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Abstract

This paper argues that the conventional definition of the elasticity of complementarity is
not well suited to deal with the case of increasing returns. It proposes a slightly different
formula, that uses a distance function formulation instead of a production function. The pro-
posed definition coincides with the Hicksian measure in case the production function displays
constant returns. It is more informative in case returns to scale are not constant, as it dis-
entangles entry effects and substitution effects of factor supplies. The new definition is also
preferable in that it is fully symmetric with the definition of the elasticity of substitution.

Keywords: distance function, elasticity of complementarity, returns to scale, tangency
condition
JEL codes D21, D43, 116

1 Introduction

The concepts of substitutes and complements play a central role in demand theory. They apply to
the two sides of a demand system, the effect of prices on quantities and the effect of quantities on
prices. In 1933, Hicks quantified both concepts through the definition of two elasticity measures,
the elasticity of substitution and the elasticity of complementarity Kieks (1963). The relation
between these concepts has been a recurrent issue ever since. In Hicks’s original definition the two
measures were not clearly distinguished and, in fact, they are reciprocal in the two-factor, constant
returns caseHicks (1970 then extended the definition to the three-factor case and invented the
name “elasticity of complementarity.”"He showed that the elasticity measures the degree to which
factor prices change, following an increase in one of the factors, and keeping marginal cost con-
stant. Such a measure is very convenient to provide an aresgi¢o questions of tax incidence,
where one wants to know how a tax or subsidy on one factor affects the price of another factor.
Seidman(1989 shows how in this context the elasticity of complementarity is more useful than
the elasticity of substitution.
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The concepts were given a general formulation in the 1970’s using duality theory (see e.g.
Diewert(1971), Sato and Koizum{1973). This formulation clearly shows the intimate relation-
ship that exists between both concepts. In this set-up, the elasticity of substitution is a unit-free
measure of the local curvature of the cost function. This curvature measures to what extent the
consumer or producer can avoid the increase in cost associated with a price increase. The elas-
ticity of complementarity on the other hand is a local measure of the curvature of the production
function. This curvature determines what change in factor prices suffices to restore equality of
marginal product and cost, following a change in one of the factors.

The curvature of both functions, the cost function and the production function, can be linked
via the duality relation that exists between the t@ato and Koizum{1973 first showed this for
a generah-factor, single-output production function under constant returns to scale. Their result
was extended bgyrquin and Hollendef1982 to the case of non-constant returns to scale. From
this extension, it appears that there is an asymmetry between the definitions of the elasticities of
complementarity and substitution. In particular, the elasticity of complementarity incorporates the
returns to scale effects of the change in the production factors whereas the elasticity of substitution
is invariant to the size of the scale effects.

In this paper | reconsider the definition of the elasticity of complementarity in the presence of
increasing returns to scale. | argue that the asymmetry obtain8giroyin and Hollendef1982
results from an improper generalisation of this elasticity to a setting of increasing returns. A use-
ful definition of this elasticity should take into account the consequences of non-convexity of the
production technology for output markets. Entry and exit of firms severs the direct link of aggre-
gate supply of production factors and marginal costs of production, that is at the heart of the result
obtained by Syrquin and Hollender. Using the concepts develope&shbphard1953, | show
that duality theory can perfectly match the increasing returns case without destroying symmetry.
Moreover, the proposed definition is better suited to measure the responsiveness of factor prices
to changes in factor supplies in the presence of non-competitive output markets. In addition, the
measure generalises without problem to a multi-output setting.

The remaining part of this paper is organised as follows. Se@idiscusses the standard
definition and SectioB discusses the applicability of the elasticity of complementarity to a setting
of imperfect competition. Sectio8.1 then introduces the new definition and shows how this
applies to the problem at hand. Sectibshows how the new definition relates to the old one, and
Section5 applies the new definition to the problem of finding the effect of factor supplies on factor
price responses when increasing returns are present. Séctffars some conclusions.

2 The Hicksian elasticities of substitution and complementarity

For the sake of comparison, | first present the standard definitionx ¢ &", pc R", y € R and
let the production function be given by

y=f(x) 1)



It is assumed thaf is strictly quasi-concave and twice differentiable. The dual cost function is
defined as

C(y, p) = min{p'x; f(x) =y} 2
The cost-minimizing inputg are obtained by application of Shephard’'s lemma
X = o &
i api
aInx;
ij =S, Gj; (3)

wheres = p, x,/C denotes the cost share of faci@nd where the partial elasticity of substitution
o is defined as

6 — i 4)
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G;; denotes the partial derivative Gfwith respect top, andp;.
The elasticities of complementarity on the other hand are associated with the response of factor

prices to changes in the factor supplikseping marginal cost constarin fact, from ) we find

the first-order conditiom, = A f;, where the Lagrange multipliér equals marginal co€l, and

Ip P
dinp, B B
m—ejaij—fsjaij (5)

where6, = f,x/f is the output elasticity ok, & = 5, 6, is the scale elasticity (not necessarily
constant), ang = p;x;/C is the cost shareaij is the partial elasticity of complementarity, defined
by Sato and Koizum{1973 as

ij
= (6)
AT RS
Comparing §) with (3), two differences are noticeable: tpeare a function ok andA, notx and
y, and @) and §) are not symmetric fo€ # 1.

This lack of symmetry also exists in the relation betweﬁrandaij. Define
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thenSyrquin and Hollendef1982 prove that
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where adjA) denotes the transpose of the matrix of cofactoré ofThey also prove a converse

relation. Define
Op1 " Opp 6;

25 _ . . . (9)
Oy *** Omn 6n
8 -8 0
wheres; = % = %‘]’;. Syrquin and Hollender show that

a; = adiZ)j 111 JIna (10)
J Z5] ss & diny
Comparing 8) and (L0), we see that these relations are not strictly dugls# 1.

It is easy to check that whereas, for homothetic production functions, the elasticity of substi-
tution is invariant to the scale elasticity, this does not hold for the elasticity of complementarity. In
particular, for given elasticities of substitution and given budget shares, the elasticities of comple-
mentarity fall to zero for large scale elasticities, and vice versa for the elasticities of substitution in
case of constant elasticities of complementarity. The two elasticity concepts therefore do not really

provide a dual characterization of the curvature properties of the same production technology.

3 Increasing returns

The suitability of any definition of the elasticity of complementarity depends on its usefulness in
answering a given set of questions. Intuitively, elasticities of complementarity provide a measure
for the responsiveness of factor prices to changes in factor supplies. In competitive equilibrium
marginal costs are given exogenously for the individual firm and marginal productivity conditions
suffice to define equilibrium for the production side of the economy. With increasing returns
however market equilibrium cannot be defined on the basis of the marginal productivity conditions
only. An increase in factor supplies leads to an increase in production and a fall in average costs
of firms. As a result, profits increase. The zero profit condition therefore becomes an independent
equilibrium condition, maintained through entry and exit of firms. This implies that the production
level of individual firms is not necessarily proportional with that of the industry as a whole. Since
marginal costs are defined at the level of the individual firm, constancy of marginal costs at the
firm level is no longer a defining characteristic of the effect on marginal productivity of a change
of factor supply at the industry level.

To elaborate this point, consider an industry equilibrium, based on a cost fui@typm),
wherei is the firm indexj = 1,...,m. We assume that all firms are identical and that the equilib-
rium is symmetric. In that case, the equilibrium can be written as

9C(y, p)

xj:mij, j=1...,n (11a)
_ 1 9C0,p)

=M PN (11b)

Pyy=C(Y,p) (11c)



whereM denotes the mark-up, andis the output per firm. Equilibrium on the factor markets
is given by (19, and the optimal supply of output is given by1f). (11¢ is the zero profit
condition, which determines the number of firms. Because of homogeneity, the sylstgm (
(110 only determines relative prices. We can therefore rewrite the system by nsintalised
prices © = p/C(y, p), my = py/C(Y, p) (Samuelsorf1947):

IC(y,m)
mT =X (12a)
Cly,n)=1 (12b)

oInC(y,m)
M=y~ (12¢)

(12Db) defines the normalisation, antiXg) is the familiar tangency condition, that can be obtained
from (11b) and (L19. This system determinds,y, m), provided tha g'yl‘zc is not zero! Given

y, the normalized output price follows from the zero profit conditionmas- 1/y. It follows that
production per firm, total productiamy, and normalised prices are determined without reference
to the level of demand for the output of the industry. The output market is needed to determine
price levels, however. Inverting the demand curve for industry output yields the outpupprce
d~*(my), from which the level of factor prices follows. Consideririglt), marginal production

costs are constant only if the industry demand curve is perfectly elastic. A perfectly elastic demand
curve for output is however at odds with increasing returns in production, as it would lead to
infinite expansion of the industry.

In an equilibrium with increasing returns an increase in the supply of a production factor
therefore not only changes factor prices, but also induces entry of new firms. Hence, in deviation
from Syrquin and Hollende(1982, marginal costs do not depend on industry output, but on
the output level of the representative firm. This implies an effect of factor supply on production
costs different from that implied byb). The most obvious case is a proportional increase in all
production factors, which only results in new firms entering the industry, without altering marginal
costs. It follows that constancy of marginal costs is not a good assumption outside of perfect
competition and should be replaced by the tangency conditidg),(which has greater generality.

The next section discusses how the tangency condition fits in with a symmetric definition of the
elasticity of complementarity based on the duality of cost functions and distance functions.

3.1 Quantity elasticities

To analyse the effects of factor supplies on factor prices in terms of the production function | use a
distance function formulation. The distance function carries a number of advantages to production
functions. It generalises naturally to multi-output production structutedigen (1980). In
addition, the duality relations between the distance function and the cost function are strictly
symmetric (compar®eaton(1979).

Lif the production structure is characterised by constant marginal%ﬁ%t,: 1/&, whereé is the returns to scale
parameter, the tangency condition can determine the number of firms only if production changes affect the size of the
markup. Generally, this case leads to a badly conditioned model, which has been dubdigite &quilibrium by
Blanchard and Summe($988.



Letx € R",p € R",y € R¥, and letT be the set of feasible input-output paissy). Fork =
1T ={(xy); f(x) >y}, wheref is a conventional production function, as in sectiatbove. For
multiple outputs, a convenient characterizatio aé the (input)distance function g

g(y,x) =sup{6 > 0; (x/0,y) € T} (13)
0

g:RKM — R. Note that fork = 1, f andg are linked byf (x) =y < g(y,x) = 1 or f(x/g(y,x)) =
y. E.g. if f is homothetic,f(x) = z(h(x)), whereh is linear homogeneous ar#l> 0, we find
g(y,x) = h(x)z 1(y). Itis assumed thag is linear homogeneous ig increasing and concave X
and decreasing in

Associated with this distance function is a cost functm, p), given by

C(y, p) =min [p'x; g(y,x) = 1] (14)

C satisfies the same homogeneity and concavity propertigsadag does inx. The distance
function is also the dual of the cost functidBhephard1953):

9(y,x) = min [z’ C(y,7) = 1] (15)

The dual definition of the distance function uses the normalised prickiscussed in Sectio®
above. This formulation of the relation between the cost structure and the production structure is
perfectly symmetric.

We now set up the equilibrium conditions of Sect®im terms of the distance function. From
(14), we obtain the first-order conditiohgx = p, whereA is a Lagrange multiplier. Multiplying
by X" and using{gy = g = 1 givesA = p'x, wherex= x/m, the input of production factors per firm.
Hencegy = p/ X = 7. The first-order equation for outputhé—p, +Agy = 0. Combined with the
zero-profit conditionpyy — p’x = 0 this givesM g,y = —1. Now, becausg(y,x) is homogeneous
of degree one irx, gy is homogenous of degree zeroxnso g«(y,X) = gx(Y,x). Furthermore,

gy(Y,X) is homogeneous of degree onexias well, sogy (Y, X)y = %yg’%j y= 3'3%?;_“). In terms of
the distance function, the canonical form correspondind 2a)¢(12¢) is therefore
ag(y,x) _
-V (16a)
ay.x/m) =1 (16b)
dIng(y,x)
MTny =-1 (16¢)

The production level per firmy, is determined solely by the tangency conditid®d and ag-
gregate factor supply (provided that the markup is constant). Given production per firm, the
number of firms follows from the production constraii6f). In terms of the distance function
the marginal productivity conditions il6g therefore directly determine the normalised factor
prices. Actual market prices are found frgp= f~1(my) andp =z p'’x= 7z py.

We obtain from this system:

om _ 9%

IX;  I%IX;
dinm X 9/mg;
oInx;  m gg; i = S (17)



7 (x;/m)

weres; is the cost share of factcjrsj = cya and
9G;
o= = (18)
i 9 9;

This result shows that it may be a good idea to definegthes the elasticities of complementarity
betweenx; and Xj. In this definition, the elasticities of complementarity are a measure of the
responsiveness of thrmalisedfactor prices to a change in factor supplies. As in SecBicm
deduce the effect of factor supplies on market prices, we must also take the output market into
account. Market prices differ from normalised prices by a fapigim, = f~1(my)y. That is, the
market-clearing change in factor prices generally depends not just on technological constraints, but
also on product market conditions. It is only in the special case of constant returns and infinitely
elastic product demand that information about the technology suffices to determine the factor price
response. In that case the Hicksian definition coincides with the present one.

In the general case, we obtain for the factor price change

dinp,  dinm  dinpy [ dInm  Jiny diny

dlnx; — dlnx; = dlny \ dInx; = dlInx dInx;
M-19g%x % 1 dIny

i m Ix; m ' Mdlnx

M-1 1 9d?Ing d%Ing
SN M S Twm 8In)78|nxj/(aln)7)2 49

(19 decomposes the effect of a change in factor supplies in three terms. The first term on the
right is the elasticity of complementarity, the effect of factor supply on the normalised prices.
The second term is the effect of factor supplies on factor prices through entry of new firms. The
ensuing expansion of industry output causes a fall in the output price, the size of which depends
on the price elasticity. The falling output price also lowers factor prices, so that the entry effect is
negative. In a competitive output markdt= 1 and the entry effect disappears. The last term on
the right hand side oflQ) is the firm size effect. The size of this effect depends on the curvature
of the log of the distance function at the tangency point specified 6g).(

The sign of the firm size effect is theoretically ambiguous. To see this, consider a distance
function of the form

n 1 n
Ing(y,x) = a0+_z‘ai Inx, — g In (y+Yo) +_ZBi Inx Iny (20)
1= 1=
whereS! ;o6 =1, ; B = 0. This production structure contains both decreasing marginal costs
and fixed costs. It satisfies the curvature conditiongfr. . ., fn)’ = 0. Since% = B, we
I

can choose a pair ¢’s that differ slightly from zero without violating the curvature conditions,
to obtain any desired sign of the firm size effect of a factor change.
Itis useful to comparel@) with (5). With constant returns and perfect competitipn= a;;.
In (5), & > 1 results in a quantity elasticitharger than a;, because the requirement of con-
stant marginal costs demands a larger price response, given that the increase in production lowers
marginal costs as a result of increasing returi9) ¢n the other hand yields a quantity elasticity

7



smallerthanyij, provided that output per firmis constant, because the increase in factor supply
induces the entry of new firms, and a downward movement along the industry demand curve.

4 The relation between complements and substitutes

The relation between the elasticities of substitution and complementarity, as defined in this paper,
can be derived in a simple way by noting that

X=Cr(y,m) = Cr(y,0x(Y,X))
T = gk(¥,X) = x(¥,Ca (¥, 7))

Differentiating with respect ta, respectivelyr and using the chain rule gives

| = Cmrgxx (Zla)
I = gXXCn'n' (Zlb)

Hence, the matrice§,, andgy are Moore-Penrose inverses. We can link these inverses to the
bordered Hessians used 8gto and Koizum{1973 andSyrquin and Hollendef1982 by noting
thatgy = 7 is an eigenvector dE,,; for the eigenvalue zero, ar@, = x is an eigenvector ofix

for the eigenvalue zero. Als@, g« = X'gx = g(¥,X) = 1. Hence

Crz Cr Oxx Ox ] 22)
C, 0 g, 0

FurthermoreC ,«w =C(y,7) = 1+ 0 and analogouslg, x # 0. Hence both bordered Hessians have
full rank. The correspondence can also be formulated in terms of the elasticities of substitution
and complementarity, by transforming2j as

Cy 0 -0 Cr, 0 -0\ [, 0 -0 g, 0 - 0
0O "-. .. ) o . .. o . -.: r o ..
. () . - () . —1 (23)
DG 0| NP0/ e o [ g0 \FO/ ] 5 gy 0
0...01 0...01 0...01 0..-.01
where
011" Opp i "n
5 _ N T }
Gnl...gnn '}/nl...'}/nn

Note thatC,, g« = §, the cost share of factoin production. Premultiplying the left-hand side of
(23) with diag(gx,; - - - ,Ox,, 1), and postmultiplying it with dia@y,, - - , O, 1)~1, it follows that

. . -1
0. . X1 0. . '
. o) | =y (24)
s 0 1O L5 0 10
0-- 01 0--- 01



Comparing the relation betweexﬁ andaij in (10) in Section2 to the relation betweeaij and}/ij

in (24), we see that now the relation between the elasticities of complementarity and substitution
is completely symmetric, both in terms of the definitions and in terms of the relation that exists
between the two concepts. Furthermore, the scale elasticity no longer affects the relationship
between these elasticities. An additional advantage of the proposed formulation is that it applies
equally to multi-output production structures.

5 Examples

Example 1 A CES distance function

-1
oy ) = F(x.%) (y+¥p) ° (25)
1/(1-1/0)
F (X, X,) = [glxi—l/GJreZX%—l/c} /(1-1/o
The elasticity of complementarity according to definitidr8)(is simply y;, = 1/0. In indus-
try equilibrium, the optimal firm size ig/{y=+y,) = &/M. According to (9), the factor price
response to a change in factor supply is therefore

dinp, M-1
8Inxj_<y12_ M )SJ' (26)

Applying Sato and Koizumi's definitiorgj givesa;; = %y—fyyo (6 —1+2). Inindustry equi-
librium the tangency condition requires tkﬁy—o =1/M. Applying the Sato-Koizumi definition
to this case therefore yields the following predicted effect of a change in factor supply:

dinp, 1 1
alnx _aijsj_M<é_l+G> ¥

This result is not generally consistent with the theoretically correct effect give2g)n E.g., the
formula suggests that factor prices do not respond to supply conditiois ferco. The problem

arises from the incorrect assumption that the output level of individual firms changes in response
to the supply change. This indicates that the Sato-Koizumi definition is not useful outside of
competitive equilibrium.

Example 2 A general translog distance function
m m m
Ing(y,X) = oty + Zlai Inx + 3 Zly” Inx; Inx; + Z[Si Inx Iny+ 1y Iny+1pIn?y (27

The tangency condition yields the following equilibrium size for the firm

m
Zlﬁilnfi+yl+yzln37: —1/M (28)
i=
This results in the following decomposition of the effect of factor supplies on factor prices
dinp M-1 1
Iinx, = I oy ube

complementarity effect jhqustry size effect firm size effect

9



We see that for a translog distance functions the effect of factor supplies on factor prices can be
decomposed in a proper complementarity effect, a negative industry size effect that depends on
the elasticity of output demand, and a firm size effect that depends on the economies of scale.
The Hicks-Sato-Koizumi definition6] on the other hand combines all these effects into a single
elasticity.

6 Conclusion

This paper shows that the conventional definition of the elasticity of complementarity is not suited
to deal with technologies that are characterized by increasing returns to scale. With increasing
returns, output markets cannot be perfectly competitive. The conventional definition assumes that
marginal costs are constant in response to a change in factor supplies. This assumption is only
appropriate in case of perfectly competition. With imperfectly competitive output markets the
assumption should be replaced with the tangency condition. This leads to a slightly different
definition, that may conveniently be cast in terms of a distance function instead of a production
function. The definition proposed in this paper coincides with the Hicksian measure in case the
production function displays constant returns. It is better suited for cases where returns to scale
are not constant, as it disentangles entry and exit effects and substitution effects of factor supplies.
In addition the new definition maintains strict symmetry in relation to the elasticity of substitution
and is fully applicable to a multi-output setting.
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