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Abstract

In machine learning theory, problem classes are distinguished because of di�erences in
complexity. In [6], a stochastic model of learning from examples was introduced. This PAC-
learning model (PAC = probably approximately correct) re
ects di�erences in complexity
of concept classes, i.e. very complex classes are not e�ciently PAC-learnable. Blumer et al.
[1] found, that e�cient PAC-learnability depends on the size of the Vapnik Chervonenkis

dimension ([7]) of a class. In Section 2 we will discuss this dimension and give an algorithm
to compute it, in order to provide the reader with the intuitive idea behind it. In [3] a new,
equivalent dimension is de�ned for well-ordered classes. These well-ordered classes happen
to satisfy a general condition, that is su�cient for the possible construction of a number
of equivalent dimensions. We will give this condition, as well as a generalized notion of an
equivalent dimension. Also, a relatively e�cient algorithm for the calculation of one such
dimension for well-ordered classes is given.

1 Introduction

To avoid confusion about terms and results used in this paper, the most important ones are
stated formally.

Let X be the domain of our interest: a set of �nite strings over some �nite alphabet �. X
can be in�nite. Xn is the set of all strings in X of length at most n. A concept f is a subset of
X .

A number of concepts with distinct features can be grouped in a class of concepts F . The
concept in F an algorithm is required to learn is called the target concept.

A PAC-algorithm for a class of concepts F learns a target concept f 2 F from positive and
negative examples for it. An example for a concept f is a pair (x; y), where x 2 X and y = 1 if
x 2 f and y = 0 if x 62 f . The value of y for any x is a function of x, determined by the concept
in discussion and will therefore be denoted by f(x).

Examples are chosen according to some unknown probability distribution P on Xn, where
n is one of the input parameters of the algorithm. Eventually, the algorithm outputs a concept
g 2 F , such that with high probability, g is a good approximation of f . Since we are solely
interested in the number of examples needed, neither the way in which the algorithm �nds such
a concept, nor the way in which it is presented in the end, are speci�ed.

A formal de�nition of a PAC-algorithm is as follows:

� De�nition: A learning algorithm A is a PAC-algorithm for a class of concepts F over X
if

1. A takes as input ", � > 0 and n 2 N, where " is the error parameter, � is the
con�dence parameter and n is the length parameter.
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2. A may call the procedure example, which returns examples for some concept
f 2 F , according to an arbitrary and unknown probability distribution P on Xn.

3. For all concepts f 2 F and for all probability distributions P on Xn, A outputs
a concept g 2 F , such that with probability at least 1� �, P (f 4 g) � ", where
f 4 g is the symmetric di�erence between f and g.

We are interested in the number of examples an algorithm needs, to learn concepts from a
class probably approximately correctly. The following complexity measure for learning-algorithms
plays an important role.

� De�nition: Let A be a learning algorithm for concept class F . The sample complexity of
A is a function s with parameters "; � and n. It returns the maximum number of calls of
example by A, for all runs of A("; �; n), for all f 2 F and all P on Xn. s is in�nite if no
�nite maximum exists.

� De�nition: Class F is said to be polynomial sample learnable if there exists a learning
algorithm for F , with a sample complexity that is bounded by some polynomial p in 1

"
, 1
�

and n.

In the following sections, the Vapnik Chervonenkis dimension [7] of a class is introduced,
followed by a discussion of a number of aspects of it, including its importance to PAC-learning,
as well as an algorithm for its calculation. After that, Natarajans dimension [3] is discussed, and
we introduce a condition for a class, that is su�cient for the de�nition of a number of dimensions
over this class, which are all equivalent to the Vapnik Chervonenkis dimension. An algorithm
involving the e�cient calculation of one such dimension, is given.

2 Shattering and the Vapnik Chervonenkis Dimension

An important notion in PAC-learning is shattering.

� De�nition: A class of concepts F on X shatters a set S � X if the set given by ff\Sjf 2
Fg is the power set of S (denoted by 2S).

Shattering is used in the de�nition of a complexity measure for concept classes, the Vapnik

Chervonenkis dimension.

� De�nition: The Vapnik Chervonenkis dimension of a concept class F on X is the greatest
integer d such that there exists a set S � X of cardinality d that is shattered by F . It is
denoted by Dvc(F ). If no greatest d exists, Dvc(F ) is in�nite.

By the following discussion an attempt is made to provide the reader with an intuitive idea
behind Dvc.

If concept class F shatters S, then F is partitioned by S in the following way: two concepts
f; g 2 F are equivalent i� f \ S = g \ S. The total number of equivalence classes is 2jSj. This
gives us a surjective mapping from F to the power set of S, where a concept is mapped to its
intersection with S. The more elements there are in S, the closer this mapping is to an injection.

For example if S = ; we have only one equivalence class. If S = fxg, then F is divided into
two equivalence classes: the set of all concepts containing x, and the set of those not containing
x. If jSj = Dvc(F ), then we have the most re�ned mapping.

Notice, that if S is shattered by F , then F has to contain at least 2jSj concepts, so 2jSj � jF j.
If jSj = Dvc(F ) then we can use Dvc(F ) to �nd an upper bound of jF j (see Lemma 2). Notice
also, that if S is shattered by F , then every S1 � S, is also shattered by F . Three questions
now come to mind:
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1. If F shatters S and x 2 [F �S, is there an easy way to check whether or not S [fxg
is also shattered by F?

2. If there does not exist an x 2 [F � S such that S [ fxg is shattered by F (we say S
is maximal) does that imply that jSj = Dvc(F )?

3. Is there an algorithm, which �nds Dvc(F )?

These questions are answered by the following lemmas/examples:

� De�nition: Let F shatter S. An element x 2 [F � S is said to be an extending element
of S if for every A � S, there are f; g 2 F such that x 62 f , x 2 g and f \ S = g \ S = A.

� Lemma 1: Let F shatter S. There exists a set T , with T � S, T 6= S and T shattered
by F if and only if [F � S contains an extending element for S.

Proof:

!: Let there exist a set T � S, T 6= S, such that T is shattered by F . Let T � S contain x

and let A be a subset of S. Since T is shattered by F , there is an f 2 F such that f \ T = A

and also f \ S = A. Clearly, x 62 f . There is also a g 2 F with g \ T = A [ fxg. Notice that
g \ S = A and that x 2 g. It follows that x is an extending element of S.
 : Let x 2 [F � S be an extending element for S. Let T = S [ fxg. Let A � T . If x 62 A,
then A � S, so there is an f 2 F such that f \T = f \S = A. If x 2 A let B = A�fxg. Since
B � S, there is a g 2 F with x 2 g and g \ S = B. But then, g \ T = A.

From Lemma 1 it follows that if [F is �nite, then for any S shattered by F , there is a
maximal S0 such that S � S0 and F shatters S0.

From the following example it can be seen that two maximal sets are not always of the same
cardinality. Let S and T be two nonempty sets such that S \ T = ; and jSj > jT j. Also, let
F = fhjh � S _ h � Tg. F shatters S because every subset of S is a concept in F . Similarly
F shatters T . Let x 2 [F � S. Then x 2 T . Let A � S, A nonempty. Since F contains only
subsets of T or S and T \ S = ;, no f 2 F exists, such that (A [ fxg) � f . So x can never
be an extending element of S. It follows that S is maximal and similarly is T . Hence the claim
follows.

It is our interest to �nd an algorithm generating Dvc(F ) for any concept class F with �nite
[F . Notice the following:

Let F shatter S and let x be an extending element for S. Suppose, that f 2 F and g 2 F

are equivalent with respect to S[fxg. Then f \S = g\S and hence f and g are also equivalent
with respect to S. Using this an extending element x of S can be found in the following way:
for every A � S let FA � F be the equivalence class de�ned by A. Then x is an extending
element of S i� for every A there are f; g in FA such that x 2 f and x 62 g. So every FA can
be divided into two classes with respect to S [ fxg: the set ff jf 2 FA ^ x 2 fg and the set
ff jf 2 FA ^ x 62 fg.

The above can be used in the following algorithm:

� Algorithm:

1. Let d = 0. Start with the empty set ;; for all f; g 2 F , f is equivalent with g

with respect to ;. With regard to ; the only equivalence class is F .

2. Suppose d = n. Suppose also that we have constructed S1; :::; Sk where every
Si is shattered by F and contains n elements. Now, the above discussion can
be applied to every Si. For every A � Si, the equivalence class constructed in
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the previous iteration was FA = ff 2 F jf \ Si = Ag. Use the above discussion
and these FA to �nd extending elements x1; :::; xm. The xj can be found by
checking whether every FA can be divided into two nonempty classes with regard
to Si[fxjg. These new classes can be used in the next iteration. If an extending
element exists for some Si, then let d = n+ 1. Every Si [ fxjg is a shattered set
of n + 1 elements.

3. Repeat step 2 until no extending elements can be found for any Si. Then we
have Dvc(F ) = d.

Of course, this algorithm can be improved, if we eliminate the possibility of the algorithm
generating duplicate sets. To illustrate the above, an example follows, in which the natural
numbers are taken as a domain. Let class F contain the following concepts:
f1 = f0; 2; 3g, f2 = f0; 3; 4g, f3 = f1; 2; 3g, f4 = f0; 1; 3; 4g, f5 = f0; 1; 2; 3g, f6 = f2; 3; 5g,
f7 = f1; 3; 4g, f8 = f3; 4g. Observe, that [F = f0; 1; 2; 3; 4; 5g. Dvc(F ) can be found in the
following way:

1. Start with ; and class F .

2. ; can be extended to f0g because F can be divided into two subclasses: F1 =
ff1; f2; f4; f5g and F2 = ff3; f6; f7; f8g.
Hence f0g is also shattered by F . Similar divisions can be made for f1g; f2g; f4g; f5g.

3. f0g can be extended to f0; 1g because:
F1 can be divided into the classes F3 = ff4; f5g and F4 = ff1; f2g.
F2 can be divided into the classes F5 = ff3; f7g and F6 = ff6; f8g.
Similar divisions can be performed for f0; 2g; f0; 4g; f1; 2g; f1; 4g.

4. f0; 1g can be extended to f0; 1; 2g because F3 can be divided into ff5g and ff4g. F4
can be divided into ff1g and ff2g etc. Hence, f0; 1; 2g is shattered by F .
No 4-element shattered set can be found, so Dvc(F ) = 3.

An intuitive notion of the importance of Dvc(F ) in machine learning can be given by the
following.

Let S be a set shattered by a concept class F and let jSj = Dvc(F ). Also, let x 2 [F � S.
Then there is an A � S, such that for all f 2 F , with f \ S = A, f(x) is the same. Otherwise
x is an extending element for S.

So, for all x 2 [F � S, the value of f(x) for some f 2 F can be predicted to some extent,
which would speed up the learning process.

Two new de�nitions and an important lemma, due to Vapnik and Chervonenkis [7] now
follow.

� De�nition: The projection fn of a concept f on Xn is the set of all strings of X in f with
length at most n.
The projection Fn of a concept class F on Xn is the set given by ffnjf 2 Fg.

� De�nition: A concept class F is said to be of polynomial Vapnik Chervonenkis dimension
if Dvc(Fn) is O(p(n)) for some polynomial p.

� Lemma 2: Let F be a class of concepts on some �nite domain X . Then 2dvc � jF j �
(jX j+ 1)dvc, where dvc = Dvc(F ).

� Remark: Notice that the projection Fn of a class F on Xn is also a concept class over
the (�nite) domain Xn.
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Lemma 2 is used to prove an important result, which formalizes the relation between learn-
ability and the Vapnik Chervonenkis dimension. The proof can be found in Natarajan [4] (see
also [2]).

� Theorem 1: A class of concepts F is polynomial sample learnable if and only if F is of
polynomial Vapnik Chervonenkis dimension.

As an example, take class F to be the class of monotone monomials. These are boolean
functions consisting of the conjunction of positive boolean variables ai, e.g. a1 ^ a3. For clarity,
we assume these functions to be preceded by a tautology in all variables, e.g. in the case of 3
variables this would be a1 _ :a1 _ a2 _ :a2 _ a3 _ :a3. A concept in this class is a set of (0; 1)-
strings that all satisfy the same monotone monomial. The number of monotone monomials in
exactly n variables for some n is bounded from above by 2n. Therefore, jFnj �

Pn
i=0 2

i. So,
by Lemma 2, 2dvc �

Pn
i=0 2

i, where dvc = Dvc(Fn). It follows that dvc � n + 1 and thus F is
polynomial sample learnable. Actually, Fn always shatters a set of n elements. For examples,
in the case of F4 this set could be f0111; 1011; 1101; 1110g. We conclude that n � dvc � n+ 1.

For another complexity result, concerning this dimension, we refer to Subsection 7.3.

3 Alternative Dimension

In a variant of the PAC-learning model, concerned with learning boolean functions, it is required,
that a learning algorithm always outputs a subset of the concept to learn, when fed with a
number of positive examples. If for a concept class F such an algorithm exists, then F is called
PAC-learnable with omission-only error from positive examples. In this setting, according to
a result in [3], there are two requirements for an algorithm to be polynomial sample learnable,
namely polynomial Vapnik Chervonenkis dimension (as before) and well-orderedness. We will
�rst introduce the notion of graph(f) and consistency.

� De�nition: Let F be a concept class. For any concept f 2 F , graph(f) is the set of all
examples for f (positive and negative).

� De�nition: A concept f is consistent with a set of examples S if S � graph(f).

� De�nition: A class F is well-ordered if, for any set of positive examples S for some
concept f in F , there exists a concept g 2 F such that g is consistent with S and g is a
subset of any concept in F consistent with S (we call g the least concept consistent with
S).

� Remark: In the following discussion, positive examples will play an important role. No-
tice, that a set of positive examples for some f 2 F corresponds with a subset, say S, of
f . Now, to avoid unnecessary complications in our discussion, we will also speak of the
least concept consistent with S.

In this variant however, the condition of having a polynomial Vapnik Chervonenkis dimension
can be replaced by having a polynomial dimension. This dimension was introduced by Natarajan
[3], who argues that it is intuitively more appealing than the Vapnik Chervonenkis dimension.
It is de�ned as follows:

� De�nition: The dimension of a well-ordered class of concepts F , denoted by dim(F ), is
the least integer d such that for every concept f 2 F , there exists a set Sf of d or fewer
elements such that f is the least concept in F consistent with Sf .
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� Remark: To �nd dim(F ) for some F , we can use the following approach: for every f 2 F ,
we consider the sets S of elements in f such that f is the least concept consistent with S.
Any such S of minimal cardinality may be chosen as Sf . Now, let f range over the whole
F . Then we have:

dim(F ) = maxfjSf j jf 2 Fg

� Remark: From now on, it is implicitly assumed that any concept class we discuss contains
as one of its concepts the empty concept ;. This is the least concept consistent with an
empty set of (positive) examples.

We will proceed with a number of propositions concerning properties of well-ordered classes. We
use the symbol � to correspond with a proper subset.

� Proposition 1: ([3]) A �nite class of concepts F is well-ordered i� for any two concepts
f; g 2 F , there exists a concept h 2 F such that h = f \ g.

For any set A of elements within some concept, let M(A) denote the least concept consistent
with A. Notice that if jF j is �nite, then M(A) = \ff jf � Ag. For any two sets A and B:

� Proposition 2: ([3])

M(A [ B) = M(M(A)[M(B))

� Proposition 3: Let F be a well-ordered class of concepts and let f 2 F . f is the least
concept consistent with a set of elements S � f i� there is no g 2 F such that S � g � f .

� Proposition 4: Let f be the least concept consistent with a set of elements S. Let S0 � S

be a set of elements within f . Then f is the least concept consistent with S0.

With Proposition 2, 3 and 4 the following theorem can be proved:

� Theorem 2: Let F be a well-ordered class over domain X . If f 2 F and S is any set
such that

{ f is the least concept consistent with S

{ There is no S0 � S such that f is the least concept consistent with S0

then S is shattered by F and has no extending elements within f . (We call S a minimal

set of f).

Proof: f is not the least concept consistent with any proper subset of S. Suppose F does not
shatter S. Then there exists a set S0 � S such that there is no concept g 2 F with g \ S = S0.
Let h be the least concept consistent with S0. Let T = h \ S. Then T 6= S0: T \ (S � S0) is
nonempty and jT j > jS0j. Notice, that S = (S � T ) [ S 0 [ T . By Proposition 2:

M(S) = M(M(S � T )[M(S0)[M(T ))

By Proposition 4: M(S0) = M(T ). Therefore,

M(S) = M(M(S � T )[M(S0))

and, again by Proposition 2:

M(S) = M((S � T ) [ S 0)
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So, f = M(S) = M((S � T ) [ S0), but jSj > j(S � T )[ S0j, so f is the least concept consistent
with a proper subset of S, which gives us a contradiction: h \ S = S0. It follows that for every
subset S0 of S there is a concept hS0 such that hS0 \ S = S0: S is shattered by F .

S has no extending elements in f . Suppose it has an extending element in f , say x. Then
there must be a concept g such that g � S, but x 62 g. But then g is consistent with S and
yet, f , the least concept consistent with S, is not a subset of g. This is a contradiction, which
completes the proof of Theorem 2.

From Theorem 2 it follows, that:

� Lemma 3: If F is a well-ordered class of concepts over a �nite domain X , then d � dvc �
d 2log(jX j+ 1), where d = dim(F ) and dvc = Dvc(F ).

Proof: Since Sf , as de�ned in the de�nition of a well-ordered class, is a minimal set of f , it
follows from Theorem 2 that Sf is shattered for each f 2 F . Therefore, jSf j � dvc for all f and
thus, by the de�nition of d: d � dvc. Now, every concept f 2 F is the least concept consistent
with a set of d or fewer elements. Of course, no two di�erent concepts are both the least
consistent with the same set. Therefore, the number of concepts in F is always smaller then the
number of sets of at most d elements. This number is bounded from above by (jX j+ 1)d. Now
we have 2dvc � jF j � (jX j+ 1)d and thus dvc � d 2log(jX j+ 1). So, d � dvc � d 2log(jX j+ 1).

The following theorem follows almost immediately from Lemma 3. It is a result found by
Natarajan [3], who gives an alternative proof. We have chosen to state and prove it again using
Lemma 3 (and thus Theorem 2 implicitly), because this is useful to and illustrative to the results
in the following sections.

� Theorem 3: A well-ordered class F is polynomial sample learnable i� dim(Fn) is O(p(n))
for some polynomial p.

Proof: Of course if F over X is well-ordered, then so is Fn over Xn for each n. So, since Xn

is �nite, it is perfectly legitimate to read Fn for F and Xn for X in Lemma 3. Thus, we get
dim(Fn) � Dvc(Fn) � dim(Fn) 2log(jXnj+ 1). Since 2log(jXnj+ 1) grows only polynomially in
n, it follows that dim(Fn) is O(p(n)) for some polynomial p if and only if Dvc(Fn) is O(q(n))
for some polynomial q. From this, Theorem 3 follows immediately.

For an example, we return to the monotone monomials of Section 2. Let f be any such function
in, say n, variables. Consider the string x having 1's for every variable that appears in f and 0's
elsewhere. Then it is easy to see, that f is the least concept consistent with fxg. For example, if
f is a function in 4 variables, given by a1^a3, then it is the least concept consistent with f1010g.
It follows, that dim(Fn) = 1 for each n. Furthermore, it is easy to see, that F is well-ordered.
It follows that F is polynomial sample learnable with omission-only error.

� Remark: Unfortunately, Theorem 2 cannot be reversed. This can be seen by the following
example: let F consist of four concepts: f1 = fa; b; cg, f2 = fa; bg, f3 = fb; cg, f4 = fbg,
f5 = fdg and f6 = ;. Notice, that F is well-ordered. We can see that Sf1 = fa; cg.
However, the set fbg is a maximal shattered set within f1 (i.e it has no extending elements
within f).

4 Equivalent Dimensions

We have seen that for any class F over domain X to be e�ciently learnable, it has to be
of polynomial Vapnik Chervonenkis dimension. If F is well-ordered, this requirement can be

7



replaced by polynomial dimension; a dimension notion, which is equivalent to Dvc. In this
section, we will, to some extent, generalize this equivalence. That is, we will give a more general
property of concept classes than that of well-orderedness; for classes that have this property,
a number of alternative dimensions can be constructed, which are all equivalent to Dvc. It
appears that dim is an example of such a dimension. We hope that this more general property
leads us to the de�nition of a dimension that is computable in a more e�cient way than Dvc by
an intuitively appealing algorithm.

Consider this: let F be a concept class over �nite domain X , such that there exists a function
�, de�ned as follows:

� � : F ! 2X

� � is injective

� j�(f)j � Dvc(F ) for every f 2 F

Then we can associate with � a number D�(F ) = maxfj�(f)j j f 2 Fg. It can be proved, that

� Theorem 4: d� � dvc � d�
2log(jX j+ 1), where d� = D�(F ) and dvc = Dvc(F ).

Proof: It is easy to see that d� � dvc. Furthermore, since � is injective, jF j equals the number
of �(f)'s. This number is bounded from above by (jX j+ 1)d�. So, 2dvc � jF j � (jX j+ 1)d� and
thus dvc � d�

2log(jX j+ 1).

The essence of the above is this: suppose F is such, that for each concept f 2 F , there is a set
of elements of cardinality less than or equal to Dvc(F ), that is somehow uniquely related to f .
Then we can de�ne some function �, which gives one such set for every f . If dimension D� is
then de�ned as the cardinality of the largest set, then it has the properties of Theorem 4.

Now suppose that F is such, that there exists an injective function �, which generates (for
every n 2 N) for every fn 2 Fn a set of elements from Xn smaller than Dvc(Fn). Then our
result would change to:

D�(Fn) � Dvc(Fn) � D�(Fn)
2log(jXnj+ 1)

Since 2log(jXnj+ 1) grows only polynomially in n, it follows that Dvc(Fn) is O(p(n)) for some
polynomial p if and only if D�(Fn) is O(q(n)) for some polynomial q: D� is equivalent to Dvc.

So, the general property we were looking for turns out to be the existence of a function � as
speci�ed above. With any such � we can associate a new dimension, equivalent to the Vapnik
Chervonenkis dimension.

Clearly, well-ordered classes are an example of classes having this general property. The
existence of a '�' for such classes, has namely been proved in the previous section: � could be
such that �(fn) = Sfn . In this case D�(Fn) would be dim(Fn), which is, indeed, equivalent to
Dvc(Fn). In the next section we will present another '�' for well-ordered classes by an e�cient
algorithm.

� Remark: As we know, if F shatters a set S, we have jF j � 2jSj. Therefore, jF j � 2dvc,
where dvc = Dvc(F ). In this section we have proved, that jF j � (jX j+ 1)d�, where d�
is as in Theorem 4. Now, d� � dvc. So, jF j � (jX j+ 1)dvc. This gives us another proof
of Lemma 2 [7] for classes for which equivalent dimensions can be constructed. We can
combine all these results in the following way:

2d� � 2dvc � jF j � (jX j+ 1)d� � (jX j+ 1)dvc
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5 An Algorithm For An Alternative Equivalent Dimension

In this section, we will construct an algorithm to �nd, for any concept f in a well-ordered class
F over domain X , a set of elements Rf in X , such that f is the least concept consistent with
Rf . Any subset R�

f of Rf , that is a minimal set (as de�ned in Theorem 2) of f , is shattered
by F (and has no extending elements within f). Furthermore, if we de�ne a new dimension
as the cardinality of the greatest R�

f for all f , then this dimension is equivalent to the Vapnik
Chervonenkis dimension (just as dim(F )). We need the following de�nitions, in which the
symbol � is again used to denote a proper subset.

� De�nition: ; is said to have 0 layers. Let f 2 F . f is said to have k layers if every g � f

has less than k layers and there is at least one g � f that has k � 1 layers.

� De�nition: For every f 2 F , a representation set Rf is de�ned as follows:

1. If f is ;, then Rf = ;.

2. Suppose Rg is de�ned for every concept g with less than k layers. Consider the set
H , being fhj 6 9g; f � g � hg. Let H = fh1; :::; hng. If f 6= [hi, then pick any
a 2 f � [hi and let Rf = fag. If f = [hi, then de�ne Rf = [Rhi .

For an example, see Figure 1: In this �gure, the concepts are represented by ellipses; the elements
of the concepts by the numbers inside these ellipses. The most outer concept has 4 layers, and a
representation set for it is f9g. A representation set for the concept f1; 2; 3; 4g, is f2; 3; 4g. For
the concept f4g we have f4g as a representation set, and for f4; 7; 8g we have f7g.
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Figure 1

� Proposition 5: For any f 2 F , 6 9g 2 F , with Rf � g � f . So f is the least concept
consistent with Rf .

Proof (by induction over the number of layers): The proposition is trivial for concepts with 0
or 1 layer. Suppose that the proposition is valid for every g with k layers. Now, let f have k+1
layers. Then we can distinguish two situations:

1. If a 2 f � [hi and Rf = fag, then there is no g � f containing a, which is trivial.

2. If f = [hi, then
M(Rf) = M([Rhi)
= M([M(Rhi)) (by Proposition 2 of section 3)
= M([hi) (by the induction proposition)
= M(f) = f

9



From Theorem 2 of Section 3, it follows that any minimal set R�
f � Rf is shattered by F .

Proposition 5 guarantees that such an R�
f exists. Now, if we choose for every f 2 F an Rf and

if �(f) � Rf is any minimal set of f , then we have the following property for the corresponding
dimension:

� Theorem 5: Let F be well-ordered, and let D(Fn) = maxfjR�
fn
j j fn 2 Fng for each n.

Then D is a dimension equivalent to Dvc.

Proof: The results of this section are still valid if we limit the discussion to Fn over domain
Xn. Then it is easy to see that this new D is constructed using a function �, that gives an R�

fn

for each fn 2 Fn. So, by arguments similar to those used in section 4, it is equivalent to Dvc.

All of the above in this section can be used immediately in an algorithm to �nd representation
sets of all f 2 F : we start with the concepts in F with 1 layer and construct their representative
sets. Then we proceed with the concepts of 2 layers, then 3 layers, etc. until every f 2 F has
a representative set. The e�ciency lies in the fact that every Rf is built up from at most jH j
(as de�ned in the de�nition of Rf) sets of elements, which are already known by the time Rf is
being calculated. Furthermore, the total amount of elements involved in the calculation never
exceeds the number of concepts in F . The next thing to be done is to �nd a set R�

f � Rf , that

is a minimal set of f . The largest such R�
f over the whole F gives us our dimension.

� Remark: In Theorem 5, it does not matter, in what way the R�
fn

are chosen. Suppose,

that we take R�
fn

to be a minimal set of f with as few as possible elements. Then it can

be proved that the corresponding dimension is equal to dim, i.e. R�
f is a valid Sf .

Proof: In this proof we will use the following de�nition:

� De�nition: Let g be the least concept consistent with fxg as well as with fyg, where
x 6= y. Then x and y are called peers.

For example, in Figure 1, the elements 7 and 8 are peers. Now, let Sf be a set of minimal
cardinality, such that f is the least concept consistent with Sf . Let Rf be chosen by the above
algorithm. Furthermore, let x be an element of Sf that is not in Rf . We will show that we
can allways replace elements in Sf that are not in Rf by elements of Rf . The resulting set will
contain the same number of elements as the original Sf , and f will still be the least concept
consistent with it. There are two reasons why an element x of Sf might not be contained in Rf .

1. Let g � f be the least concept consistent with fxg. Suppose x has a peer, say y1 (see
Figure 2). It follows that any concept containing x has to contain y1 as well and vice versa.
Suppose fy1g is (in a previous iteration of the algorithm) chosen as Rg. Then x will not
appear in Rf . Now, let S

0
f = (Sf �fxg)[fy1g. Let h be the least concept consistent with

S0
f . Now, since h contains y1 it has to contain x as well. It follows that h contains Sf .

Therefore, h � f . We also have, since f contains S0
f , that f � h. It follows that f = h: f

is the least concept consistent with S0
f .

2. Let g � f be the least concept consistent with fxg. Suppose fxg is, in contrast to the
above, indeed chosen as Rg. Let concept h be such that g � h � f . (Notice that x 2 h).
Suppose [Rhi , as de�ned in the de�nition of a representative set, is not equal to h. In
this case, x will not be an element of Rh anymore (and will not be 're-chosen' in following
iterations). Instead, some y2 2 h� [hi will be chosen (see also Figure 2). Notice, that h
is the least concept consistent with fy2g. Now, we can see, that any concept containing
y2, has to contain x as well: suppose there is a concept h0 such that y2 2 h0 but x 62 h0.
Then the concept h0 \ h would be a proper subset of h containing y2, which is impossible,
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since h is the least concept consistent with y2. Let S0
f = (Sf � fxg) [ fy2g. Then the

least concept consistent with S0
f (which of course, contains y2), has to contain x as well:

it contains the whole of Sf . Therefore, by the same arguments as those used in the �rst
reason, it must be f itself.

So, if an element x that is in an Sf but not in Rf and if x was never chosen in any Rg for some
g � f , then x can always be replaced by a chosen peer y1. The resulting set is a valid Sf as
well. Now, elements in an Sf that were once chosen in an Rg for some g � f but do not appear
in Rf can always be replaced by an element in a proper superset of g. The resulting set is again
a valid Sf . Since there is only a �nite number of layers between a g � f and f itself, sooner or
later, we will arrive at an Sf consisting of elements that are all in Rf . If we choose this set as
our R�

f , then we have the desired result. This completes the proof of the above remark.

x yy
12

f

Figure 2

As an example of the above, consider Figure 3, where the representative set of the most
outer concept is f1; 2; 3; 4g. A minimal subset of this set is f1; 2; 3g. We could also choose f1; 4g
as a minimal subset. This is one of the minimal sets of minimal cardinality.

1 2

3

4

Figure 3
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6 Additional Remarks

6.1 Positive and Negative Examples

In the variant of the PAC-learning model from Section 3, it was stated that a learning algorithm
should output a subset of the concept to learn from positive examples. Now, consider the
following de�nition:

� De�nition: A class of concepts F is called minimally consistent if for every f 2 F and
for every subset S of graph(f), there is a concept g 2 F , such that g is consistent with S

and g is a subset of every concept consistent with S.

Natarajan proves (see [4]), that a class is learnable with omission only error from positive as
well as negative examples i� it is of polynomial Vapnik Chervonenkis dimension and minimally
consistent.

Now, it is easy to see that any minimally consistent class over domain X is also well-ordered.
The reverse is also true: let F be well-ordered, and let S be a set of examples of some f 2 F ,
being the union of S+ (the positive examples of S) and S� (the negative ones). If S� is empty,
the result is trivial. If S+ is empty, then ; is the least concept consistent with S. Suppose, that
both sets are nonempty. Let g be the least concept consistent with S+. Suppose that g is not
consistent with S. Then S� contains an example (x; 0) such that x 2 g. However x 62 f , so
g 6� f , but f is consistent with S+. But then g is not the least concept consistent with S+,
which gives us a contradiction. So g is consistent with S. Furthermore, any h 2 F consistent
with S is consistent with S+. Therefore, g is also the least concept consistent with S. It follows
that a class is well-ordered i� it is minimally consistent.

The consequence of all this, is that if an algorithm learns a class with omission-only error
from a polynomial number of examples, the negative examples are of no importance to this
algorithm. The possibility of feeding a learning algorithm with negative examples does not
contribute to the learnability (with omission-only error) of the class.

6.2 Negative Well-Ordered Classes

We can construct a theory, which is in some way the dual of the above material. Herein we
de�ne a class F to be negative well-ordered if for every set of negative examples S for some
f 2 F there is a g 2 F such that g is a superset of every concept in F consistent with S. An
PAC-algorithm A is said to learn F with inclusion only error if it always outputs a superset of
the target concept. It can be proved that a class F is PAC-learnable with inclusion only error

if and only if it is negative well-ordered.

6.3 Uniform Learnability

In a more general de�nition of a PAC-algorithm, the parameter n is not included; the probability
distributions according to which examples are chosen range over the entire example set. In this
setting a class is called uniformly learnable [1] if, globally, the number of examples needed
to PAC-learn concepts in this class, is bounded from above by an integer-valued function of
" and � only. It can be proved [1] that a class F is uniformly learnable if and only if its
Vapnik Chervonenkis dimension is �nite. So, if a class has an in�nite Vapnik Chervonenkis
dimension (which goes for a lot of classes), it is not uniformly learnable. Therefore, uniform
learnability is replaced by the less strong requirement of polynomial sample learnability; the
sample size is allowed to grow polynomially in the maximum length of the input strings (as in
the de�nition used in this article). In the Sections 3, 4, and 5 results were presented concerning
the equivalence of some alternative dimensions and the Vapnik Chervonenkis dimension with
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respect to polynomial sample learnability. From the results in these sections, we can see, that
if we can de�ne for some class F over a �nite domain X a dimension D as in Section 4, then
Dvc(F ) is in�nite if D(F ) is in�nite.

7 Conclusion

In this article we have made an attempt to give the reader an intuitive idea of the Vapnik
Chervonenkis dimension by discussing a number of its properties and an algorithm for its com-
putation. By abstracting Natarajan's dimension, we can de�ne new dimensions with respect to
functions over concept classes, that are equivalent to the Vapnik Chervonenkis dimension. After
proving that a minimal set for some concept in a well-ordered class is shattered, we can indeed
compute such a dimension by a relatively e�cient algorithm, using a representation set Rf for
every concept f and a minimal subset R�

f � Rf of f .

Acknowledgements We thank Patrick van der Laag for reading and commenting on this
article.
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