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Abstract

The Elliptic Logarithm Method has been applied with great success to the prob-
lem of computing all integer solutions of equations of degree 3 and 4 defining elliptic
curves. We extend this method to include any equation f(u, v) = 0, where f ∈ Z[u, v]
is irreducible over Q, defines a curve of genus 1, but is otherwise of arbitrary shape
and degree. We give a detailed description of the general features of our approach,
and conclude with two rather unusual examples corresponding to equations of degree
5 and degree 9.
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1 Introduction

In this paper we discuss a general method for solving equations defining plane curves of
genus 1 in rational integers. This method generalizes the so-called Elliptic Logarithm
Method—Ellog for short—which, as a practical routine (‘getting one’s hands dirty’, so to
speak) for solving Weierstrass equations, was first described and applied by Stroeker and
Tzanakis [16] and, independently, by Gebel, Pethő and Zimmer [8]. Since then, it has been
applied by a number of authors to a variety of elliptic equations of degree 3 or 4; see [15],
[21], [3], [9], [19], [20], [17]. In particular, a general treatment of the cubic elliptic equation
can be found in [20].

Now that many elliptic equations of standard types have been successfully solved
by application of Ellog, it seems natural to ask whether we can extend this method to
arbitrary equations defining a genus 1 plane curve. To be more precise, the problem we
wish to deal with in this paper is to develop a general practical method for solving explicitly
the diophantine equation in rational integers u, v

f(u, v) = 0,

where f ∈ Z[u, v] is irreducible over Q and f = 0 defines a curve C of genus 1.
This equation has at most finitely many solutions in integers, which can be effectively
computed; see for instance [1] and [13]. However, the explicit computation of all such
is quite a different matter and to this we shall direct our efforts. What is new in this
paper is a general procedure, in the framework of Ellog, for obtaining, starting from an
elliptic equation of arbitrary shape, an explicit linear form in elliptic logarithms and an
upper bound for it. This is a non-standard task because it depends non-trivially on the
particular shape of the initial equation f(u, v) = 0. After this stage the process of obtaining
explicitly all integer solutions may be considered standard at the present state of affairs.

In Section 2 we give a full description of this generalization of Ellog, and in Section 3
we present two rather unusual curves of total degree 5 and 9 respectively. They serve the
purpose of illustrating essential points in the description of our method.

In Notes, right at the end of this paper, we have collected some relevant facts that
are considered standard but may be difficult to locate in the literature.

A preliminary, incomplete version of this paper found its way into the Proceedings of
Ants-iv [18].

2 Description of Ellog

In this section we shall give a detailed description of Ellog in its most general form. We
shall reserve the letter n for degv f . If C(R) is a bounded subset of R2, then, solving this
equation in integers should be a trivial task. We therefore consider only such polynomials
f for which C(R) is unbounded. Then, without loss of generality, we may assume that
there are real solutions (u, v) with |u| arbitrary large.
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2.1 The birational transformation

The curve C is birationally equivalent over a number field K to

E : y2 = q(x) = x3 + Ax + B, (1)

where the degree of K is at most min{degu f, degv f = n}. A proof can be found in [13,
Proposition 1]. Moreover, for our method to work we need K to be real. Fortunately
this can always be guaranteed as we shall see shortly. Because C(R) is non-empty, an
assumption we made above, we can choose a non-singular point (u0, v0) ∈ C(R ∩ Q) and
put K = Q(u0, v0). The function field K(C) is of genus 1 and admits a place of degree 1,
namely, the one corresponding to the point (u0, v0). By [4, Chapter II, § 3] this function
field is generated over K by two functions x,y ∈ K(C) related by a Weierstrass equation (1),
where x takes the place of x and y that of y. This shows that K(C) can be both expressed as
the quotient field K[u, v]/〈f〉 and as the quotient field K[x, y]/〈q〉, which is precisely what
we require. Note that this argument also shows that [K : Q] ≤ min{degu f, degv f = n}.

Alternatively, by [13, § 6], a field K as above can be obtained by adjoining to Q the
coefficients of any Puiseux series at infinity of the algebraic function implicitly defined
by f(u, v) = 0. Given the existence of points (u, v) ∈ C(R) with |u| arbitrarily large,
Lemma 2.2.1 below implies the existence of such Puiseux series and ensures that K is real.
A practical algorithm for computing the Weierstrass model (1) and the birational transfor-
mation between C and E is described in [12]; an implementation of this algorithm is included
in the package algcurves of recent releases of the computer algebra system Maple. It is
worth noticing that this algorithm, when given a non-singular point (u0, v0) ∈ C(Q) and
the coefficients of f as input, produces an output (that is to say the coefficients A,B of
(1) and the coefficients of the isomorphism C → E and its inverse) belonging to Q(u0, v0).
Although this is not very explicit in [12], it can be verified by careful scrutiny of [10, §§ 1
and 2.1] and [11, §§ 1-3.1] on which the algorithm of [12] is based.

The inclusion A,B ∈ K can be further improved to A,B ∈ Q: by an argument found
on pages 93–95 of [6], a simple transformation (x, y) 7→ (t2x, t3y) for a conveniently chosen
t ∈ Q maps equation (1) to an equivalent Weierstrass equation with coefficients in Q.
Therefore, we have established the following

Fact 1. The curve C is birationally equivalent over Q to a Weierstrass equation (1) with
A,B ∈ Q by means of a birational transformation

u = U(x, y),

x = X (u, v),

v = V(x, y)

y = Y(u, v)
(2)

whose coefficients are real algebraic numbers of degree at most min{degu f, degv f = n}.
These coefficients, as well as A and B, can be explicitly computed.

Throughout this paper we shall adopt the following convention and notation. In
our terminology, ‘a point P of the curve’ is a point with coordinates (u(P ), v(P )) on C
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satisfying f(u(P ), v(P )) = 0, or, as the case may be, a point with coordinates (x(P ), y(P ))
on E satisfying (1). Then, according to Fact 1,

u(P ) = U(x(P ), y(P )),

x(P ) = X (u(P ), v(P )),

v(P ) = V(x(P ), y(P ))

y(P ) = Y(u(P ), v(P )).

Remark. A rational integer solution of f(u, v) = 0 corresponds to a point P with
u(P ), v(P ) ∈ Z. Although E is defined over Q by (1), the field K not necessarily coin-
cides with Q. Now x(P ), y(P ) ∈ K, and so we need to consider E over K. According to
Section 2.5 it will be necessary to compute a Mordell-Weil basis for E(K), which may turn
out to be tricky in case K 6= Q. Such complications can be avoided if we happen to know
a non-singular point in C(Q).

2.2 Puiseux series

The complex solutions (u, v), implicitly given by f(u, v) = 0, can be made explicit ‘near
infinity’ by means of Puiseux series. We gather the details in the following

Fact 2. (a) There is a finite Galois extension L/Q, which we view as a subfield of C,
and n distinct formal power series (Puiseux expansions at infinity)

vi(u) =
∞∑

k=µi

αk,iu
−k/νi , with αµi,i 6= 0 (i = 1, . . . , n), (3)

where for each i, νi, µi ∈ Z, νi ≥ 1, all αk,i’s belong to L, the formal identity
f(u, vi(u)) = 0 holds, and νi is minimal subject to the restriction that no proper
divisor of νi divides all k ≥ µi with αk,i 6= 0.

(b) Any formal power series v(u) satisfying the formal identity f(u, v(u)) = 0 and having
properties analogous to those of the series (3), even without the requirement that the
coefficients of v(u) be algebraic, necessarily coincides with one of the above n series.

(c) The formal identity

f(u, v) = p0(u)
n∏

i=1

(v − vi(u))

holds, where p0(u) is the coefficient of vn in f(u, v).

(d) Each series (3) converges for u in the range |u| > M , where M is the maximum
modulus of the roots of the polynomial resv(f, ∂f

∂v
) ∈ Z[u].

(e) For each i the function t 7→ vi(t
−νi) =

∞∑

k=µi

αk,it
k is analytic and one-to-one in the

punctured disk with center at the origin and radius M−1/νi.
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Most of these facts are considered standard, but detailed references are not always easy to
find. In the Notes1 section at the end of this paper we have collected as much information
as we have been able to trace. The reader may find it useful; we certainly did.

In Notes2 an algorithm is presented that determines the finite extension of Q gener-
ated by the infinitely many αk,i’s, once the integers νi and µi have been computed (e.g. by
the first few steps in the construction of a Newton polygon).

The following lemma shows how to obtain points (u, v) belonging to C(R) with arbi-
trary large u.

Lemma 2.2.1. Let f(u0, v0) = 0 with u0, v0 ∈ R and u0 > M . There is exactly one series
vi(u) of (3) with all its coefficients αk,i (k = µi, µi+1, . . .) in R such that, if we give u−1/νi

its usual interpretation of the real νi-th root of 1/u, then v0 = vi(u0).

Proof. By statement (c) of Fact 2, 0 = f(u0, v0) = p0(u0)
∏n

s=1(v0 − vs(u0)). Further,
by remark (iii) of Notes1, p0(u0) 6= 0, hence vi(u0) = v0 for some series vi(u). This
series has only real coefficients αk,i (k = µi, µi+1, . . .). Indeed, assume the contrary and
denote by σ0 the element of Gal(L/Q) obtained by restricting the complex conjugation
automorphism of C to L. Then, by remark (v) of Notes1, vi(u, 0, σ0) coincides with
a series vj(u), the coefficients of which are the complex conjugates of the corresponding

coefficients of vi(u), and hence vj(u) is distinct from vi(u). Then, vj(u0) = vi(u0) = v0 = v0,
so that f(u0, v) = p0(u0)

∏n
s=1(v − vs(u0)) ∈ Z[v] is a non-zero polynomial divisible by

(v − vi(u0))(v − vj(u0)) = (v − v0)
2, which is impossible by remark (iii) of Notes1. This

shows that all coefficients of vi(u) are real.
Finally, if vl(u0) = v0 were true for some l distinct from i, an argument analogous to that
just given would show the polynomial f(u0, v) ∈ Z[v] to be divisible by (v − v0)

2, which
again is impossible. 2

2.3 A limiting value for X
Our intention of giving a full description of the Ellog way of solving f(u, v) = 0 in integers
u and v is clearly not hampered by the restriction u > 0. As the computation of all such
solutions (or ‘integral points’ of C) with 0 ≤ u ≤ M is rather straightforward, it suffices
to consider only those points P ∈ C(R) with u(P ) > M . By Lemma 2.2.1, for any such
point P , there is a subscript i ∈ {1, . . . , n}, such that the series vi(u) of (3) has only real
coefficients and v(P ) = vi(u(P )). Therefore, the problem we need to solve is essentially
this:

For any (fixed) series vi(u) of (3) having all its coefficients in R, find all points
P ∈ C(R) such that u(P ) is a rational integer > M and vi(u(P )) is a rational
integer too.

In view of this, from now on and until the end of the paper the following will always be
tacitly understood:
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• The subscript i belongs to {1, . . . , n} and vi(u) is as in (3) with all its coefficients
belonging to R.

• For the generic point P under consideration, (u(P ), v(P )) ∈ C(R), u(P ) > M and
v(P ) = vi(u(P )).

• The meaning of u−k/νi is the usual one (see Lemma 2.2.1).

Proposition 2.3.1. The expression X (u, vi(u)) always has a limiting value for u → ∞,
including ±∞. Notation: x0i = limu→∞X (u, vi(u)). If finite, x0i is a real algebraic number
that can be explicitly computed.

Proof. First note that f(u, v) cannot be a factor of either the numerator or the denom-
inator of the rational function X (u, v). For, otherwise, the curve C could be injectively
mapped into a straight line, which is impossible for a curve of genus 1.
Next, put u = t−νi with t ∈ R and 0 < t < M−1/νi . In view of Facts 1 and 2, it is easy to
see that X (u, vi(u)) takes the form

βtλ + β′tλ
′
+ β′′tλ

′′
+ . . .

γtρ + γ′tρ′ + γ′′tρ′′ + . . .
,

for certain non-zero real algebraic numbers β, β′, β′′, . . . , γ, γ′, γ′′, . . . and rational integers
λ < λ′ < λ′′ < . . . and ρ < ρ′ < ρ′′ < . . . . This shows that

x0i = lim
u→∞

X (u, vi(u)) =





β/γ if λ = ρ,

0 if λ > ρ,

sgn(β/γ)∞ if λ < ρ.

By Facts 1 and 2, β and γ can be explicitly computed, hence the same is true for x0i.
2

Definition 2.3.2. In case x0i is finite we denote by Q0i ∈ E(Q ∩ R) the point with x-
coordinate x0i and non-negative y-coordinate. In case x0i = ±∞ we set Q0i = O, the group
identity of E(Q).

2.4 The elliptic integrals

In this section we are concerned with the precise connection between the elliptic integrals
corresponding to the two models of our curve of genus 1, that is to say, the original
f(u, v) = 0 on the one hand, and the Weierstrass equation (1) on the other. It is not
difficult to see that

dx

y
= G(u, v)

du

fv(u, v)
, (4)

where

G(u, v) = 2
Yu(u, v) · fv(u, v)− Yv(u, v) · fu(u, v)

3X 2(u, v) + A
.
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In case f(u, v) = 0 is a Weierstrass equation, a quartic equation of type v2 = Q(u) for
some quartic polynomial Q, or a general cubic elliptic equation, G(u, v) is constant with
value 2; see [16], [21] and [20].
Now put

gi(u) = G(u, vi(u)), xi(u) = X (u, vi(u)), yi(u) = Y(u, vi(u)). (5)

Obviously, xi(u) and yi(u) are continuous real functions of the real argument u > M , and
satisfy yi(u)2 = xi(u)3 + Axi(u) + B. Hence

yi(u) = ε
√

q(xi(u)), with ε ∈ {−1, 1},
and consequently

dx

y
=

dx

ε
√

q(x)
. (6)

Then, by relations (4) and (6), we get
∫ ∞

u(P )

gi(u) du

fv(u, vi(u))
=

∫ x0i

x(P )

dx

ε
√

q(x)
, (7)

under the assumption that u(P ) ≥ M is sufficiently large4. Indeed, recall the assumption
v(P ) = vi(u(P )), which we made at the beginning of Section 2.3. By the relations given
at the end of Section 2.1 and (5), x(P ) = X (u(P ), v(P )) = X (u(P ), vi(u(P ))) = xi(u(P )).
Now (7) follows by Proposition 2.3.1, and relations (4) and (6). Observe that for u(P )
large enough (see Notes3 at the end of the paper), the open integration intervals of both
integrals are in one-to-one correspondence for the birational map (see Fact 1).

We shall now estimate the integrand in the left-hand side of (7). For Ellog to work, it
is essential that the corresponding integral tends to zero as u(P ) tends to ∞.

Proposition 2.4.1.
gi(u)

fv(u, vi(u))
= O(u−1−δ) (u →∞), (8)

where δ ≥ ν−1
i .

Proof. By a classical result the integral associated with the differential in the left-hand
side of (4) is an elliptic integral of the first kind, and by implication, so is the corresponding
integral of the right-hand side of (4). This means5 that for any parametrization (u, v) =

(u(t), v(t)) of f(u, v) = 0, the t-expansion of
G(u(t), v(t))

fv(u(t), v(t))
· du

dt
contains no negative t-

powers. Using this fact in the parametrization

u(t) = t−νi , v(t) = vi(t
−νi) =

∞∑

k=µi

αk,it
k,

4This can be made explicit; see Notes3

5See for example [2, § 24].
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and taking into account that du/dt = −νit
−νi−1, leads to the inequality

ordt
G(t−νi , vi(t

−νi))

fv(t−νi , vi(t−νi))
≥ νi + 1.

Now on putting t−νi = u in the relation above we conclude that

ordu
gi(u)

fv(u, vi(u))
≤ −1− 1

νi

.

2

For example, if f(u, v) = 0 happens to be a Weierstrass equation to start with, no birational
transformation is needed, and δ = 1

2
, while in case of either a non-Weierstrass cubic

equation or of a quartic equation of type v2 = Q(u) with quartic polynomial Q, it is easily
shown that δ = 1 (see [20] and [21], respectively). In both examples studied in Section 3
of this paper, δ = 1/νi.

2.5 Linear forms in elliptic logarithms

In this section we shall show that the integral in the right-hand side of (7) can be expressed
as a linear form in elliptic logarithms of points in E(Q), so that estimates for the integral
automatically provide estimates for this linear form.

The group E(R), defined by y2 = q(x), has the identity component E0(R) and in the
real case—we remind the reader of the fact that in this case q(x) = 0 has three real roots
e1 > e2 > e3—also the bounded component E1(R). Let Qj = (ej, 0) ∈ E(Q) for j = 1, 2, 3.
For any R ∈ E1(R) we put R′ = R + Q2 ∈ E0(R). We have the usual isomorphism

φ : E0(R) −→ [0, 1) = R/Z

(see [16]). In the complex case—that is when q(x) = 0 has a single real root—E0(R) = E(R)
and φ is defined on the whole of E(R). In the real case φ is extended to a two-to-one
epimorphism φ̃, defined by

φ̃(R) =

{
φ(R), if R ∈ E0(R)

φ(R′), if R ∈ E1(R)
.

Let ω = 2

∫ ∞

e1

dt√
q(t)

, the fundamental real period. A bit of thought suffices to convince

one that

ω · φ̃(R) =

{
elliptic log of R, if R ∈ E0(R)

elliptic log of R′, if R ∈ E1(R)
(9)

We write
P = n1P1 + · · ·+ nrPr + T,
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where P1, . . . , Pr form a Mordell-Weil basis of E(K) 6 and T is one of the finitely many
torsion points. It is easy to see that the φ̃(T ) are rational numbers with effectively bounded
denominators. Then both φ̃(P ) and φ̃(−P ) are of the form

m1φ̃(P1) + · · ·+ mrφ̃(Pr) + m0 +
s

t
, (10)

where r is the rank of E over Q, mj = ±nj (j = 1, . . . , r), m0 ∈ Z is effectively bounded in
terms of N = max1≤j≤r |nj|, and s, t are relatively prime integers, effectively bounded by
a small number; for a more detailed exposition, see [16].

Reminding the reader of the definition of Q0i and, in general, of our discussion in
Section 2.3, we now distinguish two cases:

1. e1 ≤ x0i If u(P ) > M is sufficiently large (which, in practice, can easily be made

completely explicit), then e1 < x(P ), and hence

∫ x0i

x(P )

dx√
q(x)

=

∫ ∞

x(P )

dx√
q(x)

−
∫ ∞

x0i

dx√
q(x)

= ωφ(σP )− ωφ(Q0i) = ωφ̃(σP )− ωφ̃(Q0i).

Here σ = 1 or −1, depending on whether y(P ) is non-negative or negative respec-
tively. This, combined with (10) and (9) shows that the integral in the left-hand side
of (7) is equal to the linear form in elliptic logarithms

−ωφ̃(Q0i) + (m0 +
s

t
)ω + m1ωφ̃(P1) + · · ·+ mrωφ̃(Pr), (11)

and all points appearing in it have algebraic coordinates. We shall denote this linear
form by L(P ).

2. e3 ≤ x0i ≤ e2 For u(P ) > M sufficiently large (again, this can be made completely

explicit), x(P ) ∈ (e3, e2) and

∫ x0i

x(P )

dx√
q(x)

=

∫ e2

x(P )

dx√
q(x)

−
∫ e2

x0i

dx√
q(x)

=

∫ ∞

x(P ′)

dx√
q(x)

−
∫ ∞

x(Q′0i)

dx√
q(x)

= ωφ(σP ′)− ωφ(Q′
0i) = ωφ̃(σP )− ωφ̃(Q0i),

by which we have arrived at the same linear form L(P ) as before (11).

Remark. Occasionally it may happen that φ̃(Q0i) is a rational linear combination of
φ̃(P1), . . . , φ̃(Pr). For example, if kQ0i ∈ E(Q) for some integer k ≥ 1, then

kQ0i = k1P1 + · · ·+ krPr + torsion

6Not of E(Q) in general; cf. Section 2.1 and the remark there.
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for certain explicit, generally small integers k1, . . . , kr. Hence

φ̃(Q0i) =
k1

k
φ̃(P1) + · · ·+ kr

k
φ̃(Pr) +

k0

k
+

s′

t′
,

where k0/k and s′/t′ have analogous roles to those of m0 and s/t in (10). If such is the case,
the term φ̃(Q0i) in L(P ) disappears, and the coefficients of ω, φ̃(P1), . . . , φ̃(Pr) change to
fractions with explicit, generally small denominators. Thus, this case can be included in a
more general situation in which the coefficients of ω, φ̃(P1), . . . , φ̃(Pr) in L(P ) are rational
numbers with explicit small denominators, and numerators that are bounded by a large
constant N0, for which

N0 ≤ αN + β, (12)

as is easily verified. Here α and β are small positive constants that can be explicitly
computed in every particular case.

We showed above that the integral in the right-hand side of (7) equals the linear form
L(P ) in elliptic logarithms of points in E(Q). It is quite straightforward to give an upper
bound for |L(P )|. Indeed, in view of Proposition 2.4.1, the integrand in the left-hand side
of (7) is in absolute value at most c1u

−1−δ for an explicitly computable positive constant7

c1. Thus,
|L(P )| ≤ c1δ

−1|u(P )|−δ. (13)

Next we need the following

Lemma 2.5.1. Let h(·) denote the logarithmic height function. Then,

h(x(P )) = h(X (u(P ), v(P ))) ≤ c2 + c3 log |u(P )| (14)

for any point P with integer coordinates u(P ) and v(P ), where u(P ) is taken to be larger
than a conveniently chosen explicit constant.

Proof. The proof we shall give below is not the most straightforward one we can give,
but it is constructive, and it provides smaller values for the constants c2 and c3 than those
implied by a theoretically simpler proof.

Assume that u(P ) ≥ M . Then, v(P ) = vi(P ) for some i ∈ {1, . . . , n} (cf. Section 2.3).
Consider first the usual case, in which X is a rational function of u and v with rational
coefficients. Write X = F1/F2 for some relatively prime polynomials with rational integer
coefficients. For simplicity put u(P ) = u and v(P ) = v, so that h(X (u(P ), v(P )) ≤
log max{|F1(u, v)|, |F2(u, v)|} = log |Fj(u, v)| for the proper choice of j = 1, 2. By (3), |v| ≤
u−µi/νiγ, where γ is a small positive constant, provided u is sufficiently large8. Next, write
Fj(u, v) =

∑
(k,l) ak,lu

kvl and let c3 be a positive integer not less than max(k,l){k− lµi/νi},
where the maximum runs over all pairs (k, l) for which ak,l 6= 0. Then, |Fj(u, v)| ≤ C2u

c3 ,
where C2 =

∑
(k,l) |ak,l|γl and (14) holds with c2 = log C2.

7The cj ’s that appear in this paper denote explicitly computable constants that are positive, with the
possible exception of c7.

8Actually, γ is already very small for u > 10 or u > 20.
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In the general case, we proceed as before, but now the coefficients of the polynomials F1, F2

are algebraic integers. Then, h(x(P )) = h(F1(u, v)/F2(u, v)) ≤ h(F1(u, v)) + h(F2(u, v)).
Let F be a polynomial in two variables, the coefficients of which are algebraic integers.
Further, for rational integers u, v, write F (u, v) =

∑
(k,l) ak,lu

kvl. Then9

|F (u, v)| ≤ F (u, v) ≤
∑

(k,l)

ak,l uk|v|l ≤ C2u
c3 ,

where c3 is as before and here C2 =
∑

(k,l)

ak,l γl. 2

Finally we make use of the following relation between the Néron-Tate height and the
logarithmic height (see e.g. [14]10):

ĥ(P )− 1
2
h(x(P )) ≤ c4. (15)

Recall that N is the maximum of absolute values of the coefficients nj of P with respect

to a given Mordell-Weil basis. It is well-known that ĥ(P ) ≥ c5N
2, where c5 is the least

eigenvalue of the height-pairing matrix corresponding to the chosen Mordell-Weil basis.
This is a positive-definite form, hence c5 is positive. Combining this with (13), (14) and
(15), we obtain

|L(P )| ≤ exp(−c6N
2 + c7) with c6 =

2c5δ

c3

, c7 = log c1 − log δ +
c2 + 2c4

c3

δ . (16)

The lower bound for |L(P )| is provided by S. David’s Theorem [7], namely,

|L(P )| > exp(−c8(log N0 + c9)(log log N0 + c10)
k) , (17)

where N0 is as in (12) and k = r + 2 if φ̃(Q0i) is a rational linear combination of
φ̃(P1), . . . , φ̃(Pr)

11 or k = r + 3, otherwise. Because of (12), the lower bound is ex-
pressed in terms of N . This lower bound is valid, provided N0 is not less than a certain
‘small’ explicit constant. For a more detailed discussion of the constants appearing in the
application of David’s Theorem we refer the reader to the Appendix of [21]. Thus, either
N ≤ c11, or both (16) and (17) hold—with αN + β in place of N0—so that in combination
they give an upper bound for N .

3 Examples

Now that the general outline of Ellog has been discussed in sufficient detail, the reader may
be curious to learn how the method behaves in practice, especially under the pressure of

9For an algebraic number α we write α to denote the so-called house of α, i.e. the maximum absolute
value of all its algebraic conjugates over Q.

10cf. also [27] and [28]
11In particular, if Q0i = O.
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non-standard, unusual data. Numerous examples have been given (see [3], [8], [9], [15], [16],
[17], [19],[20], [21]) of the way Ellog works on quite regular elliptic equations. In opposition
to this, here we are interested in more provocative equations that accentuate the general
applicability of the method. It turned out to be rather difficult to find matching examples
in the literature. By accident we stumbled on a fifth degree curve of genus 1 that is used
to illustrate the singularities command of the Maple package algcurves. We approached
Mark van Hoeij, author of this Maple package, who suggested another curve of genus 1.
The latter is given by an equation with small coefficients but of rather high degree. In
our view, both curves are unusual and, at the same time, sufficiently natural to serve our
purpose well enough. If the reader happens to know other such curves of genus 1, we would
be grateful to learn about them.

In the two examples of our choice only the non-standard parts are worked out in
detail. To justify this we repeat (see the Introduction) that new in this paper is the general
procedure leading from the initial equation to the linear form in elliptic logarithms and
the upper bound for it. It is mainly this stage that we wish to illustrate in our examples,
the remainder of the computational process is standard12, which is amply illustrated by
an abundance of examples in the literature (see the beginning of the Introduction). We
therefore decided to show in detail how we obtained the linear form in elliptic logarithms
and its upper bound, but not to give our computations beyond this point.

3.1 A degree 5 example

The example of this section has already been presented in [18, section 6.3], where we used
a somewhat different notation. Since it is an interesting example, very appropriate in
illustrating our general method, we once again include it here, adapted to the choices of
notation and overall description of the present paper.

We want to solve f(u, v) = 0 in integers, where

f(u, v) = 8v5 + 35v4 + (128u− 82)v3 + 19v2 + (207u4 − 621u3 + 521u2 − 135u + 28)v

− 180u5 + 450u4 − 369u3 + 100u2 + 7u− 8.

The short Weierstrass model of this curve is

y2 = x3 − 62058288278602561

805306368
x +

61852994116858326481398145

59373627899904

and

X (u, v) = 43681
49152

(103981u5 + 15228u4v + 10284u3v2 + 1536u2v3 + 4128uv4 − 316526u4

+ 47412u3v + 67584u2v2 + 15468uv3 − 2592v4 + 368606u3 − 71388u2v

− 88968uv2 − 13932v3 − 206150u2 + 2268uv + 12636v2 + 52681u

+ 6480v − 2592)
/
u(u2 + 1)(u− 1)2 ,

12See, however, the discussion on computational limitations in [17].
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Y(u, v) = 9129329
524288

(2070033u6 + 70533u5v − 28045u4v2 + 45962u3v3 + 90616u2v4

− 7973144u5 + 1130670u4v + 1634455u3v2 + 312517u2v3 − 117296uv4

+ 12052790u4 − 2569492u3v − 3224660u2v2 + 524456uv3 + 33368v4

− 9090868u3 + 1336366u2v + 1787607uv2 + 179353v3 + 3599145u2

+ 115343uv − 162669v2 − 691324u− 83420v + 33368)
/
u(u2 + 1)(u− 1)3 .

By now it should be clear that without the use of symbolic computation we would not get
very far. These rational functions X (u, v) and Y(u, v) are defined over Q, which implies
that (x(P ), y(P )) ∈ E(Q) for any point P with (u(P ), v(P )) ∈ C(Q). Therefore we need
only consider a Mordell-Weil basis of E over Q instead of over a proper extension of Q (see
the remark on page 4). This curve has trivial torsion and its rank is 5. A basis is given by

P1 =
(−84348011

49152
,−566849166939

524288

)
, P2 =

(
406276981

49152
, 516236166963

524288

)
, P3 =

(−240027095
49152

,−37384602255
32768

)
,

P4 =
(

30445657
49152

, 32673868491
32768

)
, P5 =

(
589387733

24576
, 3778802730351

1048576

)

with corresponding canonical heights bounded from above by 3.011, 3.019, 3.039, 3.214,
4.005, respectively.

Consider the case u > 0. According to Fact 2, we have the following five Puiseux
expansions (i = 1, . . . , 5)

vi(u) = ρiu + d0(ρi) + d1(ρi)u
−1 + d2(ρi)u

−2 + O(u−3) (u →∞), (18)

where

d0(ρi) = 117652915
2647875132

ρ4
i + 59690773

294208348
ρ3

i + 64881275
294208348

ρ2
i − 37533284

73552087
ρi + 3292350

73552087
,

d1(ρi) = 2409249577008465
86558552032889104

ρ4
i − 143100375932054279

4154810497578676992
ρ3

i − 3841218563243545585
12464431492736030976

ρ2
i

−442118719850886867
692468416263112832

ρi + 99742932488150451
173117104065778208

,

d2(ρi) = − 46304367990791457732640885
3667139798237041673525787648

ρ4
i + 91871979044861844697522343

1833569899118520836762893824
ρ3

i

+ 43666801880702130891932691
814919955163787038561286144

ρ2
i + 2831900188941035651896208357

29337118385896333388206301184
ρi

−213000092757640705570148071
814919955163787038561286144

,

and ρ1, . . . , ρ5 are the roots of 8X5 + 207X − 180 = 0, only one of which, ρ1 say, is real.
In the notation of Fact 2, ν1 = 1. The maximum modulus of the roots of the resultant
resv(f, ∂f

∂v
) equals M ≈ 2.83. According to Lemma 2.2.1, for any point (u, v) ∈ C(R) with

u > M , v can be expressed as v = v1(u). The geometric meaning of this is that the graph
of C(R) has one infinite ‘branch’ in the positive direction.

From the expansions (18) it is clear that lim
u→∞

vi(u)

u
= ρi. It is then straightforward to

deduce that for i = 1, . . . , 5

x0i = lim
u→∞

X (u, vi(u)) = 1878283
512

ρ4
i + 43681

32
ρ3

i + 37434617
4096

ρ2
i + 55431189

4096
ρi + 4541994061

49152
.
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The explicit coordinates of the point Q01 now easily follow (see Definition 2.3.2).

Finally we consider
g1(u)

fv(u, v1(u))
as a Puiseux series in u. With Maple’s help we find

g1(u)

fv(u, v1(u))
= C(ρ)u−2 + O(u−3) (u →∞), with

C(ρ) = − 3208960
19764496521

ρ4
1 − 3488000

19764496521
ρ3

1 + 3609248
6588165507

ρ2
1 + 18542144

6588165507
ρ1 − 7380608

2196055169
,

which shows that δ = 1 = 1/ν1 (cf. Proposition 2.4.1).
In the notation of Section 2.5, e1 ≈ −12630.87093889 and e2, e3 6∈ R, which means

(cf. Section 2.5) a Case 1 situation. Once we explicitly know the rational function U(x, y) it
is easily checked that we may take the value 2.83 for the constant M (cf. Notes3). Then the
function u 7→ x1(u) (cf. the beginning of Section 2.4) maps the interval (M,∞) bijectively
onto the open interval (x1(M), x01), where x1(M) ≈ 2.241652 and x01 ≈ 113356.8. Hence,
every point P ∈ C(Q) with u(P ) > 2.83 has x(P ) > e1 and the corresponding linear form
is

L(P ) = −ωφ̃(Q01) + m0ω + m1ωφ̃(P1) + · · ·+ ωφ̃(P5) .

From this point on we follow the steps described in Section 2.5 to compute the values
c1, . . . , c10. Nothing unusual occurred in or as a result of this computational process.

The case u < 0 can be dealt with analogously on putting f ′(u, v) = f(−u, v) and
studying the solutions of f ′(u, v) = 0 with u > 0. In particular, we now have the following
five Puiseux expansions (i = 1, . . . , 5):

v′i(u) = −ρiu + d0(ρi)− d1(ρi)u
−1 + d2(ρi)u

−2 + O(u−3) (u →∞),

where ρi and d0, d1, d2 are as before. We then proceed exactly as in the case u > 0.

3.2 A degree 9 example

It was Mark van Hoeij who put us on the track of the unusual curve of genus 1 given by
the equation f(u, v) = 0, where

f(u, v) = v9 + (504u2 + 168)v6 + 405(3u2 + 1)(u + 1)v5 − 636(3u2 + 1)2v3+

324(3u2 + 1)2(u + 1)v2 − 243
4

(u2 + 2u + 1)(3u2 + 1)2v + 8(3u2 + 1)3.

In order to find a short Weierstrass model for this curve, we noticed that (u, v) = (0, 32
81

) is
a regular point on the curve g(u, v) = 0, where

g(u, v) = u6f(u−1, v).

Working with this point, it took van Hoeij’s algorithm [12] as implemented in Maple 6
almost two and a half hours on a Pentium III 733 MHz desktop to find the corresponding
Weierstrass equation

y2 = x3 − 2 , (19)
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together with the birational transformation (2), and as it happens, X (u, v) and Y(u, v) are
again defined over Q. Both are too large to reproduce here. To give an impression of their
sizes, the total degree of the numerator/denominator of X (u, v) and Y(u, v) is 20/19 and
21/20 respectively, and both have numerators with more than 100 terms13.

As in the previous example, the coefficients of these rational functions are again ra-
tional, and therefore we need only consider a Mordell-Weil basis of E(Q). Actually, E/Q
has trivial torsion and rank 1 with generator of infinite order P1 = (3, 5).

The remaining calculations only took a fraction of the time needed for the computation
of the birational transformations.

Consider first the case u > 0. In this example we have, according to Fact 2, nine
Puiseux expansions, namely:

v1(u) = 32
81

+ 832
19683

u−1 + 735680
43046721

u−2 + O(u−3) (u →∞),

and for i = 2, . . . , 9:

vi(u) = βiu
3/4 − β2

i (
4

3159
β4

i + 56
39

)u2/4 + β3
i (

17
9477

β4
i + 4583

2106
)u1/4

− ( 10
9477

β4
i + 727

1053
) + βi(

35
85293

β4
i + 3005

6318
)u−1/4

− β2
i (

128
767637

β4
i + 5701

28431
)u−2/4 + O(u−3/4) (u →∞),

where β2, . . . , β9 are the conjugates of the algebraic number β, satisfying

4β8 + 4860β4 − 2187 = 0.

Exactly two conjugates of β are real, say β2 and β3 = −β2, and it is easy to see that

β2 = 4

√
−1215

2
+ 351

√
3 ≈ 0.818960467.

In the notation of Fact 2, ν1 = 1 and νi = 1/4 for i = 2, . . . , 9. The maximum
modulus of the roots of the resultant resv(f, ∂f

∂v
) equals M = 1.375120737. According to

Lemma 2.2.1, for any point (u, v) ∈ C(R) with u > M , v can be expressed as v = vj(u) for
some j = 1, 2 or 3. From a geometric point of view, this means that the graph of C(R)
has three infinite ‘branches’ in the positive direction.

Working in the way we explained in the example of Section 3.1 we find

x01 = ∞,

x0i = 19
351

β4
i + 5399

78
(i = 2, . . . , 9).

Since we are interested only in expansions vi(u) with real coefficients (see Definition 2.3.2),
we only list

Q01 = O and Q02 = Q03 = (109
3

+ 19
√

3, 285 + 1513
9

√
3). (20)

13The interested reader may find them on our homepages.
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Finally, we consider the expansion of
gi(u)

fv(u, vi(u))
as a Puiseux series in u. Careful com-

parison of degrees, and with the indispensable help of Maple we find

gi(u)

fv(u, vi(u))
=





16
729

u−2 + O(u−3) (u →∞) for i = 1,

βi

18
u−5/4 + O(u−3/2) (u →∞) for i = 2, 3,

which again shows that δ = 1/νi in all cases (cf. Proposition 2.4.1).
In the notation of Section 2.5, e1 = 3

√
2 and e2, e3 6∈ R. Again, this is the Case 1

situation, and, for a general point P ∈ C(Q), our linear form has one of the two forms

L(P ) =





m0ω + m1ωφ̃(P1)

−ωφ̃(Q0) + m0ω + m1ωφ̃(P1),

where Q0 = Q02 = Q03 (cf. (20)). From this point on we follow the steps described in Sec-
tion 2.5 to compute the values c1, . . . , c10. As we mentioned at the beginning of this section,
there is no point in giving the details of these calculations. The only somewhat ‘unfriendly’
value is that of c3, which, in one instance is as large as 15.5. This is due, basically, to the
complicated form of the rational function X (u, v) (cf. the proof of Lemma 2.5.1) . As a
consequence, a comparatively small value for c6 is obtained which, in turn, results in a
large upper bound for N (approximately 1042), rather unusual for a rank 1 curve. This,
combined with the fact that c1 is very small (its smallest value is 0.046), requires checking
multiples n · P1 in the reduction process with n as large as 70.

The case u < 0 is treated analogously on putting f ′(u, v) = f(−u, v) and studying the
solutions of f ′(u, v) = 0 with u > 0. The Puiseux expansions are similar as before, namely

v′1(u) = 32
81
− 832

19683
u−1 + 735680

43046721
u−2 + O(u−3) (u →∞),

and for i = 2, . . . , 9

v′i(u) = β′iu
3/4 − β′ 2i ( 4

3159
β′ 4i − 56

39
)u2/4 + β′ 3i (− 17

9477
β′ 4i + 4583

2106
)u1/4

− (− 10
9477

β′ 4i + 727
1053

) + β′i(
35

85293
β′ 4i − 3005

6318
)u−1/4

− β′ 2i (− 128
767637

β′ 4i + 5701
28431

)u−2/4 + O(u−3/4) (u →∞),

where β′2, . . . , β
′
9 are the conjugates of the algebraic number β′ with defining equation

4β′ 8 − 4860β′ 4 − 2187 = 0.

Exactly two conjugates of β′ are real, say β′2 = 4

√
1215

2
+ 351

√
3 and β′3 = −β′2, and we

proceed exactly as before.
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Notes

1[cf. page 5]
The following remarks refer to Fact 2.

(i) Statements (a), (b), and (c) are classical statements on Puiseux series. They can be found in
classical books such as [2, Chapter II] and [22, Chapter IV], though in slightly different form. The
authors of these books use the notion of parameterization in order to express the solutions (u, v),
and instead of (3) write u = t−νi and v = vi(t−νi) =

∑∞
k=µi

αk,it
k. Here we prefer following §3 of

[23].

(ii) The Puiseux expansions (3) can be computed algorithmically by means of Newton polygons; see
for instance [22, Chapter IV, §3]. An interesting refinement of this process is found in [25] with an
added discussion on complexity matters; see also [24, §2] and [26, §3]. It is worth mentioning that
the algcurves package of Maple computes the Puiseux expansions of an algebraic function.

(iii) Statement (d) seems widely known. However, we could not find an easily accessible reference where
this is explicitly stated and proved. Implicitly it can be derived from, for example, [2, Chapter II]
(especially §13).
Note that the non-vanishing of resv(f, ∂f

∂v ) ∈ Z[u] for a specific value u0 of u (in particular for
|u0| > M) means that the coefficient p0(u0) of vn in f(u, v) is non-zero. In particular this shows
that f(u0, v) is a non-zero polynomial in v, and what is more, this polynomial has only simple roots.

(iv) Statement (e) is found, for example, in [2, Theorem 13.1] and what precedes this theorem. For
the injectivity proof of t 7→ vi(t−νi) we need the somewhat technical requirement in (a) on the
minimality of νi.

(v) Let ζ be a primitive νi-th root of unity, m ∈ {0, 1, . . . , νi−1}, and σ ∈ Gal(L/Q). The formal series

vi(u,m, σ) =
∞∑

k=µi

σ(αk,i)ζmku−k/νi

also satisfies f(u, vi(u,m, σ)) = 0, and hence coincides with another series (3), say with vj(u) =
vj(u, 0, id). We then say that vj(u) and vi(u) belong to the same conjugacy class. The n series (3)
are thus partitioned into disjoint conjugacy classes (see after relation (3.5) in [23]). Therefore, the
computation of a smaller set of series (3) composed of representatives of each conjugacy class—this
is what Maple actually does when it is asked to compute the Puiseux expansions of an algebraic
function—suffices for the computation of all expansions (3).

2[cf. page 5]
The algorithm below, implicitly contained in the proof of Lemma 3 of [5], determines the finite extension
of Q, generated by the infinitely many αk,i’s that appear in Fact 2, once the integers νi and µi have been
computed (e.g. by the first few steps in the construction of a Newton polygon).
Fix a subscript i in (3) and subsequently omit it in order to simplify notation. Write

f(u, v) =
n∑

j=0

pj(u)vn−j , with pj ∈ Z[u] (j = 0, 1, . . . , n).

Choose a non-negative integer N such that
−ν deg pj + µ(n− j) + N ≥ 0 (j = 0, . . . , n)

with equality for at least one subscript j, and put

Pj(x) = pj(x−ν)xµ(n−j)+N (j = 0, . . . , n) and F (x, y) =
n∑

j=0

Pj(x)yn−j .
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Then F ∈ Z[x, y], and it is straightforward to check that

F (x, y(x)) = 0 identically in x, where y(x) =
∞∑

k=0

αk+µxk. (21)

Algorithm. Let m = degx F and κ = (2n−2)m+1. For k = 0, 1, 2, . . . determine recursively polynomials
Fk(x, y) and Hk(y) as follows:

Step 1. Put k = 0 and Fk(x, y) = F (x, y).
Step 2. Write Hk(y) = Fk(0, y), and let uk be a zero of Hk.
Step 3. Compute Fk(x, uk + xy) and let xg be the least x-power occurring in the resulting

polynomial. Put Fk+1(x, y) = x−gFk(x, uk + xy), k ← k + 1. If k ≤ κ, go to Step 2.

By the proof of Lemma 3 of [5], the polynomials Hk (k = 0, 1, 2, . . . ) are not identically zero, their degrees
are in non-increasing order and deg Hk0 = 1 for some k0 ≤ κ, so that for all k ≥ k0 the polynomial Hk is
of degree 1. Now for each k ≥ 0, the algebraic number αk+µ in (21) is a root of Hk, and therefore assumes
one of the possible values of uk. By the linear character of Hk for all k ≥ k0, it follows that for k > k0,
αk+µ is uniquely determined by the previous α’s and αk+µ ∈ Q(αµ, αµ+1, . . . , αµ+k0).

3[cf. page 7]
Consider the set S consisting of those of the following points of E that are not poles of U : the zero point
and the points (e, 0), where e is a real zero of q(x) (cf. (1)). For relation (7) to hold it suffices that
u(P ) ≥ M , where M exceeds the u-coordinates of all finite points of C(R) that are poles for either X or Y
(these poles are finite in number; cf. the beginning of the proof of Proposition 2.3.1) and the values of U
at all (at most four) points of S.


