
On the Statistical Mechanics
of (Un)Constrained

Stochastic Hop�eld and `Elastic'
Neural Networks

Jan van den Berg

berg@cs.few.eur.nl

Jan C. Bioch

bioch@cs.few.eur.nl

Erasmus University Rotterdam, Dept. of Computer Science,

Room H4{13, P.O. Box 1738, 3000 DR Rotterdam

December 22, 1994

Abstract

Stochastic binary Hop�eld models are viewed from the angle of statistical mechan-
ics. After an analysis of the unconstrained model using mean �eld theory, a similar
investigation is applied to a constrained model yielding comparable general explicit
formulas of the free energy. Conditions are given for which some of the free energy
expressions are Lyapunov functions of the corresponding di�erential equations. Both
stochastic models appear to coincide with a speci�c continuous model. Physically, the
models are related to spin and Potts glass models. Also, a `complementary' free energy
function of both the unconstrained and the constrained model is derived. The analysis
culminates in a very general framework for analyzing constrained and unconstrained
Hop�eld neural networks: the stationary points of the corresponding free energy ap-
pears to coincide exactly with the set of equilibrium conditions of the corresponding
continuous Hop�eld neural network.

Moreover, the relationship with `elastic net' algorithms is analyzed: it is proved
that this class of algorithms cannot be derived from the theory of statistical mechanics
(as sometimes is supposed), but should be considered as a special `penalty method',
namely as one with dynamical penalty weights. We mention some experimental results
and discuss implications for the use of the various models in resolving constrained
optimization problems.

1 Motivation and Results

The relationship between statistical mechanics and stochastic neural networks has been
studied intensively (see e.g., [5, 13]). In particular, it appeared to be fruitful to transfer
the mathematical techniques from the theory of spin glasses to the analysis of neural
networks. Using these techniques, it is for example possible to analyze the capacity (i.e.,
the number of storable patterns) of stochastic Hop�eld networks. Our interest in the
subject was aroused after �nding an expression of the energy of the thermal noise of a
binary stochastic Hop�eld network [16]. Later on, we discovered that the same expression
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was already mentioned in an article by Simic [14]. Simic's derivations of expressions of the
free energy of some neural networks for solving the Travelling Salesman Problem (TSP)
are very succinct. He proposes statistical mechanics as the underlying theory of `elastic'
and `neural' optimizations. In one of his analyses, some constraints of the problem are
enforced `strongly' by summing over those con�gurations which obey these constraints.
Physically, this model can be viewed as a so-called Potts glass model. Related work on
TSP and other combinatorial optimization problems was done some years earlier by Van
den Bout and Miller [2] and by Peterson and S�oderberg [10], but they applied other update
rules and paid more attention to practical issues.

In this paper, the various contributions are considered and extended in the framework
of general Hop�eld models. In section 2, we shall start by shortly describing the classical
Hop�eld networks. Then, by applying a (slightly modi�ed version of Simic's) statistical
mechanics approach to an unconstrained stochastic binary Hop�eld network, we derive two
theorems concerning the free energy. They accurately clarify how the stochastic network
is related to the classical continuous one. Using a mean �eld approximation, the �rst
theorem yields the sigmoid function as transfer function for the neurons together with an
explicit expression of the free energy in a natural way. In the second theorem, another free
energy function is derived showing that the continuous model can be seen as a (mean �eld)
approximation of the stochastic one. Another theorem concerns the stability of the motion
equations: the free energy expression of the second theorem appears to be a Lyapunov
function. In still another theorem, we introduce a `complementary' energy expression,
which also appears to be a Lyapunov function. Then, the general framework is presented.
A new free energy expression (in terms of both the input and the output of the individual
neurons) is derived whose stationary points coincide precisely with the set of equilibrium
conditions of the unconstrained Hop�eld model.

In section 3, Simic's modi�ed approach is used again, this time to analyze a certain
type of constrained stochastic binary Hop�eld network yielding theorems of similar pur-
port. Now, another transfer function is derived together with new explicit free energy
expressions. It is demonstrated that under some dynamical conditions again, the second
free energy expression of this section is a Lyapunov function. Furthermore, the constrained
stochastic model in mean �eld approximation appears to coincide with an adapted con-
tinuous Hop�eld model. Again, a complementary energy is introduced and the general
framework of the constrained Hop�eld model is presented.

Both the unconstrained system and the constrained system can be interpreted in the
same fashion physically: if the temperature in such a system is lowered during the up-
dating of the di�erential equations, then so-called mean �eld annealing takes place. This
annealing approach (which is an approximation of `simulated annealing') favours the prob-
ability of �nding the global extremum of the original energy function. The whole system
can be described by the free energy (sometimes termed the `e�ective energy') of the sys-
tem, which is a composition of the average original energy and the thermal noise energy.
At high temperatures, the original energy function surface is `smoothed' by the presence
of the thermal noise energy. On lowering the temperature, the smoothing e�ect of the
thermal noise gradually disappears and the free energy goes over to the original energy
function.

In [14], the constrained model has been applied to `prove' that the Durbin and Will-
shaw's energy function [3] of the `elastic net' algorithm can be derived from it. In a
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separate subsection, we shall argue why we think this proof is not correct. First, we sum
up the places of wrong derivations and conclusions, which will be mathematically under-
pinned in the second appendix. Next, we shall explain why in our opinion, the elastic net
algorithm can be considered as a special type of `penalty method' namely, as one with
dynamical penalty weights. This view opens the way for a search into methods of solving
combinatorial optimization problems using new, self-chosen dynamical penalty terms.

In the �nal section, we discuss our results and mention some surveying simulations,
whose practical results are in agreement with the theory. We touch lightly on the potential
capabilities of the analyzed Hop�eld and elastic neural networks in resolving constrained
optimization problems; e.g., we discuss why the Hop�eld-Lagrange model [15] might be
useful in this context. Regarding the elastic net algorithm, it is interesting to compare
our idea, of it being a dynamical penalty method, with the approach of `deformable tem-
plates' [11] which we came across recently. We �nish by reecting upon the possibilities
of improving our derivations at some places.

2 Unconstrained Stochastic Hop�eld Networks

2.1 The Background: Classical Hop�eld Networks

In 1982, Hop�eld introduced the idea of an `energy function' into neural network theory
using an asynchronous updating rule and binary units [6]. He used the following expression
of the energy:

E(S) = �1
2

X
ij

wijSiSj � IiSi; (1)

where S 2 f0; 1gn is the state vector (S1; � � � ; Sn) of the neural network, Si the output
value and Ii the external input of neuron i and wij represents the interconnection strength
from neuron j to neuron i.

In 1984, he generalized the stochastic model to a deterministic one using a continuous
updating rule with continuous-valued units [7], which essentially is a parallel gradient
descent method. Hop�eld used the well known updating rule1

_Ui = �
@EHM(V)

@Vi
=
X
j

wijVj + Ii � Ui; (2)

where Vi = g(Ui). The corresponding energy function equals

EHM(V) = �1
2

X
ij

wijViVj �
X
i

IiVi

| {z }
+
X
i

Z Vi

0
g�1(V )dV

| {z }
(3)

= E(V) + EH(V) ; (4)

where E(V) is the energy or target function to be minimized. The term EH(V) will be
called the `Hop�eld term'. Now, V 2 [0; 1]n is the state vector (V1; � � � ; Vn) of the neural
net and Vi the output of neuron i. Furthermore, Ui =

P
j wijVj + Ii is the total (i.e.,

internal plus external) input of neuron i and g(Ui) the activation or transfer function.
Note that Ui = @EH=@Vi.

1There are other ways to �nd an equilibrium point of the neural network like V new

i = g(
P

j
wijV

old

j +Ii).

However, they are not analyzed here.
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Figure 1: The classical Hop�eld network with equilibrium
condition: 8i : Ui =

P
j wijVj + Ii and Vi = g(Ui).

In �gure 1, a picture of the Hop�eld model is given. It can be used to explain the
working of the motion equations (2). After initialization, the network is generally not in
an equilibrium state. Then, while keeping the relations Vi = g(Ui) valid, the input values
Ui are adapted in agreement with (2). The following theorem, proven by Hop�eld [7],
gives conditions for which an equilibrium state will eventually be reached:

Theorem 1 (Hop�eld). If W = (wij) is a symmetrical matrix and if 8i : Vi = g(Ui)
is a monotone increasing, di�erentiable function, then EHM is a Lyapunov function for
motion equations (2).

For the rest of this paper, we also give a `complementary' theorem which deals with the
case of a monotone decreasing transfer function:

Theorem 2. If W = (wij) is a symmetrical matrix and if 8i : Vi = g(Ui) is a mono-
tone decreasing, di�erentiable function, then �EHM is a Lyapunov function for motion
equations (2).

We con�ne ourselves to giving the proof of the second theorem.

Proof. Because gi = V (Ui) is monotone decreasing and di�erentiable, it follows that
dVi=dUi < 0. Consequently,

� _EHM = �
X
i

@EHM

@Vi
_Vi =

1
2

X
ij

wij _ViVj +
1
2

X
ij

wijVi _Vj +
X
i

Ii _Vi �
X
i

g�1(Vi) _Vi

=
X
i

_Vi(
X
j

wijVj + Ii � Ui) =
X
i

_Vi _Ui =
X
i

dVi

dUi
( _Ui)

2 � 0: (5)
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Because �EHM is bounded below its value decreases constantly during updating until
�nally a (local) minimum has been reached, where 8i : _Ui = 0. So, �EHM is a Lyapunov
function. ut

Using (2), the �nal state condition 8i : _Ui = 0 implies that Ui =
P

j wijVj + Ii, so in
that state, the neural network has come to equilibrium. As transfer function the following
(monotone increasing) one is often used:

g(Ui) =
1

1 + exp(��Ui)
: (6)

We already mentioned that application of theorem (1) corresponds to a `gradient descent'.
It should be clear that application of theorem (2) corresponds to a `gradient ascent' of the
energy function EHM .

2.2 Stochastic Hop�eld Networks in Mean Field Approximation

It is possible to make the units behave stochastically [5]. E.g., taking binary units, one
de�nes a probability of �nding a neuron in one of the two states. Models of this type can
be viewed from the angle of statistical mechanics [5, 13] and can be considered as spin
glass models. In the statistical mechanics approach, one considers average quantities like
the average state hSii of the neuron i and the average energy hE(S)i of the stochastic
neural network.

In [14], Simic uses a method which yields explicit expressions for both the energy
function to be minimized and the entropy term. As will be shown, this makes it possible
to accurately compare how stochastic networks in mean �eld approximation are related
to their continuous counterparts. This is why we take up (a slightly modi�ed version of)
his approach and try to generalize as much as possible. Generally, the goal is to �nd an
explicit expression for the thermodynamic `free energy' F . This free energy is calculated
by application of the formula

F = �T ln(Z); (7)

where T = 1=� and Z� is the so-called thermodynamic partition function:

Z� [I] =
X
S

exp (��E(S)): (8)

Considering binary neurons and applying Hop�eld's energy expression (1), the partition
function becomes

Z� [I] =
X
S

exp [�(12
X
ij

wijSiSj +
X
i

IiSi)]: (9)

We can evaluate the average value Vi = hSii from the partition function by using the
relation

Vi = hSii =
1

�

@ lnZ� [I]

@Ii
: (10)

More generally, the average value of any quantity A(S), which is a function of the system
state, can be evaluated using

hA(S)i =
1

Z�

X
S

A(S) exp(��E(S)): (11)
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The main di�erence between Simic's and our approach concerns the way the external �elds
Ii are treated: Simic includes small `generating �elds' in the expression of the partition
function [13], which are set to 0 during the derivation. We use real external �elds Ii, which
appear in the expression of the partition function as part of the energy function and which
remain in the formulas.

Theorem 3. In mean �eld approximation, the free energy of unconstrained stochastic
binary Hop�eld networks can be stated as

FU1(V) = 1
2

X
ij

wijViVj �
1
�

X
i

ln [1 + exp (�(
X
j

wijVj + Ii))]: (12)

The stationary points of FU1 are found at points of the state space where

8i : Vi =
1

1 + exp(� �(
P

j wijVj + Ii))
: (13)

Proof. We give an extended sketch of the proof using some lemmas from the appendix.
To be able to perform the summation in the partition function (9) the exponentials in the
quadratic terms SiSj are turned into exponentials which are linear in the Si's by using
lemma 1. This yields

Z� [I] =
X
S

R
exp

h
��

2

P
ij �iw

�1
ij �j + �

P
i Si(�i + Ii)

iQ
i d�iR

exp
h
��

2

P
ij �iw

�1
ij �j

iQ
i d�i

; (14)

where the w�1ij 's are the elements of the inverted matrix W�1. Note that the condition of
symmetry of the matrix W of lemma 1 coincides with one of the conditions for theorem 1.
By expanding, for every state, the quotient of the two integrals of (14) around its saddle-
point �̂ | using an n-dimensional version of lemma 2 | it is possible to evaluate exactly
this expression of the partition function, i.e., one recovers formula (9). The saddle-point
equation leads to the (exact) formula

�̂i =
X
j

wijSj implying that h�̂ii =
X
j

wijhSji =
X
j

wijVj ; (15)

where h�̂ii is the i-th component of the average of the saddle-point values of (14). Ap-
parently, h�̂ii represents the average internal input of neuron i. We also may perform the
summation over all states S in (14) yielding

Z�[I] =

R
exp

h
��

2

P
ij �iw

�1
ij �j +

P
i ln (1 + exp(�(�i + Ii)))

iQ
i d�iR

exp
h
��

2

P
ij �iw

�1
ij �j

iQ
i d�i

: (16)

Writing
E(�; I) = 1

2

X
ij

�iw
�1
ij �j �

1
�

X
i

ln [1 + exp (�(�i + Ii))]; (17)

the saddle-point ~� of equation (16) is found by partial di�erentiation of E(�; I) to the
�i's:

~�i =
X
j

wij

1 + exp (� �(~�j + Ij))
: (18)
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On the other hand, by using lemma 3 (which uses a mean �eld approximation), we obtain

Vi � �
@E(~�; I)

@Ii
=

1

1 + exp(� �(~�i + Ii))
: (19)

By substituting (19) in the exact formula (15) we obtain the saddle-point equation (18),
so in mean �eld approximation, the average h�̂i coincides with the saddle-point ~� of the
integral over � in (16). Because in a �rst order approximation the partition function
in (16) equals

Z� = exp(��E(~�; I)); (20)

one �nds for the expression of the free energy (7), by also substituting (15), precisely (12).
The stationary points (13) are found by resolving the equations @FU1=@Vi = 0. ut

Theorem 4. Using the mean �eld approximation (13), the free energy of unconstrained
stochastic binary Hop�eld networks can also be stated as

FU2(V) = �1
2

X
ij

wijViVj �
X
i

IiVi +
1
�

X
i

(Vi lnVi + (1� Vi) ln(1� Vi)): (21)

The stationary points of FU2 coincide with those of FU1.

Proof. The fact that (13) holds in mean �eld approximation can be derived by a substitu-
tion of (15) in (19) using the result that ~�i = h�̂ii. Moreover, taking a = �(

P
j wijVj+ Ii)

and m = Vi, lemma 4 states:

ln [1 + exp (�(
X
j

wijVj + Ii))] =

�Vi ln Vi � (1� Vi) ln(1� Vi) + �(
X
j

wijViVj + IiVi): (22)

By combining this result and equation (12) the expression (21) for FU2(V) is found. More-
over, the stationary points are found by resolving the equations @FU2=@Vi = 0 yielding
precisely (13). ut

As has been shown in [16], we found the same expression (21) for the energy EHM(V)
of the continuous Hop�eld model, presuming the validity of the sigmoid (6) as transfer
function: this was done by simply elaborating the integral of the Hop�eld term EH in (3).
We also notice that

Vi = hSii = 1� P (Si = 1) + 0� P (Si = 0) = P (Si = 1): (23)

The discovered expression (21) for the free energy has the well known form

FU (V) = hE(S)i � TS = E(V)� TS; (24)

where T = 1=� and S equals the expression of the entropy of a binary neuron

S = �
X
i

(Vi lnVi + (1� Vi) ln(1� Vi)): (25)
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Summarizing, we may consider the classical continuous Hop�eld model with the sigmoid
function as a transfer function as an approximation of the stochastic binary model based
on partition function (9): the energy EHM of the continuous model coincides, in mean
�eld approximation, with the free energy expression FU2(V) of the stochastic model,
where the Hop�eld term EH of the continuous model equals the thermal energy �TS of
the stochastic one. It is clear too, that all neurons have a mutually independent thermal
energy contribution equal to T (Vi lnVi+(1�Vi) ln(1�Vi)). At high temperatures, the total
thermal energy dominates, yielding as an equilibrium solution of the system 8i : Vi � 0:5,
because then �TS has its minimum value. Lowering the temperature corresponds to a
decrease of thermal noise in the system. If this lowering is done during updating conform
equation (2) one speaks of `mean �eld annealing' [5]. More details about the e�ect of the
Hop�eld term can be found in [16].

To explain the theory, we give a simple example. Suppose the function to be minimized
equals E(S) = 2S2. Then, the corresponding free energy expressions (from theorems 3
and 4) equal

F1(V ) = �2V 2 � 1
�
ln (1 + exp(�4�V )); (26)

F2(V ) = 2V 2 + 1
�
(V ln V + (1� V ) ln(1� V )): (27)

A diagram of these functions is shown in �gure 2.2 for three values of �. The coincidence
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Figure 2: The two free energy expressions F1 and F2 for various values of �

of the stationary points should be clear together with the expected e�ect of parameter �.
Because EHM and FU2 coincide we shall speak of the free energy of binary Hop�eld

networks denoting both the free energy of the stochastic network (in mean �eld approx-
imation) and the energy of the continuous one. We proceed by giving a simple theorem
about stability of the motion equations:

Theorem 5. Using (6) as a transfer function, the energy FU2 is a Lyapunov function for
the motion equations (2).
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Proof. Application of the technique of gradient descent yields

_Ui = �
@FU2(V)

@Vi
=
X
j

wijVj + Ii � Ui; (28)

so, the motion equations (2) correspond to the free energy function (21). Because the
transfer function g de�ned by (6) is monotone increasing and di�erentiable, theorem 1 can
be applied. ut

The above given theorems can be modi�ed in some ways. First, in practice the function
to be minimized has a sign opposite to the sign of equation (1). This can be considered
as a replacement of wij by �wij and of Ii by �Ii. A similar e�ect is produced if the
parameter � is replaced by ��. Let us investigate some of the consequences of the last
replacement. In theorem 3, we simply perform the substitution. By this, the function (6)
is transferred into

8i : Vi =
1

1+ exp(�Ui)
(29)

making it monotone decreasing. This a�ects theorem 5 and actuated us to introduce a
so-called complementary energy. The modi�ed version of theorem 5 can be stated as:

Theorem 6. Using (29) as a transfer function, the complementary energy

FUC(V) = 1
2

X
ij

wijViVj +
X
i

IiVi +
1
�

X
i

(Vi lnVi + (1� Vi) ln(1� Vi)) (30)

is a Lyapunov function for the motion equations (2).

Proof. Because (29) is monotone decreasing and di�erentiable, we see that dVi=dUi < 0.
Consequently,

_FUC =
X
i

@FUC
@Vi

_Vi =
X
i

(
X
j

wijVj + Ii � Ui) _Vi =
X
i

dVi
dUi

( _Ui)
2 � 0: (31)

Because FUC is bounded below its value decreases constantly until a (local) minimum has
been reached, where _Ui = 0. ut

2.3 The General Framework

In this subsection, we introduce a general view on binary Hop�eld networks which puts the
previous analysis in a wider context, and which appears to be crucial in the constrained
case of the next section.

Theorem 7. The energy of unconstrained binary Hop�eld networks can also be stated as

FU3(U;V) = �1
2

X
ij

wijViVj �
X
i

IiVi +
X
i

UiVi �
1
�

X
i

ln(1 + exp(�Ui)): (32)

The stationary points of FU3 are found at points where

8i : Vi =
1

1 + exp(��Ui)
^ Ui =

X
j

wijVj + Ii: (33)
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Proof. Application of lemma 4 in its original form to the energy function FU2 of theorem 4
immediately yields the free energy expression (32). Resolving the system of equations
8i : @FU3=@Vi = 0; @FU3=@Ui = 0 yields the equations (33) as solutions. ut

The interesting thing of theorem 7 is the fact that the stationary points of FU3 exactly
coincide with the conditions of equilibrium of the classical continuous Hop�eld model.
Knowing this, various methods can be chosen to �nd the equilibrium points [5]. One of
them, of course, consists of Hop�eld's updating rules (2). As function FU2 is one, so FU3
appears to be a Lyapunov function of these motion equations:

Theorem 8. Using (6) as a transfer function, the energy FU3 is a Lyapunov function for
the motion equations (2).

Proof. Knowing that the transfer function (6) holds and that it is a monotone increasing
and di�erentiable function, it follows that

_FU3 =
X
i

@FU3
@Vi

_Vi +
X
i

@FU3
@Ui

_Ui (34)

=
X
i

(�
X
j

wijVj � Ii + Ui) _Vi +
X
i

(Vi �
1

1 + exp(��Ui)
) _Ui (35)

=
X
i

dVi
dUi

( _Ui)
2 � 0: (36)

In [16, 7], it is proven that for �nite values of � the extrema of the energy are never found in
the corners of the hypercube [0; 1]n implying that the extrema correspond to �nite values
of Ui which makes FU3 bounded below. Therefore, execution of the motion equations (2)
constantly decreases the value of FU3 until 8i : _Ui = 0 and a (local) minimum has been
reached. ut

3 Constrained Stochastic Hop�eld Networks

3.1 Methods of Constraint Enforcement

Among other things, Hop�eld models are applied to constrained optimization problems.
The most widely used approach concerns the so-called penalty method, where `penalty
terms' are added to the original energy function [5, 8, 18]. These terms penalize violation
of constraints. In practice, it is hard to determine optimal weight values of the penalty
terms. Another way to treat the constraints is to use Lagrange multipliers [16]. Then, the
constrained optimization problem is converted into an unconstrained extremization one.
The correct values of the multipliers are determined by the system itself by performing a
gradient ascent. Still another way to deal with the constraints consists of changing the
properties of the neural net [2, 10]. Mostly, this is done by restricting the space of allowed
states. Instead of allowing the neurons to be `on' and `o�' independently, only such states
are admitted where exactly one of the neurons is `on'. Physicists call this type of models
Potts glasses. We shall analyze this type of networks in the following subsection.

10



3.2 Constrained Stochastic Networks in Mean Field Approximation

We perform a similar analysis as in the case of unconstrained networks. We consider a
binary Hop�eld network with stochastic neurons subject to the constraint:

X
j

Sj = 1: (37)

This constraint implies that only one of all neurons may be `on', all the others
being `o�'. Therefore, the original state space f0; 1gn has been strongly reduced to a
constrained one. To put it clearly, the reduced space consists of the admissible n states
(1; 0; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; 0; 0; : : : ; 1).

Theorem 9. In mean �eld approximation, the free energy of stochastic binary Hop�eld
networks submitted to the constraint (37) can be stated as

FC1(V) = 1
2

X
ij

wijViVj �
1
�
ln [

X
i

exp (�(
X
j

wijVj + Ii))]: (38)

The stationary points of FC1 are found at points of the state space where

8i : Vi =
exp (�(

P
j wijVj + Ii))P

l exp (�(
P

j wljVj + Il))
: (39)

Proof. The proof follows the same scheme as the proof of theorem 3. For the same
reasons, the exact equation (15) holds. On the other hand, summation over the states of
the constrained state space now yields, by using

X
S

exp
�
�
X
i

Si(�i + Ii)
�
= exp

�
ln
X
i

exp (�(�i + Ii))
�
; (40)

the following expression for the partition function:

Z�[I] =

R
exp

h
��

2

P
ij �iw

�1
ij �j + ln

P
i exp(�(�i + Ii))

iQ
i d�iR

exp
h
��

2

P
ij �iw

�1
ij �j

iQ
i d�i

: (41)

By writing
E(�; I) = 1

2

X
ij

�iw
�1
ij �j �

1
�
ln
X
i

exp(�(�i + Ii)); (42)

partial di�erentiation of E(�; I) this time leads to the saddle-point

~�i =
X
j

wij
exp (�( ~�i + Ii))P
l exp (�(

~�l + Il))
: (43)

Applying lemma 3, we �nd

Vi � �
@E(~�; I)

@Ii
=

exp (�(~�i + Ii))P
l exp (�(

~�i + Il))
: (44)

If we now replace (44) in the exact formula (15) we again obtain the result that, in
mean �eld approximation, h�̂i coincides with the saddle-point ~�. Application of the
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approximation (20) leads to (38) and partial di�erentiation of FC1 leads to the stationary
points (39). ut

We already mentioned that V 2 [0; 1]n. The constrained subspace C is de�ned as the
subspace of [0; 1]n for which

P
i Vi = 1.

Theorem 10. Using the mean �eld approximation (39), the free energy of stochastic bi-
nary Hop�eld networks submitted to the constraint (37) can also be stated as

FC2(V) = �1
2

X
ij

wijViVj �
X
i

IiVi +
1
�

X
i

Vi lnVi: (45)

The stationary points of FC2, considered as function over the constrained space C, coincide
with the (global) stationary points FC1.

V1=expU1
P

i

w11

w1n

I1

V2=expU2
P

i

w21

w2n

I2

Vn=expUnP
i

wn1

wnn

In

r

r

r

r

r

r

r

r

r
r

r

r

Figure 3: The adapted Hop�eld network with equilibrium con-
dition: 8i : Ui =

P
j wijVj + Ii and Vi =

exp(Ui)=
P
l exp(Ul).

Proof. The fact that in mean �eld approximation equations (39) hold2 can be proven in
the same way as in the unconstrained case. Moreover, with the appropriate substitutions,
lemma 5 states:

ln
X
i

exp (�(
X
j

wijVj + Ii)) = �
X
i

Vi lnVi + �(
X
ij

wijViVj +
X
i

IiVi): (46)

By combining this result and equation (38) the expression (45) for FC2(V) is found. In
order to �nd the constrained stationary points, a Lagrange multiplier term is added to (45)

2In [10], they have been applied in the iterative way that was mentioned in footnote 1.
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giving
FC3(V) = �1

2

X
ij

wijViVj �
X
i

IiVi +
1
�

X
i

Vi ln Vi + �(
X
i

Vi � 1): (47)

By resolving the system of (n+1) equations @FC3=@Vi = 0 and @FC3=@� = 0, we see that
the stationary points of FC3 are found at state points where (39) holds. ut

We note that
Vi = hSii = P (Si = 1 ^ 8j 6= i : Sj = 0): (48)

Furthermore, we see that this time again, the free energy equation (45) has the form (24),
where S =

P
i Vi ln Vi equals the expression of the entropy of an n-fold source. But,

contrary to what we concluded in the unconstrained case, we now see that the neurons
have a mutually dependent contribution (of Vi lnVi) to the thermal noise. This is due to
the fact that we force them to be mutually dependent by imposing

P
i Si = 1. The free

energy expression FC2(V) of the constrained stochastic binary model coincides, in mean
�eld approximation, with the energy expression EHM of an adapted continuous Hop�eld
model if we take as a transfer function (which follows from equation (39))

8i : Vi = g(Ui) =
exp(�Ui)P
l exp(�Ul)

(49)

(23 ;
1
3 ;

1
3)

?

0 0.5 1 0
0.5

1

-1

-0.5

0

Fig. 4. The free energy expression FC1

with global extremum

C

(23 ;
1
3 ;

1
3)

?

0 0.5 1 0
0.5

1

0

0.5

1

1.5

Fig. 5. The free energy expression FC2

with constrained extremum

and if we associate the Hop�eld term EH(V) with �TS = 1
�

P
i Vi ln Vi. We notice that

in this case
1
�

X
i

Vi lnVi 6=
X
i

Z Vi

0
g�1(V )dV; (50)

where g equals the transfer function (49). The reason that the inequality (50) holds
is that in this case, Vi is a function of U1; U2; : : : ; Un and not of Ui alone. A similar
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physical interpretation of the model can be given. At high temperatures, the thermal
energy dominates the total energy. This yields as equilibrium solution of the system
8i : Vi = 1=n, because then �TS has its constrained minimum value. Lowering the
temperature corresponds to a decrease of thermal noise in the system and mean �eld
annealing can be applied.

As in the unconstrained case, we give an example of the theory. Suppose the function
to be minimized is

E(S) = 1
2(S

2
1 + 2S2

2) subject to S1 + S2 = 1; (51)

then the corresponding free energy expressions (from theorems 9 and 10) equal

FC1(V1; V2) = �1
2(V

2
1 + 2V 2

2 )�
1
�
ln[exp(��V1) + exp(�2�V2)]; (52)

FC2(V1; V2) = 1
2(V

2
1 + 2V 2

2 ) +
1
�
(V1 ln V1 + V2 ln V2): (53)

A diagram of these functions is shown in �gures 2 and 3, with � = 20, which corresponds
to a low noise level. The arrow denotes the point (23 ;

1
3 ;

1
3), which is the global, respectively

constrained stationary point if noise is neglected. The constrained subspace C consists of
the subspace of [0; 1]2 for which V1 + V2 = 1. In �gure 6, FC1 and FC2 are shown over
the constrained subspace C.

-1

-0.6

-0.2

0.2

0.6

C

FC1(V1)
FC2(V1)

Figure 6: The energy expressions FC1 and FC2 in the constrained space C

.

Like in the unconstrained case, we shall speak of the energy (of binary constrained Hop�eld
networks) in the rest of this section. The question arises whether we again can prove
stability of the motion equations (2).

Theorem 11. Using (49) as a transfer function, the energy FC2 is a Lyapunov function
for the motion equations (2) if during updating the Jacobian matrix of V(U1; U2; : : : ; Un)
becomes and then remains positive de�nite.

14



Proof. The use of transfer function (49) guarantees, that the solution is sought in the
constrained space C. Using lemma 5, we conclude3 that

@

@Vi

�
1
�

X
i

Vi lnVi
�
=

@

@Vi

�X
i

UiVi �
1
�
ln (1 + exp(�Ui))

�
= Ui; (54)

implying that

_Ui = �
@FC2(V)

@Vi
=
X
j

wijVj + Ii � Ui: (55)

Therefore, the motion equations (2) correspond to the free energy function (45). Now,
assuming that the Jacobian matrix J of V(U1; U2; : : : ; Un) becomes positive de�nite and
then remains so during the updating, we can proceed in a similar way as was done in the
proof of theorem 6:

_FC2 =
X
i

@FC2
@Vi

_Vi = �
X
i

(
X
j

wijVj + Ii � Ui) _Vi

= �
X
i

_Ui _Vi = �
X
i

_Ui
X
j

@Vi
@Uj

_Uj = � _U
T
J _U � 0: (56)

The fact that FC2 is bounded below completes the proof. ut

Whether in general the condition holds that the matrix J will become and remain positive
de�nite, is not easy to say. It turns out (see lemma 6), that all diagonal elements of this
matrix are positive, while all non-diagonal elements are negative. Therefore, we decided to
do some experiments which are described in section 4. The theorems of this section can be
modi�ed in a similar way as the theorems of subsection 2.2. The replacement of � by ��
changes the transfer function (49) into

8i : Vi =
exp(��Ui)P
l exp(��Ul)

; (57)

changing the sign of all elements of the Jacobian. Under this condition, the previous
theorem should be modi�ed into

Theorem 12. Using (57) as a transfer function4, the complementary energy

FCC(V) = 1
2

X
ij

wijViVj +
X
i

IiVi +
1
�

X
i

Vi lnVi (58)

is a Lyapunov function for the motion equations (2) if during updating the Jacobian matrix
of V(U1; U2; : : : ; Un) becomes and then remains negative de�nite.

Proof. The proof can be done in the same way as the proof of the previous theorem. ut

3The correctness of this approach becomes more clear in the next subsection about `The General
Framework'.

4In [2], this transfer function (with Ui =
P

j
wijVj + Ii) has been applied in the iterative way that was

mentioned in footnote 1.
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3.3 The General Framework

In this subsection, we introduce the general view on the binary constrained Hop�eld model,
putting the previous analysis in a broader context.

Theorem 13. Using (49) as a transfer function, the energy of binary Hop�eld networks
submitted to the constraint (37) can also be stated as

FC3(U;V) = �1
2

X
ij

wijViVj �
X
i

IiVi +
X
i

ViUi �
1
�
ln (

X
i

exp(�Ui)): (59)

The stationary points of FC3 are found at points where

8i : Vi =
exp(�Ui)P
l exp(�Ul)

^ Ui =
X
j

wijVj + Ii: (60)

Proof. Using lemma 5, the proof can be done in the same way as that of theorem 7. ut

Again, we see the interesting phenomenon that the stationary points of an energy function
(here, FC3) coincide with the conditions of equilibrium of a Hop�eld neural network (here,
the constrained model as de�ned in the beginning of this section). Moreover, function FC3
too appears to be a Lyapunov function of the motion equations (2):

Theorem 14. Using (49) as a transfer function, the energy FC3 is a Lyapunov function
for the motion equations (2) if during updating the Jacobian matrix of V(U1; U2; : : : ; Un)
becomes and then remains positive de�nite.

Proof. Assuming that the conditions of the theorem hold we may say:

_FC3 =
X
i

@FC3
@Vi

_Vi +
X
i

@FC3
@Ui

_Ui (61)

=
X
i

(�
X
j

wijVj � Ii + Ui) _Vi +
X
i

(Vi �
exp(�Ui)P
l exp(�Ul)

) _Ui (62)

=
X
i

_Ui
X
j

@Vi
@Uj

( _Uj) = � _U
T
J _U � 0: (63)

Because FC3 is supposed to be bounded below, its value decreases constantly until a (local)
minimum has been reached. ut

3.4 About the Relation with Elastic Nets

In [14], Simic reveals an interesting result concerning the relation between `elastic' and
`neural' optimizations. Using the statistical mechanics approach, he `derives' the Durbin-
Willshaw Lyapunov function [3] of the elastic net for solving the TSP, which equals

FDW (x) =
X
i

1
2 j x

i+1 � xi j2 � 1
�

X
p

ln
X
j

exp(��
2

2 j xp � xj j2): (64)

The basis for this is obvious: both the statistical energy expression (38) and the elastic
energy expression (64) are composed of an energy (or cost) term plus a ln[

P
exp()]-term.
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Nevertheless, we think his derivation is false for several reasons. After stating our objec-
tions (the mathematical underpinning of which can be found in Appendix B), we argue
why we think the elastic net algorithm is a dynamical penalty method, where among other
things, the penalty weights are dynamically changed by lowering the temperature.
The objections are:

� The Taylor series expansion mentioned on page 97 of [14] is incorrect. The penalty
term with weight �=4 (see (105) in our Appendix B) must have a minus-sign instead
of a plus-sign. Moreover, for high values of � (corresponding to low values of the
temperature) the approximation of the expansion does not hold.

� The decomposition (106) of the particle trajectory leading to the Durbin and Will-
shaw's elastic energy expression, is not applied correctly.

� The last, but possible most important objection: in the statistical mechanics analysis
of subsection 3.2, it has been proved that the equilibrium equations of the constrained
neural network correspond to stationary points of a corresponding free energy ex-
pression. The e�ect of the ln[

P
exp()]-term is such that irrespective of the value of

the thermal noise, the extrema automatically lie within the constrained space. How-
ever, in case of the elastic net this condition is not ful�lled. Instead, a competition
takes place between on the one side, the energy term to be minimized and on the
other side, the ln[

P
exp()]-term which promotes ful�llment of the constraints.

Our conclusion is the following. The last observation about the competition between
minimizing the target function and the ful�llment of the constraints, reminds one of the
traditional penalty method. The penalty method is usually applied with quadratic penalty
weights in such a way, that any minimum of the sum of penalty terms corresponds to a
`feasible' solution of the problem [16]. Observing the elastic net algorithm, we conclude
that the ln[

P
exp()]-terms are approximately quadratic and, moreover, that their minima

correspond to feasible solutions. This is exactly why the method sometimes works (and
why it sometimes, like the penalty method, does not!). However, in contrast to the classical
penalty method (where �xed weights are used), here, the penalty weights are dynamically
changed during the lowering of the temperature. This actuated us to term the elastic
net algorithm a dynamical penalty method. The correspondence between the two di�er-
ent methods may be summarized as follows: in the statistical mechanics approach, the
`smoothing e�ect' of the thermal energy gradually disappears on lowering the temperature,
while in the elastic net algorithm, the `feasibility promoting' e�ect gradually diminishes
on lowering the temperature (although it is to be hoped that the �nal solution is still fea-
sible). This new view on the elastic net algorithm opens the way to a generalization of the
elastic net algorithm to a dynamical penalty method : in resolving constraint optimization
problems, it should be possible to apply `problem dependent' dynamical penalty terms,
whose inuence gradually disappears on lowering the temperature.

4 Review, Experimental Results and Outlook

Reviewing the analyses above, we conclude that either the unconstrained stochastic binary
Hop�eld network or the treated constrained one, behaves, in mean �eld approximation, as a
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speci�c continuous Hop�eld network. In both cases, a corresponding free energy expression
can be derived, as well as a complementary version, all with an explicit expression for the
energy of the thermal noise. Moreover, both models can be even better understood in
a more general framework: in that approach, the energy function has stationary points
which coincide with the whole set of equilibrium conditions of the corresponding Hop�eld
neural network.

To verify the theory about the constrained network, we performed some simple exper-
iments. We tried for example to

minimize V 2
1 + 2V 2

2 + 3V 2
3 + 4V 2

4 subject to : V1 + V2 + V3 + V4 = 1: (65)

Applying the motion equations (2) in combination with the transfer function (39) as
well as with (49) and taking random initializations we found the correct solution in
all cases. With � = 20, which corresponds to a low thermal noise level, the solution
V1 = 0:471; V2 = 0:244; V3 = 0:163; V4 = 0:122 is found, which corresponds to the lo-
cation of the constrained minimum. By taking � = 0:0001, the equilibrium solution
V1 = 0:250; V2 = 0:250; V3 = 0:250; V4 = 0:250 appears, which shows the expected e�ect
of a high thermal noise level.

It is remarkable, that the motion equations (2) of the unconstrained model may still
be applied using the constrained model. This raises the question, whether it is generally
allowed to change the properties of stochastic Hop�eld networks by rede�ning the transfer
function g of the neurons, while adhering the update rule (2). In fact, we think this is
simply a generalization of the theorems 11 and 12, yielding a generalized formula (3). This
is an interesting subject for future research.

The new view on elastic networks also deserves attention. The observation of this
being a dynamical penalty method suggests a research e�ort of analyzing the e�ect of
existing and new dynamical penalty weights. A separate paper is in preparation, which
speci�cally deals with this subject. Some basic results concerning the analysis of elastic
networks can be found in [4]. Recently, we received a paper where the elastic net algorithm
is derived from statistical mechanics in a di�erent way using another cost function as a
starting point [11]. It looks interesting to compare that approach of so-called deformable
templates with our view.

In subsection 3.2, we considered the stochastic neural network submitted to the con-
straints (37). In resolving constrained optimization problems, one often meets problems
with several groups of neurons, each group being submitted to these constraints. If those
groups interfere there is no simple solution, because this interference introduces new con-
straints and the derivations of the previous section no longer hold. In fact, one needs
another partition function and a new derivation. This is usually a tough task. But, if this
is successful, other constrained optimization problems are within the reach of arti�cial
neural networks.

If, on the other hand, the groups of neurons do not interfere, there is no problem
and the given theorems can easily be generalized. This is e.g. the case in the following
formulation of the Travelling Salesman Problem:

minimize E(S) =
nX
i=1

nX
j=1

nX
k=1

SijdikSkj+1; (66)

18



subject to:

8i :
nX
k=1

Sik � 1 = 0 and 8j :
nX
k=1

Skj � 1 = 0; (67)

where Sij 2 f0; 1g. Because the n constraints of the �rst group are independent, the theory
about the constrained network can be used provided that we enforce the constraints of
the second group in a di�erent way. In [2, 10] this is done by using a penalty method.
We propose to use the Hop�eld-Lagrange model [16], because there, the multipliers are
determined automatically by the model itself. We have planned to do these experiments
in the near future.

Reviewing our derivations, it should be clear that some of them can be sharpened. E.g.,
we have used the general Hop�eld model as the framework of analysis, where the neural
network consists of a square of connected neurons, each neuron Si having one index i. The
derived theory is applied on more complex neural networks with two indices like (i and p)
for neurons Spi (see Appendix B). Of course, this step requires a justi�cation. Similarly,
the one-dimensional version of lemma 2 should be generalized to an n-dimensional one.
Last but not least, the `mean �eld approximation' of lemma 3 can be supported with a
more thorough mathematical analysis.

5 Acknowledgements

We thank Marc Leipoldt for reading this article and suggesting changes to the English. We
thank Reino de Boer for the same and for his advice on the LATEX document preparation
system.

A Appendix

Lemma 1. If A is a symmetrical and non-singular matrix then

exp(�2x
TAx) =

R
exp(��

2�
TA�1�� ��Tx)

Q
i d�iR

exp(��
2�

TA�1�)
Q
i d�i

: (68)

Proof. The lemma is a generalization of the following trick

exp(�2x
2) =

R
exp(��

2�
2 � ��x)d�R

exp(��
2�

2)d�
: (69)

This trick can easily be derived by elaborating the integral of the numerator of the right-
hand side. Applying it with

xy =

�
x+ y

2

�2

�

�
x� y

2

�2
(70)

we can write:

exp(�2xy) =

R
exp[��

2 (�
2 �  2)� �

2 (�x+ �y �  x+  y)]d�d R
exp[��

2 (�
2 �  2)]d�d 

=

R
exp[��

2
~� ~ � �

2 (
~�x + ~ y)]d~�d ~ R

exp[��
2
~� ~ ]d~�d ~ 

; (71)
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where ~� = ��  and ~ = � +  . We can generalize this result to

exp(�2x
TAy) =

R
exp[��

2�
T � �

2 (�
Tx+  TAy)]d�d R

exp[��
2�

T ]d�d 
: (72)

Supposing the matrix A is symmetrical and non-singular, we can substitute  ! A�1 
(implying that  TAy ! (A�1 )TAy =  T (A�1)TAy =  Ty) yielding:

exp(�2x
TAy) =

R
exp[��

2�
TA�1 � �

2 (�
Tx+ Ty)]d�d R

exp[��
2�

TA�1 ]d�d 
: (73)

Now, by substituting y ! x and by writing d� =
Q

i d�i the theorem is found. ut

Lemma 2. Expansion around the saddle-point of the numerator and the denumerator in
the right-hand side makes the following approximation exact

exp(12wx
2) = lim

a!1

R a
0 exp(� y2

2w + xy)dyR a
0 exp(� y2

2w )dy
: (74)

Proof. Taking f(y) = exp(� y2

2w + xy), the saddle-point ŷ = wx is found by solving
df(y)=dy = 0. Application of a Taylor series expansion around the saddle point yields

f(y) = f(ŷ) + f
00

(ŷ)
2 (y � ŷ)2 + � � �

= f(wx)� f(wx)
2� (y � wx)2 + � � � (75)

It follows that

R a
0 exp(� y2

2w + xy)dyR a
0 exp(� y2

2w )dy
�

R a
0 f(wx)(1�

(y�wx)2

2� )dyR a
0 f(0)(1�

y2

2� )dy

= exp(12wx
2)�

[y � (y�wx)3

6� ]a0

[y � y3

6� ]
a
0

= exp(12wx
2)�

a� (a�wx)3

6� � (wx)3

6�

a� a3

6�

= exp(12wx
2)�

0
@1 +

3awx
6� � 3w2x2

6�

1� a2

6�

1
A :

Taking the limit with a ! 1, lemma 2 is found. Also, if a larger expansion around the
saddle-point is chosen the same result will be found. This completes the proof. ut

Lemma 3.

Vi = �h
@E(�)

@Ii
i � �

@E(~�)

@Ii
; (76)

where

h
@E(�)

@Ii
i =

R @E(�)
@Ii

exp(��E(�))d�R
exp(��E(�))d�

; (77)
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and for the partition function the following equation holds:

Z�[I] =

R
exp(��E(�))d�R

exp (��
2

P
ij �iw

�1
ij �j)d�

=

R
exp (��

2

P
ij �iw

�1
ij �j + g(�; I))d�R

exp (��
2

P
ij �iw

�1
ij �j)d�

; (78)

where g(�; I) is a certain di�erentiable function of � and I.

Proof. Using (10), (78) and (77) we can write:

Vi =
1
�

@ lnZ�[I]

@Ii
= �

1

Z
:

R @E(�)
@Ii

exp(��E(�))d�R
exp (��

2

P
ij �iw

�1
ij �j)d�

(79)

= �h
@E(�)

@Ii
i: (80)

This is the proof of the �rst part of the lemma.
For the proof of the second part we use the `saddle-point method' [5]. Then, E(�) is

approximated by E(~�), where ~� equals the saddle-point, so we may write E(�) � E(~�).
Using this approximation, we �nd that

Z�[I] �

R
exp(��E(~�))d�R
exp(��E(0))d�

= exp(��E(~�): (81)

Substituting this result in (10), we �nd:

Vi =
1
�

@ lnZ� [I]

@Ii
� �

@E(~�)

@Ii
: (82)

This completes the proof. ut

Lemma 4. If

m =
1

1+ exp(�a)
; (83)

then
ln (1 + exp(a)) = �m lnm� (1�m) ln(1�m) +ma: (84)

Proof. Equation (83) implies that

1�m =
1

1 + exp(a)
: (85)

Using (83) and (85), we can proof the lemma directly:

�m lnm� (1�m) ln(1�m) +ma =

=
�1

1 + exp(�a)
ln(

�1

1 + exp(�a)
)�

�1

1 + exp(a)
ln(

�1

1 + exp(a)
) +

a

1 + exp(�a)

=
ln(1 + exp(�a)) + ln exp(a)

1 + exp(�a)
+

ln(1 + exp(a))

1 + exp(a)

= ln(1 + exp(a))(m+ 1�m) = ln(1 + exp(a)): (86)

ut
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Lemma 5. If

Vi =
exp(��Ui)P
l exp(��Ul)

; (87)

then
ln
X
i

exp(��Ui) = �
X
i

Vi lnVi �
X
i

�UiVi: (88)

Proof. From equation (87) it follows that

��Ui = ln (Vi
X
l

exp(��Ul)): (89)

Using this result and the fact that
P

i Vi = 1 we can write

�
X
i

�UiVi =
X
i

ln (Vi
X
l

exp(��Ul))Vi (90)

=
X
i

Vi lnVi +
X
i

Vi ln(
X
l

exp (� �Ul)) (91)

=
X
i

Vi lnVi + ln (
X
l

exp(��Ul)): (92)

By rewriting this equation, the lemma is found immediately. ut

Lemma 6. If (87) holds, if l � 2, and if l 6= i, then

@Vi
@Ui

= �Vi(1� Vi) > 0 and
@Vi
@Ul

= ��ViVl < 0: (93)

Proof.

@Vi
@Ui

=

P
l exp (�Ul): exp (�Ui):� � exp (�Ui): exp (�Ui):�

(
P

l exp (�Ul))
2

(94)

=
� exp (�Ui):(

P
l exp (�Ul)� exp (�Ui)

(
P

l exp (�Ul))
2

(95)

=
� exp (�Ui):

P
l6=i exp (�Ul)

(
P

l exp (�Ul))
2

= �Vi(1� Vi) > 0: (96)

The second result is found in the same way. Taking l 6= i we �nd

@Vi
@Ul

=
0� exp (�Ui): exp (�Ul):�

(
P

l exp (�Ul))
2

� �ViVl < 0: (97)

B Appendix

Let us start by briey recaputilating Simic's approach [14]. In order to solve the classical
Travelling Salesman Problem (TSP), a `statistical mechanics' is de�ned regarding `particle
trajectories' as an `ensemble', where the paths of legal trajectories must obey the global
constraints of the TSP: the particle (salesman) cannot visit two space-points (cities) at the
same time and it (he) visits all the points (cities) once and only once. The legal trajectory
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with the shortest path length equals the optimal tour for the travelling salesman and that
is the solution we are trying to �nd.

A part of the constraints is enforced `strongly' by summing only over those con�gu-
rations which obey that part of the constraints guaranteeing that all space points (cities)
are visited once and only once. The other part of the constraints is enforced `softly' by
adding a penalty term in order to guarantee that at any time, one and only one city is
visited. If Sip denotes whether the particle at time i occupies space-point p (Sip = 1) or
not (Sip = 0), and if dpq is the distance between points p and q, then the corresponding
energy function (1) of the particle trajectory equals

E(S) = 1
4

X
i

X
pq

d2pqS
i
p(S

i+1
q + Si�1q ) + �

4

X
i

X
pq

d2pqS
i
pS

i
q: (98)

Here, the �rst term represents the sum of distance-squares of the particle. The second
term is the penalty term which penalizes the simultaneous presence of a particle at more
than one position. Now, the statistical mechanics approach of the constrained model of
section 3.2 can be applied. Using the cost function (98), the following expression of the
free energy is obtained:

F (V) = �1
4
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pq
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2
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q
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i
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q ))]: (99)

This free energy expression can be seen as a special case of the general energy function:

FC(V) = �1
2
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pqV
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ln [
X
i

exp(��
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pqV
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q )]: (100)

In order to derive an energy expression in the standard form (24), Simic applies a Taylor
series expansion on the last term of equation (99). Taking

f(V) =
X
p

ln[
X
i

exp(V i
p)]; (101)

aip = �� �2
X
q

d2pqV
i
q ; and (102)

hip = �� 1
2

X
q

d2pq(V
i+1
q + V i�1

q ); (103)

he obtains

F (V) �
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p
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X
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(aip) (104)

= 1
4

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q ) + �
2

X
i

X
pq

d2pqV
i
pV

i
q �

1
�

X
p

ln
X
i

exp (� � �2
X
q

d2pqV
i
q ): (105)

In our derivation, we found a slightly di�erent expression with the weight value ��
4 instead

of the value +�
2 . Moreover, inspection of equation (103) reveals, that the chosen Taylor-

approximation does not hold for low values of the temperature, i.e., high values of �. This
underpins the �rst objection of subsection 3.4.
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In order to transform the Hop�eld network formulation of the TSP into an elastic net,
Simic performs a `decomposition of the particle trajectory':

xi = <x(i)> =
X
p

xp<S
i
p> =

X
p

xpV
i
p : (106)

Here, x(i) is the position of the particle at time i, xp is the vector denoting the position
of space-point p, and xi denotes the average position of the particle at time i. Using the
decomposition, he obtains the free energy expression of the elastic net algorithm

F (x) =
X
i

1
2 j x

i+1 � xi j2 � 1
�

X
p

ln [
X
j

exp(�� �2 j xp � xj j2)]: (107)

However, careful analysis shows that in general

X
q

d2pqV
i
q =

X
q

(xp � xq)
2V i

q 6= j xp � xi j2 : (108)

If the constraints are ful�lled, the inequality sign must be replaced by the equality sign,
but in general the inequality holds. This motivates our second objection against Simic's
result.

Thirdly, calculation of the stationary points of equation (105) (or, equation (107))
yields that the stationary points of the energy function do not correspond automatically
to constraints of the form (37). Therefore, the e�ect of the

P
ln[
P

exp()]-term di�ers from
the e�ect in the statistical mechanics approach. This explains our third objection against
Simic's derivations and conclusions.
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