (SMCs) in the downstream part of the 

atherosclerotic plaque2,3.  It has been shown that macrophages are a major source of 

metalloproteinases, which might lead to reduction of extracellular matrix4,5 and the 

macrophages can also induce apoptosis of SMCs6,7, resulting in thinning of the fibrous cap in 

the upstream part of the plaque8. On the other hand, on the downstream part of the plaque, an 

intense synthesis of extracellular matrix is observed as a result of the SMCs function. 

Moreover, clinical presentation is related to both the tissue composition of the coronary tree9

and the cell distribution in the coronary plaques. Thus, in patients with stable angina, the 

SMCs are the predominant cell type, whereas in unstable patients the macrophages are the 

most prevalent cell type10,11.

Lastly, it has been hypothesized that the differences in the shear stress may influence also the 

distribution of the necrotic core (NC) in the atherosclerotic plaques in the coronary arteries8,12.

We sought to explore the potential presence of an uneven distribution of NC along focal 

coronary atherosclerotic plaques using intravascular ultrasound radiofrequency analysis data 

(IVUS-VH).
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MATERIAL AND METHODS 

The present investigation was an investigators-driven study. Consecutive patients admitted for 

coronary catheterization and subsequent intervention were eligible for IVUS interrogation of 

at least 30 mm of length in a non-branching coronary segment with an angiographically 

nonobstructive (<50%) de novo lesion, in a non-target vessel suitable for IVUS interrogation. 

Patients with lesions located in proximal (but not ostial) and mid segments of a coronary 

artery were included. Patients with stable angina or acute coronary syndromes (ACS) were 

included. Acute coronary syndrome patients encompassed patients presenting with unstable 

angina, non-ST segment elevation MI, or ST segment elevation MI. Acute Myocardial 

infarction (MI) was diagnosed by an increase in the creatine kinase MB level to more than 

two-fold the normal limit.  

Major exclusion criteria included hemodynamically unstable, coronary anatomy that 

precluded safe IVUS examination or  severe angiographic calcification.

The institutional ethic committee approved the study protocol and informed written consent 

was obtained from all patients.  

IVUS-VH Acquisition and Analysis 

Details regarding the validation of the technique, on explanted human coronary segments, 

have previously been reported13. Briefly, IVUS-VH uses spectral analysis of IVUS 

radiofrequency data to build tissue maps that are correlated with a specific spectrum of the 

radiofrequency signal and assigned colour codes [fibrous (labelled green), fibrolipidic 

(labelled greenish-yellow), necrotic core (labelled red) and calcium (labelled white)]13.

IVUS-VH data was acquired using a continuous pullback (UltracrossTM 30 MHz catheter, 

Boston Scientific, Santa Clara, USA and Eagle-EyeTM 20 MHz Volcano Therapeutics, 

Rancho Cordova, CA ), by a dedicated IVUS-VH console (Volcano Therapeutics, Rancho 
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Cordova, CA). The UltracrossTM 30 MHz catheter is covered with a 127 mm outer sheath to 

prevent direct contact of the ultrasound element with the vessel wall. The results of an in vitro 

study showed a significant underestimation of measurements using IVUS-VH with respect to 

the Galaxy and the Curad (QCU) software14. The attenuation suffered by the ultrasound 

propagation speed while crossing the sheath was not accounted for in the IVUSLab software 

(Volcano Therapeutics, Rancho Cordova, CA). Accordingly, an adjustment method for 30 

MHz Boston Scientific catheters described by Bruining et al. was applied to the results15.

The IVUS VH data were stored on a CD/DVD and sent to the imaging core lab for offline 

analysis (Cardialysis BV, Rotterdam, The Netherlands). Data acquisition was ECG-gated and 

recorded during the automated withdrawal of the catheter using a mechanical pullback device 

(Boston Scientific, Santa Clara, USA or Volcano Therapeutics, Rancho Cordova, CA) at a 

pullback speed of 0.5 mm/s. Cine runs, before and during contrast injection, were performed 

to define the position of the IVUS catheter before the pullback was started.  

IVUS B-mode images were reconstructed from the RF data by customized software (Version 

4.3 IVUSLab). Longitudinal and cross-sectional views were used to determine the contours. 

Manual contour detection of both the lumen and the media-adventitia interface was performed 

and the radiofrequency data was normalized using a technique known as “Blind 

Deconvolution”16, an iterative algorithm that deconvolves the catheter transfer function from 

the backscatter, thus accounting for catheter-to-catheter variability. Geometrical and 

compositional data were obtained for every slice. 

The contours of the external elastic membrane (EEM) and the lumen-intima interface 

enclosed an area that was defined as the coronary plaque plus media area. Plaque burden was 

defined as [(EEMarea-Lumenarea)/EEMarea] X 100. Plaque eccentricity index was defined as 

(Minimum plaque thickness/Maximum plaque thickness)17, where 1 indicates concentric 
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plaque and <1 indicates increasing plaque eccentricity. Direct measurements (lumen and 

vessel cross-sectional areas - CSA) were also determined.  

Sub-segment analysis 

First, the most diseased part of the vessel was selected by finding the CSA with the largest 

plaque burden and the minimum lumen area. Subsequently, its immediate 10 mm proximal 

(upstream) and distal (downstream) were included in the region of interest (ROI) and only one 

ROI per vessel was selected for this analysis. Thus, a 20 mm length segment was analyzed per 

vessel. Finally, the segment was divided in four 5 mm sub-segments, two proximal to the 

most diseased CSA and two distal (Figure 1 and 2).

In addition, the distribution along the plaque of the CSAs containing more than 5, 10, 15 and 

20% of necrotic core within the plaque was analyzed.

Statistical analysis 

Three modes of statistical analysis were performed, in order to analyze patient, segment and 

CSA characteristics. The patient basis database was used to analyze the demographic and 

clinical characteristics. The segment analysis was performed to describe the IVUS and VH 

components. Finally, the database per CSA was built to make comparisons and correlations 

between and within the components of IVUS-VH. Log transformation was performed in the 

variables with skewed distribution.

Discrete variables are presented as counts and percentages. Continuous variables are 

presented as means ± standard deviation. Correlation analysis and its scatter plot was done 

using the log transformation of the NC and calcium content.  

One-way ANOVA and posthoc test using Bonferroni were performed for mean comparisons.  
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A two-sided P value <0.05 was required for statistical significance. All analyses were

performed using SPSS version 11.5 software (Chicago, Illinois, USA).
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RESULTS

A total of 90 consecutive patients (121 vessels, 4840 CSAs) were included after verification 

of a properly acquired IVUS. The baseline characteristics of the patient population are 

depicted in table 1. The mean age was 57.9±10.8 years, most being male patients 68 (75.6 %). 

Of note, only 7.8% of the population were diabetics.

The vessel of interest was the left anterior descending in 52 (43.0 %), the left circumflex in 31 

(25.6 %) and the right coronary artery in 38 (31.4 %) patients. Fifty-three (58.9 %) patients 

presented with stable angina, 17 (18.9%) with unstable angina/non-ST segment elevation MI, 

and  20 (22.2 %) with an ST segment elevation acute myocardial infarction.  

IVUS-VH geometrical findings

The mean eccentricity plaque index was 0.20±0.12, (median 0.16, IQR 0.06-0.29). The 

tapering of the vessel in the analyzed segment showed small changes from proximal to distal 

in vessel and luminal CSA; the vessel CSA in the sub-segment 1 was 15.7±5.2mm2 and the 

sub-segment 4 was 13.5±5mm2, and the luminal CSA were larger in sub-segment one and 

four, 8.9 and 7.8mm2 respectively, compared to the mid sub-segments, being 7.2mm2 in two 

and 7.0mm2 in three respectively. (Figure 1 and table 2). 

Furthermore, the plaque burden had the following distribution, 43±14%, 51.8±14.1%, 

50.3±13.5% and 41.9±12.7% from proximal to distal (sub-segment 1 through sub-segment 4) 

(p<0.001)(Table 2).  

IVUS-VH morphological findings 

The mean relative necrotic core content was larger in the two upstream sub-segments than in 

the downstream sub-segment of the plaque, being 11.6±10% in sub-segment 1 (compared to 
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sub-segment 4 the mean difference was 1.4, 95%CI [0.29, 2.42], p=0.004); the content of 

necrotic core in sub-segment 2 was 11.7±9.7% (compared to sub-segment 4 the mean 

difference was 1.5, 95%CI [0.40, 2.56], p=0.002), whereas in the sub-segment 4 the necrotic 

core was 10.2±9.9%. Irrespective of the cut off used for the content of NC per CSA (5, 10, 15 

or 20%) the number of CSAs with NC >5% were higher in the upstream part of the plaque. If 

only CSAs with more than 10% of NC content are considered for the analysis - threshold that 

was previously used as part of the definition of IVUS-derived thin cap fibroatheroma 

(IDTFCA)-18, the topographic distribution was as follows: the sub-segment 1 had a total of 

574 CSAs; 585 CSAs in the sub-segment 2; 541 CSAs in the sub-segment 3, and in the most 

distal 522 CSAs (sub-segment 4) were found, p=0.014.  (Figure 1 and Table 2)

Of note, the calcium content had the same distribution as the necrotic core, being larger in the 

sub-segment 2 (6.5±9.7%) than in sub-segment 4 (5.4±9.5%, p=0.03). In addition, the per 

CSA analysis showed that there was a positive correlation between necrotic core and calcium 

with a Pearson correlation coefficient of 0.74, p<0.001 (Figure 3). 

Interestingly, fibrous tissue was larger in downstream sub-segments. Indeed, the largest 

amount of fibrous tissue was found in segment 3 with 63.8±9%; when compared with the 

other three subsegments the difference was stastiscally significant, p=0.008. (Table 2). 

As an exploratory analysis, the total population was split into two groups: stable angina vs. 

acute coronary syndrome, and the plaque composition was then evaluated.  Interestingly, the 

overall content of NC was larger in patients with ACS 13.7±8.2% than patients with stable 

angina 8.1±6.4%, p=0.001. Conversely, the fibrous tissue was larger in patients with stable 

angina 66.9±13.8 vs. 58.8±13.6, p=0.006. (Table 3). However, irrespective of the clinical 

presentation the distribution of CSAs with NC >10% followed the same distribution as in the 

overall analysis, being more frequent in the upstream part of the plaque. Thus, stable patients 

in the upstream part of the plaque had 523 CSAs and in the downstream part 454, whereas in 



Chapter  4.2

162

10

10

the patients with acute coronary syndrome the upstream part had 636 CSAs and the 

downstream part 609.
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DISCUSSION 

The main findings of this study were the following: the necrotic core was predominantly 

distributed in the proximal segments of the coronary plaque. The upstream sub-segments 

presented significantly larger content of necrotic core (one and two) than the downstream sub-

segments, specifically, the most distal one. Likewise, the calcium distribution followed the 

same pattern as the necrotic core. Conversely, the fibrous tissue was the predominant 

component in the downstream sub-segments. Moreover, and in line with our previous report, 

we have confirmed the finding that the plaque composition is different in patients with acute 

coronary syndromes and stable angina; the content of NC was larger in the first group, 

whereas the fibrous tissue was predominant in the second group9.

To the best of our knowledge, this is the first in vivo study showing marked topographic 

differences in tissue composition within atherosclerotic plaques. 

It is known that in regions with endothelial dysfunction, which coincide with low shear stress, 

nitric oxide (NO) bioavailability is decreased19,20, leading to a pro-atherosclerotic state.  As a 

result, atherothrombosis had a peculiar geometric distribution along the vascular system21.

Supporting the hypothesis that shear stress might influence plaque composition. Our group 

has previously investigated the plaque composition of acknowledged regions of low shear 

stress such as the opposite wall to the flow divider at the ostium of the left anterior 

descending in comparison with the distal part of the left main that has a flow laminar velocity 

pattern22. The plaque burden was larger in the ostium of the left anterior descending than in 

distal left main (45.5±10.2 vs. 36.4±10.8 %, p<0.0001). In addition, in the ostium the plaques 

presented more calcified (4.13±5.1 vs. 1.28±2.0 %, p<0.0001) and necrotic core (12.36±9.2 

vs. 7.90±8.6 %, p<0.0001) content 22. Of note, the aforementioned analysis was done 
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considering the radial distribution of the plaque and in a very limited number of CSAs (n=6 

mm).

Acute coronary syndromes are due to non-obstructive plaques in the majority of the cases23,24,

and previous pathological  and in vivo studies have suggested that necrotic-core rich plaques 

are more likely to cause ACS than fibrotic plaques9,25,26. Hence, the early identification of the 

rupture-prone plaques might have a great impact in the current approach of the coronary 

artery disease.  Indeed, another interesting feature of the focal atherosclerotic coronary plaque  

- documented in this in vivo study - is that necrotic core is an unevenly distributed component 

along the same plaque, being larger proximal to the minimal lumen site. Likewise, previous 

reports have shown that ruptured plaques associated with acute coronary syndromes are 

mostly located proximal to the most diseased part of the plaque27, where it has been also 

suggested that the plaque rupture-healing process that could cause plaque growth takes place. 

Moreover, in that area prevails high SS, which has been hypothesized to cause increment in 

nitric oxide bioavailability from the endothelium resulting in the thinning of the fibrous cap8 . 

Why all this complex process is happening in the upstream part of the plaque is not obvious8.

However, it has been also hypothesized that the plasmin, which is produced by the 

endothelium at high SS, is a strong activator of metalloproteinase secreted by macrophages28,

which could be an important factor to  the breakdown of the collagenous cap.

The predominantly proximal distribution of necrotic core was not an isolated finding, since 

concomitantly the fibrous component was found to be the most prevalent tissue at 

downstream sites, where the SMCs are predominant and their synthesis of extracellular matrix 

is not offset by macrophages12.  Indeed, when low SS prevails (as in those areas), the SMCs 

produce the matrix, which provides the mechanical strength of the plaque cap25,29.

Equally important, the calcium was found to be located in the same region of the necrotic core 

at the proximal part of the plaque. As for vascular calcification, several proteins have been 
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shown to be involved in this also intriguing process, such as bone morphogenic protein, 

osteoprotegerin, matrix Gla protein, and osteopontin30.  The macrophages, which are mainly 

located on upstream sites, express osteopontin31a protein that has been identified by 

inmunohistochemistry in atherosclerotic plaques32.

The longitudinal heterogeneity in plaque composition documented in this study might help us 

to better understand the participation of shear stress in the plaque growth and instability 

processes.

Limitations of the study 

There are a number of limitations associated with the present study. The studied population 

was relatively small and some variables are underrepresented such as female and diabetic 

patients; only non-flow limiting, eccentric and non-severely calcified plaques were 

considered. Hence, small changes in the plaque composition, although significant, were 

documented. A study with obstructive plaques might show bigger differences. 

An arbitrary region of interest (20 mm) subdivided in sub-segments of 5 mm was used as a 

template for the analysis in our study. This segmental analysis only permits a rudimentary 

assessment of the relationship between shear stress and vessel wall composition. A more 

accurate assessment would imply a continuous point-to-point comparison of the two 

techniques, but this is currently not possible due to the fact that two different catheters must 

be used for the acquisition and spatial differences in matching is unavoidable.   

In the near future, IVUS-VH and palpography will be acquired in a single pull back, making 

the analysis of morphological, compositional and mechanical properties of the plaque more 

reliable.
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Undoubtedly, histopathology remains the gold standard to typify tissue but this IVUS-VH has 

the potential to provide real-time accurate information regarding tissue characterization and 

plaque morphology.  

CONCLUSIONS 

The necrotic core and calcium content were larger in the upstream part of the coronary 

plaque. Furthermore, the fibrous tissue prevailed in the downstream section of the plaque.  
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Figure 1. 
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Figure 2 
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Figure 3. 
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Figure 3. 
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Table 1: Demographic characteristics, n=90

  Variables         

Age yrs±SD     57.9±10.8 

BMI Kg/m2     26.3±2.8   

Male (%)     68 (75.6)   

Diabetes (%)     7 (7.8)   

Hyperlipidemia (%)    69 (76.6)   

Hypertension (%)    40 (44.4)   

Current smoking (%)    23 (25.5)   

Prior ACS (%)    12 (13.3)   

Prior PCI (%)     26 (28.9)   

Clinical presentation         

Stable angina (%)    53 (58.9)   

Unstable angina (%)    17 (18.9)   

Acute myocardial infarction  (%)  20 (22.2)   

Vessel treated, n=121 

Left anterior descending (%)   52 (43.0)      

Left circumflex (%)    31 (25.6)    

Right coronary artery (%)   38 (31.4)      
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Table 2: Geometrical and Composition IVUS -Virtual Histology Results 

       Proximal            Distal    

                                    Sub-segments 
1  2  3  4  p  

IVUS-VH geometrical findings 

Vessel CSA (mm2) 15.7±5.2 15±5  14.2±5  13.5±5             <0.001 

Luminal CSA (mm2) 8.9±3.8 7.2±3.4 7.05±3.3 7.82±3.4 <0.001  

MLD (mm)  3±0.7  2.7±0.7 2.6±0.6 2.8±0.6 <0.001 

Plaque burden (%) 43±14   51.8±14.1  50.3±13.5  41.9±12.7  <0.001 

   

 IVUS-VH compositional findings 

Necrotic Core (%) 11.6±10.5* 11.7±9.7**  10.9±9.5 10.2±9.9 0.001 

Calcium (%)  5.9±9.9 6.5±9.7§ 6.3±9.4 5.4±9.5 0.031 

Fibrous (%)  61.5±20.8 62.9±17.6 63.8±17.6†‡ 61.4±22.7 0.008 

Fibrolipid (%)  17.1±12.8 18.1±12.5 18.3±12.1 17.3±13.7 0.05 

CSAs NC >5% 850  828  819  721  <0.001 

CSAs NC >10% 574  585  541  522  0.014  
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CSAs NC >15% 390  373  343  320  0.018 

CSAs NC >20% 242  218  194  185  0.026 

* p = 0.004 compare to sub-segment four 
** p = 0.002 compare to sub-segment four 
§ p = 0.03 compare to sub-segment four 
† p=0.037 compare to sub-segment one 
‡ p=0.019 compare to sub-segment four 
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Table 3: Clinical Presentation and Virtual Histology Analysis

                   
Stable   ACS      p 
n=53   n=37 

Necrotic core (%)  8.1±6.4       13.7±8.2     0.001 

Calcium (%)   4.0±7.2       6.9±8.1      0.09 

Fibrous (%)   66.9±13.8   58.8±13.6   0.006 

Fibrolipid (%)   9.6±9.9     18.4±9.8      0.55 
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Legends of the figures and tables 

Figure 1. The drawing shows a coronary plaque divided in four segments; from proximal to 

distal four 5 mm sub-segments were considered for the analysis. In the cluster bar graph, three 

variables are represented. The yellow bar is showing the total number of cross sectional areas 

(CSA) with a necrotic core (NC) larger than 10% in each sub-segment. The green bar is 

representing the plaque burden (PB). The blue bar represents the minimum lumen diameter 

(MLD).

Figure 2. In this example case, the cumulative curve is showing the different components of 

the plaque per mm2 in every CSA (cross-sectional area).  On the bottom, the IVUS-VH 

images are a representative CSA of each sub-segment and most diseased part. 

Figure 3. Scatter plot showing the positive correlation between the content of calcium and 

necrotic core.

Table 1. ACS refers to acute coronary syndrome and PCI refers to percutaneous coronary 

intervention,  

Table 2. CSA, cross sectional area; MLD, minimum luminal diameter; NC, necrotic core; 

ACS, acute coronary syndrome 

Table 3. ACS, acute coronary syndrome. 





Chapter 5.  Tissue characterization of non-target 

atherosclerotic coronary plaques. Relationship 

with demographical data.

5.1)  Coronary plaque composition of non-culprit lesions by 

in vivo intravascular ultrasound radiofrequency data 

analysis is related to clinical presentation.

Am Heart Journal. 2006 May;151(5):1027-31.

Rodriguez Granillo GA, McFadden EP, Valgimigli M, et al.





181

Clinical presentation and plaque composition

Coronary plaque composition of nonculprit lesions,
assessed by in vivo intracoronary ultrasound
radio frequency data analysis, is related to
clinical presentation
Gastón A. Rodriguez-Granillo, MD, Eugène P. Mc Fadden, MD, FRCPI, Marco Valgimigli, MD,
Carlos A. G. van Mieghem, MD, Evelyn Regar, MD, PhD, Pim J. de Feyter, MD, PhD,
and Patrick W. Serruys, MD, PhD Rotterdam, The Netherlands

Background Identification of subclinical high-risk plaques is potentially important because they may have greater
likelihood of rupture and subsequent thrombosis. The purpose of this study was to assess the relationship between plaque
composition determined by intravascular ultrasound (IVUS) radio frequency (RF) data analysis and clinical presentation.

Methods In 55 patients, a nonculprit vessel with b50% diameter stenosis was studied with IVUS. Tissue maps were
reconstructed from RF data using IVUS–Virtual Histology software.

Results Mean percentage of the different plaque components were 0.99% F 0.9%, calcium; 68.04% F 9.8%, fibrous;
19.31% F 7.3%, fibrolipidic; and 9.43% F 6.6%, lipid core. Mean lipid core percentage was significantly larger in
patients with acute coronary syndrome (ACS) when compared with stable patients (12.26% F 7.0% vs 7.40% F 5.5%,
P = .006). In addition, stable patients showed more fibrotic vessels (70.97% F 9.3% vs 63.96% F 9.1%, P = .007).
There was no significant difference for either mean calcium (1.20% F 1.1% vs 0.83% F 0.7%, P = .124) or fibrolipidic
(20.57% F 6.9% vs 18.40% F 7.6%, P = .281) percentages in ACS and stable patients, respectively. Vessel area
obstruction did not differ between groups (46.49% F 10.9% vs 42.83% F 11.8%, P = .221).

There was a significant, albeit weak, positive correlation between lipid core percentage and stenosis severity as
determined by vessel area obstruction (r = 0.34, P = .015).

Conclusions In this study, plaque characterization of nonculprit vessels using spectral analysis of IVUS RF data analysis
was significantly related to clinical presentation. Percentage of lipid core, a feature related to acute coronary events
and worse prognosis, was significantly larger in patients with ACS. Conversely, stable patients showed more fibrotic content.
(Am Heart J 2006;151:1027-31.)

Unheralded sudden death and acute myocardial in-

farction (AMI) are common presentations of coronary

atherosclerosis.1,2 Most such events are related to

thrombotic occlusion at the site of non–flow limiting

atherosclerotic plaques in epicardial coronary arteries.

The identification of subclinical high-risk plaques is

potentially important because they may not only have a

greater likelihood of rupture and subsequent thrombo-

sis3 but also may be important contributor in the

pathophysiology of plaque progression.4,5

Histologic studies suggest that plaque composition

plays a central role in the pathogenesis and clinical

consequences of epicardial occlusion, independent of

the severity of the underlying stenosis.6 In the carotid

and coronary circulation, plaque echogenicity, mea-

sured noninvasively, has been related to the histologic

components of plaque.7-10 Furthermore, carotid plaque

echolucency (low echogenicity) was associated with

future neurologic events.11-13 Intravascular ultrasound

(IVUS)–based plaque characterization in the coronary

circulation requires invasive assessment and has been

less extensively studied. A recent study showed that

treatment with atorvastatin resulted in quantifiable

changes in coronary plaque echogenicity, compatible

with changes in plaque composition.14 These findings

offered a potential explanation for the clinical

efficacy of statins despite only modest effects on

plaque volume.15,16
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Although grayscale ultrasound is of limited value for

identification of specific plaque components, spectral

analysis of IVUS radio frequency (RF) data (IVUS–Virtual

Histology [IVUS-VH]; Volcano Therapeutics, Rancho

Cordova, CA) has demonstrated potential to provide

detailed quantitative information on plaque composi-

tion, as implicated by validation studies of explanted

human coronary segments.17-19

The purpose of this study was to assess potential

relations of plaque composition determined by IVUS RF

data analysis to clinical presentation in patients with

ischemic heart disease.

Methods
In 55 patients, a nonculprit, de novo, angiographically

nonobstructive (b50%) lesion was investigated with IVUS-VH.

The region of interest (ROI) was determined by identifiable

anatomic landmarks (side branch or the ostium of the vessel).

Major exclusion criteria were anatomic criteria that precluded

safe IVUS examination of a N30-mm-long ROI. All patients gave

written informed consent.

Intravascular ultrasound–Virtual Histology
Extensive detail regarding the validation of IVUS-VH on

explanted human coronary segments has previously been

reported. Briefly, IVUS-VH uses spectral analysis of IVUS RF

data to construct tissue maps that classify plaque into 4 major

components. In an ex vivo validation study, 4 histologic plaque

components (fibrous, fibrolipid, lipid core, and calcium) were

correlated with a specific spectrum of the RF signal.17 These

different plaque components were assigned color codes.

Calcified, fibrous, fibrolipidic, and lipid core regions were

labeled white, green, greenish yellow, and red, respectively. In

addition to compositional data, IVUS-VH software provides

geometric data of the vessel. Intravascular ultrasound–Virtual

Histology data were acquired, during a continuous pullback

(0.5 mm/s) with a commercially available mechanical sector

scanner (Ultracross 30-MHz catheter; Boston Scientific,

Santa Clara, CA), by a dedicated IVUS-VH console (Volcano

Therapeutics). The IVUS-VH data were stored on a CD-ROM and

sent to the imaging core laboratory (Cardialysis, Rotterdam,

The Netherlands) for off-line analysis. Intravascular ultrasound

B-mode images were reconstructed from the RF data by

custom software (IVUSLab, Volcano Therapeutics). Subse-

quently, manual contour detection of both the lumen and the

media-adventitia interface was performed. To account for

catheter-to-catheter variability, the acquired RF data were

normalized using a technique known as bblind deconvolution.Q
Blind deconvolution is an iterative algorithm that deconvolves

the catheter transfer function from the backscatter, thus

enabling automated data normalization.20,21 Compositional and

geometric data were expressed as mean percentages for the

ROI. To assess the stenosis severity of the lesions, we report

the mean external elastic membrane (EEM) area obstruction

{[(EEMarea � Lumenarea)/EEMarea] � 100}.

As an exploratory analysis, we evaluated the prevalence of

angiographically bcomplexQ (irregular or scalloped borders,
ulceration or filling defects) or bsmoothQ (absence of complex
features) lesions. In addition, we assessed the prevalence of

plaque rupture by IVUS, defined as plaque ulceration with a

tear detected in the fibrous cap.

Statistical analysis
Discrete variables are presented as counts and percentages.

Continuous variables are presented as mean F SD. We looked

for correlations between the percentages of the 4 different

plaque components and the EEM area obstruction using

univariate Pearson correlation coefficients. Differences inmeans

among groups were analyzed by 2-sample t test or by 1-way

analysis of variance. A P value of b.05 (2-sided) was considered

to indicate statistical significance. Statistical analyses were

performed with use of SPSS software version 11.5 (SPSS Inc.,

Chicago, IL).

Results
Patient characteristics are presented in Table I. The

mean age was 57.6F 9.5 years. Forty-four (80%) patients
were male. There was a low prevalence (9.1%) of
diabetes. The study vessel was the left anterior descend-
ing in 23 patients (41.8%), the right coronary artery in
22 patients (40.0%), and the left circumflex in 10 patients
(18.2%). The mean length of the ROI was 35 F 13 mm.
Five (9.1%) of the nonsignificant lesions evaluated

showed complex characteristics. Of these, 2 were
present in patients with acute coronary syndrome (ACS)
and 3 in stable patients (P = .93). Plaque rupture was
identified by IVUS in 10 (18.2%) lesions (3 in patients
with ACS and 7 in stable patients, P = .41).
The population was prospectively divided in 2 groups,

stable patients (n = 32) and patients presenting with
ACSs (defined as unstable angina, non–ST-segment
elevation myocardial infarction, or ST-segment elevation
myocardial infarction; n = 23). C-reactive protein
(CRP) measurements were available in 41 (74.5%)
patients. C-reactive protein levels did not differ signifi-
cantly between patients with ACS (n = 15) and stable
(n = 26) patients (2.0 F 1.5 vs 1.7 F 0.9, P = .49).

Overall relative values of plaque composition are

presented in Table II. The predominant (68%) plaque

component was fibrous tissue (Figure 1).

Table I. Demographics (N = 55)

Male sex 44 (80.0)
Age (y) (mean F SD) 57.6 F 9.5
Diabetes 5 (9.1)
Hypertension4 20 (36.4)
Hypercholesterolemiay 46 (83.6)
Current smoking 15 (27.3)
Previous smoking 14 (25.5)
Family history of CAD 30 (54.5)
Clinical presentation

Stable angina 32 (58.2)
ACS 23 (41.8)

Values are presented as n (%) unless otherwise indicated. CAD, Coronary artery
disease.
* Blood pressure of z160/95 mm Hg or treatment of hypertension.
y Total cholesterol of N215 mg/dL or treatment of hypercholesterolemia.

American Heart Journal
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Mean lipid core percentage was significantly larger in

patients with ACS when compared with stable patients

(12.26% F 7.0% vs 7.40% F 5.5%, P = .006). Conversely,

stable patients showed more fibrotic vessels than

patients with ACS (70.97% F 9.3% vs 63.96% F 9.1%,

P = .007). There was no significant difference for either

mean calcium (1.20%F 1.1% vs 0.83%F 0.7%, P = .124)

and fibrolipidic (20.57% F 6.9% vs 18.40% F 7.6%,

P = .281) percentages in patients with ACS and stable

patients, respectively (Table III).

Relative lipid core content was significantly correlated

to CRP levels (r = 0.45, P = .003). The relationship

between CRP levels and relative plaque composition is

depicted in Table IV.

There was a significant, albeit weak, positive correla-

tion between lipid core percentage and stenosis severity

as determined by percentage of EEM area obstruction

(r = 0.34, P = .015).

No significant difference was found in lipid core

(percentage) between left anterior descending

(10.19% F 6.2%), right coronary artery (8.05% F 5.8%),

and left circumflex (10.73% F 8.9%) (P = .443).

Discussion
The major findings of this study were first that, in

nonculprit lesions, there were significant differences in

plaque composition between patients who presented

with ACSs and those who presented with stable angina.

In those with ACS, percentage of lipid core was

significantly greater than in stable patients, whereas a

converse trend was observed for fibrotic content.

Secondly, in the overall patient population, stenosis

severity on IVUS-VH was positively correlated with

percent lipid core.

Coronary occlusion and AMI commonly arise from

intermediate lesions.6,22 This had led investigators to

suggest that mild to moderate lesions are more lipid-rich

and thus prone to rupture.6,23 However, it has been

established that moderate lesions cause more occlusions

because of their greater incidence throughout the

coronary tree.24

Table III. Geometric and compositional data assessed by
IVUS RF data analysis (N = 55)

Stable (n = 32) ACS (n = 23) P

Lipid core 7.40 F 5.5 12.26 F 7.0 .006
Calcium 0.83 F 0.7 1.20 F 1.1 .124
Fibrous 70.97 F 9.3 63.96 F 9.1 .007
Fibrolipidic 18.40 F 7.6 20.57 F 6.9 .281
EEM area obstruction 42.83 F 11.8 46.49 F 10.9 .221

Values are percentages. External elastic membrane area obstruction defined as
[(EEMarea � Lumenarea)/EEMarea] � 100.

Table IV. Relationship between CRP levels and relative plaque
composition

Pearson correlation coefficient between CRP levels and
relative plaque composition (n = 41)

CRP levels P

Lipid core 0.45 .003
Calcium �0.05 .78
Fibrous �0.24 .14
Fibrolipidic �0.12 .46

Table II. Overall plaque composition of the study population

Plaque component (%)

Lipid core 9.43 F 6.6
Calcium 0.99 F 0.9
Fibrous 68.04 F 9.8
Fibrolipidic 19.31 F 7.3

Figure 1

Examples of fibrotic (A) and lipid core–rich (B) cross-sectional areas
of coronary arteries. Grayscale IVUS is displayed on the left panel,
whereas the right panel shows the reconstructed IVUS-VH where
calcified, fibrous, fibrolipidic and lipid core regions are labeled
white, green, greenish yellow, and red, respectively.

American Heart Journal
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Pathological studies showed that lipid-rich plaques are

more prone to rupture than fibrotic plaques.3 Kragel

et al25 showed that the percentage of bpultaceous debrisQ
(an alternative term for lipid core, defined as amorphous

debris containing cholesterol clefts rich in extracellular

lipid) was of 16% in the AMI group and of 7% in the

sudden coronary death group. These postmortem results

are in line with the in vivo results of the present study.

To date, there is no validated technique capable of

identifying and quantifying the lipid core in vivo.

Intravascular ultrasound–Virtual Histology extends the

ability of grayscale IVUS to aid the assessment of plaque

composition, thus having the potential to identify high-

risk plaques before the rupture has occurred and

prospectively follow their natural history. In addition, it

allows a morphologic evaluation of atherosclerotic

plaques by quantifying its different components and

determining its location in relation to the lumen.

An angiographic study demonstrated that patients

with ACS frequently have additional complex non-

culprit coronary plaques and that such findings were

independent predictors of future clinical events.26

More recently, IVUS and angioscopic studies extended

these findings, and it is now generally accepted that

multifocal instability is common in ACS.27,28 Rioufol

et al27 found at least 1 plaque rupture remote from the

culprit lesion in 80% of patients, remote from the

culprit artery in 71% of patients, and in both nonculprit

arteries in 12.5% of patients. The significantly higher

lipid core burden found in nonculprit lesions of

patients with ACS potentially supports the theory that

ACS is a multifocal process.29

In the present study, we found a significant, albeit

weak, positive correlation between mean lipid core

percentage and vessel area obstruction determined by

IVUS-VH, suggesting that lipid core increases linearly

with further increase in the degree of stenosis.

However, the relative importance of this relationship

must be further explored in large prospective, natural

history studies.

It is noteworthy that the sclerotic component of the

vessel wall (fibrous tissue) accounted for almost 70% of

the overall plaque area composition. This observation is

concordant with previously reported morphometric

data from postmortem studies,25 thus providing indirect

evidence for the validity of the technique.

The identification of high-risk plaques is potentially

important because they may not only have a greater

likelihood of rupture and subsequent thrombosis3 but

also may be an important contributor in the patho-

physiology of plaque progression.4,5

Finally, these observations raise the possibility that

plaque characterization with IVUS-VH could have an

additive value in refining risk stratification of subclinical

atherosclerosis by providing means to identify high-risk

plaques in prospective, natural history studies.

Limitations
The present was a pilot, observational study that

included a small population. Accordingly, a potential

selection bias cannot be disregarded. Only a short

segment of the coronary tree was evaluated, therefore

this may not be representative of the whole coronary

tree. Because our investigation aimed a local assess-

ment of a nonculprit vessel and levels of systemic

inflammatory markers such as CRP are influenced by

many factors, we did not systematically analyzed CRP

levels in this population. Therefore, cautious interpre-

tation of the correlation reported must be undertaken.

Although histopathology remains the gold standard,

this technique has the potential to provide real-time

accurate information regarding tissue characterization

and plaque morphology.

Conclusions
In this pilot study, plaque characterization of non-

culprit vessels using spectral analysis of IVUS RF data

analysis was significantly related to clinical presenta-

tion. Percentage of lipid core, a feature related to

acute coronary events and worse prognosis, was

significantly larger in patients with ACS. Conversely,

stable patients showed more fibrotic content. This

technique could have an additive value in refining risk

stratification of subclinical atherosclerosis by providing

means to identify high-risk plaques in prospective,

natural history studies.

References
1. Kannel WB, Doyle JT, McNamara PM, et al. Precursors of sudden

coronary death. Factors related to the incidence of sudden death.
Circulation 1975;51:606 -13.

2. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation
1995;92:657 -71.

3. DaviesMJ, RichardsonPD,WoolfN, et al. Risk of thrombosis in human
atherosclerotic plaques: role of extracellular lipid, macrophage, and
smooth muscle cell content. Br Heart J 1993;69:377 -81.

4. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and
sudden coronary death: evidence that subclinical rupture has a role
in plaque progression. Circulation 2001;103:934 -40.

5. Kaski JC, Chen L, Crook R, et al. Coronary stenosis progression differs
in patients with stable angina pectoris with and without a previous
history of unstable angina. Eur Heart J 1996;17:1488 -94.

6. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary
angiography predict the site of a subsequent myocardial infarction
in patients with mild-to-moderate coronary artery disease?
Circulation 1988;78(5 Pt 1):1157 -66.

7. El-Barghouty NM, Levine T, Ladva S, et al. Histological verification
of computerised carotid plaque characterisation. Eur J Vasc
Endovasc Surg 1996;11:414 -6.

8. Gronholdt ML, Nordestgaard BG, Wiebe BM, et al. Echo-lucency
of computerized ultrasound images of carotid atherosclerotic
plaques are associated with increased levels of triglyceride-rich
lipoproteins as well as increased plaque lipid content. Circulation
1998;97:34 -40.

American Heart Journal

May 2006
1030 Rodriguez - Granillo et al



185

Clinical presentation and plaque composition

9. Rasheed Q, Dhawale PJ, Anderson J, et al. Intracoronary ultra-
sound-defined plaque composition: computer-aided plaque char-
acterization and correlation with histologic samples obtained during
directional coronary atherectomy. Am Heart J 1995;129:631 -7.

10. Prati F, Arbustini E, Labellarte A, et al. Correlation between high
frequency intravascular ultrasound and histomorphology in human
coronary arteries. Heart 2001;85:567 -70.

11. Polak JF, Shemanski L, O’Leary DH, et al. Hypoechoic plaque at US
of the carotid artery: an independent risk factor for incident stroke in
adults aged 65 years or older. Cardiovascular Health Study.
Radiology 1998;208:649 -54.

12. Gronholdt ML, Nordestgaard BG, Schroeder TV, et al. Ultrasonic
echolucent carotid plaques predict future strokes. Circulation
2001;104:68 -73.

13. Mathiesen EB, Bonaa KH, Joakimsen O. Echolucent plaques are
associated with high risk of ischemic cerebrovascular events in
carotid stenosis: the tromso study. Circulation 2001;103:2171 -5.

14. Schartl M, Bocksch W, Koschyk DH, et al. Use of intravascular
ultrasound to compare effects of different strategies of lipid-lowering
therapy on plaque volume and composition in patients with
coronary artery disease. Circulation 2001;104:387 -92.

15. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus
moderate lipid lowering with statins after acute coronary syn-
dromes. N Engl J Med 2004;350:1495 -504.

16. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive
compared with moderate lipid-lowering therapy on progression of
coronary atherosclerosis: a randomized controlled trial. JAMA
2004;291:1071-80.

17. Nair A, Kuban BD, Tuzcu EM, et al. Coronary plaque classification
with intravascular ultrasound radiofrequency data analysis. Circu-
lation 2002;106:2200 -6.

18. Moore MP, Spencer T, Salter DM, et al. Characterisation of
coronary atherosclerotic morphology by spectral analysis of radio-
frequency signal: in vitro intravascular ultrasound study with
histological and radiological validation. Heart 1998;79:459 -67.

19. Watson RJ, McLean CC, Moore MP, et al. Classification of arterial
plaque by spectral analysis of in vitro radio frequency intravascular
ultrasound data. Ultrasound Med Biol 2000;26:73 -80.

20. K3resen K. Deconvolution of sparse spike trains by iterated window
maximization. IEEE Trans Signal Process 1997;45:1173 -83.

21. K3resen KF, Bo/ lviken E. Blind deconvolution of ultrasonic traces
accounting for pulse variance. IEEE Trans Ultrason Ferroelectr Freq
Control 1999;46:564 -73.

22. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic
progression of coronary artery disease and the development of
myocardial infarction. J Am Coll Cardiol 1988;12:56 -62.

23. Nobuyoshi M, Tanaka M, Nosaka H, et al. Progression of coronary
atherosclerosis: is coronary spasm related to progression? J Am Coll
Cardiol 1991;18:904 -10.

24. Alderman EL, Corley SD, Fisher LD, et al. Five-year angiographic
follow-up of factors associated with progression of coronary artery
disease in the Coronary Artery Surgery Study (CASS). CASS
Participating Investigators and Staff. J Am Coll Cardiol
1993;22:1141-54.

25. Kragel AH, Reddy SG, Wittes JT, et al. Morphometric analysis of the
composition of atherosclerotic plaques in the four major epicardial
coronary arteries in acute myocardial infarction and in sudden
coronary death. Circulation 1989;80:1747 -56.

26. Goldstein JA, Demetriou D, Grines CL, et al. Multiple complex
coronary plaques in patients with acute myocardial infarction.
N Engl J Med 2000;343:915 -22.

27. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque
rupture in acute coronary syndrome: a three-vessel intravascular
ultrasound study. Circulation 2002;106:804 -8.

28. Asakura M, Ueda Y, Yamaguchi O, et al. Extensive development of
vulnerable plaques as a pan-coronary process in patients with
myocardial infarction: an angioscopic study. J Am Coll Cardiol
2001;37:1284-8.

29. Buffon A, Biasucci LM, Liuzzo G, et al. Widespread coronary
inflammation in unstable angina. N Engl J Med 2002;347:5 -12.

American Heart Journal

Volume 151, Number 5
Rodriguez -Granillo et al 1031





PART III: EXPLORING HISTOLOGICAL SURROGATES AND 

PLAQUE VULNERABILITY CRITERIA USING INTRAVASCULAR

ULTRASOUND RADIOFREQUENCY DATA ANALYSIS.





Chapter 6. Plaque rupture 

6.1)  Global characterization of coronary plaque rupture 

phenotype using 3- vessel intravascular ultrasound 

radiofrequency data analysis. 

Eur Heart J. Accepted.

Rodriguez Granillo GA, García-García HM, Valgimigli M, 

et al.





191

Global characterization of plaque rupture using IVUS-VH

Global characterization of coronary plaque rupture 

phenotype using 3-vessel intravascular ultrasound 

radiofrequency data analysis 

Gastón A. Rodriguez-Granillo MD, Héctor M. García-García MD, Marco Valgimigli 

MD, Sophia Vaina MD, Carlos van Mieghem MD, Robert J. van Geuns MD PhD, 

Maarten van der Ent MD PhD, Evelyn Regar MD PhD, Peter de Jaegere MD PhD, 

Willem van der Giessen MD PhD, Pim de Feyter MD PhD, Patrick W. Serruys MD, 

PhD

From the Department of Cardiology of the Thoraxcenter, Erasmus MC, Rotterdam, The 
Netherlands.



Chapter  6

192 2

ABSTRACT 

Aims: To compare the global characteristics of patients with and without evidence of plaque 

rupture (PR) in their coronary tree, and to evaluate the phenotype of ruptured plaques using 

IVUS radiofrequency data analysis (IVUS-VH). 

Methods and results: Forty patients underwent 3-vessel IVUS-VH interrogation. 28 PRs 

were diagnosed in 26 vessels (25.7 % of the vessels studied) of 20 patients (50 % of the 

population). Ruptures located in the LAD were clustered in the proximal part of the vessel, 

whereas ruptures located in the RCA were more distally located, p= 0.02. Patients with at 

least one PR presented larger body mass index (BMI) (28.4±3.7 kg/m2 vs. 25.8±2.6 kg/m2, 

p= 0.01) and plaque burden (40.7±7.6 % vs. 33.7±8.4 %, p= 0.01) than patients without 

rupture, despite showing similar lumen CSA (9.6±3.3 mm2 vs. 9.2±2.3 mm2, p=0.60. Among 

current smokers, 66.7 % presented a PR in their coronary tree. Finally, PR sites showed a 

higher content of necrotic core compared to minimum lumen area (MLA) sites (17.48±10.8 % 

vs. 13.10±6.5 %, p= 0.03) and a trend towards higher calcified component. 

Conclusions: Patients with at least one PR in their coronary tree presented larger BMI and 

worse IVUS-derived characteristics compared to patients without PR.  

Keywords: plaque rupture, ultrasonography, atherosclerosis, vulnerable plaque 
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INTRODUCTION

It has been established that coronary plaque rupture is the cause of death in a large proportion 

of sudden coronary death patients 1. Despite its preconceived dire prognosis, retrospective 

studies have determined that plaque rupture is a common finding in both coronary and non-

coronary sudden death patients 1,2. In addition, clinically silent plaque rupture has been 

identified as a cause of plaque progression 3,4. The fate of a given atherosclerotic plaque is 

thus linked not only to its severity but also to its histological composition, and the presence of 

a rich necrotic core has been consistently related to plaque fissuring 5,6.

Intravascular ultrasound (IVUS) has been largely demonstrated to be an accurate diagnostic 

tool able to provide a high resolution, real-time, tomographic view of the coronary arteries. As 

such, several studies have portrayed the prevalence of plaque rupture in living patients by 

means of IVUS 7,8. IVUS has though a suboptimal predictive value to estimate the 

composition of coronary arteries, particularly of lipid deposits 9. In turn, spectral analysis of 

IVUS radiofrequency data has demonstrated improved accuracy for tissue characterization 10.

Besides, to date, no study has reported the global burden of the disease and its relationship 

with plaque rupture by means of IVUS.  

The purpose of our study was two-fold: first, to compare the global characteristics of patients 

with and without evidence of plaque rupture (PR) in their coronary tree; and secondly, to 

evaluate the phenotype of ruptured against non-ruptured plaques using IVUS radiofrequency 

data analysis (IVUS-VH).
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METHODS

Patients

In this single-center, investigators-driven, observational, prospective study; patients referred 

to our institution for elective or urgent PCI with absence of extensive calcification, severe 

vessel tortuosity and haemodynamic instability and with suitable anatomy underwent IVUS 

interrogation of the 3 main epicardial coronary arteries. The patients included in this study, 

are part of published (IBIS-1) 11 and unpublished (LICO, BETAX) mono-center studies 

conducted at our center. 

Patients with stable angina, unstable angina and acute myocardial infarction were included. 

Myocardial infarction (MI) was diagnosed by an increase in the creatine kinase MB level to 

more than two-fold the normal limit. Acute coronary syndrome (ACS) patients encompassed 

patients presenting with unstable angina, non-ST segment elevation MI, or ST segment 

elevation MI. The institution’s ethics committee approved the study protocol, which complies 

with the Declaration of Helsinki, and written informed consent was obtained from all patients. 

Intravascular ultrasound  

IVUS acquisition 

The IVUS catheters used were commercially available mechanical and electronical catheters 

(UltracrossTM 30 MHz catheter, Boston Scientific, Santa Clara, USA; Eagle EyeTM 20 MHz 

catheter, Volcano Corporation, Rancho Cordova, USA). After administration of intracoronary 

nitrates, the IVUS catheter was introduced up to the distal coronary bed of the 3 coronary 

vessels. IVUS was aimed to be performed prior to any intervention. Using an automated 

pullback device, the transducer was withdrawn at a continuous speed of 0.5 mm/s until the 

ostium was seen. Cine runs, before and during contrast injection, were performed to define the 

position of the IVUS catheter before the pullback was started. IVUS-VH (Volcano 



195

Global characterization of plaque rupture using IVUS-VH

5

Corporation, Rancho Cordova, USA) acquisition was ECG-gated using a dedicated console 

(Volcano Corporation, Rancho Cordova, USA). IVUS-VH data were stored on CD-ROM / 

DVD and sent to the imaging core lab for offline analysis. 

IVUS-VH analysis 

IVUS B-mode images were reconstructed from the RF data by customized software and 

contour detection was performed using cross-sectional views with a semi-automatic contour 

detection software to provide geometrical and compositional output (IvusLab 3.0 for 30 MHz 

acquisitions and IvusLab 4.4 for 20 MHz acquisitions respectively; Volcano Corporation, 

Rancho Cordova, USA). The RF data was normalized using a technique known as “Blind 

Deconvolution”, an iterative algorithm that deconvolves the catheter transfer function from 

the backscatter, thus accounting for catheter-to-catheter variablity 11.

Details regarding the validation of IVUS-VH on explanted human coronary segments have 

previously been reported 10. Briefly, IVUS-VH uses spectral analysis of IVUS radiofrequency 

data to construct tissue maps that classify plaque into four major components. In preliminary 

in vitro studies, four histological plaque components (fibrous, fibrolipidic, necrotic core and 

calcium) were correlated with a specific spectrum of the radiofrequency signal 10. These 

different plaque components were assigned color codes. Calcified, fibrous, fibrolipidic and 

necrotic core regions were labeled white, green, greenish-yellow and red respectively. 

The contours of the external elastic membrane (EEM) and the lumen-intima interface 

enclosed an area that was defined as the coronary plaque plus media area. Plaque burden was 

calculated as [(EEMarea - Lumenarea / EEMarea) X 100]. Following a previously reported 

classification, plaque rupture was defined as a ruptured capsule with an underlying cavity 

(figure 1), or plaque excavation by atheromatous extrusion with no visible capsule 7,8. Rupture 

sites separated by at least 5 mm length of rupture-free vessel were considered as different 
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ruptures. Screening for diagnosis of a plaque rupture required the independent review and 

agreement between two experienced IVUS observers (G.A.R.G. and H.M.G.G.), who had no 

knowledge about demographical data of the patients. Disagreement was solved by consensus 

between the observers. Lumen contour detection at the rupture site was performed following 

the intima-lumen interface, excluding the rupture cavity from the plaque plaque CSA 

calculation. Absolute geometrical data and absolute and relative compositional data were 

obtained for each cross-sectional area (CSA) and an average was calculated for each coronary 

and for the total coronary tree. Finally, measurements were calculated in CSAs meeting 

criteria of plaque rupture and at the site of the minimum lumen area (MLA).  

As pre-specified sub-analysis, we compared the different geometrical and compositional 

characteristics of the 3 main epicardial coronaries. In addition, the difference between 

culprit/target and non-culprit/non-target vessels was assessed. 

Statistical analysis 

Discrete variables are presented as counts and percentages. Continuous variables are 

presented as means ± SD or medians (25th, 75th percentile) when indicated. Based on previous 

histopathological findings showing that ruptured plaques presented 34 % of necrotic core, 10 

% more than non-ruptured plaques 14, we calculated a sample size of 36 subjects to achieve a 

power of 80 % to detect a true difference in population means, considering a type I error of 

0.05 (two-sided) and a within group standard deviation of 15. 

Comparisons between groups were performed using paired and independent student's t test, or 

X
2 tests as indicated. For variables with a non-normal distribution we used Kruskal-Wallis or 

Wilcoxon signed ranks tests as indicated. A two-sided p value of less than 0.05 indicated 

statistical significance. Statistical analyses were performed with use of SPSS software, 

version 13.0 (Chicago, Illinois, USA). 
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RESULTS

Patients

Forty-six patients were included in the study protocol. Subsequently, six patients were 

excluded from the final analysis due to the absence of coronary plaque outside the stented 

segment in one patient, and bad quality acquisition owed to non-continuous pullback in five 

patients. Accordingly, 40 non-consecutive patients were prospectively included in the study. 

IVUS interrogation of the 3 main coronaries was attempted in all patients. Two-vessel IVUS 

interrogation was achieved in all patients and 3-vessel IVUS imaging was achieved in 31 

(77.5 %) cases. Five vessels were excluded from the analysis due to the lack of a diseased 

non-stented segment. Patient characteristics are provided in table 1. The mean age was 

55.7±11.0 years. 29 (72.5%) patients were male. There was a low prevalence (10.0 %) of 

diabetes. Thirteen (32.5 %) patients presented with stable angina, 12 (30.0 %) presented with 

unstable angina, and 15 (37.5 %) with AMI. The global geometrical and compositional 

characteristics of the coronary tree are presented in table 1.  

Plaque rupture: Prevalence and location 

Twenty-eight plaque ruptures were diagnosed in 26 vessels (25.7 % of the vessels studied) of 

20 patients (50 % of the population). Sixteen (59.3 %) ACS patients presented at least one 

plaque rupture in their coronary tree, whereas such finding was observed in 4 (30.8%) stable 

patients. The tear was located in the shoulder of the plaque in 18 (64.3 %) cases and in the 

centre of the plaque on 10 (35.7 %) cases. 

Ruptures were located in the left anterior descending (LAD) artery in 13 cases (34.2 %), in 

the left circumflex (LCx) in 7 cases (21.2 %) and in the right coronary artery (RCA) in 8 cases 

(24.2 %). Ruptures located in the LAD were clustered in the proximal part of the vessel 

[(median mms from the ostium (interquartile range, IQR): 14.16 (8.5-26.5)], whereas ruptures 

located in the LCx were widely distributed [(median (IQR): 21.9 (5.7-35.5)] and ruptures in 
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the RCA were more distally located [(median (IQR): 38.8 (28.8-60.0)]. Plaque ruptures were 

located at the MLA in 6 cases (21.4 %), proximal to the MLA in 9 cases (32.1 %) and distal to 

the MLA in 11 cases (39.3 %). The MLA could not be identified accurately in 2 (7.1 %) cases 

due to the presence of diffuse disease. Six (28.6 %) of the culprit vessels of ACS contained a 

plaque rupture, whereas such finding was present in 16 (31.4 %) of non-culprit vessels.

Multiple plaque rupture was present in 6 ACS patients (22 % of all ACS patients). No 

multiple plaque rupture was identified in stable patients. Two patients presented 2 different 

ruptures in the same vessel.  

Plaque rupture: Demographical and IVUS-derived characteristics 

Table 2 depicts the demographical characteristics and the IVUS-VH measurements of patients 

with and without the presence of plaque rupture in their coronary tree. Body mass index was 

significantly higher in patients with rupture (28.4±3.7 kg/m2 vs. 25.8±2.6 kg/m2, p= 0.01). Of 

note, 66.7 % of current smokers presented a ruptured plaque in their coronary tree.

Patients with ruptured plaques in their coronary tree had globally more severe disease (plaque 

burden 40.7±7.6 % vs. 33.7±8.4 %, p= 0.01; table 2). 

Finally, plaque rupture sites showed a higher relative content of necrotic core compared to 

MLA sites (16.7; 7.9-26.5 % vs. 11.8; 8.4-17.1 %, p= 0.03)(table 3).

Differences between coronaries and culprit vs. non-culprit lesions  

The LAD presented more severe plaques [plaque burden; LAD 42.2±9.9 % vs. LCx 

33.17±9.2 % vs. RCA 33.96±10.3], more calcified plaques (LAD 3.15; 1.74-4.91 % vs. LCx 

2.10; 1.17-3.79 % vs. RCA 1.49; 0.39-2.53 %) and showed larger necrotic core content (LAD 

11.68; 5.3-15.8 % vs. LCx 7.71; 4.15-13.6 % vs. RCA 9.18; 3.87-13.3 %) of plaques 

compared to the LCx and the RCA respectively (table 4).   

There were no significant differences in IVUS-VH measurements between stable angina (n= 

13) and ACS (n= 27) patients. IVUS-VH parameters other than mean plaque burden 
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(40.62±10.7 % vs. 35.26±10.2 %, p=0.02) did not differ significantly between culprit/target 

and non-culprit/non-target vessels. Furthermore, in ACS patients, geometrical and 

compositional characteristics did not differ significantly between culprit and non-culprit 

vessels, only showing trends for larger plaque burden (39.39±10.0 % vs. 34.60±10.0 %, 

p=0.07) and relative necrotic core content (12.16; 5.4-16.6 % vs. 9.66; 5.2-13.8 %, p=0.17) in 

culprit vessels. 
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DISCUSSION 

Several histopathological and, more recently, IVUS studies have described the distinctive 

morphological features present in plaque rupture sites. Nevertheless, none has prospectively 

compared the clinical and IVUS-derived characteristics of patients with and without the 

presence of plaque rupture in their coronary tree.  

In the present prospective 3-vessel IVUS study, patients with at least one plaque rupture in 

their coronary tree presented larger body mass index and overall worse IVUS-derived 

(geometrical and compositional) characteristics compared to patients without evidence of 

plaque rupture. In addition, plaque rupture sites had a worse phenotype than the MLA sites of 

the same vessels.  

Coronary plaque rupture is the ultimate consequence of the progressive accumulation of lipid-

rich atheroma and fibrous cap thinning, commonly involving haemodynamically non-

significant lesions 13. For decades, the corollary of such event has been deemed an acute 

occlusion of the corresponding artery with the subsequent ACS and its inherent dire 

prognosis. Ex-vivo studies have challenged such concept by providing evidence that 

subclinical rupture is not rare in sudden death patients 2,4. Furthermore, recent IVUS studies 

have reported a prevalence of plaque rupture of 20 to 30 % in stable angina (SA) patients 

7,14,15. In agreement with such previous reports, we identified plaque rupture in 30.8 % of SA 

patients, whereas 59.3 % of the ACS patients presented plaque rupture.

Patients with at least one plaque rupture in their coronary tree (50 % of the population) 

showed a larger body mass index, and were more likely current smokers. These findings have 

a physiopathological basis since both high body weight 16 and smoking 17 are associated with 

an increase in the expression of matrix-metalloproteinases, enzymes involved in the collagen 

breakdown of fibrous caps 18. Patients with plaque rupture also showed more severe burden of 
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the disease and larger calcium, fibrous and necrotic content of plaques than patients without 

rupture.

Several studies showed increased inflammatory marker levels, larger lipid cores and 

pronounced medial thinning in positive remodeled vessels 19-21.

Our study extends those earlier findings and establishes a link between plaque rupture and 

coronary remodelling. Despite larger mean plaque CSAs, patients with the presence of at least 

one plaque rupture in their coronary tree showed similar lumen CSAs. The lack of lumen 

encroachment despite a significant increase in plaque burden was probably driven by a 

positive remodeling phenomenon, clearly shown as a significant increase in vessel CSA. 

At site-specific locations, ruptured sites showed an overall worse phenotype than MLA sites. 

In particular, ruptured sites showed a higher necrotic core content (16.7; 7.9-26.5 % vs. 11.8; 

8.4-17.1 %, p= 0.03). These results were in line with histopathological findings supporting the 

role of the atheromatous core as the most thrombogenic component of atherosclerotic plaques 

22. Of interest, and in agreement with Farb et al who frequently found calcium in ruptured 

plaques 23, ruptured sites showed a larger calcium content than the MLA sites and than the 

overall population.

It is noteworthy yet confirmatory of a previous ex-vivo study 24 that there was no significant 

difference in plaque composition between culprit and non-culprit vessels, supporting the 

validity of the interrogation of a single vessel to estimate the global burden of the disease 25.

Nevertheless, several differences were detected between the 3 major epicardial arteries. 

Interestingly, the LAD showed more severe lesions and a worse phenotype than the LCx and 

RCA. In addition, ruptures located in the LAD were clustered in the proximal part of the 

vessel, whereas ruptures located in the RCA were more distally located, and ruptures in the 

LCx showed no apparent site-specificity. A recent IVUS study found a similar distribution 

throughout the coronary tree 26. Overall, these findings might potentially explain the higher 
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restenosis rates seen in the LAD, particularly in the proximal LAD, compared to the LCx and 

RCA respectively 27.

Clinical and ex-vivo studies have conclusively established that there is commonly a delay 

between the rupture of a plaque and its clinical consequence, if any 15,28,29. Indeed, Rittersma 

et al have recently studied thrombectomy material of STEMI patients and found that 51 % of 

the patients had day to weeks old thrombotic material 29. Thrombotic occlusion of a vessel 

seems to be an episodic event 4 and the underlying prevailing composition of the cavity 

(figure 1) might potentially have a prognostic value in identifying plaques at higher risk of 

occlusion. Large prospective studies using IVUS-VH might shed light into this question.
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Limitations 

All analyses and comparisons performed in the present manuscript beyond the assessment of 

the necrotic core content in ruptured versus non-ruptured plaques should be regarded as 

exploratory and hypothesis-generating since we cannot rule out the possibility that inflation of 

type I error due to multiple comparisons may have confounded our results. The relatively 

small population included may limit this study. Small ruptures, ruptures masked by overlying 

thrombus and the lack of assessment of minor branches may lead to an underestimation of the 

prevalence of such finding. Finally, prioritizing patient’s safety, the decision to perform pre-

intervention and 3-vessel IVUS was at the discretion of the operator, potentially inducing a 

selection bias.

Conclusions

The present study extends earlier findings about the prevalence, distribution and morphology 

of plaque rupture in the coronary tree. In this prospective 3-vessel IVUS study, patients with 

at least one plaque rupture in their coronary tree had larger body mass index and overall 

worse IVUS-derived characteristics compared to patients without evidence of plaque rupture. 

In addition, plaque rupture sites had a worse phenotype than the MLA sites of the same 

vessels.
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Figure legend 

LAD refers to left anterior descending, LCx refers to left circumflex and RCA to right 

coronary artery. Three-vessel imaging using IVUS-VH (where calcified tissue is labelled as 

white, fibrous as green, fibrolipidic tissue as greenish-yellow and necrotic core as red) in a 57 

year-old male presenting with unstable angina. Plaque rupture in the ostial LAD (LAD a). The 

underlying substrate of the cavity is rich in necrotic-core (red) and calcium (white), whereas 

the thrombus has migrated distally (LAD c, *).    
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Colour figures on pages 441-449
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TABLES

Table 1 Baseline characteristics and average IVUS parameters (n= 40) 
       n (%) 
Age (years±SD)     55.7±11.0 
Male sex       29 (72.5) 
Diabetes         4 (10.0) 
Hypertension      17 (42.5) 
Current smoking      15 (37.5) 
Previous smoking      6 (15.0) 
Hypercholesterolemia     20 (50.0) 
Family history of coronary disease    19 (47.5) 
Height (cm±SD)     174.5±9.2 
Weight (kg±SD)     82.8±14.0 
Body mass index (kg/m2 ±SD)   27.1±3.4 
LDL (mmol/L±SD)     2.70±0.7 
HDL (mmol/L±SD)     1.20±0.5 
Clinical Presentation
Stable angina      13 (32.5) 
Unstable angina      12 (30.0) 
Acute myocardial infarction    15 (37.5) 

IVUS-VH measurements:

Analyzed length (mm)*    46.9;33.9-59.8 
Geometrical parameters 
Lumen CSA (mm2 ±SD)    9.4±2.8 
Vessel CSA (mm2±SD)    15.1±4.8 
Plaque CSA (mm2±SD)    5.8±2.7 
Plaque max. thickness (mm±SD)   0.9±0.2 
Plaque burden (%±SD)    37.2±8.7 

Compositional parameters 
Calcium CSA (mm2±SD)    0.07; 0.03-0.14 
Calcium (%±SD)     2.50; 1.45-3.53 
Fibrous CSA (mm2±SD)    1.53; 0.81-2.11 
Fibrous (%±SD)     57.84; 52.3-64.5 
Fibrolipidic CSA (mm2±SD)    0.48; 0.26-0.77  
Fibrolipidic (%±SD)     17.96; 13.9-21.9 
Necrotic core CSA (mm2±SD)   0.26; 0.15-0.42 
Necrotic core (%±SD)     10.13; 6.2-12.6
Discrete variables are presented as counts and percentages. Continuous variables are 
presented as means ± SD or medians (25th, 75th percentile) when indicated. CSA refers to 
cross-sectional area. * refers to the average analyzed length per coronary. 
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Chapter 7. Thin-cap fi broatheroma

7.1)  In vivo intravascular ultrasound derived thin-

cap fi broatheroma detection using utrasound 

radiofrequency data analysis.

J Am Coll Cardiol. 2005 Dec 6;46(11):2038-42. 

Rodriguez Granillo GA, García-García HM, McFadden EP, 

et al.
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In Vivo Intravascular Ultrasound-Derived
Thin-Cap Fibroatheroma Detection Using
Ultrasound Radiofrequency Data Analysis
Gastón A. Rodriguez-Granillo, MD, Héctor M. García-García, MD, Eugène P. Mc Fadden, MD, FRCPI,
Marco Valgimigli, MD, Jiro Aoki, MD, Pim de Feyter, MD, PHD, Patrick W. Serruys, MD, PHD
Rotterdam, the Netherlands

OBJECTIVES The purpose of this study was to assess the prevalence of intravascular ultrasound (IVUS)-
derived thin-cap fibroatheroma (IDTCFA) and its relationship with the clinical presentation
using spectral analysis of IVUS radiofrequency data (IVUS-Virtual Histology [IVUS-VH]).

BACKGROUND Thin-cap fibroatheroma lesions are the most prevalent substrate of plaque rupture.
METHODS In 55 patients, a non-culprit, non-obstructive (�50%) lesion was investigated with IVUS-VH.

We classified IDTCFA lesions as focal, necrotic core-rich (�10% of the cross-sectional area)
plaques being in contact with the lumen; IDTCFA definition required a percent atheroma
volume (PAV) �40%.

RESULTS Acute coronary syndrome (ACS) (n � 23) patients presented a significantly higher prevalence
of IDTCFA than stable (n � 32) patients (3.0 [interquartile range (IQR) 0.0 to 5.0] vs. 1.0
[IQR 0.0 to 2.8], p � 0.018). No relation was found between patient’s characteristics such as
gender (p � 0.917), diabetes (p � 0.217), smoking (p � 0.904), hypercholesterolemia (p �
0.663), hypertension (p � 0.251), or family history of coronary heart disease (p � 0.136) and
the presence of IDTCFA. A clear clustering pattern was seen along the coronaries, with 35
(35.4%), 31 (31.3%), 19 (19.2%), and 14 (14.1%) IDTCFAs in the first 10 mm, 11 to 20 mm,
21 to 30 mm, and �31 mm segments, respectively, p � 0.008. Finally, we compared the
severity (mean PAV 56.9 � 7.4 vs. 54.8 � 6.0, p � 0.343) and the composition (mean
percent necrotic core 19.7 � 4.1 vs. 18.1 � 3.0, p � 0.205) of IDTCFAs between stable and
ACS patients, and no significant differences were found.

CONCLUSIONS In this in vivo study, IVUS-VH identified IDTCFA as a more prevalent finding in ACS than
in stable angina patients. (J Am Coll Cardiol 2005;46:2038–42) © 2005 by the American
College of Cardiology Foundation

Sudden cardiac death or unheralded acute coronary syn-
dromes (ACS) are common initial manifestations of coro-
nary atherosclerosis, and most such events occur at sites of
non-flow limiting coronary atherosclerosis (1,2). Autopsy
data suggest that plaque composition is a key determinant of
the propensity of atherosclerotic lesions to provoke clinical
events. Thin-cap fibroatheroma (TCFA) plaques with large
avascular, hypocellular lipid cores seem particularly prone to
rupture and result in epicardial occlusion (3–5).

Careful systematic evaluation, in a large series of victims
of sudden cardiac death, suggested that ruptured TCFA was
the precipitating factor for 60% of acute coronary thrombi.
Furthermore, 70% of those patients had other TCFAs that
had not ruptured (5).

Intravascular ultrasound (IVUS) is the gold standard for
evaluation of coronary plaque, lumen, and vessel dimensions
(6,7). However, although visual interpretation of gray-scale
IVUS can identify calcification within plaques, it cannot
reliably differentiate lipid-rich from fibrous plaque (7).
Recently, spectral analysis of IVUS radiofrequency data
(IVUS-Virtual Histology [IVUS-VH]) has demonstrated
potential to provide detailed quantitative information on

plaque composition and morphology and has been validated
in studies of explanted human coronary segments (8).

In the present study, we evaluated the prevalence of
IVUS-derived TCFA (IDTCFA) in coronary artery seg-
ments with non-significant lesions on angiography using
IVUS-VH.

METHODS

In 55 patients, a non-culprit, de novo, angiographically
non-obstructive (�50%) lesion was investigated with
IVUS-VH. Written informed consent was obtained from
all patients.
IVUS-VH acquisition and analysis. Details regarding the
validation of the technique on explanted human coronary
segments have previously been reported (8). Briefly,
IVUS-VH uses spectral analysis of IVUS radiofrequency
data to construct tissue maps that classify plaque into four
major components (fibrous [labeled green], fibrolipidic [la-
beled greenish-yellow], necrotic core [labeled red], and
calcium [labeled white]) which were correlated with a
specific spectrum of the radiofrequency signal and assigned
color codes (8).

Intravascular Ultrasound-Virtual Histology data were
acquired after intracoronary administration of nitrates using
a continuous pullback (Ultracross 2.9-F 30-MHz catheter,
Boston Scientific, Santa Clara, California), by a dedicated

From the Erasmus Medical Center, Thoraxcenter, Rotterdam, the Netherlands.
Manuscript received May 25, 2005; revised manuscript received June 24, 2005,

accepted July 25, 2005.

Journal of the American College of Cardiology Vol. 46, No. 11, 2005
© 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00
Published by Elsevier Inc. doi:10.1016/j.jacc.2005.07.064
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IVUS-VH console (Volcano Therapeutics, Rancho Cor-
dova, California). The IVUS-VH data were stored on a
CD-ROM and sent to the imaging core lab for offline
analysis. Intravascular ultrasound B-mode images were re-
constructed from the radiofrequency data by customized
software (IVUSLab, Volcano Therapeutics, Rancho Cor-
dova, California). Manual contour detection of both the
lumen and the media-adventitia interface was performed,
and the radiofrequency data were normalized using a tech-
nique known as “blind deconvolution,” an iterative algo-
rithm that deconvolves the catheter transfer function from
the backscatter, thus accounting for catheter-to-catheter
variability (9). Geometric and compositional data were
obtained for every slice and expressed as mean percent for
each component. The plaque eccentricity index (EI) was
calculated by dividing the minimum plaque thickness by the
maximum plaque thickness. Percent atheroma volume
(PAV) was defined as: EEMarea � lumenarea/EEMarea �
100, where EEM refers to external elastic membrane.

Subsequently, we evaluated the presence of IDTCFA
lesions along the interrogated vessels, and their incidence
and characteristics were determined. Finally, the spatial
distribution of IDTCFA along the coronaries was evaluated

starting from the ostium and dividing the vessel in 10-mm
segments, evaluating a minimal length of 30 mm.
Definition of IDTCFA. Two experienced, independent
IVUS analysts defined IDTCFA as a lesion fulfilling the
following criteria in at least three consecutive frames: 1)
necrotic core �10% without evident overlying fibrous tissue
(Fig. 1); and 2) PAV �40%.

We selected this cutoff value because TCFA lesions are
very unlikely present in segments with �40% occlusion
(10). Cross sections with non-uniform rotational distortion
artifact were excluded from the analysis.
Statistical analysis. Discrete variables are presented as
counts and percentages. Continuous variables are presented
as medians (25th, 75th percentile) or mean values � SD
when indicated. Pearson’s chi-square or Fisher exact test,
Student t test, and Wilcoxon rank-sum tests were per-
formed, as indicated. A two-sided p value of �0.05 indi-
cated statistical significance. Logistic regression analysis was
performed to identify potential predictors of the presence of
IDTCFA. Statistical analyses were performed with use of
11.5 SPSS software (SPSS Inc., Chicago, Illinois).

RESULTS

The baseline characteristics of the patients (n � 55) we
studied are presented in Table 1. Thirty-four (61.8%)
patients had at least one IDTCFA in the region of interest
(ROI).

The population was prospectively divided into two
groups, stable patients and patients presenting with ACS
(defined as unstable angina, non–ST-segment elevation
myocardial infarction, or ST-segment elevation myocardial
infarction).
IDTCFA incidence and predictors. Acute coronary syn-
drome patients had a significantly higher incidence of
IDTCFA than stable patients (3.0 [interquartile range
(IQR) 0.0 to 5.0] vs. 1.0 [IQR 0.0 to 2.8], p � 0.018).
When corrected for the length of the ROI, the density of

Abbreviations and Acronyms
ACS � acute coronary syndrome
IDTCFA � intravascular ultrasound-derived thin-cap

fibroatheroma
IQR � interquartile range
IVUS � intravascular ultrasound
IVUS-VH � Intravascular Ultrasound-Virtual Histology
LAD � left anterior descending coronary artery
LCX � left circumflex artery
PAV � percent atheroma
RCA � right coronary artery
ROI � region of interest
TCFA � thin-cap fibroatheroma

Figure 1. Left anterior descending artery depicted by Intravascular Ultrasound-Virtual Histology, where calcified, fibrous, fibrolipidic, and necrotic core
regions are labeled white, green, greenish-yellow, and red, respectively. Panel A shows an intravascular ultrasound cross-sectional area reconstructed from
backscattered signals. Panel B shows the corresponding tissue map depicting a necrotic core-rich plaque with necrotic core tissue in contact with the lumen.

2039JACC Vol. 46, No. 11, 2005 Rodriguez-Granillo et al.
December 6, 2005:2038–42 IVUS-Derived Thin-Cap Fibroatheroma Detection

Colour figures on pages 441-449



221

IVUS-derived thin-cap fi broatheroma

IDTCFA remained statistically significant (0.7 [IQR 0.0 to
1.3] IDTCFA/cm vs. 0.2 [IQR 0.0 to 0.7] IDTCFA/cm, p
� 0.031) (Table 2).

No relation was found between patient’s characteristics
such as gender (p � 0.917), diabetes (p � 0.217), smoking
(p � 0.904), hypercholesterolemia (p � 0.663), hyperten-
sion (p � 0.251), or family history of coronary heart disease
(p � 0.136) and the presence of IDTCFA.
Characteristics and location. We compared the severity
(mean PAV 56.9 � 7.4% vs. 54.8 � 6.0%, p � 0.343) and
the composition (mean percent necrotic core 19.7 � 4.1%
vs. 18.1 � 3.0%, p � 0.205) of IDTCFAs between ACS
and stable patients, and no significant differences were
found. Although not significantly, the left anterior descend-
ing coronary artery (LAD) (73.9% of the LADs, n � 23)
was the most frequent location, followed by the left circum-
flex artery (LCX) (60.0% of the LCXs, n � 10) and the
right coronary artery (RCA) (50.0% of the RCAs, n � 22,
p � 0.254).

Four patients were excluded from the spatial distribution
subanalysis, three because the IVUS assessment of the ROI
was shorter than 30 mm and the last one because the
pullback did not reach the ostium. A total of 99 IDTCFA
were present in vessels that met the aforementioned criteria.
A clear clustering pattern was seen along the coronaries,
with 35 (35.4%), 31 (31.3%), 19 (19.2%), and 14 (14.1%)
IDTCFAs in the first 10 mm, 11 to 20 mm, 21 to 30 mm,
and �31 mm segments, respectively, p � 0.008 (Fig. 2).
The results showed a clear clustering pattern of the lesions
along the coronaries, with 66 (66.7%) IDTCFA located in

the first 20 mm, whereas further along the vessels the
incidence was significantly lower (33, 33.3%, p � 0.008).

DISCUSSION

Post-mortem observations have documented several char-
acteristic histological patterns that are substrates for sudden
death related to epicardial coronary occlusion, of which the
most common is TCFA (5,11,12). The same studies have
demonstrated that plaque rupture at TCFAs may also occur
without clinical consequences. The ability to identify TCFA
in patients would both help clarify the natural history of
TCFA and provide the means to assess the effects of
pharmacological, or other, intervention.

Until recently, no technique could identify TCFA in vivo.
However, spectral analysis of IVUS radiofrequency (IVUS-VH)
data has demonstrated potential to provide detailed quan-
titative information both on overall plaque composition and
on the anatomic relation of specific plaque components to
the lumen of the vessel, and it has been validated in studies
of explanted human coronary segments (8).
IDTCFA definition. It is well established that tissue
shrinkage occurs during tissue fixation (13). Shrinkage of up
to 60%, 15%, and 80% can occur during critical-point
drying, free drying, and air drying, respectively (14). Fur-
thermore, postmortem contraction of arteries is an addi-
tional confounding factor (15).

Although the most accepted threshold to define a cap as
“thin” has been set at 65 �m (16), a number of important

Table 1. Baseline Characteristics (n � 55)

n (%)

Age (yrs � SD) 57.6 � 9.5
Male gender 44 (80.0)
Diabetes 5 (9.1)
Hypertension 20 (36.4)
Current smoking 15 (27.3)
Previous smoking 14 (25.5)
Hypercholesterolemia 46 (83.6)
Family history of coronary disease 30 (54.5)
Vessel

Right coronary artery 22 (40.0)
Left anterior descending 23 (41.8)
Left circumflex 10 (18.2)

Clinical presentation
Stable 32 (58.2)
Acute coronary syndrome 23 (41.8)

Table 2. Incidence and Characteristics of IDTCFA Lesions in Stable and ACS Patients

Length of ROI IDTCFA IDTCFA/cm % PAV % NC EI

Stable (n � 32) 35.41 � 11.6 1.0 (0.0, 2.8) 0.2 (0.0, 0.7) 54.8 � 6.0 18.1 � 3.0 0.23 � 0.1
ACS (n � 23) 33.90 � 15.0 3.0 (0.0, 5.0) 0.7 (0.0, 1.3) 56.8 � 7.4 19.7 � 4.1 0.27 � 0.2
p value 0.684 0.018 0.031 0.343 0.205 0.35

Continuous variables are presented as medians (25th, 75th percentile) or mean values � SD when indicated.
ACS � acute coronary syndrome; EI � plaque eccentricity index (defined as minimum plaque thickness divided by maximum plaque thickness); IDTCFA � intravascular

ultrasound-derived thin-cap fibroatheroma; % PAV � percent atheroma volume (defined as EEMarea � lumenarea/EEMarea � 100, where EEM refers to external elastic
membrane); ROI � region of interest; % NC � percent necrotic core of the cross-sectional area.

Figure 2. Bar graphs illustrating the frequency of intravascular ultrasound-
derived thin-cap fibroatheroma (IDTFCA) starting from the ostium.
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ex vivo studies have used higher (�200 �m) thresholds
(4,17,18). Indeed, one of these studies identified a mean cap
thickness of 260 and 360 �m for “vulnerable” and “non-
vulnerable” plaques, respectively (18). Because the axial
resolution of IVUS-VH is between 100 to 150 �m, we
assumed that the absence of visible fibrous tissue overlying a
necrotic core suggested a cap thickness of below 100 to 150 �m
and used the absence of such tissue to define a thin fibrous
cap (19). Figure 1 depicts a typical example of IDTCFA.
Incidence, characteristics, and distribution of IDTCFA. The
major findings of our study were first that IVUS-VH
findings, compatible with IDTCFA, were common in
non-culprit lesions of patients undergoing percutaneous
intervention in another vessel. Second, the prevalence of
IDTCFA was significantly higher in patients who presented
with ACS compared to stable patients. In addition, the
distribution of IDTCFA lesions along the coronary vessels
was clearly clustered. Finally, we found no significant
correlation between the presence of conventional risk factors
and the occurrence of IDTCFA.

In vivo studies established that a multifocal instability
process is present in ACS (20,21). Rioufol et al. (20) found
at least one plaque rupture remote from the culprit lesion in
80% of patients and from the culprit artery in 71% of
patients (20). The significantly higher prevalence of
IDTCFA in non-culprit coronaries of patients presenting
with an ACS supports the theory that holds ACS as
multifocal processes.

The distribution of the IDTCFA in the coronaries was in
line with previous ex vivo and clinical studies, with a clear
clustering pattern from the ostium, thus supporting the
non-uniform distribution of vulnerable plaques along the
coronary tree (22,23). Of note, the mean PAV and the mean
necrotic core percentage of the IDTCFAs detected by
IVUS-VH were also similar to previously reported his-
topathological data (55.9% vs. 59.6% and 19% vs. 23%,
respectively) (10).

The large number of high-risk plaques found throughout
the coronary tree by means of angiography, angioscopy,
IVUS, and palpography, in addition to the unpredictability
of the natural history of such lesions and the uncertainty
about whether vulnerable plaque characteristics will subse-
quently lead to fatal or non-fatal ischemic events, suggests
that potential local preventive strategies could not be cost-
effective (12,20,21,24,25). On the contrary, a systemic
“plaque stabilization” approach including statins and
angiotensin-converting enzyme inhibitors could be capable
of “cooling-down” the inflammatory burden.

To our knowledge, this is the first study to detect in vivo
the presence of an IVUS surrogate of TCFA. This novel
intravascular diagnostic tool could potentially aid the assess-
ment of the effect of antiatherosclerotic drugs, and allow a
more comprehensive pathophysiologic approach towards
natural history studies.
Study limitations. The present was an observational study
where we evaluated only one coronary artery per patient.

The inferior axial resolution of IVUS-VH in comparison to
histology could influence our results. This study does not
directly assess the incremental value of IVUS-VH over
visual identification of plaque characterization. The main
finding of the study (IDTCFA) is only a surrogate of a
histopathological finding. Besides, the lack of a direct
comparison between IVUS-VH and histopathology renders
our observation to some extent only exploratory. Accord-
ingly, interpretation of our findings must be cautious.
Prospective studies are needed in order to evaluate the
prognostic value and natural history of such finding. The
seemingly high prevalence of IDTCFA in comparison with
histopathological studies is mainly driven by the sampling
limitation of such studies and has previously been acknowl-
edged (26).
Conclusions. In this in vivo study, IVUS-VH identified
IDTCFA as a more prevalent finding in ACS than in stable
angina patients. Prospective studies are needed in order to
evaluate the prognostic value of such finding in natural
history studies.

Reprint requests and correspondence: Dr. Patrick W. Serruys,
Thoraxcenter, Bd406, Dr. Molewaterplein 40, 3015-GD Rotter-
dam, the Netherlands. E-mail: p.w.j.c.serruys@erasmusmc.nl.
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Abbreviations list 

ACS- Acute coronary syndrome 

CSA – Cross sectional area 

EEM- External elastic membrane  

IVUS- Intravascular ultrasound 

IDHR- IVUS-derived healed rupture 

IDTCFA- IVUS-derived thin-cap fibroatheroma  

PB- Plaque burden 

PR- Plaque rupture

STEMI – ST segment elevation myocardial infarction  

NSTEMI – Non-ST segment elevation myocardial infarction  

UA – Unstable angina 

VH- Virtual Histology
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 ABSTRACT 

Background:  The morphologic features of the different atherosclerotic plaques have been 

derived from lesions studied in post-mortem studies. We therefore characterized in vivo

IVUS-derived (ID) thin-cap fibroatheroma (IDTCFA), plaque rupture (PR) and ID-healed 

rupture (IDHR) plaques in patients with acute coronary syndrome using three vessel IVUS-

radiofrequency data.

Methods and results: Thirty-five patients were studied. A total of 183 IDTCFAs, 19 PR 

(ratio 9.6 IDTCFAs/1 PR) and 35 IDHR plaques (ratio 5.2 IDTCFAs/1 IDHR plaque) were 

identified. Nine IDHR were found together with either IDTCFA (6) or PR (3). Ninety five 

(52.2%) IDTCFAs, 11 (57.9%) PR and 20 (57.1%) IDHR plaques were located within the 

first 3 cm of the main coronary arteries. The necrotic core content was 22.2±9.3% in the 

IDTCFA, 13.0±7.8% in PR and 20.2±7.1 in the IDHR plaques, p<0.001.  The vessel CSA in 

IDTCFAs was 16.2±6.1 mm2, in PR 19.0±9.3 mm2 and in IDHR plaques was 20.8±6.5 

mm2, p=0.164. Plaque burden was significantly different, in IDTCFAs was 47.6±8.1%, in PR 

45.0±9.2% and in IDHR plaque was 56.2±9.7%, p<0.001. 

Conclusions: In patients with acute coronary syndromes IDTCFA, plaque ruptures and 

IDHR plaques had a higher prevalence in the first three centimetres in the main epicardial 

vessels. Furthermore, there was a gradient in plaque size and plaque composition between the 

different plaque morphologies.  

Key words: Atherosclerosis, imaging, coronary disease 
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Introduction 

Unheralded cardiovascular events such as acute coronary syndromes (ACS) are commonly 

triggered by atherothrombotic phenomena occurring at sites of either non-flow limiting 

atherosclerosis1,2 or significant coronary artery disease3-5. Mostly the formation of thrombi is 

due to plaque disruption6,7. Plaques underlying a coronary thrombus have peculiar 

morphologic, compositional and mechanical characteristics such as high content of necrotic-

core8,9, thin fibrous cap, scarcity of smooth muscle cells, intense inflammatory infiltration of 

the fibrous cap10-12 and high degree of mechanical strain expressed by  the plaque13.  These 

morphological features of the so-called “vulnerable plaques” or thin-cap fibroatheroma 

(TCFA) have been derived from lesions observed in post-mortem studies. Recently, our 

group has published the in vivo assessment of such plaques using IVUS- radiofrequency data 

(Virtual Histology-VH), confirming a higher prevalence of IVUS-derived thin-cap 

fibroatheroma (IDTCFA) in patients with ACS as compared to stable angina14.

When TCFA ruptures, different stages of the healing reaction can be identified 

microscopically15. This process of thinning of the fibrous cap, followed by its rupture, 

thrombosis and healing can promote atherosclerotic plaque growing. Therefore an analysis of 

these different atherosclerotic plaque morphologies in vivo would be of critical importance in 

the understanding the stages of the disease process. 

We thus sought to comprehensively characterize in vivo by means of IVUS-VH the 

morphological phases of vulnerable plaque transition, including the detection of plaque 

rupture and IVUS-derived healed rupture (IDHR) plaques together with the previously 

described IDTCFA in patients with acute coronary syndrome undergoing three vessel IVUS 

investigation.
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Methods

Patient selection 

From January to May 2005, all patients with acute coronary syndromes admitted for coronary 

catheterization and subsequent intervention were eligible if all three coronary vessels were 

suitable for IVUS interrogation (absence of extensive angiographic calcification and/or 

severe vessel tortuosity). Acute coronary syndrome encompasses unstable angina (UA) 

according to the Braunwald classification, non-ST-segment elevation myocardial infarction 

(NSTEMI), and ST-segment elevation myocardial infarction (STEMI). Percutaneous 

treatment of the culprit lesion before any imaging acquisition was mandatory in all patients. 

The three-vessel IVUS-VH acquisition timing was as follows: in patients with UA/NSTEMI 

acquisition was performed just after the interventional treatment and in patients suffering 

from STEMI was done when the patient was symptoms free, without ECG changes and 

hemodynamically stable, which was defined as systolic blood pressure >90 mmHg without 

vasopressor or inotropic support and heart rate between 60 and 100 bpm. Informed written 

consent was obtained from all patients. Our local Ethics Committee approved the protocol. 

Definitions used in this study 

Necrotic core tissue in contact with the lumen, defined as the presence of necrotic core tissue 

in direct contact with the luminal space and with no detectable overlying fibrous tissue, 

reported as a binary variable irrespective of the amount of necrotic core. 

Plaque burden (PB), defined as EEMarea-Lumenarea/EEMarea X 100, where EEM refers to 

external elastic membrane. 

IVUS-derived TCFA14, is defined as a lesion fulfilling the following criteria in at least 3 

consecutive CSAs : 1) plaque burden � 40%; 2) necrotic core � 10%16 in direct contact with 
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the lumen in the investigated CSA (figure 1A); All consecutive CSAs having the same 

morphologic characteristics were considered as part of the same IDTCFA lesion.  

Plaque rupture was defined as a ruptured capsule with an underlying cavity (figure 1B), or

plaque excavation by atheromatous extrusion with no visible capsule17,18. Rupture sites 

separated by at least 5 mm length of rupture-free vessel were considered as different ruptures.

IVUS-derived healed rupture (IDHR), consists of a pool of necrotic core buried by a layer of 

fibrous tissue. Repetition of the same pattern creates a multilayered appearance as described 

by histopathology 10(figure 1C).

Screening for diagnosis of an IDTCFA, plaque rupture and IDHR required the independent 

review and agreement between two experienced IVUS observers (H.M.G.G and G.A.R.G.), 

who had no knowledge about demographical data of the patients. Disagreement was solved 

by consensus between the observers, when needed a third expert was consulted. 
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IVUS-VH Acquisition and Analysis 

Details regarding the validation of the technique, on explanted human coronary segments, 

have previously been reported19. Briefly, IVUS-VH uses spectral analysis of IVUS 

radiofrequency data to build tissue maps that are correlated with a specific spectrum of the 

radiofrequency signal and assigned colour codes [fibrous (labelled green), fibrolipidic 

(labelled greenish-yellow), necrotic core (labelled red) and calcium (labelled white)]19.

IVUS-VH data was acquired using a continuous pullback (Eagle-EyeTM 20 MHz Volcano 

Therapeutics, Rancho Cordova, CA), by a dedicated IVUS-VH console (Volcano 

Therapeutics, Rancho Cordova, CA). The IVUS-VH data were stored on a DVD and sent to 

the imaging core lab for offline analysis (Cardialysis BV, Rotterdam, The Netherlands). Data 

acquisition was ECG-gated and recorded during the automated withdrawal of the catheter 

using a mechanical pullback device (Volcano Therapeutics, Rancho Cordova, CA) at a 

pullback speed of 0.5 mm/s. Cine runs, before and during contrast injection, were performed 

to define the position of the IVUS catheter before the pullback was started.  

The IVUS-VH sampling rate during pullback is gated to peak R-wave and is therefore 

dependent on heart rate.  For instance, during constant heart rate of 60 bpm, then data will be 

collected every 0.5 mm.  

IVUS B-mode images were reconstructed from the RF data by customized software (4.4 

IVUSLab, Volcano Therapeutics, Rancho Cordova, CA). Longitudinal and cross-sectional 

views were used to determine the contours; if poor quality of the IVUS was observed, which 

was defined as uncertainty of the luminal border and presence of artifacts, the vessel was not 

included in this analysis. Manual contour detection of both the lumen and the media-

adventitia interface was performed and the radiofrequency data was normalized using a 

technique known as “Blind Deconvolution”20, an iterative algorithm that deconvolves the 
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catheter transfer function from the backscatter, thus accounting for catheter-to-catheter 

variability. Geometrical and compositional data were obtained for every slice. 

Objective

To investigate the prevalence, composition and distribution of different plaque morphologies 

(IDTCFA, plaque ruptures and IDHR plaques) in the three vessels of patients with ACS.
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Statistical analysis 

Discrete variables are presented as counts and percentages. Continuous variables are 

presented as means ± SD. A two-sided p value of less than 0.05 indicated statistical 

significance. Assumptions for normality were checked after transformation based on a p-

value >0.20 at Kolmogorov-Smirnov test and on visual assessment of Q-Q plots of residuals. 

Accordingly, log transformation was performed on the variables with skewed distribution.

To determine the distribution of the IDTCFAs, plaque rupture and IDHR plaques along the 

vessels, the vessel was divided into 10-mm length segments. The frequency of such lesions 

was assessed as a function of the distance from the ostium of the artery. When a plaque 

extended through more than one 10-mm segment, the plaque was counted in the starting 

segment. 

IVUS-VH CSAs were analyzed for their attribute of belonging to an IDTCFA or not. (By 

definition these IDTCFAs have a length of at least three consecutive CSA). Summary 

statistics was used to count the number of frames containing or not an IDTCFA in order to 

obtain the raw-Odds, by vessel (LAD, LCX and RCA). Finally, in a General Estimating 

Equations model, with binomial distribution and a logit link function, cases were regarded as 

a random factor and we allowed for an autoregressive correlation structure 21,22. Vessel was a 

fixed factor in the model. For the pair wise comparisons between vessels an Odds Ratio was 

calculated together with its 95% two-sided confidence interval and a p-value to express the 

probability of that confidence interval to contain the value 1 with alpha=0.05.  

Within each patient we calculated the mean for each plaque morphology (i.e., IDTCFA, 

plaque rupture, IDHR, IDHR with IDTCFA and IDHR with plaque rupture) class as a 

summary statistic for calcified area, fibrous area, fibrolipid area and necrotic core area. This 

statistic then was analyzed in a general linear model, using patient and morphology class as 
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independent predictors. Comparisons between morphology classes were made taking into 

account the specific patient level for a given patient.

Statistical analyses were performed with use of SPSS software, version 11.5 and SAS V8.02. 
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Results

Thirty five patients (95 vessels) were consecutively enrolled in this study. In ten patients one 

of the three vessels was not suitable for IVUS-VH analysis, 5 vessels due to full metal jacket 

and 5 vessels had IVUS-VH of poor quality (EEM out of the frame and irregular pullback). 

The baseline characteristics are depicted in table 1. The mean age was 52.4±9.4 years. 

Mostly being male patients 82.9%, while only 11.1% were diabetic. Fifty seven percent had 

STEMI. The culprit vessel was identified in the entire population; the left anterior descending 

(LAD) was the culprit vessel in 19 (52.8%) cases, and the left circumflex (LCX) and the right 

coronary artery (RCA) in 8 (22.2%) and 9 (25.0%) cases, respectively. In one patient 

suffering from unstable angina two culprit vessels were detected.

In total, 10146 CSAs were studied. Three main plaque morphologies were identified: 

IDTCFA (1146 CSAs, 177 lesions), plaque rupture (71 CSAs, 16 lesions) and ID healed 

rupture (284 CSAs, 26 lesions). In addition, we have found some IDHR with IDTCFA (124 

CSAs, 6 lesions) and IDHR with plaque rupture (9 CSAs, 3 lesions) (Table 2). Eighty five 

percent of CSAs (8635/10146) did not fulfill criteria for any of the IVUS derived plaque 

morphologies mentioned previously. 

Prevalence and distribution of the IDTCFA 

A total of 183 IDTCFAs were found, 69 (37.7%) in the LAD, 55 (30.0%) in the LCX and 59 

(32.2%) in the RCA. The overall distribution along the vessels from ostial to distal segments 

is shown in (figure 2). Half of these IDTCFAs  (95 IDTCFAs – 52.2%) were located within 

the first 3 cm of the arteries. However, when this analysis was performed for each vessel, the 

distribution of the IDTCFAs was different, being more proximally located in the LAD and 

LCX, whereas in the RCA they were more distally located (figure 3). The left anterior 

descending had higher probability to contain CSAs belonging to an IDTCFA compared to the 
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left circumflex (OR 2.96, 95%CI [1.65,5.32], p=0.0006) and compared to the right coronary 

artery (OR 1.99, 95%CI [1.06,3.71], p=0.032).

The mean of IDTCFA/cm in the culprit vessel of 0.7, while in the non-culprit vessel was 0.4, 

p=0.04.

Prevalence and distribution of plaque rupture and IVUS-derived healed rupture 

plaques

There were a total of 19 plaques ruptures (ratio 9.6 IDTCFAs/1 plaque rupture) and 35 IDHR 

(ratio 5.2 IDTCFAs/1 IDHR plaque) in the studied population. Nine IDHR were found 

together with either IDTCFA (6) or PR (3).  

The distribution of the plaque rupture followed the same pattern as the IDTCFA distribution, 

being more frequent in the proximal three centimeter of the coronary tree 11/19 (57.9%) 

(Figure 2). Ruptures were located in the LAD artery in 8 cases (42.1 %), in the LCx in 4 

cases (21.0 %) and in the RCA in 7 cases (36.8 %).

The prevalence of IDHR plaques, as in the two previous plaque types was more frequent in 

the proximal 3 cm of the coronary arteries 20/35 (57.1%) (Figure 2).   IDHR plaques were 

located in the LAD artery in 14 cases (40.0 %), in the LCx in 9 cases (25.7 %) and in the 

RCA in 12 cases (34.3 %).  

Comparison of the composition and geometrical analysis of the IDTCFA, plaque 

rupture and IDHR plaques 

Although by definition the IDTCFA CSAs had to have plaque burden >40% and NC >10% 

an analysis of the overall composition of the CSAs (1146) with characteristics of IDTCFA 

was performed. 
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The necrotic core content was 22.2±9.3% in the IDTCFA, 13.0±7.8% in plaque ruptures and 

20.2±7.1% in the IDHR plaques, p<0.001. Whereas the calcified tissue content was as 

follows: 6.5±5.5% in the IDTCFA, 5.4±6.4% in plaque ruptures and 9.1±6.5% in the IDHR 

plaques. P<0.001. 

The vessel CSA in IDTCFAs was 16.2±6.1 mm2, in plaque rupture 19.0±9.3 mm2 and in 

IDHR plaques was 20.8±6.5 mm2, p=0.164. However, considering those CSAs with non-

specific plaque morphology as reference (vessel CSA 16.6±6.9 mm2), there was a significant 

increase in the vessel CSA in plaque ruptures, p=0.05. Lumen CSA was 8.5±3.9 mm2, 

10.5±6.5 mm2 and 9.1±3.7 mm2, respectively, p<0.001. With respect to plaque CSA in 

IDTCFAs was 7.6±3.0 mm2, in plaque rupture 8.4±4.0 mm2 and in IDHR plaques 11.7±4.2 

mm2 p<0.001. Finally, plaque burden was significantly different, in IDTCFAs was 

47.6±8.1%, in plaque ruptures 45.0±9.2% and in IDHR plaque was 56.2±9.7%, p<0.001. 

Figure 4. 
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Discussion

The main findings of the present study can be summarized as follows: 1. In 35 patients (95 

vessels and 10146 CSAs) 183 IDTCFAs, 19 plaque ruptures and 35 IDHR plaques were 

detected. The half of the IDTCFAs, plaque ruptures and IDHR plaques were located within 

the first 3 cm of the main coronary arteries. 2. There was similar content of necrotic core in 

CSAs belonging to the IDTCFA and to IDHR, but the content in these two was larger than in 

plaque ruptures. In this study the necrotic core in IDTCFAs 22.2% is in line with a recently 

published data by Virmani et al who reported 24% of necrotic core in TCFA23.  3. There was 

a gradient of disease among the identified plaque morphologies, with positive remodelling in 

the ones with larger amount of necrotic core.  

Rationale for IDTCFA definition. 

Vulnerable plaques have particular plaque morphology, which consists in a thin fibrous cap 

overlying a necrotic rich core; this is the current paradigm, however there is a myriad of 

limitations in detecting these morphologic characteristics in vivo.

First, at what point is a fibrous cap considered thin? Mann and Davies5 reported in 1996 a 

study of 160 coronary plaques obtained from 31 subjects who died of sudden cardiac death 

and reported a mean cap thickness of 250µm (range 20 – 1140µm) in plaques that were types 

IV and V. Another pioneering study is by Burke et al4; they sectioned the coronary arteries 

every 3-mm intervals and only CSA with more than 50% of narrowing were analyzed in 41 

plaque ruptures; these plaques had a mean fibrous cap thickness of 23±19µm, and they also 

reported that 95% of the ruptures plaques have cap thickness <65µm.  This value of cap 

thickness in plaque rupture has been used –maybe inappropriately- to define the thickness of 

the cap in thin-cap fibroatheroma16,23, even when TCFA have less necrotic core, less number 

of cholesterol clefts and less macrophage infiltration of the fibrous cap compared to ruptured 
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plaque described in these pathologic studies23. Pathologists may examine the pathological 

substrate at the advent of the clinical event responsible for it, but their technique faces the 

following technical issues: Tissue shrinkage occurs during tissue fixation24. Shrinkage of up 

to 60%, 15%, and 80% can occur during critical-point drying, free drying, and air drying, 

respectively. Furthermore, postmortem contraction of arteries is an additional confounding 

factor25.

On the other hand, ex vivo studies have used a higher cap thickness to consider vulnerability 

(> 200 µm) 5,26,27. Indeed, our group identified – using the elastography technique in ex-vivo, 

pressurized fresh tissue human coronary arteries analyzed by histology subsequently - a mean 

cap thickness of 259 µm and 363 µm for “vulnerable” and “non-vulnerable” plaques 

respectively 26. Considering that the axial resolution of IVUS-VH is 246 µm, in this study we 

assumed that the absence of visible fibrous tissue overlying a necrotic core corresponded to a 

cap thickness of below 246 µm and therefore used this absence of a visible fibrous cap on 

IVUS to define a fibrous cap as thin28.

Among the clinicians and the pathologists there is not yet a consensus about the critical 

threshold of cap thickness, which would reliably predict and herald an imminent plaque 

rupture. To some extent this is due to the absence of an in vivo technique able to provide an 

accurate and precise anatomical and histochemical assessment of the fibrous cap combined 

with the lack of natural history of such plaques.  With this respect, optical coherence 

tomography (OCT) imaging might be an option in the near future. OCT allows high-

resolution (axial resolution of 10 m and lateral resolution of 20 m) imaging in biological 

systems. Accordingly, OCT is the technique with the highest capacity to allow in-vivo, real 

time visualization and measurement of a thin fibrous cap. On top of its reliability as a tool to 

measure the thickness of the cap in vivo, recent both post- mortem and in vivo studies have 
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shown that OCT is capable of evaluating the macrophage content of infiltrated fibrous 

caps29,30.

The potential for multi-focal instability process in patients with ACS  

Overall, in this study the first three centimeters in the coronary tree contained more than half 

of the IDTCFA, plaque ruptures and IDHR, which is in line with previous reports15,31. The 

mean of IDTCFA/cm in the culprit vessel was 0.7, while in the non-culprit vessel was 0.4, 

p=0.04; most of the ruptures 13 (68.4%) were found in the non-culprit vessel, possibly due to 

the fact that the culprit lesion was stented before the imaging acquisition; the ratio of 

IDTCFA/plaque rupture was 9.6:1. In the same way, previous in vivo studies have established 

that a multifocal instability process is present in ACS 18,32. Rioufol et al found at least one 

plaque rupture remote from the culprit lesion in 80 % of patients and from the culprit artery 

in 71 % of patients 18. In addition, a high prevalence of rupture-prone lesions has been found 

throughout the coronary tree by means of angiography 33, angioscopy 32, IVUS 18 and 

palpography 34.

Understanding the atherosclerosis process 

The present technique that assesses simultaneously plaque size and composition confirm the 

progressive degree and extension of tissue alteration in the different types of identifiable 

plaques by IVUS-VH: Non predefined plaque morphology (Intimal pathological thickening 

and fibroatheroma), IDTCFA, plaque rupture and IDHR, figure 4. The vessel CSA increases 

from 16.6 mm2 in non predefined plaque morphology CSAs to 19.09 mm2 in plaque ruptures 

and to 20.86 mm2 in IDHR, suggesting a different degree of positive remodeling, which is 

also accompanied by a proportional increase in necrotic core in IDHR (see figure 4). This 

increase in necrotic core is putatively not seen in plaque rupture mainly because the content 
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of the cavity in a plaque rupture has been expelled from the plaque with subsequent 

embolization in to distal segment of the vessel. 

The IVUS-derived healed ruptures had the largest content of calcified tissue among the 

different plaque morphologies, and similar content of necrotic core to IDTCFAs, but larger 

plaque CSA and plaque burden than IDTCFA. IDHR are chronic plaques that have 

undergone many rupturing events, which might have contributed to an increase in plaque 

burden and also in the content of calcified tissue15. Another interesting finding in IDHR is the 

colocalization of IDTCFA and plaque ruptures, which supports the paradigm that there is a 

continuous process of thinning, rupturing and healing in these plaques, which may be 

clinically silent. However, its appearance by IVUS-VH, although peculiar and of similar 

gross appearance to histological images, is not conclusively diagnostic of healed rupture, as it 

is by histology. Histology is able to fully characterize such plaques and provide detailed 

information of the different types of matrix in the fibrous cap either proteoglycan or collagen 

making possible to discriminate between old and new rupture sites. 

This analysis makes us think that there exist a gradient of disease between the different types 

of plaques, which is feasible to follow over time. In other words, the natural history of the 

atherosclerotic plaques might be determined in vivo, if serial IVUS-VH analyses of specific 

region of interest are performed in longitudinal clinical studies.

Do we have any accurate imaging technique to assess plaque tissue composition? 

The optimal design for assessing the accuracy of a diagnostic tool has to be a prospective 

blind comparison between the new test and the reference test in a group of patients covering 

the spectrum of disease that is likely to be encountered in the use of the diagnostic test35. This 

has been done for IVUS-VH by Nair et al19 .  This validation of the intravascular ultrasound 

radiofrequency data analysis to predict coronary plaque composition was performed in 88 
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plaques in 51 LAD arteries, which were imaged ex-vivo using 30-MHz IVUS transducers, 

with accuracies ranging from 89.5 to 92.8% among the four tissue components. A second 

validation has been performed to test the current classification tree using the Eagle eye 20-

MHz IVUS catheter with better results.  

The second step using IVUS-VH is, then, to detect in vivo the pathological characteristics of 

atherosclerotic plaques14. In other words, the phenomenological description of in vivo

anatomy has to ascertain that the description of IVUS-VH corresponds and at least does not 

negate what the pathologists have reported in the past.

Several studies are ongoing using this diagnostic tool to evaluate either the temporal change 

of such plaques over time in order to unravel their natural history or detect the treatment 

effect of some drugs. The former is the primary end point of the PROSPECT study and 

SPECIAL study and the latter is the IBIS-2 study primary end point. 
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Limitations 

As stated in our previous report14, the main findings of the study, IDTCFA and IDHR are 

only surrogates of the true histopathological findings and the lack of a direct comparison 

between IVUS-VH and histopathology of our “in vivo” patients render our observations to 

some extent only exploratory. The inferior axial resolution of IVUS-VH in comparison to 

histology remains a major handicap, but is partially compensated by the higher sampling rate 

of the ultrasonic approach when compared to the pathologic. 

Some cases in the present study had extensive stenting of the culprit vessel, so that the vessel 

was not included in the analysis; in general, the more severe diseased part of the vessel was 

stented before IVUS acquisition eliminating potentially the analysis of the most pathological 

region of interest.

The length of the IVUS acquisition was different between the major coronary vessels.  In 

particular, distal segments were less studied. Although an appropriate statistical analysis was 

performed to adjust for the differences in the number of CSAs studied along the vessels, the 

studied length could have affected the prevalence of the plaque morphologies.  

Conclusions

In patients with acute coronary syndromes IVUS-derived TCFA, plaque rupture and IDHR 

plaques had a higher prevalence in the first three centimeters in the main epicardial vessels. 

Furthermore, there is a gradient in plaque size and plaque composition between the different 

plaque morphologies.  
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Tables:
Table 1. Baseline characteristics, n=35

Age, yrs 52.4±9.4

Male % 82.9

Body mass index, kg/m2 27.6±4.1

Diabetes mellitus % 11.1

Hypertension % 30.6

Family history of CHD % 41.7

Current smoking % 66.7

Hypercholesterolemia % 41.7

Previous ACS % 17.1

Previous PCI %                                                           5.7

Clinical presentation %

Unstable angina/Non-ST-segment elevation MI 42.9

Acute MI 57.1

Culprit vessel %, n=36 

Left anterior descending 52.8

Left circumflex 22.2

Right coronary artery 25.0

Study vessel %, n= 95

Left anterior descending 85.7

Left circumflex 97.1

Right coronary artery 88.6
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Figure 1
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Figure 2. 
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Figure 3.
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Figure 4 
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31

Figure legend 

Figure1. Panel A. an example of IVUS-derived thin cap fibroatheroma with its three 

components is shown: 1) plaque burden more than 40%. 2) necrotic core in direct contact 

with the lumen and 3) the % necrotic core in the cross sectional area is larger than 10%, all 

these characteristics are present in more than three consecutive frames. Panel B. a plaque 

rupture is seen between 3 and 5 o’clock. Lastly, panel C is showing an IVUS-derived healed 

rupture plaque, a multilayering appereance in the IVUS gray scale image is observed, which 

is characterized in different tissues in the corresponding IVUS-VH images.  

Figure 2.  In panel A, the distribution of IVUS-derived thin cap fibroatheroma (IDTCFA - 

blue bar), IVUS-derived healed rupture plaque (red bar) and plaque rupture (yellow bar) is 

depicted. Panel B represents the number of CSA (cross sectional area) studied in each 

segment. Lastly, panel C shows the density of CSAs belonging to an IDTCFA as a function 

from the distance to the ostium. IDHR, IVUS-derived healed rupture; LAD, left anterior 

descending; LCX, left circumflex; RCA, right coronary artery.

Figure 3. The 3-D bar graph depicts the IVUS-derived thin cap fibroatheroma (IDTCFA) 

distribution with respect to the vessel studied. The continuous line indicates the frequency of 

plaque rupture and the dashed line is to indicate the frequency of IVUS-derived healed 

rupture plaques. LAD, left anterior descending; LCX, left circumflex; RCA, right coronary 

artery.

Figure 4. This figure shows that there is a gradient of disease between the different plaque 

morphologies. The expansive vessel wall remodeling is greater when the necrotic core 

increases.  CSA, cross sectional area; IDTCFA, IVUS-derived thin cap fibroatheroma; IDHR, 

IVUS-derived healed rupture.
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Objective: To assess the potential relation between plaque composition and vascular remodelling by using
spectral analysis of intravascular ultrasound (IVUS) radiofrequency data.
Methods and results: 41 coronary vessels with non-significant (, 50% diameter stenosis by
angiography), ( 20 mm, non-ostial lesions located in non-culprit vessels underwent IVUS interrogation.
IVUS radiofrequency data obtained with a 30 MHz catheter, were analysed with IVUS virtual histology
software. A remodelling index (RI) was calculated and divided into three groups. Lesions with RI > 1.05
were considered to have positive remodelling and lesions with RI ( 0.95 were considered to have
negative remodelling. Lesions with RI > 1.05 had a significantly larger lipid core than lesions with RI
0.96–1.04 and RI ( 0.95 (22.1 (6.3) v 15.1 (7.6) v 6.6 (6.9), p , 0.0001). A positive correlation
between lipid core and RI (r = 0.83, p , 0.0001) and an inverse correlation between fibrous tissue and
RI (r = 20.45, p = 0.003) were also significant. All of the positively remodelled lesions were thin cap
fibroatheroma or fibroatheromatous lesions, whereas negatively remodelled lesions had a more stable
phenotype, with 64% having pathological intimal thickening, 29% being fibrocalcific lesions, and only 7%
fibroatheromatous lesions (p , 0.0001).
Conclusions: In this study, in vivo plaque composition and morphology assessed by spectral analysis of
IVUS radiofrequency data were related to coronary artery remodelling.

G
lagov et al1 described vascular remodelling as a
compensatory enlargement of the coronary arteries
in response to an increase in plaque area. This concept

has further evolved into a dynamic theory whereby vessels
may also shrink in response to plaque growth.2 This
remodelling modality has been related to a more stable
phenotype and clinical presentation,3–6 whereas several
studies showed an increase in inflammatory marker con-
centrations, larger lipid cores, and pronounced medial
thinning in positively remodelled vessels.4 5 7

Recently, retrospective pathological studies have identified
morphological and compositional features characteristic of
plaque rupture.8 9 This has led to a new classification of
coronary lesions that more comprehensively illustrates
plaque progression.9

Grey scale intravascular ultrasound (IVUS) is of limited
value for identification of specific plaque components.10

However, spectral analysis of IVUS radiofrequency data
(IVUS virtual histology (VH)) has the potential to provide
detailed quantitative information on plaque composition and
has been validated in explanted human coronary segments.11

In this study, we sought to evaluate in vivo the relation
between plaque composition and coronary artery remodelling
by using ultrasound radiofrequency data analysis. In addi-
tion, we classified lesions with respect to their morphology
and evaluated the potential relation between lesion type and
coronary remodelling.9

METHODS
Patients
Forty one consecutive patients were retrospectively selected
after screening a 54 patient database where non-culprit,
angiographically non-obstructive (,50%), ( 20 mm, non-
ostial lesions were investigated with IVUS. Patients were
excluded if they had diffusely diseased vessels or lacked a

lesion occluding > 40% of the cross sectional area (CSA).
Lesions located in proximal and mid segments of a coronary
artery were included in the study.
Major exclusion criteria were coronary anatomy that

precluded safe IVUS examination of a suitable region of
interest. Informed, written consent was obtained from all the
patients.

IVUS-VH acquisition and analysis
Details regarding the validation of the technique on
explanted human coronary segments have previously been
reported.11 Briefly, IVUS-VH uses spectral analysis of IVUS
radiofrequency data to construct tissue maps that classify
plaque into four major components. In preliminary in vitro
studies, four histological plaque components (fibrous, fibro-
lipidic, lipid core, and calcified) were correlated with a
specific spectrum of the radiofrequency signal.11 These plaque
components were assigned colour codes. Calcified, fibrous,
fibrolipidic, and lipid core regions were labelled white, green,
greenish yellow, and red, respectively.
IVUS-VH data were acquired after intracoronary adminis-

tration of nitrates by means of a continuous pullback
(0.5 mm/s) with a commercially available mechanical sector
scanner (Ultracross 2.9 French, 30 MHz catheter; Boston
Scientific, Santa Clara, California, USA) by a dedicated IVUS-
VH console (Volcano Therapeutics, Rancho Cordova,
California, USA). The IVUS-VH data were stored on a CD
ROM and sent to the imaging core laboratory for offline
analysis. IVUS B mode images were reconstructed from the
radiofrequency data by customised software (IVUSLab,
Volcano Therapeutics). Subsequently, contours of both the
lumen and the media–adventitia interface were detected

Abbreviations: CSA, cross sectional area; IVUS, intravascular
ultrasound; MLA, minimum lumen area; RI, remodelling index; VH,
virtual histology

388

www.heartjnl.com

 on 20 April 2006 heart.bmjjournals.comDownloaded from 



Chapter  8.1

262

manually. To account for catheter to catheter variability the
acquired radiofrequency data were normalised by a technique
known as ‘‘blind deconvolution’’. Blind deconvolution is an
iterative algorithm that deconvolves the catheter transfer
function from the backscatter, thus enabling automated data
normalisation.12 13 Compositional data of the minimum
lumen area (MLA) were expressed as percentage of the
plaque CSA corresponding to each plaque component.
The MLA site and a reference site ( 10 mm proximal to

the lesion were selected. There were no major side branches
between the MLA and reference sites.
Remodelling was assessed by means of the remodelling

index (RI), expressed as the external elastic membrane CSA
(MLA site) divided by the reference external elastic mem-
brane CSA as previously described.6 14 15.
We defined positive remodelling as RI > 1.05 and negative

remodelling as RI( 0.95. Values in between were considered
neutral (no remodelling). Percentage stenosis of the MLA site
was defined as:
vesselareaMLA 2 lumenareaMLA/vesselareaMLA 6 100.
In accordance with previously reported data, we classified

lesions as pathological intimal thickening (mainly fibrotic–
fibrolipidic tissue, with the lipid core constituting 0% to
(= 3% of the CSA), fibrocalcific lesions (featuring mainly
fibrotic plaques, with some calcification and a lipid core
occupying between 3–10% of the CSA), fibrous cap atheroma
(lipid rich (. 10% CSA) plaques with overlying fibrous
tissue), and thin cap fibroatheroma (lipid-rich (. 10% CSA)
plaques with no overlying fibrous tissue). Figure 1 depicts
examples of this classification. To classify lesions, these
criteria had to be met in the MLA site plus the immediate
distal and proximal cross sections. Since the axial resolution
of this technique is between 100–150 mm, we assumed that
the absence of fibrous tissue overlying a lipid core suggested a
cap thickness of below 100–150 mm.16

Statistical analysis
Discrete variables are presented as counts and percentages.
Continuous variables are presented as mean (SD). We looked
for correlations between the RI and both plaque components
and percentage stenosis MLA by using Pearson correlation
coefficients. Differences in means between groups were
analysed by a two sided t test or by one way analysis of
variance. We compared frequencies by means of the x2 test.
A probability value of p , 0.05 indicated significance. Data
were statistically analysed with SPSS software version 11.5
(SPSS Inc, Chicago, Illinois, USA).

RESULTS
Table 1 shows patient characteristics. Mean age was 55.9 (10.9).
Most patients were men (83%) with a low prevalence of
diabetes (7.3%). The study vessel was the right coronary artery
in 19 patients (46.3%), the left anterior descending in 16
patients (39.0%), and the left circumflex in six patients (14.6%).
Lesions with positive remodelling had significantly larger

lipid core percentages than lesions with no remodelling or
negative remodelling (22.1 (6.3)% v 15.1 (7.6)% v 6.6 (6.9)%,

respectively, p , 0.0001). Negative remodelling lesions
tended to have larger fibrous tissue percentages than lesions
with no remodelling and positive remodelling (68.6 (13.7)% v
62.9 (9.5)% v 58.1 (12.9)%, p = 0.13). Table 2 shows these
results.
Table 3 presents Pearson correlation coefficients between

the RI and both plaque components and percentage stenosis
MLA. The positive correlation between the lipid core and the
RI was significant (r = 0.83, p , 0.0001) (fig 2). Moreover,
fibrous tissue was inversely correlated with the RI
(r = 20.45, p = 0.003) (fig 3). Lastly, the percentage
stenosis of the MLA and the RI were non-significantly
inversely related (r = 20.27, p = 0.09).
With regard to lesion type, thin cap fibroatheroma and

fibroatheromatous lesions comprised 100% of the positively

Figure 1 Minimum lumen area (MLA)
sites depicting the progression of
atherosclerotic disease. The plaque
components were assigned colour
codes. Calcified, fibrous, fibrolipidic,
and lipid core regions were labelled
white, green, greenish yellow, and red,
respectively. MLA sites feature
(A) pathological intimal thickening and
(B) fibrocalcific, (C) fibroatheromatous,
and (D) thin cap fibroatheromatous
lesions.

Table 1 Baseline characteristics (n = 41)

Age (years) 55.9 (10.9)
Men 19 (83%)
Diabetes 3 (7.3%)
Hypertension* 12 (29.3%)
Current smoking 8 (19.5%)
Previous smoking 15 (36.6%)
Hypercholesterolaemia� 32 (78%)
Family history of coronary disease 19 (46.3%)
Previous myocardial infarction 6 (14.6%)
Artery
Right coronary 19 (46.3%)
Left anterior descending 16 (39%)
Left circumflex 6 (14.6%)

Clinical presentation
No angina` 11 (26.8%)
Stable angina 14 (34.1%)
Unstable angina 6 (14.6%)
Myocardial infarction 10 (24.4%)

Data are mean (SD) or number (%).
*Blood pressure >160/95 mm Hg or treatment for
hypertension; �total cholesterol .5.57 mmol/l or treatment
for hypercholesterolemia; `these patients were studied at
scheduled follow up angiography.

Table 2 Geometrical and compositional data of the
minimum lumen area (MLA) site

Remodelling index

p Value(0.95 0.96–1.04 >1.05

Number 29 (70.7%) 3 (7.3%) 9 (22%)
Stenosis (%) 63.1 (7.5) 69.1 (8.6) 59.9 (9.9) 0.24
Calcific CSA (%) 1.38 (2.7) 2.07 (3.2) 1.67 (1.6) 0.88
Fibrous CSA (%) 68.6 (13.7) 62.9 (9.5) 58.1 (12.9) 0.13
Fibrolipidic CSA (%) 23.5 (9.9) 19.9 (6.9) 18.1 (12.6) 0.39
Lipid core CSA (%) 6.6 (6.9) 15.1 (7.6) 22.1 (6.3) ,0.0001

Data are mean (SD).
Percentage stenosis of the MLA site is calculated as vesselareaMLA 2
lumenareaMLA/vesselareaMLA6100. Remodelling index (RI) is defined as
MLA of the external elastic membrane (EEM) cross sectional area (CSA)/
reference EEM CSA.
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remodelled lesions, whereas negative remodelling lesions had
a more stable phenotype: 64% had pathological intimal
thickening, 29% were fibrocalcific, and only 7% were
fibroatheromatous lesions (p , 0.0001) (fig 4).

DISCUSSION
Recently, the relation between vascular remodelling and
plaque composition was assessed by IVUS.17–20 This catheter
based diagnostic tool provides an accurate tomographic view
of the coronary arteries and in vitro validation studies have
shown a high correlation with histological samples.21–23

Nevertheless, accurate plaque characterisation with visual
interpretation of grey scale IVUS, particularly of lipid rich
plaques, remains unresolved.22 On the contrary, spectral
analysis of IVUS radiofrequency data (IVUS-VH) has the
potential to provide detailed quantitative information on
plaque composition and has been validated in studies of
explanted human coronary segments.11

The results of the present study confirm in vivo the relation
between plaque composition and coronary remodelling. Lipid
core size was significantly larger in positively remodelled
coronary lesions than in those with vessel shrinkage.
Furthermore, the fibrotic burden of the plaque was sig-
nificantly and inversely correlated with the RI.
Lastly, positively remodelled lesions had a higher risk

phenotype, with 56% of them being classified as thin cap
fibroatheroma, the lesion type most likely to rupture.24 On the
contrary, negative remodelling was associated with a more
stable phenotype: 64% had pathological intimal thickening
and no evidence of thin cap fibroatheroma. Fibrocalcific
lesions, a potential hallmark of the end stage of atheroma-
tous plaque rupture or erosion with healing and calcification,
were found in 29% of negatively remodelled lesions.9

Overall, these findings support the importance of the
histological composition of atherosclerotic plaque as a major
contributor to its fate as described by Davies et al,8 who

showed that plaques with a large lipid core harbour a higher
risk of rupture and subsequent thrombosis. The lipid core is a
source of metalloproteinases, a group of proteolytic enzymes
that have an important function in vascular remodelling
mechanisms and whose most common locations are foam
cell accumulation areas and shoulder regions.25 26

Conversely, negatively remodelled vessels consisted pre-
dominantly of fibrotic plaques. In addition, in line with
previously reported data, negatively remodelled lesions had a
higher degree of stenosis.2 17 27 The findings of this study are
consistent with previous pathological findings in patients
after sudden death.5 However, such postmortem studies do
not have implications in the natural history of high risk
plaques and thus in the clinical outcome of patients. On the
contrary, we strongly believe that the identification of these
high risk plaques in vivo may provide more insights into the
prognosis and natural history of such lesions and into the

Table 3 Relations between remodelling index
(RI), percentage stenosis of the MLA, and plaque
composition of the MLA site

RI p Value

Lipid core CSA (%) 0.83 ,0.0001
Fibrous CSA (%) 20.45 0.003
Percentage stenosis MLA 20.27 0.09
Calcific CSA (%) 0.12 0.47
Fibrolipidic CSA (%) 20.17 0.28

Data are Pearson correlation coefficients.
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Figure 2 Linear regression plot showing positive correlation between
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effect of conventional and emerging anti-atherosclerotic
pharmacological interventions.

Limitations
Since this was a cross sectional study and atherosclerosis is
usually a diffuse disease, finding a fully non-diseased
reference site is not guaranteed. Therefore, we cannot rule
out the early presence of remodelling in the reference site. In
addition, this was a pilot study that needs further confirma-
tion in a larger population. Moreover, classifying lesion types
by this technique lacks the accuracy of histopathological
classification, since resolution is inferior. Nevertheless, a
significant relation was found by using this arbitrary
classification. Although histopathological classification
remains the ideal, spectral analysis of IVUS radiofrequency
data has the potential to provide real time accurate
information regarding tissue characterisation and plaque
morphology.

Conclusions
In this small clinical study, in vivo plaque composition and
morphology assessed by spectral analysis of IVUS radio-
frequency data were related to coronary artery remodelling,
supporting the role of plaque composition in the mechanisms
of vessel remodelling. Lipid core size was significantly larger
in positively remodelled coronary lesions than in those with
vessel shrinkage. Furthermore, the fibrotic burden of the
plaque was significantly and inversely correlated with the RI.
The findings of this study are consistent with previous
pathological findings. However, postmortem studies do not
have the potential to provide prospective information about
the natural history of high risk plaques. On the contrary, we
strongly believe that the identification of these high risk
plaques in vivo may provide more insights into the prognosis
and natural history of such lesions and into the effect of
conventional and emerging anti-atherosclerotic pharmacolo-
gical interventions.
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ABSTRACT 

Objective: This study sought to evaluate the effect of perindopril in coronary remodelling.  

Background: ACE-inhibitors have shown to be effective in reversing vascular remodelling in 

the peripheral circulation.

Methods: In this double-blind, multicenter trial patients without clinical evidence of heart 

failure were randomized to perindopril 8mg/d for at least 3 years and IVUS investigation was 

performed at both time-points.  Positive and negative remodelling was defined as an increase 

(positive remodelling) or decrease (negative remodelling) decrease in mean vessel cross-

sectional area (CSA) > 2 standard deviation of the mean intra-observer difference  

Results: A total of 118 matched evaluable IVUS (711 matched 5 mm segments) were 

available at follow-up. After a median follow-up of 3.0 (interquartile range 1.9, 4.1) years, 

there was no significant difference in the change of plaque cross-sectional area (CSA) 

between perindopril (360 segments) and placebo (351 segments) groups, p= 0.27. Conversely, 

the change in vessel CSA was significantly different between groups (perindopril -0.18±2.4 

mm2 vs. placebo 0.19±2.4, p= 0.04). Negative remodelling, defined as occurred more 

frequently in the perindopril than in the placebo group [124 (34.4) vs. 86 (24.5), p= 0.01], and 

the placebo group showed a larger mean remodelling index than the perindopril group 

(1.03±0.2 vs. 1.00±0.2, p= 0.06). The temporal change in vessel dimensions assessed by the 

remodelling index was significantly correlated with the change in plaque dimensions (r= 0.48, 

p< 0.0001). 

Conclusion: In this study, long-term administration of perindopril was associated with a 

better vascular remodelling profile without affecting the lumen. 
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Introduction 

By preventing encroachment of the lumen and hence coronary flow, outward (positive) 

remodelling of coronary vessels was initially regarded as beneficial 1. Notwithstanding, 

several studies have shown increased levels of inflammatory markers, larger lipid cores and 

pronounced medial thinning in positive remodelled vessels; being all factors related to the 

tendency of plaques to undergo rupture 2-5. In addition, a number of landmark studies have 

established that most atherotrombotic events have non-flow limiting lesions as substrate 6,7.

Angiotensin-converting enzime (ACE) inhibitors have demonstrated their efficacy in reducing 

mortality in both high and low risk patients 8,9. In parallel, ACE-inhibitors inhibit progressive 

left ventricular remodelling, a critical factor that determines life expentancy 10,11. More 

recently, ACE-inhibitors have shown to be effective in reversing vascular remodelling in the 

peripheral circulation 12,13.

Atherosclerosis is a highly dynamic and multifocal disease, and coronary remodelling occurs 

diffusely within a vessel, even in seemingly healthy references 14,15. Accordingly, longitudinal 

studies have been recognized as the gold-standard for remodelling assessment 15,16.

The PERindopril’s Prospective Effect on Coronary aTherosclerosis by IntraVascular 

ultrasound Evaluation (PERSPECTIVE) trial evaluated the effect of long-term administration 

of perindopril on coronary plaque progression as assessed by angiography and intravascular 

ultrasound (IVUS) and demonstrated that the clinical benefit of ACE inhibitors cannot be 

attributed to their effect on plaque size. We performed a post-hoc analysis of the 

PERSPECTIVE study to assess the effect of perindopril in coronary remodelling based on the 

hypothesis that ACE-inhibitors’ effect on vascular remodelling might partially explain the 

clinical benefit obtained despite the lack of effect on lumen and plaque size. In addition, we 

evaluated the effect of perindopril on a surrogate of plaque composition. 

Methods
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The EUROPA was a multicenter, randomized, double-blind, placebo-controlled study that 

evaluated the effect of perindopril on prevention of cardiovascular events in patients with 

coronary artery disease on 12,218 patients. PERSPECTIVE was a sub-study of the EUROPA 

trial that sought to explore the effect of perindopril on atherosclerosis progression/regression 

using coronary angiography and intravascular ultrasound (IVUS). 

The methodology of the EUROPA trial have been extensively described elsewhere 9. In brief, 

patients were eligible if they were aged � 18 years, without clinical evidence of heart failure 

and with evidence of coronary heart disease documented by previous myocardial infarction 

(>3 months before screening), percutaneous or surgical coronary revascularization (> 6 

months before screening), or angiographic evidence of at least 70% narrowing of one or more 

major coronary arteries.  

In addition, for the IVUS sub-analysis patients required anatomically suitable vessels for the 

angiography/IVUS sub-study.

In a run-in period, enrolled patients received 4 mg/d oral perindopril for 2 weeks in addition 

to their normal medication, followed by 8 mg/d for 2 weeks if the initial dose was tolerated. 

At the end of the run-in period, patients were randomly assigned to perindopril 8mg/d or 

placebo for at least 3 years.

The institutional ethics committees of all participating centers approved the study protocol 

and informed written consent was obtained from all patients.  

Intravascular Ultrasound acquisition  

IVUS was acquired using 20, 30 and 40 MHz imaging catheters following coronary 

angiography. The catheter was advanced distal to an anatomically identifiable landmark,

allowing the evaluation of a segment of at least 30 mm. Cine runs, before and during contrast 

injection, were performed to define the position of the IVUS catheter before the pullback was 
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started. Using an automated pullback device, the transducer was withdrawn at a continuous 

speed of 0.5 mm/s until the ostium. IVUS data was acquired after the intracoronary 

administration of nitroglycerin and stored on S-VHS videotape. The videotapes were digitized 

on a computer system, transformed into the DICOM medical image standard and stored on an 

IVUS Picture Archiving and Communications System (PACS). After a 3-year follow-up 

period, patients underwent repeat catheterization and IVUS examination of the same region of 

interest (ROI) using an identical frequency IVUS imaging catheter. 

Intravascular Ultrasound  analysis 

Quantitative coronary ultrasound (QCU) analysis was performed by an independent core 

laboratory (Cardialysis BV, Rotterdam, The Netherlands) using validated semi-automatic 

contour detection software (Curad, version 3.1, Wijk bij Duurstede, The Netherlands). The 

IntelliGateTM image-based gating method was applied to eliminate catheter-induced image 

artefacts, by retrospectively selecting end-diastolic frames 17.

In order to avoid the significant impact of interobserver variability18, contour detection was 

performed by a single experienced IVUS analyst who was blinded for the randomization 

allocation and time-point of the study. Longitudinal and cross-sectional views were used to 

determine the contours.  

The contours of the external elastic membrane (EEM) and the lumen-intima interface 

enclosed an area that was defined as the coronary plaque plus media area. Plaque burden (PB) 

was defined as [(EEMarea-Lumenarea)/EEMarea] X 100. Direct measurements (lumen and vessel 

CSA) were also determined. In the baseline IVUS study, a region of interest (ROI) was 

identified using landmarks such as side-branches and the coronary ostium. At 3-year follow-

up, the same matched ROI was identified using the original landmarks to determine the lumen 

and vessel dimensional changes over time and consequently to calculate the impact on plaque 
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changes. In order to accurately assess the remodelling pattern within a vessel, the ROIs were 

subsequently also subdivided in matched 5 mm sub-segments independent of the length of the 

pullback in the original IVUS study. Segments with a PB <10% were excluded.

Coronary remodelling was assessed using continuous and categorical variables. The 

remodelling index (RI) was defined as EEMarea at follow-up divided by the EEMarea at 

baseline.

Finally, we evaluated the number of segments presenting positive remodelling (defined as a 

relative increase in vessel CSA larger than two standard deviations from the mean relative 

intra-observer difference) and negative remodelling (defined as a relative temporal decrease 

larger than two standard deviations from the mean relative intra-observer difference).

IVUS tissue characterization 

We used a computer-aided, in-house developed gray-scale value analysis program for plaque 

characterization 19. Using the mean gray level of the adventitia as a threshold, plaque was 

classified as more (hyperechogenic) or less (hypoechogenic) bright in relation to the 

adventitia. Upper and calcified tissue was defined as tissue that has a mean gray value higher 

than the mean adventitial intensity plus two times its standard deviation. The echogenicity 

software calculated the distribution of the gray-values present in the adventitia layer. When 

this distribution was not normal (severely calcified vessels), the data was excluded for IVUS 

analysis since the acoustic shadowing obscures the media-adventitia interface thus 

introducing serious inaccuracy in the contour detection. 

Statistical analysis 

Discrete variables are presented as counts and percentages. Continuous variables are 

presented as means ± standard deviation or medians (interquartile range) as indicated. Pearson 

correlation coefficients were performed in order to estimate correlations between 

measurements.  
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Differences between groups were assessed by paired and unpaired Student’s t test when 

applicable. Fisher’s exact test was used for categorical variables. A two-sided P value <0.05 

was required for statistical significance. All analyses were performed using SPSS version 11.5 

software (Chicago, Illinois, USA).
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Results

Study population 

A total of 118 patients who had completed IVUS investigation at baseline and follow-up were 

included in the study. Populations were well matched (Table 1). The mean age was 56.6±8.9, 

100 (83.3 %) were male, 11 (9.2 %) had diabetes mellitus, 59 (49.2 %) had history of prior 

myocardial infarction and 30 (25.0 %) had hypertension. With regards to concomitant 

baseline medication, 115 (95.8 %) were on aspirin, 67 (55.8 %) were receiving beta-blockers, 

32 (26.7 %) were receiving nitrates, 46 (38.3 %) were on calcium channel blocker therapy and 

91 (75.8 %) were on lipid-lowering therapy. Coronary risk factors and baseline blood pressure 

were well balanced between groups (table 1).

At a median follow-up of 3.0 (range 1.9, 4.1) years, the rate of adverse events was minimal. 

Coronary revascularization [2 (3.3%) vs. 4 (6.9 %), p= 0.38] and acute myocardial infarction 

[1 (1.7 %) vs. 3 (5.2 %), p= 0.30] rates were not statistically significant between perindopril 

and placebo groups. No deaths, strokes or admissions for heart failure were reported.  

IVUS intra-observer variability 

Fifteen cases (678 frames) were re-analized by the same observer yielding minor differences 

between the 2 measurements. Relative differences for lumen, vessel and plaque CSA were 

1.43±4.2 %, 1.01±3.4 % and 3.50±8.5 % respectively. In addition, lumen (r2= 0.99, p< 

0.0001), vessel (r2= 0.99, p< 0.0001) and plaque (r2= 0.87, p< 0.0001) CSA measurements 

were highly correlated. 

Intravascular Ultrasound measurements 

A total of 118 matched evaluable IVUS (711 matched 5 mm segments) were available at 

follow-up. Fifty-eight patients were excluded from the final analysis (29 from each group) 
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due to sub-optimal IVUS quality (due to severely calcified vessels, severe artefacts or absence 

of clear anatomical landmarks). Quantitative IVUS results are shown in table 2.  

In the perindopril group, the temporal change in mean plaque CSA compared with baseline 

was -0.15±1.7 mm2 (p= 0.11). For the placebo group, the change was -0.01±1.7 mm2 (p= 

0.95), with a p value of 0.27 between groups. The temporal change in mean vessel CSA was -

0.18±2.4 mm2 in the perindopril group and 0.19±2.4 mm2 in the placebo group, with a p value 

of 0.04 between groups. With regards to plaque hypoechogenicity, no significant difference 

was present between groups (perindopril -0.30±1.7 mm2 vs. placebo -0.11±1.7 mm2, p= 0.12). 

Both groups showed a highly heterogeneous remodelling pattern along the coronary segments 

(figure 1). Nevertheless, the placebo group showed a larger mean RI than the perindopril 

group (1.03±0.2 vs. 1.00±0.2, p= 0.06). Of interest, negative remodelling was present in 124 

(34.4 %) segments in the perindopril group and in 86 (24.5 %) segments in the placebo group. 

Conversely, positive remodelling was observed in 102 (28.3 %) segments in the perindopril 

group and in 110 (31.3 %) segments in the placebo group, with a significant (chi-square) 

difference between groups (p= 0.02). These changes are depicted in table 3. 

Linear regression analysis 

The temporal change in vessel dimensions assessed by the RI was significantly correlated 

with the change in plaque dimensions (r= 0.48, p< 0.0001). The degree of such correlation 

was higher in the perindopril group than in the placebo group (r= 0.58, p< 0.0001 vs. r= 0.36, 

p< 0.0001). As expected, the change in hypoechogenic content was highly related to the 

change in plaque (r= 0.95, p<0.001) and vessel (r= 0.45, p<0.001) CSA. 

A strong relationship was found between changes in plaque and changes in vessel size 

(perindopril r= 0.62, p< 0.0001; and placebo r= 0.35, p< 0.0001). Such relation became 

stronger with increasing levels of PB at baseline (figure 2 a). In parallel, the placebo group 
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showed a significant inverse relationship between the change in plaque and lumen CSA that 

was stronger at earlier stages of the disease (figure 2 b).
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Discussion

The importance of coronary remodelling as a factor that has a major impact in the 

maintenance of lumen dimensions has been undoubtedly established 1. Recently, several 

investigators have linked this originally deemed protective compensatory response of the 

vessel to the presence of a more unstable phenotype and plaque rupture 2-5, 20. Conversely, a 

paradoxical negative remodelling pattern has been associated with a more stable clinical 

presentation and lesion phenotype 2,21. To date, most studies have assessed coronary 

remodelling at a single time-point and focally within the vessel, using proximal and distal 

references as surrogates of vessel size before it becomes diseased. However, coronary 

atherosclerosis is commonly a diffuse disease and finding a healthy reference is hard to attain. 

Moreover, such diffuse pattern implies a heterogeneous behaviour of atherosclerotic disease 

within a single vessel. Yet, although the assessment of coronary remodelling using serial 

determinations is highly required it has been scarcely exploited 14,22.

The findings of the present longitudinal in-vivo study offer several insights towards the better 

understanding of the long-term effect that ACE-inhibitors have on coronary atherosclerosis.

Overall, no significant differences regarding the temporal changes in plaque and lumen size 

were present between patients assigned to perindopril and placebo. Nevertheless, there was a 

significant difference between groups regarding the change in vessel size. 

Negative remodelling occurred more frequently in the perindopril group than the placebo 

group. It is noteworthy though, that as a result of a parallel non-significant plaque regression 

effect, this slight constrictive effect had no impact on the lumen size. Similarly, the placebo 

group showed a larger mean remodelling index than the perindopril group and a trend towards 

an enlargement of the coronaries with no change in plaque size, resulting in a non-significant 

increase of the lumen area.  
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The observed effect of perindopril on vessel remodelling might potentially be owed to the 

reduction in metalloproteinase levels induced by ACE-inhibitors 23, since these enzymes have 

a central role in the physiopathology of vessel remodelling 15.

Contrasts with histopathology 

Coronary remodelling has been long believed a vessel response to accommodate increasing 

burden of plaque without affecting the lumen patency 1. In his study, Glagov made a static 

assessment of the correlation between plaque and vessel size in explanted left main coronary 

arteries. Our results are in line with the study of Glagov with respect to the fact that coronary 

remodelling is a phenomenon that occurs since very early stages of the disease and is mainly 

driven by the progressive accumulation of plaque within the vessel wall. Nevertheless, in our 

study, the strenghtness of the relationship between changes in plaque CSA and changes in 

lumen CSA decreased with increasing levels of stenosis at baseline (figure 1). Conversely, 

Glagov established that the positive correlation between vessel size and plaque size was 

stronger in sections with stenoses � 20 % and that an abrupt drop in lumen area was evident 

only after the obstruction reached 30 to 40 % 1. In brief, our results contradict Glagov’s in the 

sense that the control group showed higher remodelling capacity (and lumen manteinance) 

when the baseline severity of the disease was higher. It is noteworthy, however, that Glagov’s 

seminal investigation was performed in the left main coronary artery, a coronary segment 

with a more benign plaque composition 24, while it has previously been shown that the 

remodelling pattern of plaques is highly related to the underlying composition of plaques 5.

Finally, it is worth mentioning that, although there was no significant difference between 

groups regarding the change of hypoechogenic tissue, the administration of perindopril 

induced a significant beneficial shift in the echogenicity of plaques compared to baseline.  

The findings of the present study confirm that coronary atherosclerosis is a highly dynamic 

disease. Moreover, the constrictive, yet lumen-preserving, effect shown has previously been 
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associated with a more stable phenotype of lesions and better clinical presentation thus our 

results might contribute to explain the clinical-atheroclerotic burden divergent outcomes 

observed with ACE-inhibitors.

Study limitations 

A substantial number of vessels were excluded from the analysis due to sub-optimal image 

quality, principally due to the presence of severely calcified vessels. Nevertheless, we want to 

emphasize that this was essential to have a highly accurate assessment of the vessel contours. 

Larger studies in higher risk patients using IVUS as primary endpoint might conclusively 

determine the role of ACE inhibitors in atherosclerosis natural history. Only a single coronary 

artery was assessed by IVUS potentially being not representative of the entire coronary tree. 

Moreover, different IVUS catheters and consoles were used over a 3-year period, potentially 

influencing the results. Nevertheless, individual serial assessments were performed using 

identical IVUS catheters. To correct for any dimensional discrepancies, the results of the 30 

MHz catheter were adjusted using a previously reported mathematical algorithm 25.

Conclusion

Our findings enforce the relationship between plaque progression and coronary remodelling. 

In this study, perindopril was related to a better vascular remodelling profile. Overall, our 

results might partially explain the discordance between the clinical benefit obtained with 

perindopril inhibitors and the absence of significant impact in plaque size. 
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Table 1: Study population 

Perindopril (n= 60)  Placebo (n=58) p value 
Baseline characteristics 
Age (yrs±SD)   57.9±9.2   55.2±8.5   0.09 
Male sex   50 (83.3)   50 (86.2)  0.67 
Diabetes     4 (6.7)      7 (12.1)  0.32  
Hypertension*   12 (20.0)   18 (31.0)  0.17 
Smoking   15 (25.0)   11 (19.0)  0.43 
Hypercholesterolemia  51 (85.0)   47 (81.0)  0.57 
Family history of CHD 16 (26.7)   17 (29.3)  0.75 
Previous MI   32 (53.3)   27 (46.6)  0.47 
Previous PTCA  53 (88.3)   57 (98.3)  0.03 
Previous CABG  1 (1.7)     0 (0.0)   0.33 
Systolic BP   130.6±14.2   132.4±13.6  0.48 
Diastolic BP   78.9±6.9   79.2±7.5  0.78 
BMI    26.5±2.6   27.4±3.1  0.91 
Heart rate   68.5±10.1   65.7±7.1  0.09 
Anginal status 
CCS I    50 (83.3)   45 (77.6)  0.44 
CCS II     8 (13.3)   12 (20.7)  0.29 
CCS III    2 (3.3)     1 (1.7)   0.58 
CCS IV   0 (0.0)     0 (0.0)   NA 
Other medications 
Platelet inhibitors  58 (96.7)   57 (98.3)  0.58 
Beta-blockers   32 (53.3)   35 (60.3)  0.45 
Nitrates   20 (33.3)   12 (20.7)  0.13 
Ca-channel blockers  26 (43.3)   20 (34.5)  0.33 
Lipid lowering agents  46 (76.7)   45 (77.6)  0.91 

At 3-year follow-up
Systolic BP    130.2±16.5   131.1±14.1  0.66 
Diastolic BP    76.5±8.5   79.0±8.4  0.12 
Other medications 
Platelet inhibitors   53 (88.3)   52 (89.7)  0.82  
Beta-blockers   37 (61.7)   36 (62.1)  0.97 
Nitrates   12 (20.0)   11 (19.0)  0.89 
Ca-channel blockers  20 (33.3)   21 (36.2)  0.75 
Lipid lowering agents  52 (86.7)   47 (81.0)  0.41 

Hypercholesterolemia defined as cholesterol >6·5 mmol/L or on lipid-lowering therapy. 
Blood pressure (BP) >160/95 mmHg or receiving antihypertensive treatment. 
CCS refers to Canadian Cardiovascular Society. 



283

Eff ect of perindopril on coronary remodelling

17

Table 2.  Intravascular ultrasound quantitative analysis

Mean cross-sectional area (mm2)    Treatment (n=360)   Placebo (n=351) p value

Vessel
 Baseline      15.60±5.0    15.82±5.1  0.57 
 Follow-up      15.42±4.8    16.01±4.9   
 Nominal change     -0.18±2.4    0.19±2.4  0.04 
 Relative change     -1.18±17.0    1.20±15.7   

P value compared with baseline   0.15     0.13 
Lumen
 Baseline      9.21±3.9    9.76±4.1  0.07 
 Follow-up      9.17±3.9    9.96±4.4   

Nominal change     -0.04±1.9    0.20±2.4  0.14 
Relative change     -0.42±23.4    2.03±26.6   
P value compared with baseline   0.70     0.12  

Plaque
 Baseline      6.39±2.8    6.06±2.6  0.10 
 Follow-up      6.25±2.7    6.05±2.8   

Nominal change     -0.15±1.7    -0.01±1.7  0.27 
Relative change     -2.28±28.2    -0.09±32.6   
P value compared with baseline   0.11     0.95 

Plaque burden (%) 
 Baseline      41.29±13.1    39.01±12.8  0.02 
 Follow-up      40.81±13.4    38.55±14.3   

Nominal change     -0.48±8.1    -0.47±9.5  0.98 
Relative change     -1.16±22.9    -1.20±29.9   
P value compared with baseline   0.26     0.36

Hyoechogenicity          
 Baseline      5.87±2.6    5.66±2.4   0.29 
 Follow-up      5.56±2.4    5.56±2.5   

Nominal change     -0.30±1.7    -0.11±1.7  0.12 
Relative change     -5.19±32.2    -1.90±34.5   
P value compared with baseline    0.001     0.23 

19

Table 3. Frequency of 5 mm segments with different remodelling patterns with perindopril and placebo respectively.  

      Perindopril, n (%)  Placebo, n (%) p value (X2 across group) 
(n= 360)    (n=351)

Neutral     134 (37.2)   155 (44.2)   0.01
Positive remodelling    102 (28.3)   110 (31.3)    
Negative remodelling   124 (34.4)   86 (24.5) 
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Figure legends 

Figure 1. Linear regression scatter plot between the remodelling index and the difference 

in plaque cross-sectional area (CSA). 

Figure 2. Bar graphs illustrating: A) the relationship between � plaque size and � vessel 

size and B) the relationship between � plaque size and � lumen size.
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Figure 2 
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Chapter 9.  Combining diff erent IVUS techniques to assess 

plaque vulnerability. 

9.1)  Detection of a lipid-rich, highly deformable plaque in 

an angiographically non-diseased proximal LAD. 

Eurointervention. 2005;3 

Rodriguez Granillo GA, del Valle R, Ligthart J, et al.
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Detection of a necrotic core-rich, highly deformable plaque
in an angiographically non-diseased proximal LAD
Gastón A. Rodriguez-Granillo, MD; Raquel del Valle, MD; Jurgen Ligthart, BSc; 
Patrick W. Serruys*, MD, PhD

Thin-cap fibro atheroma (TCFA) lesions, the most prevalent precur-

sor of plaque rupture, are composed of a lipid-rich necrotic core,

a thin-fibrous cap with macrophage and lymphocyte infiltration,

decreased smooth muscle cell content and expansive remodeling.

Virtual Histology™ uses spectral analysis of intravascular ultra-

sound (IVUS) radiofrequency data to construct tissue maps that

classify plaque into four major components; calcified, fibrous,

fibrolipidic and necrotic core regions that are labeled white, green,

greenish-yellow and red respectively. Palpography™ evaluates

in vivo the mechanical properties of plaque tissue. The local strain

is calculated from the radiofrequency traces using cross-correlation

analysis and displayed, colour coded, from blue (for 0% strain)

through yellow (for 2% strain) via red (Figure 1).

At a defined pressure, soft tissue (lipid-rich) components will

deform more than hard (fibrous-calcified) components. Both tech-

niques have been previously validated1,2.

Figure 1a shows an angiographically non-diseased proximal left ante-

rior descending (LAD) artery. IVUS longitudinal reconstruction

(Figure 1b) shows diffuse LAD disease. An eccentric mixed plaque

that did not compromise the lumen was detected in the proximal LAD

(Figure 1c). This segment was further analyzed with Palpography

(20 MHz Eagle Eye, Volcano Therapeutics) and Virtual Histology™

(30 MHz Ultracross, Boston Scientific Corp) (Figures 1d and 1e).

Despite its innocuous appearance on gray-scale IVUS, highly

deformable shoulders with an underlying necrotic core-rich substrate

were detected with the aid of strain and compositional imaging.

Although compatible with the presence of a vulnerable plaque, the prog-

nostic value of these findings is currently unknown and needs to be estab-

lished in large prospective randomized trials. Thus, the patient was

discharged on intensive systemic therapy including lipid-lowering agents.

References
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Coronary plaque classification with intravascular ultrasound radiofre-
quency data analysis. Circulation. Oct 22 2002;106(17):2200-2206.
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In vivo relationship between compositional and
mechanical imaging of coronary arteries: Insights from
intravascular ultrasound radiofrequency data analysis
Gastón A. Rodriguez-Granillo, MD,a Héctor M. Garcı́a-Garcı́a, MD,a Marco Valgimigli, MD,a

Johannes A. Schaar, MD, PhD,a Ravindra Pawar,b William J. van der Giessen, MD, PhD,a

Evelyn Regar, MD, PhD,a Antonius F.W. van der Steen, PhD,a Pim J. de Feyter, MD, PhD,a and
Patrick W. Serruys, MD, PhDa Rotterdam, The Netherlands

Objective We sought to explore in vivo the relation between mechanical and compositional properties of matched
cross sections (CSs) using novel catheter-based techniques.

Background Intravascular ultrasound (IVUS) palpography allows the assessment of local mechanical tissue properties.
Spectral analysis of IVUS radiofrequency data (IVUS-VH) is a tool to assess plaque morphology and composition.

Methods and Results Palpography analysis defined high- and low-strain regions. One hundred twenty-three
CSs (27 vessels) were colocalized. The mean strain value was higher in CSs with necrotic core (NC) in contact with the lumen
than in CSs with no NC contact with the lumen (1.03 F 0.5 vs 0.86 F 0.4, P = .06).
Mean relative calcium (1.61 F 2.5% vs 0.25 F 0.7%, P = .001) and NC (15.64 F 10.6% vs 2.8 F 3.9%,

P b .001) content were significantly higher in the CSs with NC in contact with the lumen, whereas the inverse was seen for
the fibrotic component of the plaque (64.16 F 11.6% vs 75.75 F 13.7, P b .001). The sensitivity, specificity, positive
predictive value, and negative predictive value of IVUS-VH to detect high strain were 75.0%, 44.4%, 56.3%, and 65.1%,
respectively. A significant inverse relationship was present between calcium and strain levels (r = �0.20, P = .03). After
adjusting for univariate predictors, the contact of NC with the lumen was identified as the only independent predictor of
high strain (OR 5.0, 95% CI 1.7-14.1, P = .003).

Conclusion In the present study, IVUS-VH showed an acceptable sensitivity to detect high strain. In turn, the specificity
was low. Of interest, a significant inverse relationship was present between calcium and strain levels. (Am Heart J
2006;151:1032.e121032.e6.)

Several studies have established that no association

exists between the stenosis severity at previous angio-

gram and the subsequent occurrence of site-related

vessel closure.1-3 It is also well known that a large

number of people die suddenly, lacking previous history

of coronary artery disease.4

In spite of significant improvement in prevention

strategies, coronary plaque rupture is still a frequent and

unpredictable event that has a major impact in the global

burden of cardiovascular disease.5 In response to that,

intensive research efforts have beenmade throughout the

past decade to attain the early identification of athero-

sclerotic plaques that might eventually rupture. Initially,

different histopathological lines of investigation have led

to the identification of morphological and compositional

features related to plaque rupture, such as thin fibrous

cap, paucity of smooth muscle cells, heavy inflammatory

infiltration of the cap, and large necrotic cores.6-8 In

parallel, the degree of mechanical stress suffered by the

plaque was found a predictor of the thickness of the cap.9

More recently, several catheter-based techniques have

been developed to identify the aforementioned features

in vivo.10-14

Intravascular ultrasound (IVUS) palpography is a

technique that allows the assessment of local mechan-

ical tissue properties.13,15 This technique has shown a

high sensitivity and specificity to detect vulnerable

plaques in vitro.13 Indeed, and in agreement with

previous findings in a finite element model, a strong

inverse relation was found between cap thickness and

strain.9,13 Separately, spectral analysis of the IVUS

radiofrequency data (IVUS-VH) is emerging as a tool to
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assess plaque morphology and composition.10 The

relationship between mechanical and compositional

properties of coronary atherosclerosis has not been fully

elucidated. We thus sought to explore in vivo the

relation between mechanical (palpography) and

compositional (IVUS-VH) properties of matched cross-

sectional areas using novel catheter-based techniques.

Methods
This investigators-driven prospective study sought to explore

the relation between 2 catheter-based techniques (IVUS-VH

and palpography) with regard to the detection of composi-

tional and mechanical properties of subclinical atherosclerosis.

Patients admitted for coronary catheterization and subsequent

intervention were eligible if a nontarget vessel was suitable

for IVUS interrogation (absence of diameter stenosis z50%,
extensive calcification, and/or severe vessel tortuosity) of at

least 30 mm of length. In addition, hemodynamically unstable

patients were excluded. Informed consent was obtained from

all patients.

Intravascular ultrasound palpography acquisition
and analysis
Intravascular ultrasound palpography is a technique that

allows the assessment of local mechanical tissue properties. At

a defined pressure difference, soft tissue (eg, lipid-rich)

components will deform more than hard tissue components

(eg, fibrous-calcified).13,15 In coronaries, the tissue of interest is

the vessel wall, whereas the blood pressure with its physio-

logical changes during the heart cycle is used as the excitation

force. Radiofrequency data obtained at different pressure levels

are compared to determine the local tissue deformation.

Each palpogram represents the strain information for a

certain cross section (CS) over the full cardiac cycle.

The longitudinal resolution of the acquisitions depends on

heart rate and pullback speed. With a heart rate of 60 beat/min

and a pullback speed of 1.0 mm/s, the longitudinal resolution

is 1.0 mm. Palpograms were acquired using a 20-MHz phased-

array IVUS catheter (Avanar, Volcano Therapeutics, Rancho

Cordova, CA). Cine runs, before and during contrast injection,

were performed to define the position of the IVUS catheter

z10 mm distal to an anatomical identifiable landmark.

Digital radiofrequency data were acquired using a custom-

designed workstation.

During the recordings, data were continuously acquired at

a pullback speed of 1.0 mm/s using an automated pullback

device (Track Back II, Volcano Therapeutics) with simulta-

neous recording of the electrocardiogram and the aortic

pressure. The data were stored on a DVD and sent to the

imaging core laboratory for offline analysis (Cardialysis BV,

Rotterdam, The Netherlands).

The local strain was calculated from the gated radiofre-

quency traces using cross-correlation analysis and displayed

and color-coded from blue (for 0% strain) through yellow

(for 2% strain) via red (Figure 1), as described before.16 This

color-coded information was superimposed on the lumen

vessel boundary of the cross-sectional IVUS image.

Using previously described methodology, plaque strain

values were assigned a Rotterdam classification (ROC)

score ranging from 1 to 4 (ROC I, 0-0.5%; ROC II, 0.6-b0.9%;

ROC III, 0.9-1.2%; ROC IV, N1.2%).17 A region was defined

as a high-strain spot when it had high strain (ROC III-IV)

that spanned an arc of at least 128 at the surface of a plaque
(identified on the IVUS recording) adjacent to low-strain

regions (b0.5%). The highest value of strain in the CS was taken

as the strain level of the spot.

Intravascular ultrasound radiofrequency data
acquisition and analysis
Details regarding the validation of the technique on

explanted human coronary segments have previously been

reported.10 Briefly, IVUS-VH uses spectral analysis of IVUS

radiofrequency data to construct tissue maps that were

correlated with a specific spectrum of the radiofrequency

signal and assigned color codes (fibrous [labeled green],

fibrolipidic [labeled greenish yellow], necrotic core [labeled

red], and calcium [labeled white]).10

After the palpography acquisition, IVUS-VH data

were acquired using a continuous pullback (Ultracross 30-MHz

catheter, Boston Scientific, Santa Clara, CA), by a dedicated

IVUS-VH console (Volcano Therapeutics). The IVUS-VH data

were stored on a CD-ROM and sent to the imaging core

laboratory for offline analysis (Cardialysis BV, Rotterdam, The

Netherlands). Data acquisition was electrocardiogram-gated

and recorded during the automated withdrawal of the catheter

using a mechanical pullback device (Boston Scientific) at a

pullback speed of 0.5 mm/s.

Intravascular ultrasound B-mode images were reconstructed

from the radio frequency data by customized software

(IVUSLab, Volcano Therapeutics). Semiautomated contour

detection of both the lumen and the media-adventitia interface

was performed, and the radio frequency data were normalized

using a technique known as bblind deconvolution,Q an iterative
algorithm that deconvolves the catheter transfer function from

the backscatter, thus accounting for catheter-to-catheter vari-

ability.18,19 Compositional data were obtained for every slice

and expressed as mean percent for each component.

Cross-correlation of techniques
An independent experienced palpography analyst (RP)

blinded for any patient’s information regarding clinical or

Figure 1

Colocalization of the CS with IVUS-VH and palpography. At the
7-o’clock position, a side branch induces an artificial high-strain spot.
Two high-strain spots were detected at the 2- and 6 o’clock positions.
Virtual Histology analysis showed a mainly fibrotic plaque with ne-
crotic core in contact with the lumen at the 2- and 6-o’clock positions.

American Heart Journal

May 2006
1032.e2 Rodriguez-Granillo et al
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IVUS-VH data randomly selected CSs with high-and/or low-

strain spots within the pullback analysis. Intentionally, and to

avoid bias owing to the knowledge that the prevalence of high-

strain spots is significantly lower than the prevalence of low-

strain spots, such random selection was performed after

randomly assigning 2 batches of balanced high- and low-strain

spots.15 Subsequently, a color-blinded side-by-side view (Pal-

pography and IVUS-VH) was undertaken to facilitate the

identification of the same matched region with both techni-

ques. Using longitudinal as well as cross-sectional views and

with the aid of anatomical landmarks such as side-branches,

veins, calcified spots, and pericardium, 2 experienced IVUS

analysts (GARG and HMGG) blinded for the palpography

results identified the given CSs (Figure 1).

Area (plaque burden [PB], defined as EEMarea � lumenarea/

EEMarea � 100, where EEM refers to external elastic membrane;
and plaque eccentricity index [EI], defined as minimum plaque

thickness divided by maximum plaque thickness) and compo-

sitional (percent calcified, fibrous, fibrolipidic, and necrotic

core tissues) outputs were calculated for every matched CS. In

addition, the presence of direct contact between necrotic core

tissue and the lumen with no overlying fibrous tissue (suggest-

ing the presence of a thin cap) was determined as a visual

binary assessment, irrespective of the amount of necrotic core.

Statistical analysis
Discrete variables are presented as counts and percentages.

Continuous variables are presented as means F SD. A 2-sided

P value of b.05 indicated statistical significance. The sensitivity

(proportion of high-strain spots where NC contact with the

lumen is present), specificity (proportion of low-strain spots

where no NC contact with the lumen is present), positive

predictive value (proportion of spots with NC contact with the

lumen is present where high strain is present), and negative

predictive value (proportion of spots with no NC contact with

the lumen where no high strain is present) of the presence of

NC in contact with the lumen (IVUS-VH finding) to detect high

strain (palpography finding) was evaluated. Pearson correlation

coefficient was used to assess the relationship between strain

values (%) and relative plaque composition.

Logistic regression analysis was performed using the forward

Wald method to identify potential predictors of the presence

of high strain (ROC III-IV) spots among all IVUS-VH–derived

variables (calcified content, fibrous content, fibrolipidic con-

tent, necrotic core content, EI, plaque burden, and contact

of necrotic core with the lumen). Statistical analyses were

performed with use of SPSS software, version 11.5 (SPSS Inc,

Chicago, IL).

Results
Thirty-three consecutive patients were prospectively

enrolled in this study. In 6 cases, matching was

unsuccessful because of nonuniform rotational distor-

tion or motion artifacts. The baseline characteristics of

the patient population (n = 27) are depicted in Table I.

The mean age was 59.2 F 10.1 years and most patients

were men (n = 21, 77.8%). The study vessel was the

left anterior descending in 9 (33.3%), the left circum-

flex in 4 (14.8%), and the right coronary artery in

14 (51.9%) patients. Eighteen (66.7%) patients pre-

sented with stable angina, and 9 (33.3%), with an

acute coronary syndrome (ACS).

As aforementioned, the prevalence of high- and low-

strain spots was balanced (n = 60 and 63, respectively).

In turn, IVUS-VH identified necrotic core in contact with

lumen more frequently (n = 80 and 43 , respectively).

Pearson correlation coefficients between strain values

and relative plaque composition are depicted in Table II.

No significant correlation was present between necrotic

core (%) and strain levels (r = 0.11, P = .25).

Nevertheless, a significant (albeit weak) inverse rela-

tionship was present between calcium (%) and strain

levels (r = �0.20, P = .03).
The mean strain value was higher, although not

significant, in CSs with necrotic core in contact with the

lumen than in CSs with no contact with the lumen

(1.03 F 0.5% vs 0.86 F 0.4%, P = .06).

Plaque composition of the CS with necrotic core in

contact with the lumen differed considerably from CS

with overlying fibrous tissue (Table III). Calcium (1.61 F

Table I. Baseline characteristics (n = 27)

Age 59.2 F 10.1
Male 21 (77.8%)
Body mass index 26.5 F 3.2
Diabetes mellitus 5 (18.5%)
Hypertension 10 (37.0%)
Family history of CHD 18 (66.7%)
Current smoking 8 (29.6%)
Previous smoking 10 (37.0%)
Hypercholesterolemia 24 (88.9%)
Clinical presentation

Stable angina 18 (66.7%)
ACS 9 (33.3%)

Study vessel
Left anterior descending 9 (33.3%)
Left circumflex 4 (14.8%)
Right coronary artery 14 (51.9%)

Baseline medication
Statin 22 (81.5%)
h-Blocker 15 (55.6%)
ACE inhibitor 16 (59.3%)

Acute coronary syndromes were defined as unstable angina, non –ST- segment
elevation myocardial infarction, or ST-segment elevation myocardial infarction.
CHD, Coronary heart disease; ACE, angiotensin-converting enzyme.

Table II. Relationship between strain levels and relative plaque
composition

Pearson correlation coefficient between strain levels (%)
and relative plaque composition (n = 123)

Strain level P

Necrotic core (%) 0.11 .25
Calcium (%) �0.20 .03
Fibrous (%) 0.06 .55
Fibrolipidic (%) �0.13 .15
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2.5% vs 0.25 F 0.7%, P = .001) and necrotic core

(15.64 F 10.6% vs 2.8 F 3.9%, P b .001) content were

significantly larger in the CSs with contact with the

lumen , whereas the inverse was seen for the fibrotic

component of the plaque (64.16F11.6% vs 75.75 F
13.7, P b .001).

Conversely, plaque composition did not differ signif-

icantly between high- and low-strain CSs (Table IV).

The sensitivity, specificity, positive predictive value,

and negative predictive value of IVUS-VH to detect high

strain as assessed by palpography were 75.0%, 44.4%,

56.3%, 65.1%, respectively.

Discussion
Currently, there are several intravascular diagnostic

tools capable of locally evaluating determinants of

plaque vulnerability, such as the size of the necrotic

core, thickness of the fibrous cap, inflammation within

the cap, and positive remodeling10,11,13,14,20. Neverthe-

less, to date, the natural history of lesions with such

characteristics remains unknown, and the limited

knowledge about their eventual prognosis is provided

by retrospective histopathological studies.

The predictive accuracy of palpography to detect

vulnerability features has been previously demonstrated

in vitro.13 Nevertheless, this technique does not provide

quantitative information regarding important determi-

nants of plaque vulnerability such as necrotic core

content and remodeling pattern of the plaque.

In turn, spectral analysis of IVUS-VH has been

validated as a tool to quantitatively assess the 4 different

components of coronary atherosclerotic plaques.10

In addition, it can provide data regarding coronary

remodeling.21

In the present study, we have evaluated the mechan-

ical strain and the composition of the same region by

combining the use of palpography and subsequent IVUS-

VH. Intravascular ultrasound radiofrequency data

showed an acceptable sensitivity to detect high strain,

as assessed by palpography. In turn, the specificity was

low, reflecting a high number of false positives.

Of interest, and consistent with a previous in vitro

study who established that calcified tissue has highly

static mechanical properties, a significant (albeit weak)

inverse relationship was present between calcium and

strain levels.22

The rational for the hypothesis that the contact of the

necrotic core with the lumen is a predictor of an

overlying thin cap was based on several facts. It has been

established that tissue shrinkage occurs during fixation

processes.23 Shrinkage of up to 60%, 15%, and 80% can

occur during critical-point drying, free drying, and air

drying, respectively.24 Furthermore, postmortem con-

traction of arteries is an additional confounding factor.25

Although the most customary threshold to define a

cap as b thin Q has been set at 65 Am,26 several important
ex vivo studies have used a higher (N200 Am) thresh-
old.13,27,28 Indeed, one of these studies identified a mean

cap thickness of 260 m and 360 Am for bvulnerable Q and
bnonvulnerable Q plaques, respectively.13 Because the
axial resolution of IVUS-VH is between 100 and 150 Am,
we assumed that the absence of visible fibrous tissue

overlying a necrotic core suggested a cap thickness of

below 100 to 150 Am and used the absence of such

tissue to define a thin fibrous cap.29

In the present study, logistic regression analysis

identified the contact of necrotic core tissue with the

lumen as the only predictor of the presence of high-

strain spots (OR 5.0, CI 95% 1.7-14.1, P = .003), whereas

the necrotic core size had no relation with the presence

of such spots. These exploratory results were in line

with previous histopathological findings, where no

correlation has been found between the size of the

necrotic lipid core and the thickness of the cap.27 In

addition, it has been previously established by our group

that there is an inverse significant relation between

strain (measured by palpography) and cap thickness,

whereas no significant correlation between strain and

necrotic core content was investigated.13

Both the size of the necrotic core and the degree of

coronary artery calcification are known to correlate with

plaque progression.30,31 These plaque components have

also been associated to an increase in coronary

Table IV. Mean plaque composition and conventional
intravascular ultrasound output in CSs with low (ROC I-II) and
high (ROC III-IV) mechanical strain

Percent

ROC

ROC I-II (n = 63) ROC III-IV (n = 60) P

Calcium 1.46 F 2.6 0.80 F 1.5 .09
Fibrous 67.54 F 13.2 68.90 F 13.8 .58
Fibrolipidic 20.23 F 11.4 18.68 F 10.6 .44
Necrotic core 10.74 F 11.5 11.61 F 10.0 .65
PB (%) 49.80 F 10.9 50.22 F 10.6 .83
EI 0.21 F 0.1 0.19 F 0.1 .41

Table III. Mean plaque composition and conventional
intravascular ultrasound output in CSs with and without necrotic
core contact with the lumen

Percent

Necrotic core relation with the lumen

No contact
(n = 43)

Contact
(n = 80) P

Calcium 0.25 F 0.7 1.61 F 2.5 .001
Fibrous 75.75 F 13.7 64.16 F 11.6 b.001
Fibrolipidic 21.17 F 13.7 18.57 F 9.2 .21
Necrotic core 2.8 F 3.9 15.64 F 10.6 b.001
PB (%) 48.8 F 9.4 50.63 F 11.3 .38
EI 0.15 F 0.1 0.23 F 0.1 .01
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events.7,32 It is therefore not unexpected that regions

with necrotic core in contact with the lumen had higher

concentrations of calcium.

In vivo studies established that a multifocal instability

process is present in ACS.11,33 Rioufol et al 33 found at

least 1 plaque rupture remote from the culprit lesion in

80% of patients and from the culprit artery in 71% of

patients. A high prevalence of bhigh-risk Q lesions has
been found throughout the coronary tree by means of

angiography,34 angioscopy,11 IVUS,33 and palpogra-

phy.15 Furthermore, the unpredictability of the natural

history of such lesions and the uncertainty of whether

vulnerable plaque characteristics might subsequently

lead to fatal or nonfatal ischemic events suggest that

potential local preventive strategies could not be cost-

effective. Until large randomized trials determine any

potential benefit provided by local pacification strate-

gies, we definitively do not advocate the local treatment

of such alleged bhigh riskQ plaques.
Nevertheless, the development of an accurate diag-

nostic tool with the capability of simultaneously assess-

ing more than one of the different acknowledged

features of high-risk plaques could potentially enhance

the prognostic value of the invasive detection of

vulnerable plaque.

Because IVUS-VH and palpography use the same

source data (radiofrequency data analysis), information

regarding both techniques might be obtained using

the same pullback, potentially increasing the prognostic

value of certain seemingly pejorative plaque character-

istics assessed in prospective natural history studies.

The present study, therefore, has value in determin-

ing a line of investigation for future studies using

an improved methodological approach that will

be provided by simultaneous recording of mechanical

and compositional data and by quantitatively measur-

ing the amount of necrotic core in contact with

the lumen.

Although our results show a link between both

techniques, the present hypothesis-generating study

should be regarded as exploratory and not as proof of

principle. Prospective studies are required to investigate

the prognostic value of these findings.

Limitations
The present study compared 2 techniques, which

have been validated ex vivo.10,13 However, the predic-

tive value of these techniques to detect high-risk spots is

currently unknown and needs to be explored in pro-

spective natural history studies. Selection bias cannot

be disregarded in the present population. The small

size of the population included might have potentially

induced a selection bias. Nevertheless, the conductance

of large prospective studies will confirm or contradict

these preliminary observations.

The inferior axial resolution of IVUS-VH in comparison

with histology could influence our results. In addition,

because of the use of different pullbacks and gating

method, a slight mismatch in the colocalization of the

same CS could not be disregarded. However, the

longitudinal resolution of palpography is ~1 mm, and to

classify a region as high or low strain, the characteristics

should be present for at least 1 cardiac cycle. The

interpretation of the screening tests performed has to

be cautious because of the lack of a gold standard to

compare with. Finally, because IVUS-VH analysis soft-

ware currently does not have a tool to assess quantita-

tively the amount of contact of necrotic core with the

lumen, its predictive accuracy to detect high-strain

spots might be influenced.

Conclusions
In the present study, IVUS-VH showed an acceptable

sensitivity to detect high strain as assessed by palpog-

raphy. In turn, the specificity was low, reflecting a high

number of false positives. Of interest, a significant

inverse relationship was present between calcium and

strain levels. As an exploratory analysis, the contact of

necrotic core tissue with the lumen was found the only

predictor of the detection of high strain.
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In-vivo, cardiac-cycle related intimal displacement of coronary plaques
assessed by 3-D ECG-gated intravascular ultrasound: exploring its correlate
with tissue deformability identified by palpography
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Abstract

Background: ECG-gated image acquisition of intravascular ultrasound (IVUS) has been shown to provide
more accurate measurements at different phases of the cardiac cycle. Objective: We sought to explore the
ability dynamic assessment of ECG-gated 3-D IVUS to identify deformable regions of coronary plaques, by
testing the hypothesis that at a given pressure and region, a faster displacement of the intima would
correspond to high strain (soft tissue) regions assessed by palpography. Methods: ECG-gated 3-D IVUS
and palpograms were acquired using 30 and 20 MHz IVUS imaging catheters respectively. Frames with
high and/or low strain spots identified by palpography were randomly selected and the spots were assigned
to a respective quadrant within the cross section. A color-blinded side-by-side view was performed to
enable the co-localization of the same region. Subsequently, the pressure driven displacement of the intima
was established for each quadrant and a binary score (significant displacement or no displacement) was
decided. Results: One hundred and twenty-four quadrants were studied and the prevalence of highly
deformable quadrants was low (n=7, 5.6% of the total). The sensitivity, specificity, positive predictive
value and negative predictive value of 3-D ECG-gated IVUS to detect deformable quadrants as assessed by
palpography were 42.9, 87.2, 16.7, and 96.2% respectively. Conclusion: In this pilot in vivo study, the
intimal displacement velocity in the radial direction assessed by gray-scale 3-D ECG-gated IVUS failed to
correlate with highly deformable regions. However, these preliminary findings suggest that the absence of
significant displacement of the intima might be accurate to predict the absence of deformable tissue.

Introduction

Despite major improvements in the management
and diagnosis of patients with coronary artery
disease, a large number of victims who are appar-
ently healthy die suddenly without prior symptom
[1, 2]. Intensive efforts are currently been made to
detect in vivo vulnerability features of coronary
atherosclerotic plaques. Several catheter-based

techniques have been developed with the aim of
characterizing and eventually evaluating the effect
of conventional and novel therapeutic intervention
of such non-flow-limiting lesions [3–5].
An important patho-morphologic feature of
vulnerable plaques is the eccentric accumulation of
a lipid-rich necrotic core within the vessel wall,
separated from the lumen by a thin fibrous cap. This
observation led to the hypothesis that vulnerable
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lesions might have mechanical properties that differ
from those of chronic stable lesions. Indeed, both
plaque rupture and increased inflammatory mark-
ers have been reported to occur more frequently in
regions with increased mechanical stress [3, 6, 7].
Intravascular Ultrasound (IVUS) is an invasive
diagnostic tool that provides a real-time, high-
resolution, tomographic view of coronary arteries.
It thereby enables the assessment of morphology,
severity and extension of coronary plaque. By
reducing motion artifacts caused by the displace-
ment of the catheter relative to the vessel wall
during a pullback, ECG-gated image acquisition
of IVUS has been shown to provide more accurate
measurements with lower intra and interobserver
variability [8–10]. In addition, it allows measure-
ments at different phases of the cardiac cycle [8].
A recent study established that the luminal,
pressure driven displacement of low echogenic
(soft) plaques is faster than the one present in
calcified lesions [11].
In this study, we sought to explore the ability of
ECG-gated 3-D IVUS to identify deformable
regions of coronary plaques, by testing the
hypothesis that at a given pressure and region, a
faster displacement of the intima would corre-
spond to high strain regions as assessed by pal-
pography, which represent soft (highly
deformable) tissue.

Methods

Patients were eligible if they had a de novo, non-
significant (angiographically <50%) stenosis in a
native coronary artery. Patients were excluded
from the study if any of the following conditions
were present: (1) severe vessel tortuosity (2)
severely calcified vessels. Written informed consent
was obtained from all patients.

Intravascular ultrasound acquisition

IVUS was performed after intracoronary admin-
istration of nitrates using a single-element,
30 MHz rotating transducer (3.2 F UltracrossTM,
Boston Scientific Corp.). Cine runs, before and
during contrast injection, were performed to define

the position of the IVUS catheter P10 mm distal
to a clear anatomical landmark. The ECG-gated
image acquisition and digitization were performed
by a 3-D image acquisition workstation (Echo-
Scan, TomTec, Munich, Germany), which re-
ceived the video signal input form the IVUS
console and the ECG-signal from the patient. This
system steered the ECG-gated stepping pullback
device to withdraw the imaging transducer. The
workstation considered the heart rate variability
and only acquired images from cycles meeting a
predetermined range. Premature beats were re-
jected.
If an R–R interval failed to meet the preset
range, the catheter remained at the same site until
a cardiac cycle met the predetermined R–R range.
Subsequently, the transducer was withdrawn
0.2 mm and images were recorded. Image
acquisition required on average 1 min per cm.

Palpography acquisition

Palpograms were acquired using a 20-MHz
phased-array IVUS catheter (Volcano Therapeu-
tics, Rancho Cordova, USA). Cine runs, before
and during contrast injection, were performed to
define the position of the IVUS catheter P10 mm
distal to the same landmark used for the 30 MHz
catheter. Digital radiofrequency data were ac-
quired using a custom-designed workstation.
Intravascular ultrasound palpography is a tech-
nique that allows the assessment of localmechanical
tissue properties [3, 12]. At a defined pressure, soft
tissue (lipid-rich) components will deform more
than hard tissue components (fibrous-calcified) [13].
In coronaries, the tissue of interest is the vessel wall,
whereas the blood pressure with its physiologic,
systolic and diastolic changes during the heart cycle
is used as the excitation force. Images obtained at
different pressure levels are compared to determine
the local tissue deformation.
Each palpogram represents the strain informa-
tion for a certain cross section over the full cardiac
cycle. The longitudinal resolution of the acquisi-
tions depends on heart rate and pullback speed.
With a heart rate of 60 bpm and a pullback speed of
1.0 mm/s, the longitudinal resolution is 1.0 mm.
For palpography, catheter displacement is the main
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source of signal decorrelation and thus a source of
error in strain estimation [14]. During the record-
ings, data were continuously acquired at a pullback
speed of 1.0 mm/s using a mechanical pullback de-
vice (Track Back II, Volcano Therapeutics) with
simultaneous recording of the ECG and the aortic
pressure. The data set is subdivided into heart cycles
by use of the R wave of the ECG signal.

Palpography analysis

The local strain was calculated from the gated ra-
diofrequency traces using cross-correlation analysis
and displayed, color-coded, from blue (for 0%
strain) through yellow (for 2% strain) via red. This
color-coded circumferential image was superim-
posedon the cross-sectional IVUS image (Figure 1).
A region was defined as a high-strain spot when
it had high strain (P0.9% at 4 mm Hg pressure
difference) that spanned an arc of at least 12� at
the surface of a plaque (identified on the IVUS
recording) adjacent to low-strain regions (<0.5%
at 4 mm Hg pressure difference). The highest value
of strain was taken as the strain level of the spot.
An independent experienced analyst randomly
selected frames with high and/or low strain spots
within the pullback analysis and positioned the
spots in a respective quadrant according to the
spatial location within the cross section (Figure 1).

Qualitative IVUS analysis

A color-blinded side-by-side view (gray-scale
IVUS and Palpography) was undertaken to facil-
itate the identification of the same region with
both techniques. Using longitudinal as well as
cross-sectional views and with the aid of anatom-
ical landmarks such as side-branches, veins, calci-
fied spots and pericardium, three experienced
IVUS analysts blinded for the palpography results
identified the given frames. Images were rotated
with the purpose of matching the orientation of
the images provided in the palpogram. With the
aid of dynamic evaluation of both longitudinal
and cross-sectional views, the longitudinal move-
ment of the catheter at the current frame was
estimated qualitatively.
Subsequently, and provided that the longitudi-
nal movement was not significant (determined by
cyclic entrance/exit of identifiable anatomical
landmarks), the pressure driven displacement of
the intima was established for each quadrant and a
binary score (significant displacement or no dis-
placement) was decided by consensus of the three
analysts.

Statistical analysis

Continuous variables are presented as mean±SD.
The sensitivity (proportion of deformable quadrants

Figure 1. Matched cross-section imaged with palpography (left) and 3-D ECG-gated (right) intravascular ultrasound. A highly

deformable plaque and significant intimal radial displacement is present in quadrant 3.
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where significant displacement of the intima is
present), specificity (proportion of non-deformable
quadrants where no displacement of the intima is
present), positive predictive value (proportion of
quadrants with significant displacement of the in-
tima where deformable tissue is present) and neg-
ative predictive value (proportion of quadrants
with no displacement of the intima where no
deformable tissue is present) of the 3-D ECG-
gated IVUS to detect deformable regions of the
coronaries was evaluated.

Results

We studied 9 male patients with a mean age
59±9.3. The study vessel was the left anterior
descending artery in 3 (33.3%), the left circumflex
artery in 2 (22.2%) and the right coronary artery
in 4 (44.4%) patients.
Thirty-seven frames were selected for paired
analysis and 6 were excluded due to significant lon-
gitudinal movement of the catheter, which was as-
sessed using longitudinal and cross-sectional views.
As aforementioned, 4 quadrants per frame were
individually assessed leading to a total of 124
quadrants.
Overall, the number of highly deformable
quadrants was low (n=7, 5.6% of the total).
Conversely, the number of quadrants where sig-
nificant displacement of the intima was present
was slightly higher (n=18, 14.5%).
The sensitivity, specificity, positive predictive
value and negative predictive value of 3-D ECG-
gated IVUS to detect deformable quadrants as
assessed by palpography were 42.9, 87.2, 16.7, and
96.2% respectively.

Discussion

The sensitivity and specificity of palpography to
detect vulnerable plaques has recently been
assessed in post-mortem human coronary arteries
where vulnerable plaques were detected with a
sensitivity of 88% and a specificity of 89% [12]. In
addition to ex-vivo studies, this technique has also
been tested in-vivo, where palpography detected a

high incidence of deformable plaques in ACS pa-
tients. Furthermore, the number of highly
deformable lesions was correlated to the clinical
presentation and levels of C-reactive protein [3].
The detection of vulnerable plaques by IVUS is
mainly based on a series of case reports [15–18].
These reports describe morphologic features of
already ruptured plaques but not the prospective
detection of rupture-prone plaques. Nevertheless,
one prospective study showed that large eccentric
plaques containing an echolucent zone by IVUS
were found to be at increased risk of instability
even though the lumen area was preserved at the
time of initial study [19].
Conventional gray-scale IVUS studies commonly
evaluate the static character of the tissue. As the
vessel wall is always subject to shear and wall stress,
understanding the dynamic characteristics of coro-
nary atherosclerosis by analyzing the intimal dis-
placement velocity in the radial direction could
provide an additive value to gray-scale IVUS [11].
In the current report, we evaluated the sensi-
tivity and specificity of 3-D ECG-gated IVUS to
detect deformable (high strain) plaques assessed by
palpography. The sensitivity was low and the
specificity was high. It is noteworthy that only a
low percent (5.6%) of the analyzed frames pre-
sented a high strain. 3-D ECG-gated IVUS seems
thus poorly sensitive to detect deformable spots.
However, these preliminary findings may suggest
that the absence of significant displacement of the
intima appear to be highly accurate to predict the
absence of underlying deformable tissue.
In coronary arteries, the natural motion of the
catheter, related to blood flow pattern during
systole and diastole and to the contraction of the
heart, is inevitable. During systole, blood flow is
low, the heart is contracting, and the catheter
moves toward the ostium. Conversely, during the
diastolic phase, blood flow increases, the heart
relaxes, and the catheter moves distally away from
the ostium [20]. It has been reported that ECG-
gating the IVUS acquisition can significantly re-
duce the motion artifacts [8, 20]. However, in the
present study all vessels presented some longitu-
dinal movement artifact that could have ultimately
influenced the interpretation of the images.
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Limitations

This study included a small number of patients.
Nevertheless, the conductance of large in vivo
studies of this type is difficult due to obvious eth-
ical issues. The small prevalence of deformable
(high-strain) quadrants could influence the results.
Accordingly, interpretation of these results should
be cautious and regarded as preliminary. Despite
the ECG-gating, motion artifacts seem to be
inevitable and could potentially have created mis-
interpretation of the images. The present is a
comparison between quantitative and qualitative
techniques. The lack of a quantitative definition of
both significant intimal displacement and longitu-
dinal movement could potentially influence the
results. However, characterization of such defini-
tions was performed by 3 experienced IVUS ana-
lysts. On the other hand, the ‘‘gold standard’’ for
sensitivity analysis was an only recently validated
technique. However it has shown a high sensitivity
and specificity to identify vulnerable plaques [12].

Conclusion

In this pilot in vivo study, the intimal displacement
velocity in the radial direction assessed by gray-
scale 3-D ECG-gated IVUS failed to correlate with
highly deformable regions. The sensitivity was low
and the specificity was high. Dynamic assessment
of 3-D ECG-gated IVUS seems thus poorly sensi-
tive to detect deformable spots. However, these
preliminary findings suggest that the absence of
significant displacement of the intima might
potentially predict the absence of underlying
deformable tissue. Larger studies using a both
qualitative and quantitative approach are needed
to further investigate the value of these findings.
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Angiography has been for decades the gold standard to assess the morphology and severity of 

atherosclerotic lesions in the coronary tree. Nevertheless, quantitative angiographic 

measurements can be deceptive since this technique only allows the assessment of the shape 

of the lumen 1. In turn, atherosclerosis is a disease of the vessel wall and, due to the 

compensatory expansive remodelling effect, the lumen area remains unaffected until final 

stages of the disease 2.

It has been established that unheralded acute coronary syndromes are common initial 

manifestations of coronary atherosclerosis and that most such events arise from sites with 

non-flow limiting coronary atherosclerosis 3,4. Post-mortem studies suggested that plaque 

composition is a crucial determinant of the propensity of atherosclerotic lesions to rupture. 

Recently, a study including a large series of victims of sudden cardiac death suggested that 

ruptured thin-cap fibroatheroma (TCFA) lesions were the precipitating factor of 60 % of acute 

coronary thrombi. Furthermore, 70 % of those patients had other TCFAs in their coronary tree 

that had not ruptured 5. A large (avascular, hypocellular, lipid-rich) necrotic core, a thin 

fibrous cap with inflammatory infiltration and paucity of smooth muscle cells, and the 

presence of expansive (positive) remodeling have been identified as the major criteria to 

define TCFA lesions 6,7-10.

Detection of these non-obstructive, lipid rich, high-risk plaques may have an important impact 

on the prevention of acute myocardial infarction and sudden death. 

Currently, there are several intravascular tools capable of locally evaluating the 

aforementioned determinants of plaque vulnerability.

We will focus the chapter on the current status of optical coherence tomography (OCT) and 

spectral analysis of the radiofrequency data (IVUS-VH) and the potential of combining these 

intravascular diagnostic tools to enhance the prognostic value of invasive plaque 

characterization and vulnerable plaque imaging.   
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Technical aspects of the techniques 

IVUS-VH

Intravascular ultrasound (IVUS) is the gold standard for evaluation of coronary plaque, 

lumen, and vessel dimensions; providing an accurate, reproducible, real-time, tomographic 

assessment of the vessel wall 11-13. However, although visual interpretation of gray-scale 

IVUS can identify calcification within plaques, it cannot reliably differentiate lipid-rich from 

fibrous plaque12.

IVUS gray-scale imaging is formed by the envelope (amplitude) of the radiofrequency (RF) 

signal, discarding considerable amount of information lying beneath and between the peaks of 

the RF signal. The amplitude of the RF data might sometimes be similar between different 

tissues, leading to misinterpretation of gray-scale imaging. Nevertheless, the frequency and 

power of the RF signal commonly differs between tissues, regardless eventual similarities on 

the amplitude (Figure 1). Spectral analysis of the RF data (IVUS-VH, Volcano Corp., Rancho 

Cordoba, USA) evaluates different spectral parameters of the RF data (Y-intercept, minimum 

power, maximum power, mid-band power, frequency at minimum power, frequency at 

maximum power, slope, etc.) to construct tissue maps that classify plaque into four major 

components. In preliminary in vitro studies, four histological plaque components (fibrous, 

fibrolipidic, necrotic core and calcium) were correlated with a specific spectrum of the 

radiofrequency signal 14. These different plaque components were assigned color codes. 

Calcified, fibrous, fibrolipidic and necrotic core regions were labeled white, green, greenish-

yellow and red respectively (figure 2). This approach has lead to a significant increase in the 

sensitivity and specificity of IVUS to characterize plaque, particularly of lipid deposits. 
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Indeed, the sensitivity of gray-scale to detect lipid deposits was reported as low as 46 %, 

whereas the predictive accuracy of IVUS to detect necrotic core areas is 86 % 14,15.

Furthermore, recent improvements in the classification tree have lead to a further 

enhancement in the accuracy of the technique and has been demonstrated using atherectomy 

samples, reaching a sensitivity and specificity higher than 90 % for detecting necrotic core16.

This technology has an axial, spatial and longitudinal resolution of 100, 240 and 300 µm 

respectively.

IVUS-VH data is currently acquired using a commercially available phased-array (64 

elements) catheter (Eagle EyeTM 20 MHz catheter, Volcano Corporation, Rancho Cordova, 

USA). Using an automated pullback device, the transducer is withdrawn at a continuous speed 

of 0.5 mm/s until the ostium. Cine runs, before and during contrast injection, are performed to 

define the position of the IVUS catheter before the pullback is started. IVUS-VH acquisition 

is ECG-gated at the R-tops using a dedicated console (Volcano Corporation, Rancho 

Cordova, USA). 

IVUS-VH analysis 

IVUS B-mode images are reconstructed from the RF data by customized software and contour 

detection is performed using cross-sectional views with a semi-automatic contour detection 

software to provide a quantitative geometrical and compositional output (IvusLab 4.4, 

Volcano Corporation, Rancho Cordova, USA). Due to the unreliability of manual 

calibration17, the RF data is normalized using a technique known as “Blind Deconvolution”, 

an iterative algorithm that deconvolves the catheter transfer function from the backscatter, 

thus accounting for catheter-to-catheter variablity 18.
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Optical coherence tomography (OCT) 

In brief, Optical coherence tomography (OCT) imaging is based on low coherence near 

infrared light that is emitted by a superluminescent diode. A center wave length around 1300 

nm is used since it minimizes the energy absorption in the light beam caused by protein, 

water, haemoglobin, and lipids. The light waves are reflected by the internal microstructures 

within biological tissues as a result of their differing optical indices.  

OCT allows high-resolution (axial resolution of 10 µm and lateral resolution of 20 µm) 

imaging in biological systems 19. Accordingly, OCT is the technique with the highest capacity 

to allow in-vivo, real time visualization and measurement of a thin fibrous cap. The relative 

shallow penetration depth that hampers imaging of the entire vessel wall in medium and large 

vessels limits OCT imaging, however.  

We have recently demonstrated that, in addition to high resolution qualitative analyses, highly 

reproducible OCT quantitative measurements can be achieved using an automated continuous 

pullback 20. Nevertheless, the need to clear the artery from blood during imaging precludes 

interrogation of long and proximal segments of the coronary tree. 

Plaque characterization and vulnerable plaque detection with OCT and IVUS-VH   

Qualitative and quantitative detection of necrotic core-rich plaques 

A recent ex vivo study has shown that OCT can discriminate 3 plaque types (fibrous, 

fibrocalcific and lipid-rich) with a sensitivity and specificity ranging between 71 and 98 % 21.

In this study, Yabushita et al. found that histologically confirmed fibrous plaques exhibited 

homogeneous, highly backscattering (signal-rich) plaques devoid of OCT signal-poor regions 

(figure 3, A). Similarly, fibrocalcific plaques were characteristically signal-poor with sharply 

delineated upper and/or lower borders (figure 3, B) whereas histologically confirmed lipid-

rich plaques revealed diffusely bordered, signal-poor regions (figure 3, C).
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Although OCT has demonstrated a high accuracy to characterize coronary plaques, imaging 

of the entire external elastic membrane is rarely achieved due to the shallow penetration of the 

technique (2 mm), precluding the quantitative analysis of each of the different plaque 

components. This limitation became manifest in a more recent in vivo study that showed no 

difference in lipid-rich plaques defined by OCT criteria between ACS and stable angina 

patients22. Since the risk of rupture and subsequent thrombosis is highly related to the relative 

lipid content, this limitation portrays a major shortcoming of OCT towards vulnerable plaque 

imaging7.

IVUS-VH capacity of identifying four different tissue components has been validated ex vivo 

with predictive accuracies 79.7%, 81.2%, 92.8%, and 85.5% for detecting fibrous tissue (areas 

of densely packed collagen), fibrolipidic tissue (areas with significant lipid interspersed in 

collagen), calcified tissue (areas with dense calcium deposits without adjacent necrosis) and 

necrotic core tissue (areas comprising cholesterol clefts, foam cells, and microcalcifications). 

Aside from the ex- vivo validation study, we have performed the first clinical experiences and 

found indirect evidence about the in-vivo validation of the technique. In particular, we sought 

to study sub-clinical atherosclerosis by evaluating the composition of non-culprit coronaries 

patients with IVUS-VH. In this study, we found that in non-culprit lesions, there were 

significant differences in plaque composition between patients who presented with acute 

coronary syndromes (ACS) and those who presented with stable angina (SA). In those with 

ACS, percent necrotic core was significantly greater than in stable patients, whereas a 

converse trend was observed for fibrotic content. In addition, we found a significant 

relationship between the necrotic core percentage and vessel area obstruction, suggesting that 

the necrotic core increases linearly with further increase in the degree of stenosis. Finally, we 

found a significant, albeit weak, relationship between relative necrotic core content and CRP 

levels 23.
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Thin fibrous cap detection 

As a result of its extremely high axial resolution (10 µm), there is no doubt that OCT is the in-

vivo gold standard for identifying and measuring the thickness of the fibrous cap22. In his 

study, Jang et al. identified a significant difference in minimal cap thickness between acute 

myocardial infarction (AMI) and SA patients, with median (interquartile range) values of 47.0 

(25.3-184.3) µm and 102.6 (22.0-291.1) µm in AMI and SA patients respectively (p= 0.02). 

On top of its reliability as a tool to measure the thickness of the cap in vivo, recent both post- 

mortem and in vivo studies have shown that OCT is capable of evaluating the macrophage 

content of infiltrated fibrous caps24,25.

We recently evaluated the incidence of IVUS-derived thin-cap fibroatheroma (IDTCFA) in 

coronary artery segments with non-significant lesions on angiography using IVUS-VH 26. In 

this study, 2 experienced, independent IVUS analysts defined IDTCFA as a lesion fulfilling 

the following criteria in at least 3 consecutive cross-sectional areas: 1) necrotic core �10%

without evident overlying fibrous tissue; 2) percent obstruction � 40 %. In this study, sixty-

two percent of patients had at least one IDTCFA in the interrogated vessels.  ACS patients 

had a significantly higher incidence of IDTCFA than stable patients [3.0 (interquartile range 

0.0, 5.0) IDTCFA/coronary vs. 1.0 (interquartile range 0.0, 2.8) IDTCFA/coronary, p= 0.018]. 

Of note, no relation was found between patient’s characteristics and the presence of IDTCFA. 

Finally, a clear clustering pattern was seen along the coronaries, with 66 (66.7 %) IDTCFA 

located in the first 20 mm whereas further along the vessels the incidence was significantly 

lower (33, 33.3%, p=0.008) 26. Such distribution of the IDTCFA in the coronaries was in line 

with previous ex vivo and clinical studies, with a clear clustering pattern from the ostium, thus 

supporting the non-uniform distribution of vulnerable plaques along the coronary tree 27,28.
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The significantly higher prevalence of IDTCFA in non-culprit coronaries of patients 

presenting with an ACS supports the theory that holds ACS as multifocal processes. Of note, 

the mean PAV and the mean necrotic core areas of the IDTCFAs detected by IVUS-VH were 

also similar to previously reported histopathological data (55.9 % vs. 59.6 % and 19 % vs. 23 

% respectively) 29.

It is worth mentioning that, although the most accepted threshold to define a cap as “thin” has 

previously been set at <65 m, this was based on post mortem studies 30. Extrapolation of 

such criteria to in vivo studies requires caution. It is well established that tissue shrinkage 

occurs during tissue fixation 31. Shrinkage (particularly of collagen tissue, the main 

component of fibrous caps) of up to 60 %, 15 % and 80% can occur during critical-point-

drying, free-drying, and air-drying respectively32. Furthermore, post-mortem contraction of 

arteries is an additional confounding factor 33. It is likely therefore, that the threshold used to 

define a thin cap in vivo should be higher than 65 m. Since the axial resolution of IVUS-VH 

is 100-150 m, we assumed that the absence of visible fibrous tissue overlying a necrotic core 

suggested a cap thickness of below 100-150 m and used the absence of such tissue to define 

a thin fibrous cap 34. Finally, it is noteworthy that a number of important ex vivo studies have 

used a higher (> 200 m) threshold 9,35,36. Indeed, one of these studies identified a mean cap 

thickness of 260 m and 360 for “vulnerable” and “non-vulnerable” plaques respectively 36.

For all the aforementioned reasons, we believe that IVUS-VH is able to detect thin caps.  

Positive remodelling detection 

Expansive remodelling of coronary vessels was originaly deemed a beneficial compensatory 

effect that counterbalanced the axial progressive growth of the vessel wall to preserve the 

lumen dimensions 2. However, several studies have shown increased levels of inflammatory 

markers, larger necrotic cores and pronounced medial thinning in positive remodelled vessels; 
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all factors related to the tendency of plaques to undergo rupture 37-40. Overall, this has lead the 

experts to confer positive remodelling a major importance in the vulnerability triad 6.

Precise contour detection of the external elastic membrane (vessel area) is pivotal to estimate 

the presence and pattern of remodelling. Due to the high penetration of 20 MHz catheters, 

IVUS-VH can accurately assess vessel size and therefore, provided that plaque are not heavily 

calcified, estimate the degree and type of remodelling. This was recently demonstrated in 

vivo, where we found a significant positive relationship between relative necrotic core content 

and the remodelling index (r= 0.83, p<0.0001). Moreover, fibrous tissue was inversely 

correlated to the remodelling index (r= -0.45, p=0.003, figure 3)40.

Likewise, lesions with positive remodelling presented significantly larger necrotic core 

percentages than lesions with no remodelling or negative remodelling (22.1±6.3 vs. 15.1±7.6 

vs. 6.6±6.9 %, p<0.0001). Conversely, negative remodelling lesions tend to show larger 

fibrous tissue percentages than lesions with no remodelling and positive remodelling 

(68.6±13.7 vs. 62.9±9.5 vs. 58.1±12.9 %, p=0.13).

In contrast, and as aforementioned, OCT imaging of the entire media-adventitia interface is 

rarely achieved, precluding the use of OCT to assess the remodelling pattern of coronaries. 

Combining OCT and IVUS-VH 

Throughout the chapter, we have discussed in detail the advantages and disadvantages of 

OCT and IVUS-VH for imaging coronary atherosclerotic plaques in vivo (tables 1 and 2). It is 

clear that the finest tool to assess the presence of the major criteria that define TCFA would 

be a tool that combines the optimal axial resolution of OCT with the accurate plaque 

characterization and deep penetration of IVUS-VH. Unfortunately, such tool has not yet been 

developed. Instead, intensive efforts are been made to overcome the weaknesses of both 

techniques. In the meantime, we are currently assessing in vivo the agreement between both 
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techniques to characterize plaques. Using side-branches as landmarks and with the aid of 

longitudinal and cross-sectional views, matching of cross-sections is feasible (figure 4). Our 

preliminary experience shows a high agreement between techniques towards the detection of 

fibrous, fibrocalcific and necrotic core regions (figures 5, 6 and 7).

Despite major advances in the management and diagnosis of patients with coronary artery 

disease, a large number of victims who are apparently healthy die suddenly without prior 

symptom 41,42. Most of these events are related to plaque rupture and subsequent thrombotic 

occlusion at the site of non-flow limiting atherosclerotic lesions in epicardial coronary 

arteries. 3,4. In addition, silent plaque rupture and its subsequent wound healing accelerate 

plaque growth and are a more frequent feature in arteries with less severe luminal narrowing 

43. The prospective detection of TCFA lesions may have a major impact on the prevention of 

acute myocardial infarction and sudden death. Both OCT and IVUS-VH have demonstrated 

the ability to identify in vivo surrogates of TCFA. Nevertheless, prospective studies are 

needed in order to evaluate the prognostic value of such findings in natural history studies. 
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Legends

Figure 1. IVUS gray-scale imaging is formed by the envelope (amplitude) of the 

radiofrequency (RF) signal, discarding considerable amount of information 

lying beneath and between the peaks of the RF signal. The frequency of a 

tissue may differ despite having the same amplitude.  

Figure 2. The left panel shows an IVUS cross-sectional area reconstructed from 

backscattered signals. The right panel shows the corresponding tissue map 

depicting where the different plaque components are assigned color codes. 

Calcified, fibrous, fibrolipidic and necrotic core regions are labeled white, 

green, greenish-yellow and red respectively. 

Figure 3. Examples of OCT cross-sections of: fibrous concentric intimal thickening 

exhibiting a homogeneous, highly backscattering (signal-rich) intima (i) devoid 

of OCT signal-poor regions (panel A); a calcified (c) plaque (panel B, signal-

poor with sharply delineated borders) with overlying fibrous cap; and a lipid-

rich (l) plaque depicting diffusely bordered, signal-poor regions (panel C). M 

refers to media. 

Figure 4. Matching of OCT and IVUS-VH is feasible using side-branches as landmarks 

and longitudinal and cross-sectional views. 

Figure 5. Matched imaging immediately distal to a stent showing an eccentric fibrotic 

plaque with both techniques. 
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Figure 6. Matched imaging distal to sidebranch (*) showing fibrotic tissue at 12 o’clock 

and 7 o’clock, whereas a heterogeneous, signal-poor region is located at 9 

o’clock and correlated well with a necrotic-core-rich region with IVUS-VH. 

Figure 7. From left to right: IVUS cross-sectional area reconstructed from backscattered 

signals showing a small calcified region at 6 o’clock. IVUS-VH shows a 

necrotic core-rich tissue with underlying calcified tissue. A lipid-rich region 

with underlying calcified tissue can be appreciated with OCT imaging.  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Abstract

Aims: To assess the temporal effect of statin therapy on coronary atherosclerotic plaque 

volume as measured by intravascular ultrasound (IVUS). 

Methods and results: We searched PubMed for eligible studies published between 

1990 and January 2006. Inclusion criteria for retrieved studies were: 1) IVUS volume 

analysis at baseline and follow-up 2) statin therapy in at least one group of patients. 

Nine studies including 985 patients (with 11 statin treatment arms) were selected. After 

a mean follow-up of 9.8±4.9 months, we found a significant reduction in coronary 

plaque volume [WMD -5.77 mm3 (95%CI -10.36, -1.17, p=0.01)], with no significant 

heterogeneity between studies (p= 0.47). Pre-specified subgroup analyses showed 

similar trends. Studies where the achieved LDL-cholesterol level was lower than 100 

mg/dl showed a trend for plaque regression [WMD -7.88 mm3 (95%CI -16.31, 0.55, 

p=0.07)] whereas studies where the achieved LDL-C was � 100 mg/dl the trend was 

less evident [WMD -4.22 mm3 (95%CI -10.27, 1.82, p=0.17)]. Plaque volume remained 

substantially unchanged in patients not treated with statins [WMD 0.13 mm3 (95%CI -

4.42, 4.68, p=0.96)].

Conclusions: Statin therapy, in particular when achieving the target LDL level, appears 

to promote a significant regression of coronary plaque volume as measured by IVUS.

Key Words: statins; atherosclerosis; ultrasonography; plaque progression 
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Introduction

Lipid lowering therapies have been shown to strikingly improve clinical outcomes of 

patients with coronary artery disease, both in the primary and secondary prevention 

realms.1,2 In addition, statin therapy is currently regarded as an effective strategy to 

reduce coronary atherosclerosis progression, evaluated with angiography.3 Nonetheless, 

angiographic measurements can be misleading since they only allow the evaluation of 

the silhouette of the lumen, while atherosclerosis is commonly a diffuse disease of the 

vessel wall. Moreover, the evaluation of the remodeling phenomenon often present in 

coronary arteries is essential for the interpretation of the treatment effect but cannot be 

assessed by angiography, yielding to poor ex vivo correlation.4

In order to assess more accurately plaque size and distribution, intravascular ultrasound 

(IVUS) has evolved as a precise invasive tool that is being increasingly used to 

quantitatively determine the extent, spatial distribution, and morphology of the 

atherosclerotic disease.  

A significant statin-induced regression of atherosclerotic plaque burden was recently 

reported in peripheral arteries.5-7 However, despite several studies evaluated the effect 

of statins in coronary arteries, plaque regression has not been conclusively 

demonstrated.    

We thus performed a meta-analysis of all clinical studies that assessed IVUS-based 

progression/regression of coronary atherosclerosis to evaluate whether the treatment 

with statins can promote coronary plaque regression over time.
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Methods

Search strategy 

Two trained investigators (G.A.R.G. and P.A.) searched PubMed for eligible studies 

published in peer review journals between January 1990 and January 2006. Search key 

words included: “(reduc* OR regres* OR progress*) AND (ivus OR intravascular 

ultrasound)”, where * denotes a wildcard, which is a symbol used to search all the 

words beginning with the written root. PubMed was searched using the method 

described by Biondi-Zoccai et al.8 No language restriction was used. Cross-references 

were checked and experts were contacted to identify other relevant trials. 

Selection strategy 

Citations initially selected by systematic search were first retrieved as title and/or 

abstract and screened independently by two reviewers (G.A.R.G. and P.A.). Potentially 

relevant reports were then retrieved as complete manuscripts and assessed for 

compliance to inclusion and exclusion criteria. 

Inclusion criteria for retrieved studies were: 1) IVUS volume analysis in native coronary 

arteries at baseline and follow-up 2) statin therapy in at least one group of patients. 

Exclusion criteria were: 1) no volumetric output (only cross-sectional area analysis), 2) 

studies in vessels different from coronary arteries. 

Data extraction and end-point definitions 

All the data of interest were abstracted in pre-specified structured collection forms. 

Every study used the same IVUS imaging catheter both at baseline and follow-up. All 

IVUS investigations were performed after intracoronary administration of nitrates. Cine 

runs, before and during contrast injection, were performed to define the position of the 
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catheter distal to an identifiable side-branch. Using an automated pullback device, the 

transducer was withdrawn at a continuous speed of 0.5 mm/s and IVUS data was stored 

on super–VHS for subsequent analysis. Our primary end-point of interest was the 

progression/regression of coronary atherosclerotic burden evaluated by IVUS 

volumetric analysis. According to the different studies included in the analysis, plaque 

volume was calculated as: n� m=1 (Vesselarea - Lumenarea )*d; where n refers to number of 

images, m to image and d to distance between images. In case this data were not 

provided in the published manuscript, the authors were contacted to obtain the 

aforementioned values. 

We compared baseline vs. follow-up plaque volume in the patients receiving statins and 

in the control group (when present). In addition, as sensitivity analyses, we stratified the 

studies according to achieved LDL-C levels and time to follow-up seeking an 

enlightenment of the results.  

Data analysis 

Statistical analysis was performed using the Review Manager 4.2 freeware package.9

Continuous variables are reported as mean ± standard deviation unless otherwise 

specified. Random-effect weighted mean difference (WMD) with 95% confidence 

intervals (CI), was used as summary statistics for the comparison of continuous 

variables; this analysis is utilized when the unit of measure of the variable under 

analysis remains constant across the different studies.10 The currently recommended 

inverse variance-weighting method, according to Dersimonian and Laird, was used for 

random-effect comparison.10 Reported values were two-tailed and results were 

considered statistically significant at p value <0.05. Statistical heterogeneity (i.e. the 

between-study discrepancy in effect size estimates) was assessed with the Cochran Q 

test. This test strongly suggests underlying statistical heterogeneity for p values <0.10, 



345

Coronary plaque regression with statins

 7

even if other causes of heterogeneity (such as clinical differences between treatment, 

follow-up duration, or patient population should not be dismissed). The appraisal of 

statistical heterogeneity is pivotal to meta-analysis as some authorities advocate the 

statistical pooling of different trials only in the presence of statistical homogeneity 10.

Finally, to assess the risk of small study bias (including publication bias), we built a 

funnel plot by graphically showing the relationship between effect size and statistical 

weight for each individual study. A symmetrical and funnel-shaped plot supports the 

lack of significant small study bias, while a strongly asymmetric plot suggests the 

underlying presence of small study or publication bias (i.e. where smaller studies 

reporting positive outcomes where more likely to be published than equally small 

studies reporting negative or non-significant results). Publication bias, if not recognized 

and acknowledged, can lead to meta-analyses with biased and overly optimistic 

findings, and should thus be actively investigated and appraised 10.
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Results

PubMed queries permitted the retrieval of 977 citations. The majority of the papers were 

excluded because they were editorials, reviews or studies addressing the role of IVUS as 

an adjunctive tool to percutaneous coronary interventions. Finally, 18 papers were 

assessed for compliance to inclusion and exclusion criteria, leading to further exclusion 

of 9 studies. One study was not included since only area measurements and not volume 

analyses were reported 11. One study did not include a treatment arm 12. Three other 

studies were excluded because they evaluated IVUS in femoral arteries and transplant-

associated arteriosclerosis 13-15. One study used antihypertensive agents and three others 

used lipid lowering therapies different from statins 16-19. Nine published studies were 

finally selected 17,20-27.

The 9 studies included 985 patients. The majority of the studies were randomized 

comparisons of a statin vs. placebo, aside from the study of Jensen et al. that was a 

single arm observational study. In the randomized REVERSAL trial both arms received 

statins, but different molecules, and in the study by Kawasaki et al., there were three 

groups: two receiving 2 different statins and one receiving placebo. Thus, overall 784 

patients were allocated to statin treatment in 11 different groups (table 1). 

All studies used the absolute change in plaque volume in a matched region of interest 

evaluated at the longest available follow-up as an imaging endpoint, apart from the 

study by Petronio et al., that reported the change in plaque volume adjusted for analyzed 

vessel length. We contacted the authors to obtain the absolute change in plaque volume. 

In the GAIN study, patients were allocated to atorvastatin in an increasing dose to 

achieve a LDL-cholesterol level < 100 mg/dL or placebo.21 For the ESTABLISH study, 

20 mg/d of atorvastatin vs. placebo were administrated.20 In contrast, the REVERSAL 
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investigators compared an intensive lipid lowering therapy with a moderate one 

(atorvastatin 80 mg/day vs. pravastatin 40 mg/day).28 Kawasaki et al. compared 20 

mg/day of atorvastatin vs. 20 mg/day of pravastatin vs. placebo.26 Petronio et al. 

compared 20 mg/day of simvastatin vs. placebo.24 The study of Yokoyama et al. 

compared 10 mg/day of atorvastatin vs. placebo control.25 Nishioka et al. compared the 

administration of different statin regimens (pravastatin 10 mg/day, atorvastatin 10 

mg/day, simvastatin 5 mg/day or fluvastatin 20 mg/day) vs. placebo control.23 Tani et al 

compared pravastatin 10 mg/d in patients whose LDL-C level was < 140 mg/dl or 20 

mg/d in patients whose LDL-C level was > 140 mg/dl vs. control.27 Finally, patients in 

the observational study of Jensen et al. received increasing doses of simvastatin to reach 

an LDL-cholesterol level <3.0 mmol/L.22

Except from 2 studies 20,23, all investigation excluded patients presenting with an acute 

coronary syndrome.  

Effect on coronary plaque volume 

Figure 1 shows the WMD in plaque volume between follow-up and baseline with 

respective 95% CI at a mean follow-up of 9.8±4.9 months. There was a significant 

reduction in coronary plaque volume over time [WMD –5.77 mm3 (95%CI -10.36, -

1.17, p=0.01)], with no significant heterogeneity between studies (p=0.47).

According to pre-specified subgroup analyses evaluating the studies according to the 

length of the follow-up (table 2), similar trends were noted either in studies with a 6-

month follow-up [158 patients, WMD -5.07 mm3 (95%CI -10.67, 0.53, p=0.08)], or in 

studies with longer follow-up [626 patients, WMD -6.67 mm3 (95%CI -19.62, 6.28, 

p=0.31)], albeit significant plaque regression did not occur, possibly due to a smaller 

sample size. No significant heterogeneity (p=1.00) between studies was found for the 
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former subgroup analysis, whereas a significant heterogeneity between studies was 

present for the later analysis (p=0.06). 

Studies where the achieved LDL-C level was lower than 100 mg/dl showed a strong 

trend for plaque regression [443 patients, [WMD -7.88 mm3 (95%CI -16.31, 0.55, 

p=0.07)]. Conversely, studies where the LDL-cholesterol achieved was higher than 100 

mg/dl showed that the trend toward plaque regression (table 3) was less evident [341 

patients, WMD -4.22 mm3 (95%CI -10.27, 1.82, p=0.17)]. Also in these subgroup 

analyses, no significant heterogeneity between studies (respectively p=0.23 and p=0.7 

6) was noted. 

After a mean follow-up of 7.7±2.9 months, plaque volume remained substantially 

unchanged when evaluating the control groups not receiving statin therapy (7 groups, 

206 patients [WMD 0.13 mm3 (95%CI -4.42, 4.68, p=0.96)], with no heterogeneity 

between studies (p=0.83).

Figures 2 and 3 show the WMD between follow-up and baseline in lumen and in vessel 

volume respectively, in patients receiving statin therapy. There was no significant 

change in coronary lumen volume over time [WMD 1.20 mm3 (95%CI –3.48, 5.88, 

p=0.61)], with no significant heterogeneity between studies (p=0.99). There was also no 

significant change in vessel volume over time [WMD –1.48 mm3 (95%CI -10.06, 7.09, 

p=0.73)], with no significant heterogeneity between studies (p=1.00).

Finally, the funnel plot showed no evidence of publication bias (figure 4). 
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Discussion

In the present systematic overview, statins were found to promote significant coronary 

plaque regression as assessed by IVUS. Nine studies and 11 statin arms were included 

in this meta-analysis where after a follow-up of around 10 months a significant 

regression of coronary atherosclerotic plaque volume was evident. Our data are further 

supported by the substantial statistical homogeneity between the included studies. 

Atherosclerosis is a dynamic disease. The presence of cardiovascular risk factors has 

been related to endothelial dysfunction 29 and such impairment was found to lead to 

increased permeability, extracellular accumulation of lipids, smooth muscle cell 

proliferation and ultimately linear progression of plaque.30 On the other hand, it has 

been clearly established that plaque rupture and its subsequent healing can cause rapid 

progression.31,32 Hence, the natural history of atherosclerotic plaque is unpredictable, 

lacking a constant growth pattern.

Atherosclerotic plaque regression after the onset of an intensive statin therapy strategy 

has been previously reported in the peripheral circulation.5-7,33 The mechanisms 

involved in such process are still not fully elucidated, being so far ascribed to changes 

in LDL-C and HDL-C.5,18,34 It has been suggested that, by decreasing the lipid content 

of plaques and promoting a shift towards a more stable phenotype, statins may induce a 

“plaque stabilization” effect. Indeed, 3 of the studies included in the present meta-

analysis found significant differences in surrogates of plaque composition despite no 

significant changes in plaque volume.21,25,26 Furthermore, statins have shown to reduce 

the inflammatory burden of plaques as well as to improve the endothelial function.35-37

It is likely therefore that the antiatherosclerotic effect of statins is pleomorphic and 

effective against the two major mechanisms of atherosclerotic plaque progression.
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Aside from the aforementioned unpredictability of the disease, differences in the 

baseline atherosclerotic burden, in the intensity of the installed therapies and in patient 

demographics make the time-to biological effect hard to determine. Former clinical 

studies suggested that statin-induced plaque regression was only attainable after at least 

one-year of therapy.11,33 In turn, and in line with histopathological studies that 

demonstrated an early stabilizing and reductive effect of statins on atherosclerotic 

plaque,5,38 we did not identify a major difference in the outcome of studies with short 

and long-term follow-up (table 2). Separately and interestingly, studies in which the 

achieved LDL-C level was <100 mg/dl, showed a strong trend towards regression (table 

3), supporting the association between the changes LDL-C and plaque volume.28 This 

finding was in line with a recent non-invasive imaging study that identified a greater 

regression in patients who reached an LDL-C level < 100 mg/dl. 6 Finally, it is 

noteworthy that the reduction in plaque volume did not imply a significant increase in 

lumen volume, confirming the lack of sensitivity of conventional angiography to detect 

the effect of statins on the change in lumen size. 

Overall, our data endorses the LDL-C target level proposed by the NCEP Adult 

Treatment Panel-III guidelines and should add evidence to further encourage physicians 

to enhance their attempt to reach such goal. 

The results of our meta-analysis are indirectly further reinforced by the lack of 

regression in patients assigned to placebo. In these patients no substantial modification 

of plaque volume was noted over time.  

Although IVUS is a highly accurate tool to measure changes in the vessel wall, factors 

such as intra- and inter-observer variability, severely calcified vessels and artifacts can 

impair the reproducibility of serial measurements.39,40,41 It is therefore important to 

13

establish new standards regarding the acquisition, analysis and reporting of IVUS  

clinical studies. 

The present meta-analysis demonstrates that a significant reduction in coronary plaque 

volume, measured invasively, can be achieved using statin therapy. Still, the 

discordance between the clinical effects of statins and their effects on plaque volume 

remains striking. An adjunctive significant effect on plaque composition may 

potentially explain such difference and is currently the subject of intensive research 

efforts.21,25,26
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Limitations 

This meta-analysis was not based on individual data. Furthermore, only one vessel was 

interrogated with IVUS, potentially not being representative of the total burden of the 

entire coronary tree. Although no significant heterogeneity was present between studies, 

bias adjudicated to small trials cannot be fully disregarded. Furthermore, minor 

differences regarding IVUS methodology could potentially influence our findings.  

Conclusions

Statin therapy, in particular when achieving the target LDL-C < 100 mg/dl level, 

appears to promote a significant regression of plaque volume in coronary artery 

segments as measured by IVUS.  
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FIGURE LEGENDS 

Figure 1. Weighted mean difference (WMD) with 95% confidence interval (CI) of 

difference in plaque volume between follow-up and baseline in the statin arm of the 

included studies. 

Figure 2. Weighted mean difference (WMD) with 95% confidence interval (CI) of 

difference in lumen volume between follow-up and baseline in the statin arm of the 

included studies. 

Figure 3. Weighted mean difference (WMD) with 95% confidence interval (CI) of 

difference in vessel volume between follow-up and baseline in the statin arm of the 

included studies. 

Figure 4. The funnel plot shows no asymmetry therefore no publication bias present in 

the meta-analysis. 
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ABSTRACT

Background: The EUROPA trial, a double-blind, multicenter trial in 12,218 patients has 

shown that the long-term administration of 8 mg/day of perindopril induces a significant 

reduction in adverse clinical events in patients with established CHD.

Objective: The Perspective study, a substudy of the Europa Trial, was designed to 

evaluate the effect of long-term administration of perindopril on coronary plaque 

progression as assessed by quantitative angiography (QCA) and intravascular 

ultrasound (IVUS).

Methods: The Perspective study evaluated 244 patients (mean age 57 yrs, 81 % male). 

Evaluable QCA was obtained from 194 patients, 96 patients randomized to perindopril 

and 98 patients to placebo. Concomitant treatment at baseline consisted of aspirin (90%) 

lipid-lowering agents (70%) and ß-blockers (60%) The primary endpoint was the 

difference of minimum (MinLD) and mean (MeanLD) lumen diameter (QCA) measured 

at baseline and 3-year follow-up between the perindopril and placebo groups. The 

difference of mean plaque cross-sectional area (PCSA) between groups (IVUS) was a 

pre-specified secondary endpoint. 

Results: After a median follow-up of 3.0 (range 1.9, 4.1) years, no statistically 

significant differences in QCA measurements were detected between perindopril and 

placebo groups [MinLD (-0.07±0.4 mm vs. -0.02±0.4 mm, p= 0.34) and of MeanLD (-

0.05±0.2 mm vs -0.05±0.3 mm, p= 0.89)]. The mean absolute reduction in PCSA was 

not significantly different between perindopril and placebo groups (-0.18±1.2 mm2 vs. -

0.02±1.2 mm2, p= 0.48).  
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Conclusion: Long-term administration of perindopril had no significant effect on 

progression of CAD as assessed by QCA and IVUS in patients on concomitant intensive 

medical treatment.    

Keywords: atherosclerosis, progression/regression, ultrasonography, ace-inhibitor 
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Introduction 

Angiotensin-converting enzyme (ACE) inhibitors were shown to be effective in 

reducing coronary adverse events in high risk patients and in patients with stable angina 

without overt heart failure although they provided no benefit in a low risk population 

(1,2).

Animal studies have established that ACE inhibitors exert an anti-atherosclerotic effect, 

stabilizing plaque progression and even altering plaque composition, thus potentially 

offering a mechanistic explanation for the reduction in clinical events (3-6).

More recently, human studies of carotid arteries demonstrated that ACE inhibitors had a 

beneficial effect on atherosclerosis progression (7,8). Yet, no data are available on the 

efficacy of these agents on the progression of atherosclerosis in the coronary tree. 

The EUROPA trial, a prospective, double-blinded, randomized controlled trial; 

demonstrated that 8 mg/day of perindopril during 4 years induced a 20% relative risk 

reduction of cardiovascular adverse events in patients with stable coronary artery 

disease (9).  

The PERindopril’s Prospective Effect on Coronary aTherosclerosis by IntraVascular 

ultrasound Evaluation (PERSPECTIVE) was a substudy of EUROPA trial that 

evaluated the effect of long-term administration of perindopril on coronary plaque size 

as assessed by angiography and intra-coronary ultrasound (IVUS).
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Methods

The EUROPA trial evaluated the effect of an ACE-inhibitor perindopril on prevention

of cardiovascular events in 12,218 patients with stable coronary artery disease. The 

PERSPECTIVE was a sub-study of the EUROPA trial that sought to explore the effect 

of perindopril on atherosclerosis progression/regression using coronary angiography 

and IVUS. 

The methodology of the EUROPA trial has been extensively described elsewhere (9). In 

the run-in period, enrolled patients received 4 mg/d oral perindopril for 2 weeks in 

addition to their normal medication, followed by 8 mg/d for 2 weeks if the initial dose 

was tolerated. At the end of the run-in period, patients were randomly assigned to 

perindopril 8mg/d or placebo for at least 3 years. The efficacy outcome, was the rate of 

major adverse cardiac events (MACE), defined as cardiovascular mortality, non-fatal 

MI and cardiac arrest with successful resuscitation.  

 Patients included in the main EUROPA trial in which a coronary angiogram was 

indicated were eligible for the study. In addition to EUROPA’s inclusion and exclusion 

criteria, anatomically suitable vessels for the QCA / IVUS sub-study were required.

The institutional ethics committees of all participating centers approved the study 

protocol and informed written consent was obtained from all patients.  

Angiographic acquisition 

Coronary angiograms were obtained at baseline before medication was started and at 

follow-up after at least 3 years. A minimum of 3 orthogonal projections of the region of 

interest were filmed at baseline, and the same projections were used at follow-up. 

Quantitative coronary angiographic (QCA) analysis was performed by an independent 

core laboratory (Cardialysis BV, Rotterdam, The Netherlands) as previously described 
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with a validated computer-based edge-detection system (CAAS II; Pie Medical, 

Maastricht, The Netherlands) (10). The catheter tip was cleared of contrast for accurate 

calibration. Interpolated reference diameter, minimal luminal diameter, mean lumen 

diameter, and diameter stenosis were measured at both time points using the “worst” 

view of an end-diastolic frame. 

Intravascular Ultrasound acquisition  

IVUS was acquired using 20, 30 and 40 MHz imaging catheters following coronary 

angiography. The catheter was advanced distal to an anatomically identifiable landmark, 

allowing the evaluation of a segment of at least 30 mm. Cine runs, before and during 

contrast injection, were performed to define the position of the IVUS catheter before the 

pullback was started. Using an automated pullback device, the transducer was 

withdrawn at a continuous speed of 0.5 mm/s until the ostium. IVUS data was acquired 

after the intracoronary administration of nitroglycerin and stored on S-VHS videotape. 

The videotapes were digitized on a computer system, transformed into the DICOM 

medical image standard and stored on an IVUS Picture Archiving and Communications 

System (PACS). After a 3-4 year follow-up period, patients underwent repeat 

catheterization and IVUS examination of the same region of interest (ROI) using an 

identical IVUS imaging catheter. 

Intravascular Ultrasound analysis 

Quantitative coronary ultrasound (QCU) analysis was performed by an independent 

core laboratory (Cardialysis BV, Rotterdam, The Netherlands) using validated semi-

automatic contour detection software (Curad, version 3.1, Wijk bij Duurstede, The 

Netherlands). The IntelliGateTM image-based gating method was applied to eliminate 

motion artifacts by retrospectively selecting end-diastolic frames (11).  
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The cross-sectional areas (CSA) of both the lumen and vessel (defined as the external 

elastic membrane EEM) were calculated for each cross-sectional image. The contours of 

the EEM and the lumen-intima interface enclosed an area that was defined as the 

coronary plaque plus media area.  

In the baseline IVUS study a region of interest (ROI) was identified using landmarks 

such as side-branches and the coronary ostium. At 3-year follow-up, the same matched 

ROI was identified using the same landmarks.  

Study endpoints 

The primary endpoint was the difference of minimum and mean lumen diameter (QCA) 

measured at baseline and 3-year follow-up between the perindopril and placebo groups. 

Pre-specified secondary endpoints were the difference of mean plaque CSA (mm2) and 

in plaque volume (mm3) as measured by IVUS at baseline and at 3-year follow-up 

between groups. 

The development of new lesions (� 20 % decrease in minimum lumen diameter 

measured by QCA) was another pre-specified secondary endpoint. 

Statistical analysis 

Discrete variables were presented as counts and percentages or median (interquartile 

range) when indicated. Continuous variables were presented as means ± standard 

deviation.

Based on a previous QCA progression/ regression trial, we calculated a sample size of 

99 paired subjects to achieve a power of 80 %, considering an type I error probability of 

0.05 (two-sided), a difference (between groups) in minimum lumen diameter of 0.08 

and a within group standard deviation of 0.20 (12). In this calculation a drop-out rate of 

15 % non-analyzable patients was included. Differences between groups were assessed 
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by paired and unpaired Student’s t test when applicable. For the comparison between 

categorical variables the x2 test was used. A two-sided p value <0.05 was required for 

statistical significance. All analyses were performed using SAS 6.12 software (SAS

Institute Inc.).
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Results

Out of 244 patients who were randomized, 194 had complete matched baseline and 

follow-up angiograms. The reasons for incomplete angiographic follow-up are depicted 

in figure 1.

The baseline demographics of the study population are presented in table 1. Coronary 

risk factors and baseline blood pressure were well balanced, showing no statistical 

differences between groups. At baseline and during the study period, more than 70 % of 

patients received lipid-lowering treatment more than 90 % platelet-inhibitors and about 

60% were on ß-blocker treatment.  

At a median follow-up (intention to treat) of 3.4 (range 1.5, 4.3) years, the rate of 

adverse events (defined as cardiac death, myocardial infarction and cardiac 

resuscitation) was not statistically different between the perindopril and placebo groups 

[6 (4.7%) vs. 7 (6.0%), RR -3.6, 95% CI (-21.1, 13.9)] and slightly lower than the event 

rate reported in the EUROPA trial (8 % vs. 10 %).  

QCA measurements 

Follow-up angiography was performed after a median of 3.0 (range 1.9, 4.1) years. The 

effects of perindopril on the angiographic findings are shown in table 2. The difference 

of minimum lumen diameter and mean lumen diameter between baseline and follow-up 

in the perindopril group did not differ from that observed in the placebo group (-

0.07±0.4 mm vs. -0.02±0.4 mm, p= 0.34; and -0.05±0.2 mm vs. -0.05±0.3 mm, p= 0.89, 

respectively). Twelve (12.5 %) new lesions developed in the perindopril group, and 7 

(7.1 %) in the placebo group (p= 0.30). 

IVUS analyses 
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A total of 144 matched evaluable IVUS were available at follow-up. 32 patients were 

excluded due to sub-optimal IVUS quality (caused by severely calcified vessels, severe 

image artifacts or absence of clear anatomical landmarks). The QCU results are shown 

in table 3. There was no significant differences in IVUS measurements between groups. 

In the perindopril group, the serial absolute change in mean plaque CSA compared with 

baseline was -0.20±1.6 mm2 and for the placebo the change was -0.09±1.2 mm2, (p= 

0.63). The absolute change in plaque volume did not differ between groups (-2.55±44.6 

mm3 in the perindopril group versus -3.74±36.3 mm3 in the placebo group, p= 0.86). 
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Discussion

The PERSPECTIVE sub-study was designed to demonstrate whether an effect of 

perindopril on plaque size would explain the beneficial clinical effect observed in the 

main EUROPA study. A mechanistic explanation was supported by the fact that, the 

reduction in cardiovascular events in the main trial was larger than that expected for the 

observed reduction in blood pressure (9). This was further enforced by the observations 

of the SECURE study (7), a sub-study of the HOPE trial (1) that identified a significant 

beneficial effect of ACE inhibitors on carotid atherosclerosis progression at 4.5 years of 

follow-up.

The present study demonstrated that in patients with established CAD, stable angina and 

without overt heart failure the administration of perindopril on top of concomitant 

intensive medical treatment has no significant effect on progression of atherosclerosis as 

assessed by QCA and IVUS.

These findings suggest that the clinical benefit obtained in the EUROPA trial cannot be 

attributed to their effect on plaque size or on the development of new lesions (9).  

There are several hypotheses for the lack of effect of perindopril on plaque size in our 

sub-study in coronary arteries. 

First, the duration of the follow-up was longer in the EUROPA trial (~4 vs. ~3 years). 

In addition, the event rate was higher in the EUROPA trial than in its present substudy.

Second, in the Perspective substudy both the treated group and placebo group were 

intensively treated with aspirin and lipid-lowering agents during the study period. The 

latter have demonstrated to be effective agents to reduce coronary plaque progression 

and might therefore have obscured potential anti-atheroscletic effects of perindopril 

(13). Indeed, both placebo and treatment group showed no evidence of plaque 
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progression, contrary to the observation that atherosclerosis progresses in coronary 

patients not on statin treatment (14).    

Third, it may be possible that perindopril has no effect on plaque size, and that its 

beneficial clinical effect is related to an improvement in the endothelial function or to a 

shift in the histological composition of plaques (3,6).  Whether a significant 

improvement in the endothelial function is induced by long-term treatment with 

perindopril will be addressed by another EUROPA substudy (15). Fourth, only a single 

coronary artery segment was interrogated, thus potential coronary artery disease 

progression in other segments of the coronary tree could have been missed. Finally, it 

may be speculated that perindopril has no effect of coronary plaques, as opposed to a 

beneficial effect of ACE-inhibitors on carotid plaques shown in the SECURE study (8). 

However, other reasons may also explain the difference in outcome between the 2 

studies. A shorter follow-up period, a lower risk population (adverse events rate of 6 % 

vs. 14 %), and a higher frequency of standard medical therapy of the patients in the 

PERSPECTIVE study compared to the patients in the SECURE study might explain the 

difference in outcome between the two studies. In particular, 73 % versus 35 % of the 

patients were under lipid lowering therapy in the PERSPECTIVE and SECURE studies 

respectively, while aspirin (~97 % vs. ~85 %) and beta-blockers (~60 % vs. ~42 %) 

therapy were also more frequently administered in our study (7).  

Limitations 
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The present study has a number of limitations. A substantial number of patients were 

excluded from the IVUS analysis due to sub-optimal image quality and severe 

calcification precluding accurate plaque size assessment. This has resulted in a rather 

small study sample size and larger studies may be required, using IVUS as primary 

endpoint, to conclusively determine the efficacy of ACE inhibitors on progression of 

atherosclerosis. Finally, different IVUS catheters with different specifications were used 

over a 3-year period which may have induced small variations in measurements and 

thus may have obscured potential subtle changes in plaque measurements, even though 

the measurements obtained with the various 30 MHz catheters were adjusted according 

to a previously reported mathematical algorithm (16).   

Conclusions

The results of the present study suggest that in patients with established CAD, stable 

angina and without overt heart failure the clinical benefit obtained with perindopril 

treatment during a period of 3 year cannot be attributed to an effect on coronary plaque 

size.
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Temporal change in plaque composition by IVUS

First-in-man prospective evaluation of temporal changes 
in coronary plaque composition by in vivo intravascular
ultrasound radiofrequency data analysis: an Integrated
Biomarker and Imaging Study (IBIS) substudy

Abstract
Background: The composition of atherosclerotic coronary plaque is a major determinant of future clinical

events. Spectral analysis of IVUS radiofrequency data has demonstrated potential to provide detailed quan-

titative information on plaque composition. We prospectively assessed plaque composition in matched

coronary segments at a six-month interval and sought to explore correlations between temporal changes

in plaque composition and circulating biomarkers. 

Methods and results: Twenty coronary segments (mean baseline length, 29.9±14.1mm) with non-

significant angiographic (<50 % diameter) stenosis, in non-culprit vessels of patients (n=20) referred for

percutaneous intervention, were studied at baseline and six-month follow-up. Spectral analysis of IVUS

radiofrequency data, obtained with a 30 MHz catheter in segments matched on predefined anatomic land-

marks, was performed with IVUS-Virtual Histology™ software. After 6 months, an overall decrease in the

level of different biomarkers of instability was present. There were no significant changes in absolute 

values (mm2) of plaque components; calcium (0.036±0.05 vs. 0.033±0.04), fibrous (2.68±1.5 vs.

2.90±1.5), fibrolipidic (0.77±0.4 vs. 0.73±0.4), and lipid core (0.42±0.4 vs. 0.52±0.5), between baseline

and six-months. Nor did any conventional IVUS variable (lumen, vessel, or plaque cross-sectional area, or

percent area stenosis). Change in lipid core area (r=0.51, p=0.024), fibrous area (r=0.49, p=0.033) and

calcium area (r=0.63, p=0.004), were significantly correlated with change in Lp-PLA2 activity.

Conclusions: Routine medical care does not result in significant overall changes in IVUS-derived plaque

size or composition over a 6-month period. This study provides indication of quantifiable boundaries

beyond which modifications in tissue composition might be interpreted as statistically significant. 

KEYWORDS
Ultrasonography,
Atherosclerosis,
Coronary disease.
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Introduction
Despite significant advances in diagnosis and therapy, coronary ath-

erosclerosis remains a major cause of death in developed coun-

tries1. Pathological studies have related specific coronary plaque

characteristics to fatal ischemic events but conventional imaging

techniques cannot reliably identify them prospectively. Coronary

angiography is the standard invasive technique to evaluate the pres-

ence and extent of coronary atherosclerosis. However, due to the

phenomenon of positive vessel remodelling advanced atherosclerot-

ic disease is often present despite only minimal lumen encroach-

ment on angiography2-4. Most future atherothrombotic events will

occur at the site of these non-obstructive plaques5. The histological

composition of atherosclerotic plaque has been linked to the fate of

the plaque as described by Davies et al., who showed that plaques

with ≥ 40 % of lipid core harbor a higher risk of undergoing rupture

and subsequent thrombosis6. Thus far, although different lipid-low-

ering strategies have demonstrated a clear clinical benefit, changes

in local plaque burden are modest, ranging from no changes to

slower progression or at most halting progression of coronary

atheroma7-10. Accordingly, a beneficial change in composition might

be present and yet remain unnoticed. This hypothesis is supported

by experimental, and other in vivo observations9,11.

Plaque characterization through visual interpretation of gray scale

IVUS is imprecise, specially when assessing heterogeneous, lipid-

rich plaques12. In contrast, spectral analysis of IVUS radiofrequen-

cy data has demonstrated potential to provide detailed quantitative

information on plaque composition and has been validated in stud-

ies of explanted human coronary segments13.

Circulating biomarker levels have been shown to predict clinical

events in seemingly healthy subjects and in large cohorts of patients

with coronary disease14. The combination of novel imaging tech-

niques and the assessment of circulating biomarkers could have a

potential role in refining the risk stratification in patients and even-

tually aid further development of novel drug therapies.

This pilot study evaluated for the first time, human coronary ather-

osclerotic plaque composition at two timepoints six months apart

with ultrasound radiofrequency data analysis. In addition, we

explored the correlation between different plaque components and

circulating biomarker levels. 

Methods

Patients

The Integrated Biomarker and Imaging Study (IBIS) was a prospec-

tive, single center, non-controlled observational study. In this study

84 patients underwent repeated invasive and non-invasive imaging

(angiography, IVUS, palpography, multislice computed tomography)

at baseline and at 6-month follow-up in the same matched Region

Of Interest (ROI). The ROI was determined using identifiable

anatomic landmarks (side branch or the ostium of the vessel).

Concomitantly, multiple biomarkers were assessed. IVUS-Virtual

Histology™ (IVUS-VH) only became available late in the enrollment

period and the 20 patients undergoing serial IVUS-VH constituted

the present study population. 

In the IBIS trial, patients were eligible if they were referred for per-

cutaneous coronary intervention (PCI) and had a non-significant

(< 50 %) lesion, within a ROI in a non-intervened vessel that could

be safely interrogated with IVUS. Major relevant exclusion criteria

were renal dysfunction (creatinine > 2 mg/dl), life expectancy less

than one year, or factors that made follow-up difficult. The Medical

Ethics Committee of the Erasmus Medical Center approved the

study protocol and all patients gave written informed consent. All

imaging techniques were analyzed independently. All patients

underwent repeat IVUS-VH imaging at 6 month follow-up, in the

same matched ROI as illustrated in Figure 1. 

IVUS-VH acquisition and analysis

Details regarding the validation of the technique, on explanted

human coronary segments, have previously been reported13,15,16.

Briefly, IVUS-VH uses spectral analysis of IVUS radiofrequency data

to construct tissue maps that classify plaque into four major com-

ponents. In preliminary in vitro studies, four histological plaque

components (fibrous, fibrolipid, lipid core and calcium) were corre-

lated with a specific spectrum of the radiofrequency signal13. These

different plaque components were assigned color codes. Calcified,

fibrous, fibrolipidic and lipid core regions were labeled white, green,

greenish-yellow and red respectively.

IVUS-VH data were acquired, during a continuous pullback (0.5 mm

per second) with a commercially available mechanical sector scanner

(Ultracross™, 30 MHz catheter, Boston Scientific, Santa Clara, CA, USA),

by a dedicated IVUS-VH console (Volcano Therapeutics, Rancho

Cordova, CA, USA). The IVUS VH data were stored on a CD-ROM and

sent to the imaging core lab for offline analysis (Cardialysis,

Rotterdam, the Netherlands). IVUS B-mode images were recon-

Abbreviations
IVUS = Intravascular ultrasound

Figure 1. (a) The use of identifiable side-branches as anatomic
landmarks ensures that the same region of interest (ROI) is analysed
at baseline (above) and follow-up (below). (b) Cross-sectional areas,
at the two timepoints, can also be matched using side-branches
(star) and other identifiable anatomical landmarks. (c) Virtual
Histology™ reconstruction of b, depicting essentially unchanged
plaque composition. 
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structed from the RF data by custom software (IVUSLab, Volcano

Therapeutics, Rancho Cordova, CA, USA). Subsequently, semi-automatic

contour detection of both the lumen and the media-adventitia interface was

performed. To account for catheter-to-catheter variability the acquired RF

data was normalized using a technique known as “Blind Deconvolution”.

Blind deconvolution is an iterative algorithm that deconvolves the

catheter transfer function from the backscatter, thus enabling auto-

mated data normalization17,18. Compositional and geometrical data

were expressed as mean cross sectional areas (CSA, mm2). Plaque

area was defined as Vesselarea - Lumenarea and percent area stenosis

was defined as [(Vesselarea - Lumenarea)/Vesselarea] X 100. For describ-

ing geometrical data plaque was defined as plaque plus media

whereas for plaque compositional data the media was not included.

Biomarkers
Blood for biomarker analysis was centrifuged within 30 minutes and

stored at –70°C. Serum C-reactive protein (Diagnostic Systems

Laboratories), plasma interleukin 6 and tumor necrosis factor-α (R&D

Systems), were measured in the Human Biomarker Center

(GlaxoSmithKline, PA) with use of protocols provided by the manufac-

turer. Lipoprotein-associated phospholipase A2 activity assay meas-

ures the proportional release of aqueous 3H acetate resulting from the

enzymatic cleavage of the 3H acetyl-platelet activating factor substrate

(100 µM). N-terminal pro brain natriuretic peptide was measured

with use of a two-site electrochemiluminescent assay. The limits of

quantification were 0.0048 mg/L for C-reactive protein, 0.057 pg/mL

for interleukin-6, 3.92 nmol/min/mL for lipoprotein phospholipase

A2 activity, 10 pg/ml for N-terminal pro brain natriuretic peptide,

0.88 pg/mL for tumor necrosis factor-α, 0.062 ng/mL for sCD40L and

0.13 ng/mL for active MMP-9. Since Lp-PLA2 is known to be associ-

ated with LDL in plasma, we also measured LDL cholesterol19,20.

Statistical analysis
Discrete variables are presented as counts and percentages.

Continuous variables are presented as means ± standard deviations

(SD). Differences in means among groups were analyzed by a two-

tailed sample t-test. A P value of less than 0.05 was considered to

indicate statistical significance.

Bland Altman analysis plots were used to assess changes between

baseline and follow-up21. The limits of agreement were determined

by the mean difference between both techniques ± 2 SD.

Comparisons between quantitative outcomes were performed with

use of scatterplots and linear regression analysis (regression coeffi-

cient). Biomarkers were not normally distributed except for lipopro-

tein-associated phospholipase A2 activity. Thus, where appropriate,

analyses were performed after natural logarithmic transformation.

We looked for correlations between imaging endpoints and circulat-

ing biomarkers and calculated the univariate Pearson correlation

coefficients. Statistical analyses were performed with use of SAS

Version 8 (SAS Institute, Cary, NC). 

Results
Baseline patient (n=20) characteristics are presented in Table 1.

The population was relatively young, with a low (10%) prevalence

of diabetes; and 65% of the patients were receiving statin therapy

at baseline. The mean values of the conventional IVUS variables,

at baseline and follow-up, are presented in Table 2. Of note, the

length of region of interest was the same during serial studies

(29.9±14.1 mm vs. 29.3±13.8 mm, NS). After 6 months, there were

no significant changes in LDL-cholesterol (∆ 0.07±0.3 nMol/L,

p=0.36) and HDL-cholesterol (∆ –0.09±0.2 nMol/L, p= 0.09) levels.

Although there were no significant changes in mean vessel or

lumen cross-sectional areas, there were non-significant trends

towards an increase in absolute plaque area and percent area

obstruction (Table 2). 

Table 1. Patient’s demographical characteristics (n: 20)

Male sex (%) 18 (90)
Age (yr ± SD) 56.3±13.3
Diabetes (%) 2 (10)
Hypertension (%)* 7 (35)
Hypercholesterolemia (%)# 16 (80)
Current smoking (%) 3 (15)
Previous smoking (%) 11 (55)
Family history of coronary disease (%) 10 (50)
Previous myocardial infarction (%) 9 (45)

Medications at baseline
Statins (%) 13 (65)
Beta-blockers (%) 11 (55)
Angiotensin converting enzyme inhibitors (%) 4 (20)
Angiotensin II antagonist (%) 4 (20)

Clinical presentation
Stable angina (%) 7 (35%)
Unstable angina (%) 6 (30%)
Myocardial infarction (%) 7 (35%)

*Blood pressure ≥ 160/95 mmHg or treatment for hypertension, 
# total cholesterol > 215 mg/dl or treatment for hypercholesterolemia

Table 2. Intravascular ultrasound derived dimensions of vessel,
lumen, and plaque area and mean plaque burden at baseline and
six month follow-up. 

Mean cross-sectional 
area (mm2)±SD Baseline 6 months p value

Lumen 8.5±3.1 8.3±2.7 0.4866

Vessel 15.0±3.8 15.0±3.5 0.9369

Plaque 6.5±2.1 6.8±2.0 0.0742

Percent area stenosis (%) 44.2±10.7 45.7±9.8 0.0999

Plaque area refers to Vesselarea - Lumenarea. Percent area stenosis refers
to [(Vesselarea - Lumenarea)/Vesselarea] X 100. 

Plaque characterization using IVUS-VH 

Absolute values for major plaque components (calcium, fibrous,

fibrolipidic and lipid core), at baseline and follow-up, are presented

in Table 3. Overall, there were no significant changes over time.

These results are illustrated in graphic form in Figure 2. 

Bland Altman plots for conventional IVUS variables (Figure 3) and

for individual plaque components on IVUS-VH (Figure 4) show that

there were no systematic differences, for any variable, between

baseline and follow-up. The predominant components were fibrous

(68%) and fibrolipidic (20%) plaque. Typical examples of baseline

and follow-up findings are presented in Figures 1 and 5. 
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Table 3. Plaque composition at baseline and six month follow-up.

Mean cross-sectional Baseline 6 month p value
area (mm2)±SD

Calcium 0.036±0.05 0.033±0.04 0.7031

Fibrous 2.68±1.5 2.90±1.5 0.1412

Fibrolipidic 0.77±0.4 0.73±0.4 0.7118

Lipid core 0.42±0.4 0.52±0.5 0.2643

Changes in IVUS-VH vs. changes in biomarkers 

Temporal changes of biomarker levels are depicted in Table 4. There

was a significant decrease in Lp-PLA2 (p<0.0001), CRP (p=0.02),

IL-6 (p=0.004) and NT-pro-BNP (p=0.02). Active MMP-9 levels

increased (p=0.002). Among the seven biomarkers tested in the

IBIS trial, Lp-PLA2, activity emerged repeatedly as being significant-

ly correlated to the change in plaque composition observed by

IVUS-VH analysis. As shown in Figure 6, change in lipid core area

(r=0.51, p=0.024), fibrous area (r=0.49, p=0.033) and calcium

area (r=0.63, p=0.004), were significantly correlated with change in

Lp-PLA2. In parallel, the change in LDL cholesterol was also signifi-

cantly correlated with the change in lipid core area (r=0.61,

p=0.016, Figure 6D). In contrast, there were only non-significant

trends between changes in CRP or active MMP-9 and change in lipid

core area (r=0.45, p=0.061 and r=0.44, p=0.061, respectively).

Table 4. Levels of biomarkers at baseline and follow-up

Baseline Follow-up P value

Lp-PLA2 124.2±35.1 87.4±28.2 <0.0001
CRP 2.0±1.1 1.1±0.8 0.02
Active MMP-9 4.4±0.7 5.4±0.8 0.002
IL-6 1.9±1.4 0.9±1.1 0.004
sCD40L 0.7±0.6 0.9±0.7 0.51
NT-proBNP 5.3±1.3 4.6±0.9 0.02
TNF-α 0.7±0.3 0.7±0.8 0.97

Lp-PLA2: lipoprotein-associated phospholipase A2;
CRP: high sensitivity C-reactive protein, active; 
MMP-9: active metalloproteinase 9;
IL-6: interleukin 6;
sCD40l: soluble CD40 ligand;
NT-proBNP: N-terminal pro brain natriuretic peptide;
TNF-α: tumor necrosis factor alpha. 

Figure 2. Plaque composition in all 20 patients is plotted sequential-
ly on the x axis (A. Baseline, B. Follow-up). The y axis shows the total
percent area stenosis (colored peaks), the composition (calcium:
white, fibrous: green, fibrolipidic: greenish-yellow and lipid core: red)
and the external elastic membrane (EEM, gray line). After 6 months,
no major overall changes in coronary atherosclerosis regarding plaque
areas and compositional components are evident in all available
cross-sections.

Figure 3. This Bland-Altman plot demonstrates that there is no systematic change in any conventional intravascular ultrasonography parameter 
(A: lumen cross-sectional area (CSA), B: vessel CSA, C: plaque CSA and D: percent area stenosis) over the 6 month observation period.
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Discussion
Although pathological studies have demonstrated that the potential

of atherosclerotic coronary plaque to precipitate clinical events is

strongly influenced by plaque composition, no imaging techniques

in clinical use can reliably assess plaque composition11. In the IBIS

trial, we have prospectively evaluated non-flow limiting atheroscle-

rotic plaques with conventional and novel imaging techniques over

a 6-month observational period in order to establish the background

changes in the imaging parameters that reflect the variability and

reproducibility of the measurements in a contemporary patient pop-

ulation treated with conventional medications such as statins,

angiotensin-converting enzyme inhibitors and antiplatelet drugs.

The major finding of this study was that, over this relatively short

observational period, there were no significant changes in the mean

values of either classic IVUS parameters (vessel, lumen, or plaque

area, or percent area obstruction) or of novel IVUS-VH parameters.

Most IVUS studies on plaque progression have mandated follow-up

at a time-point between 12 and 18 months7-10,22. The absence of

significant changes on classic IVUS parameters, in the present

study, is therefore not unexpected. As this is the first prospective

study to assess serially plaque composition, using IVUS-VH tech-

nique, these findings must be interpreted as preliminary. The lack

of significant change in plaque composition, over a short time-peri-

od suggests that the technique is reproducible in vivo. Although

there were no significant changes in either mean values of classic

IVUS parameters or individual plaque components on IVUS-VH,

there was a trend towards an increase in plaque area, reflecting a

non-significant increase in lipid core area. This observation is con-

sistent with histopathological studies showing that the atheromatous

component of plaque enlarges in a linear fashion with increasing

degrees of cross-sectional narrowing and with the fact that the

lipid core is the most active component of the plaque23,24. In that

respect, it is remarkable to note that the majority of the relationships

between the biomarkers and the compositional nature of the plaque

concern the lipid core and among the biomarkers analyzed Lp-PLA2

exhibits the most active role. This enzyme plays a key role in medi-

ating the hydrolysis of oxidatively modified phosphatidylcholines in

LDL, thus generating lysophosphatidylcholine and oxidized fatty

acids, molecules that are implicated in several detrimental effects in

the vessel wall25-28. To what extent the observed changes in plaque

composition are mediated by Lp-PLA2 or its carrier, LDL cholesterol,

can be only addressed in the future larger studies with potent Lp-PLA2

inhibitors. It is noteworthy, however, that the change in levels of LDL

Figure 4. Panels a, b, c and d show Bland-Altman plots demonstrating that there is no systematic change in plaque composition over the 6 month
observation period. 
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Figure 5. Matched baseline and follow-up IVUS-VH cross-sections
from a patient who presented with an unheralded ST elevation
myocardial infarction and had no previous medical history of note.
There was a predominantly fibrous plaque (green) with islands of lipid
core (red), as illustrated in a cross-sectional image (Panel A) from the
baseline pullback. At six-months follow-up (Panel B), a matched
cross-section (the anatomic landmark was a side-branch, indicated by
the asterisk) shows a mainly fibrotic plaque with an apparent reduc-
tion in lipid core area. 
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was also positively correlated with changes in lipid core areas.

These findings make the observed association between imaging-

derived assessment of lipid core and both LDL (i.e., atherogenic

substrate) as well as Lp-PLA2 activity (i.e, enzyme responsible for

LDL-derived inflammatory mediators) more consistent. Aside from

the lipid core and the calcified components, the sclerotic compo-

nent of the vessel wall (fibrous tissue) accounted for almost 70% of

plaque area composition. This observation is concordant with pre-

viously reported morphometric data from postmortem studies23,

thus providing indirect evidence for the validity of the technique.

Plaque characterization in vivo has the potential to allow the assess-

ment of the effects of pharmacological therapies on the coronary

arteries, thereby enabling a better understanding of the disease and

further development of new pharmacologic interventions. Using

a slightly different approach, spectral analysis of radiofrequency

data has recently shown that statins can promote detectable

changes in plaque composition despite lacking a significant shift in

plaque burden29. This pilot clinical study provides some indication

on the boundaries of change beyond which modifications in tissue

composition might be interpreted as statistically significant change

in a contemporary population of patients with CAD that are treated

with routine medical therapy following PCI.

Limitations
The IBIS study was an observational, non-controlled, single center

study where plaque composition was re-assessed after a short time

(6 months). Only a relatively short vessel segment was interrogated

by IVUS (~30 mm) that may not be representative of plaque com-

position within the entire coronary tree. We also wish to underscore

that the results of the present study are derived from a small subset

of patients and will require further confirmation. Finally, the patient

population included in the IBIS study was intentionally heteroge-

neous and most had a high level of background medication.

Whether novel IVUS-based plaque imaging could refine risk stratifi-

cation in patients undergoing clinically mandated cardiac catheter-

ization will require long-term natural history studies, nonetheless,

information regarding plaque composition is obtained during a stan-

dard IVUS pullback without the need for additional instrumentation

of the coronary artery. 

Conclusions
After a 6-month observational period, no significant changes were

detected in plaque burden or composition. These results were

expected, since no new therapeutic intervention was tested and all

patients received routine medical care following PCI. This pilot clin-

ical study provides some indication on the boundaries of change

beyond which modifications in tissue composition might be inter-

preted as statistically significant. IVUS-VH may provide insights into

pathophysiology in studies of the natural history of coronary plaque.

Furthermore, it may provide surrogate endpoints and offers the

potential to allow the assessment of emerging pharmacologic inter-

ventions with novel mechanisms of action.
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Figure 6. Significant correlations were noted between temporal changes in Lp-PLA2 activity and the changes in lipid core (panel A) fibrous com-
ponent (panel B), and calcium (panel C) in mean cross sectional areas (CSA). Panel D shows the significant correlation between changes in lipid
core and LDL-cholesterol. Lp-PLA2 refers to lipoprotein-associated phospholipase A2.
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Summary and Conclusions 

Intravascular ultrasound (IVUS) has emerged as a highly accurate tool for the serial 

assessment of the natural history of coronary atherosclerosis and to evaluate the effect of 

different conventional and emerging drug therapies on the progression of atherosclerosis. 

The contemporary and future application of IVUS is linked to the study of different 

applications of the analysis of radiofrequency data, both for the improvement of plaque 

characterization and for the assessment of mechanical properties of plaques. Overall, such 

insightful analysis of the radiofrequency data might potentially aid the detection of plaques 

with allegedly high-risk characteristics and monitor their natural history in prospective 

natural history studies. 

This thesis provides important data regarding the internal and external validation of spectral 

analysis of radiofrequency data for the assessment of plaque composition in vivo.  

Technical issues 

From a technical standpoint, we have learned from this thesis that manual calibration leads 

to high variability and therefore an algorithm correcting for the inter-catheter variability is 

essential for the reproducibility of the technique (chapter 2.4).

The reproducibility of IVUS-VH was initially evaluated in an indirect fashion (chapter 

11.3) and later using an appropriate methodology (chapter 2.3). The latter study 

demonstrated that the geometrical and compositional output of IVUS-VH is acceptably 

reproducible. Finally, non-uniform pullbacks, particularly present when using phased array 
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catheters devoid of covering sheath, remain an issue of concern and should be taken into 

account for the conductance of longitudinal studies (chapter 2.3). 

Clustering of plaque composition along coronary arteries. 

Local factors seem to play a role in determining plaque progression and stability throughout 

the coronary tree. This has been demonstrated both in pathological studies and in clinical 

studies using angiography and IVUS (to detect plaque rupture in the latter). This thesis has 

extensively addressed the non-uniformity of plaque composition along the coronary tree 

(chapters 3.1, 3.2, 7.1 and 7.2).

In particular, we determined that plaque composition is not uniformly distributed along the 

left coronary artery with a progressive increase in necrotic core starting from the proximal 

half of the left main coronary artery to the most proximal segment of the left anterior 

descending or circumflex artery, followed by a steady decline towards those segments 

which are more distally located along the vessel. 

Influence of shear stress on atherosclerosis  

In chapter 4.1, we found that atherosclerotic plaques located at the ostium of the left 

anterior descending artery presented larger plaque burden, eccentricity and maximum 

plaque thickness than distal left main plaques. In addition, a larger calcified and necrotic 

core content was found distal to the circumflex take-off. Lesions were predominantly 

located in the outer wall of the carina and such location was associated with larger necrotic 

core content. Overall, these results confirm the key role of flow dynamics in the genesis 

and progression of atherosclerosis. 
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Vulnerable plaque 

In chapter 6.1, a prospective 3-vessel IVUS study, patients with at least one plaque rupture 

in their coronary tree had larger body mass index and overall worse IVUS-derived 

characteristics compared to patients without evidence of plaque rupture. In addition, plaque 

rupture sites had a worse phenotype than the most diseased sites of the same vessels. 

It has been established that thin-cap fibroatheroma (TCFA) lesions with large avascular, 

hypocellular, lipid cores, are the most prevalent substrate of plaque rupture. A large series 

of victims of sudden cardiac death suggested that ruptured TCFA was the precipitating 

factor for 60 % of acute coronary thrombi. The same study demonstrated that plaque 

rupture at TCFAs may also occur without clinical consequences. The ability to identify 

TCFA in patients would both help clarify the natural history of these lesions and provide 

the means to assess the effects of pharmacological or other interventions.  

In chapter 7.1, we found that IVUS-VH findings, compatible with IVUS-derived TCFA 

(IDTCFA), were common in non-culprit lesions of patients undergoing percutaneous 

intervention in another vessel. In addition, the prevalence of IDTCFA was significantly 

higher in patients who presented with ACS compared to stable patients and the distribution 

of IDTCFA lesions along the coronary vessels was clearly clustered. These findings were 

further confirmed in a 3-vessel population (chapter 7.2). 

In chapter 8.1, we verified in vivo the relationship between plaque composition and 

coronary remodeling. Necrotic core size was significantly larger in coronary lesions that 

demonstrated positive remodelling than in those that experienced vessel shrinkage. 
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Furthermore, the fibrotic burden of the plaque was significantly and inversely correlated to 

the remodeling index.  

Combining different invasive imaging techniques 

Intravascular ultrasound palpography is a technique that allows the assessment of local 

mechanical tissue properties. This technique has shown a high sensitivity and specificity to 

detect vulnerable plaques in vitro. The relationship between mechanical and compositional 

properties of coronary atherosclerosis has not been fully elucidated. In chapter 9.2, we 

sought to explore in vivo the relation between mechanical (palpography) and compositional 

(IVUS-VH) properties of matched cross-sectional areas using novel catheter-based 

techniques. IVUS-VH showed an acceptable sensitivity to detect high strain as assessed by 

palpography. In turn, the specificity was low, reflecting a high number of false positives. Of 

interest, a significant inverse relationship was present between calcium and strain levels 

and the contact of necrotic core tissue with the lumen was found the only predictor of the 

detection of high strain. 

In chapter 9.3, we evaluated the sensitivity and specificity of 3-D ECG-gated IVUS to 

detect deformable (high strain) plaques assessed by palpography. The sensitivity was low 

and the specificity was high. Nevertheless, it should be mentioned that this small study 

suffered from several limitations. 

Plaque progression/regression 

IVUS has become the gold standard to assess in vivo the effect of conventional and novel 

medical therapies on plaque size and composition. In this respect, we have evaluated the 

geometrical and compositional agreement between mechanical and rotational catheters 
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(chapter 2.1). A significant variability in direct measurements and plaque echogenicity was 

identified confirming the importance of the use of a single IVUS catheter for longitudinal 

measurements. 

Chapter 11.1 is a meta-analysis of all clinical studies that assessed IVUS-based 

progression/regression of coronary atherosclerosis to evaluate whether the treatment with 

statins can promote coronary plaque regression over time. In this study, we found that statin 

therapy, in particular when achieving the target LDL-C < 100 mg/dl level, appears to 

promote a significant regression of plaque volume in coronary artery segments as measured 

by IVUS. 

Additionally, we evaluated the effect of ACE-inhibitors on coronary atheroslcerosis and our 

results suggest that in patients with established CAD, stable angina and without overt heart 

failure, the clinical benefit obtained with perindopril treatment during a period of 3 year 

cannot be attributed to an effect on coronary plaque size.

Conclusion

We believe that the work presented in this thesis is of value to better understand the extent, 

distribution, morphology and composition of atherosclerosis in living patients. 

We have provided important data regarding the accuracy of an in vivo tissue 

characterization technique (IVUS-VH). Among our findings, we have identified a potential 

in vivo surrogate of thin cap fibroatheroma, the most prevalent predecessor of plaque 

rupture. Nevertheless, interpretation of our findings must be cautious until conclusive data 

supplied by prospective natural history studies is released. 
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Samenvatting en conclusies 

Intravasculaire echo (IVUS) is uitgegroeid tot een accurate methode voor het bestuderen van 

de ontstaanswijze van atherosclerose en IVUS is effectieve techniek gebleken in het 

beoordelen van het effect van verschillende conventionele en nieuwe farmacologische 

behandelingen op het gebied van atherosclerose. De toepassingen van IVUS zijn gekoppeld 

aan de verschillende toepassingen van de analyse van radiofrequency data, zowel ter 

verbetering van plaque karakterisering als voor de beoordelingen van de mechanische 

eigenschappen van de plaque. Inzicht in de analyse van radiofrequency data kan voordeel 

bieden in de  opsporing, beoordeling en monitoring van potentiële “hoog risico” plaques in 

een verscheidenheid aan prospectieve studies.

Dit proefschrift verschaft belangrijke gegevens betreffende de interne en externe validiteit van 

de analyse van radiofrequency data ter beoordeling van plaque samenstelling in vivo. 

Technische zaken 

Vanuit een technisch oogpunt hebben we uit dit proefschrift geleerd dat manuele calibratie 

leidt tot een hoge variabiliteit en daarom is een algoritme dat corrigeert voor de inter-katheter 

variabiliteit essentieel voor de reproduceerbaarheid van de techniek (hoofdstuk 2.4). 

De reproduceerbaarheid van IVUS Virtuele Histologie (IVUS-VH) werd aanvankelijk 

geëvalueerd op een indirecte  manier (hoofdstuk 11.3) en later op een gestructureerde manier 

(hoofdstuk 2.3). De laatstgenoemde studie toonde aan dat de geometrie en samenstelling van 

de plaque, verworven door IVUS-VH, acceptabel en reproduceerbaard was. Uiteindelijk 

presenteren niet gelijkvormige pullbacks zich met name wanneer “phased array katheters” 

verstoken raken van de omhullende sheath. Dit blijft een rede tot bezorgdheid en moet in 

overweging worden genomen bij het oprichten van longitudinale studies (hoofdstuk 2.3). 
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Clustering van plaque samenstelling  in de coronairarteriën 

Lokale factoren lijken een rol te spelen in de beoordeling van plaque progressie en stabiliteit 

doorheen het coronaire stelsel. Dit is zowel in pathologische als klinische studies aangetoond, 

middels het gebruik van angiografie en IVUS (om scheuring van de plaque op te sporen). Dit 

proefschrift heeft uitgebreid aandacht besteed aan de niet uniforme plaque samenstelling 

doorheen de coronairarteriën (hoofdstuk 3.1, 3.2, 7.1 en 7.2). 

Meer specifiek hebben we aangetoond dat de samenstelling van de plaque niet uniform 

verdeeld is in de linker coronairarterie met een progressieve toename in de hoeveelheid van 

de grootte van de necrotische kern, vanaf de hoofdstam tot aan het meest proximale segment 

van de linker coronairarterie of circumflex, gevolgd door een geleidelijke toename richting de 

meer distale segmenten.     

De invloed van shear stress op atherosclerose 

In hoofdstuk 4.1 hebben we gevonden dat atherosclerotische plaques in het ostium van de 

linker coronairarterie meer plaque belasting ondervinden, meer excentrisch zijn en een grotere 

maximale plaque dikte hebben dan plaques meer distaal in de hoofdstam. Daarbij, meer 

calcificatie en hoeveelheid necrotische kern werd gevonden distaal van het ostium van de 

circumflex. De laesies waren met name gelokaliseerd in de buitenwand van de carina, 

resulterend in grotere hoeveelheden necrotische kern. Deze resultaten bevestigen de sleutelrol 

van de stroomdynamiek in het ontstaan en de progressie van atherosclerosis.

Vulnerable plaque

In hoofdstuk 6.1, een prospectieve 3-vats IVUS studie, bleken patiënten met ten minste 1 

plaquescheur in hun coronairen een grotere body mass index te hebben en globaal slechtere 

door IVUS verkregen prognose te hebben in vergelijking tot patiënten zonder aanwijzingen 
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voor plaque scheuring. Plaatsen waarop scheuring van de plaque plaatsvond hadden een 

ongunstiger phenotype dan de meest zieke gedeelten van dezelfde vaten.

Het is vastgesteld dat fibroatheromas met een dunne kap (TCFA) laesies met grote avasculaire 

en hypocellulaire vetkernen, de meest voorkomende substraten zijn voor plaquescheuring. 

Een grote serie van slachtoffers van plotse cardiale dood suggereerde dat gescheurde TCFAs 

de aanleiding waren voor 60% van acute coronaire thrombi. Dezelfde studies hebben 

aangetoond dat plaque scheuring bij TCFA’s ook zonder klinische consequenties kan 

verlopen. De mogelijkheid tot het identificeren van TCFA’s in patiënten kan leiden tot het 

beter in kaart brengen van ontstaanswijze van deze laesies en een mogelijkheid bieden tot het 

beoordelen van het effect van pharmacologische of andere interventies.

In hoofdstuk 7.1 vonden we dat IVUS-VH bevindingen als met IVUS verkregen TCFAs 

(IDTCFA), veel voorkwamen in non-culprit laesies en in patiënten die percutane inventies in 

andere vaten ondergingen. Daarbij kwamen IDTCFAs significant vaker voor in patiënten die 

zich presenteerden met acuut coronair syndroom in vergelijking tot patiënten met stabiele 

angina pectoris en de verdeling van IDTCFA laesies doorheen de coronairen was duidelijk 

geclusterd. Deze bevindingen werden bevestigd in een 3-vats populatie (hoofdstuk 7.2). 

In hoofdstuk 8.1 bestudeerden we in vivo de relatie tussen plaque samenstelling en coronaire 

vervorming. De grootte van de necrotische kern was significant groter in coronaire laesies die 

positieve vervorming vertoonden in vergelijking tot coronaire laesies die vessel krimping 

vertoonden. De fibrotische belasting van de plaque was significant en reversibel gecorreleerd 

met de index van vervorming.  
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Combineren van verschillende invasieve beeldvormende 

technieken

Intravasculaire geluidsgolf palpografie is een techniek die het toelaat de lokale mechanische 

weefseleigenschappen te beoordelen. Deze techniek heeft bewezen een hoge sensitiviteit en 

specificiteit te hebben voor het detecteren van de gevoelige plaque in vitro. De relatie tussen 

de mechanische eigenschappen van coronaire atherosclerose en de samenstelling hiervan is 

momenteel nog niet bekend. In hoofdstuk 9.2 hebben we in vivo de relatie tussen 

mechanische eigenschappen (palpografie) en samenstelling van de plaque (IVUS-VH) van 

gematchte dwars doorsneden middels een nieuwe katheter gebaseerde techniek. IVUS-VH 

toonde een acceptabele sensitiviteit om hoge spanning te detecteren middels palpografie. 

Anderzijds bleek de specificiteit laag te zijn, resulterend in een hoog aantal vals positieven. 

Opmerkelijk was dat er een significante omgekeerde relatie was tussen calcium en 

spanningswaarden en het contact van necrotische kern weefsel met het lumen was de enige 

voorspeller voor het aantonen van hoge spanning. 

In hoofdstuk 9.3 evalueerden we de sensitiviteit en specificiteit van 3-D ECG gegate IVUS 

voor het detecteren van vervormbare (hoge spanning) plaques beoordeeld middels 

palpografie. De sensitiviteit was laag en de specificiteit was hoog. Er moet echter wel gezegd 

worden dat deze kleine studie meerdere beperkingen had.  

Plaque progressie/regressie 

IVUS is de gouden standaard geworden voor de in vivo beoordeling van het effect van 

conventionele en nieuwe medische therapieën op het gebied van plaque samenstelling en 

grootte. In dit opzicht hebben we gekeken naar de overeenkomsten in geometrie en 

samenstelling zoals bepaald met mechanische en draaiende katheters (hoofdstuk 2.1). Een 
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significante variabiliteit in de directe metingen en plaque echogeniciteit werd aangetoond, wat 

het belang aantoonde van een enkele IVUS katheter voor longitudinale metingen. 

Hoofdstuk 11.1 is een meta-analyse van alle klinische studies die IVUS gebaseerde 

progressie/regressie van coronair arterie sclerose beoordeelden om te kijken of de behandeling 

met statines plaque regressie kan veroorzaken. In deze studie, met op IVUS gebaseerde 

eindpunten, vonden we dat behandeling met statines, met name wanneer er een LDL-C 

gehalte < 100mg/dl werd behaald, significante plaque regressie kan veroorzaken.

Aanvullend beoordeelden we het effect van ACE-remmers op coronaire atherosclerose. In 

patiënten met aangetoond coronairlijden en stabiele angina pectoris zonder duidelijk hartfalen, 

waren de klinische voordelen behaald met perindopril behandeling gedurende 3 jaar niet toe te 

schrijven aan een effect van de coronaire plaque grootte.

Conclusie

Wij zijn van mening dat het werk gepresenteerd in dit proefschrift van aanzienlijke waarde is 

op het gebied van het begrijpen van de uitgebreidheid van coronairlijden, haar verdeling, 

morfologie en samenstelling in levende patiënten.  

We hebben belangrijke gegevens gepubliceerd met betrekking tot de accuraatheid van een 

techniek voor in vivo weefsel beoordeling (IVUS-VH). We hebben een potentieel in vivo 

surrogaat gevonden (TCFA) als meest voorkomende precursor van plaque scheuring. Onze 

bevindingen moeten echter met enige voorzichtigheid geïnterpreteerd worden gezien er nog 

geen duidelijk beeld is over de precieze natuurlijke ontstaanswijze van de plaque.  
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FIGURES

Figure 1  

Matched cross-section of a left anterior coronary artery imaged by conventional (gray-scale) 

IVUS (a), IVUS-VH (b) and palpography (c). 

IVUS-VH colour-coding labels calcified, fibrous, fibrolipidic and necrotic core regions as 

white, green, greenish-yellow and red respectively. For palpography, the calculated local 

strain is also colour-coded, from blue (for 0% strain) through yellow (for 2% strain) via red.  

a b c
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Figure 3. Cross-sectional and longitudinal views of a matched region of interest with 40 (a) and 20 (b) MHz. The adventitia is defined

as tissue outside the external elastic membrane. For all non-shadowed adventitia pixels, the mean value and standard deviation are

calculated. To observe the suitability, a normal distribution curve based on the same mean and standard deviation histogram is

created. Hypoechogenic areas are colored red (dark circle) and hyperechogenic areas green (lighter spots).
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core laboratories. Overall, the inter-catheter and
inter-observer differences shown might provide
boundaries over which changes are statistically
significant.
It is evident yet worth mentioning that precise
contour detection probably has an essential role in
the reproducibility of IVUS-VH measurements.
The inter-observer relative difference in plaque
CSA measurements was 10%, the commonly ac-
cepted threshold. This gives an additive value to
our study, since it provides a ‘‘real-world’’ scenario

that can aid investigators to perform precise power
calculations for longitudinal studies.
Finally, although we aimed at studying non-
tortuous and non-severely calcified vessels,
phased-array IVUS imaging catheters are devoid
from a covering sheath and pullbacks are therefore
occasionally prone to be non-uniform. This clearly
has an impact on determination of the size and
composition of atherosclerotic plaques and needs
to be taken into consideration for the design of
longitudinal studies (Figure 5).
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Figure 5. Sequential plotting of a matched ROI interrogated with two catheters. The mean CSA (y axis) of each plaque component is

colour-coded (calcium: white, fibrous: green, fibrolipidic: greenish-yellow and necrotic core: red). This figure shows an example of the

impact of non-uniform pullbacks on geometrical and compositional measurements.

third segment in model 1. All other analyses, including the
tests for four models and all post hoc comparisons should
be regarded as exploratory. Despite careful examination of
all angiograms, we cannot completely rule out the
possibility that patients with a higher number of IVUS inter-
rogated 10 mm segments had a more favourable coronary
anatomy as compared with those in whom a long pull-back
could not been obtained.

Relevant to this point, it is the fact that: (i) plaque com-
position in the first three coronary segments did not differ in
patients with 30 mm pull back length as compared with
those in whom a longer IVUS pull back was obtained; and
(ii) the change in plaque composition along the study
vessel was remarkably consistent in all the four models
analysed.

We failed to find sex-related differences in the proximal–
distal pattern of plaque composition. However, the great
majority (88%) of patients enrolled were males, which

Table 4 Predictors of plaque lipid content at uni- and multi-
variate analysis in model 1

Variables Beta-values (95% CI) P-values

Univariate analysis
Age (years) 20.12 20.25, 0.008 0.069
Sex (M vs. F) 0.029 20.101, 0.16 0.66
Smoking status 0.022 20.108, 0.15 0.7

Previous history of
Hypertension 0.048 20.08, 0.16 0.48
CVD in the family 20.038 20.16, 0.082 0.56
Hypercholesterolaemia 0.08 20.032, 0.197 0.21
Diabetes mellitus 0.14 0.023, 0.257 0.041
ACS 0.044 20.086, 0.174 0.50
Coronary

revascularization
20.15 20.2, 20.028 0.02

Coronary vessela 0.038 21.93, 2.008 0.5
ACS at presentation 0.25 0.11, 0.39 0.0032
LDL (mg/dL) 0.09 20.04, 0.22 0.42
HDL (mg/dL) 20.12 20.25, 0.01 0.067
Triglycerides (mg/dL) 0.04 20.09, 0.17 0.78
Use of statin 20.25 20.37, 20.12 0.0001
Distance from ostiumb 20.32 20.45, 20.30 ,0.0001

Multivariable analysisc

Distance from ostiumb 20.28 20.15, 241 ,0.0001
Age (years) 20.26 20.12, 240 0.0004
ACS at presentation 0.16 0.03, 0.29 0.005
Use of statin 20.18 20.36, 0.004 0.057
Diabetes mellitus 0.21 0.07, 0.34 0.003
Coronary

revascularization
20.07 20.02, 0.12 0.46

HDL (mg/dL) 20.02 20.05, 0.21 0.84

CVD, cardiovascular disease; LDL, low-density lipoprotein; HDL, high-
density lipoprotein.

aAnalysed as left anterior descending vs. circumflex vs. right coronary
artery

bAnalysed as segment 1 taken as a reference vs. segment 3.
cAdjusted R2 ¼ 0.36 for the model.

Figure 2 Per-segment distribution of relative lipid content in the study
population. Per-segment distribution of relative lipid contents both in the
whole population and stable vs. unstable patients in model 1 (A) and 2 (B).
Bars indicate median values in the whole population. As shown in Table 3,
relative lipid content significantly decreased in the whole population in
segment 3 in model 1 and in segments 3 and 4 in model 2 with respect to
segment 1 at post hoc analysis.

Figure 3 IVUS-VH CSA along a coronary vessel. IVUS-VH cross-sectional areas
in a representative patient showing the change in plaque composition
(calcium: white; fibrous: green; fibrolipidic: greenish-yellow; and lipid
core: red) along the longitudinal axis of the vessel. LM, left main coronary
artery; CFX, circumflex artery; LAD, left anterior descending artery. The dis-
tance between the cross-sectional area and the ostium of the vessel is
reported in millimetres (mm).

Longitudinal change in coronary plaque composition Page 7 of 9
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Plaque Composition and its Relationship With
Acknowledged Shear Stress Patterns in Coronary Arteries

To the Editor: Several studies in coronary and peripheral arteries
have demonstrated that atherosclerosis has a tendency to arise
more frequently in low-oscillatory shear stress (LOSS) regions
such as in inner curvature of nonbranching segments and opposite
to the flow divider (FD) at bifurcations (1–3). In particular,
atherosclerotic disease has certain predilection for the outer wall of
the left main coronary artery bifurcation, sparing the FD (2).
Intravascular ultrasound (IVUS) has been used to describe the
extent, distribution, and profile of plaques in the proximal left
anterior descending coronary artery (LAD) (2). Nevertheless, in
vivo data regarding tissue composition of this region remain
unknown. Furthermore, to date, no study has explored the char-
acteristics of plaques located in the proximal LAD compared to the
left main coronary artery (LMCA). In the present study, we sought
to explore the morphologic and compositional characteristics of
plaque located at an acknowledged LOSS area (outer wall of the
ostial LAD [OLAD]) and compare them to the characteristics of
plaque located at an average shear stress region (distal LMCA
[DLMCA]).

This prospective investigators-driven study included patients
where the LAD was interrogated before any intervention using
IVUS radiofrequency data (RFD) analysis (IVUS-VH; Volcano
Therapeutics, Rancho Cordova, California). The IVUS-VH
uses spectral analysis of IVUS RFD to construct tissue maps

that were correlated with a specific spectrum of the RFD and
assigned color codes (Fig. 1) (4). The IVUS-VH was performed
with 30-MHz (Ultracross; Boston Scientific, Santa Clara,
California) and 20-MHz (Eagle Eye; Volcano Therapeutics)
catheters, and contour detection was determined using previ-
ously reported methodology (5). Informed consent was obtained
from all patients. Plaque eccentricity was defined as the ratio of
maximal to minimal plaque thickness (1). Plaque burden was
defined as ([EEMarea � lumenarea]/EEMarea) � 100. The
carina of the bifurcation was identified as the frame immediately
distal to the take-off of the circumflex.

The maximal plaque thickness (MPT) was calculated at this
level and spatially located according to a circumference ranging
from 0° to 360°, being the inner and opposite part of the carina at
0° and 180°, respectively. Lesions were therefore prospectively
divided into two groups, according to their localization in the outer
(from 91° to 271°) or inner (from 270° to 90°) hemisphere of the
carina.

Two regions were prospectively identified and their morphology
and composition compared. The OLAD was defined as the carina
and the immediate 3-mm distal segment, because the flow in this
area is still influenced by the bifurcation (6). Similarly, the
DLMCA was identified as the 3-mm segment immediately

Figure 1. Intravascular ultrasound cross-section images from the carina of the left anterior descending coronary artery and of the left main coronary artery.
The left side shows the reconstructed grayscale, and the right side shows the color-coded data (green � fibrous; yellow-green � fibrolipidic; red � necrotic
core; white � calcium) provided by the IVUS-VH unit (Volcano Therapeutics, Rancho Cordova, California). LCx � left circumflex artery; MPT �
maximal plaque thickness.

Journal of the American College of Cardiology Vol. 47, No. 4, 2006
© 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00
Published by Elsevier Inc.

Mean lipid core percentage was significantly larger in

patients with ACS when compared with stable patients

(12.26% F 7.0% vs 7.40% F 5.5%, P = .006). Conversely,

stable patients showed more fibrotic vessels than

patients with ACS (70.97% F 9.3% vs 63.96% F 9.1%,

P = .007). There was no significant difference for either

mean calcium (1.20%F 1.1% vs 0.83%F 0.7%, P = .124)

and fibrolipidic (20.57% F 6.9% vs 18.40% F 7.6%,

P = .281) percentages in patients with ACS and stable

patients, respectively (Table III).

Relative lipid core content was significantly correlated

to CRP levels (r = 0.45, P = .003). The relationship

between CRP levels and relative plaque composition is

depicted in Table IV.

There was a significant, albeit weak, positive correla-

tion between lipid core percentage and stenosis severity

as determined by percentage of EEM area obstruction

(r = 0.34, P = .015).

No significant difference was found in lipid core

(percentage) between left anterior descending

(10.19% F 6.2%), right coronary artery (8.05% F 5.8%),

and left circumflex (10.73% F 8.9%) (P = .443).

Discussion
The major findings of this study were first that, in

nonculprit lesions, there were significant differences in

plaque composition between patients who presented

with ACSs and those who presented with stable angina.

In those with ACS, percentage of lipid core was

significantly greater than in stable patients, whereas a

converse trend was observed for fibrotic content.

Secondly, in the overall patient population, stenosis

severity on IVUS-VH was positively correlated with

percent lipid core.

Coronary occlusion and AMI commonly arise from

intermediate lesions.6,22 This had led investigators to

suggest that mild to moderate lesions are more lipid-rich

and thus prone to rupture.6,23 However, it has been

established that moderate lesions cause more occlusions

because of their greater incidence throughout the

coronary tree.24

Table III. Geometric and compositional data assessed by
IVUS RF data analysis (N = 55)

Stable (n = 32) ACS (n = 23) P

Lipid core 7.40 F 5.5 12.26 F 7.0 .006
Calcium 0.83 F 0.7 1.20 F 1.1 .124
Fibrous 70.97 F 9.3 63.96 F 9.1 .007
Fibrolipidic 18.40 F 7.6 20.57 F 6.9 .281
EEM area obstruction 42.83 F 11.8 46.49 F 10.9 .221

Values are percentages. External elastic membrane area obstruction defined as
[(EEMarea � Lumenarea)/EEMarea] � 100.

Table IV. Relationship between CRP levels and relative plaque
composition

Pearson correlation coefficient between CRP levels and
relative plaque composition (n = 41)

CRP levels P

Lipid core 0.45 .003
Calcium �0.05 .78
Fibrous �0.24 .14
Fibrolipidic �0.12 .46

Table II. Overall plaque composition of the study population

Plaque component (%)

Lipid core 9.43 F 6.6
Calcium 0.99 F 0.9
Fibrous 68.04 F 9.8
Fibrolipidic 19.31 F 7.3

Figure 1

Examples of fibrotic (A) and lipid core–rich (B) cross-sectional areas
of coronary arteries. Grayscale IVUS is displayed on the left panel,
whereas the right panel shows the reconstructed IVUS-VH where
calcified, fibrous, fibrolipidic and lipid core regions are labeled
white, green, greenish yellow, and red, respectively.

American Heart Journal

Volume 151, Number 5
Rodriguez -Granillo et al 1029



446

Color fi gures

20



447

Color fi gures

IVUS-VH console (Volcano Therapeutics, Rancho Cor-
dova, California). The IVUS-VH data were stored on a
CD-ROM and sent to the imaging core lab for offline
analysis. Intravascular ultrasound B-mode images were re-
constructed from the radiofrequency data by customized
software (IVUSLab, Volcano Therapeutics, Rancho Cor-
dova, California). Manual contour detection of both the
lumen and the media-adventitia interface was performed,
and the radiofrequency data were normalized using a tech-
nique known as “blind deconvolution,” an iterative algo-
rithm that deconvolves the catheter transfer function from
the backscatter, thus accounting for catheter-to-catheter
variability (9). Geometric and compositional data were
obtained for every slice and expressed as mean percent for
each component. The plaque eccentricity index (EI) was
calculated by dividing the minimum plaque thickness by the
maximum plaque thickness. Percent atheroma volume
(PAV) was defined as: EEMarea � lumenarea/EEMarea �
100, where EEM refers to external elastic membrane.

Subsequently, we evaluated the presence of IDTCFA
lesions along the interrogated vessels, and their incidence
and characteristics were determined. Finally, the spatial
distribution of IDTCFA along the coronaries was evaluated

starting from the ostium and dividing the vessel in 10-mm
segments, evaluating a minimal length of 30 mm.
Definition of IDTCFA. Two experienced, independent
IVUS analysts defined IDTCFA as a lesion fulfilling the
following criteria in at least three consecutive frames: 1)
necrotic core �10% without evident overlying fibrous tissue
(Fig. 1); and 2) PAV �40%.

We selected this cutoff value because TCFA lesions are
very unlikely present in segments with �40% occlusion
(10). Cross sections with non-uniform rotational distortion
artifact were excluded from the analysis.
Statistical analysis. Discrete variables are presented as
counts and percentages. Continuous variables are presented
as medians (25th, 75th percentile) or mean values � SD
when indicated. Pearson’s chi-square or Fisher exact test,
Student t test, and Wilcoxon rank-sum tests were per-
formed, as indicated. A two-sided p value of �0.05 indi-
cated statistical significance. Logistic regression analysis was
performed to identify potential predictors of the presence of
IDTCFA. Statistical analyses were performed with use of
11.5 SPSS software (SPSS Inc., Chicago, Illinois).

RESULTS

The baseline characteristics of the patients (n � 55) we
studied are presented in Table 1. Thirty-four (61.8%)
patients had at least one IDTCFA in the region of interest
(ROI).

The population was prospectively divided into two
groups, stable patients and patients presenting with ACS
(defined as unstable angina, non–ST-segment elevation
myocardial infarction, or ST-segment elevation myocardial
infarction).
IDTCFA incidence and predictors. Acute coronary syn-
drome patients had a significantly higher incidence of
IDTCFA than stable patients (3.0 [interquartile range
(IQR) 0.0 to 5.0] vs. 1.0 [IQR 0.0 to 2.8], p � 0.018).
When corrected for the length of the ROI, the density of

Abbreviations and Acronyms
ACS � acute coronary syndrome
IDTCFA � intravascular ultrasound-derived thin-cap

fibroatheroma
IQR � interquartile range
IVUS � intravascular ultrasound
IVUS-VH � Intravascular Ultrasound-Virtual Histology
LAD � left anterior descending coronary artery
LCX � left circumflex artery
PAV � percent atheroma
RCA � right coronary artery
ROI � region of interest
TCFA � thin-cap fibroatheroma

Figure 1. Left anterior descending artery depicted by Intravascular Ultrasound-Virtual Histology, where calcified, fibrous, fibrolipidic, and necrotic core
regions are labeled white, green, greenish-yellow, and red, respectively. Panel A shows an intravascular ultrasound cross-sectional area reconstructed from
backscattered signals. Panel B shows the corresponding tissue map depicting a necrotic core-rich plaque with necrotic core tissue in contact with the lumen.

2039JACC Vol. 46, No. 11, 2005 Rodriguez-Granillo et al.
December 6, 2005:2038–42 IVUS-Derived Thin-Cap Fibroatheroma Detection



448

Color fi gures

Figure 1

A

B

C



449

Color fi gures

- 367 -

Detection of a necrotic core-rich, highly deformable plaque
in an angiographically non-diseased proximal LAD
Gastón A. Rodriguez-Granillo, MD; Raquel del Valle, MD; Jurgen Ligthart, BSc; 
Patrick W. Serruys*, MD, PhD

Thin-cap fibro atheroma (TCFA) lesions, the most prevalent precur-

sor of plaque rupture, are composed of a lipid-rich necrotic core,

a thin-fibrous cap with macrophage and lymphocyte infiltration,

decreased smooth muscle cell content and expansive remodeling.

Virtual Histology™ uses spectral analysis of intravascular ultra-

sound (IVUS) radiofrequency data to construct tissue maps that

classify plaque into four major components; calcified, fibrous,

fibrolipidic and necrotic core regions that are labeled white, green,

greenish-yellow and red respectively. Palpography™ evaluates

in vivo the mechanical properties of plaque tissue. The local strain

is calculated from the radiofrequency traces using cross-correlation

analysis and displayed, colour coded, from blue (for 0% strain)

through yellow (for 2% strain) via red (Figure 1).

At a defined pressure, soft tissue (lipid-rich) components will

deform more than hard (fibrous-calcified) components. Both tech-

niques have been previously validated1,2.

Figure 1a shows an angiographically non-diseased proximal left ante-

rior descending (LAD) artery. IVUS longitudinal reconstruction

(Figure 1b) shows diffuse LAD disease. An eccentric mixed plaque

that did not compromise the lumen was detected in the proximal LAD

(Figure 1c). This segment was further analyzed with Palpography

(20 MHz Eagle Eye, Volcano Therapeutics) and Virtual Histology™

(30 MHz Ultracross, Boston Scientific Corp) (Figures 1d and 1e).

Despite its innocuous appearance on gray-scale IVUS, highly

deformable shoulders with an underlying necrotic core-rich substrate

were detected with the aid of strain and compositional imaging.

Although compatible with the presence of a vulnerable plaque, the prog-

nostic value of these findings is currently unknown and needs to be estab-

lished in large prospective randomized trials. Thus, the patient was

discharged on intensive systemic therapy including lipid-lowering agents.
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Figure 1. LAD= left anterior descending coronary artery. LCx= Left circumflex coronary artery. LMCA= Left main coronary artery. * Pericardium.
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