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Abstract

In this paper, a generalized Hop�eld model with continu-
ous neurons using Lagrange multipliers, originally introduced
in [12], is thoroughly analysed. We have termed the model the
Hop�eld-Lagrange model. It can be used to resolve constrained
optimization problems.

In the theoretical part, we present a simple explanation of
a fundamental energy term of the continuous Hop�eld model.
This term has caused some confusion as reported in [11]. It
led to some misinterpretations which will be corrected. Next, a
new Lyapunov function is derived which, under some dynamical
conditions, guarantees stability of the the system. We explain
why a certain type of frequently used quadratic constraints can
degenerate the Hop�eld-Lagrange model to a penalty method.
Furthermore, a di�culty is described which may arise if the
method is applied to problems with `hard constraints'.

The theoretical results suggest a method of using the
Hop�eld-Lagrange model. This method is described and applied
to several problems like Weighted Matching, Crossbar Switch
Scheduling and the Travelling Salesman Problem. The relevant
theoretical results are applied and compared to the computa-
tional ones. Various formulations of the constraints are tried,
of which one is a new approach, where a multiplier is used for
every single constraint.

1 Introduction

1.1 Motivation and Results

Since the appearance of Hop�eld and Tank's article [7], many researchers have
tried to solve combinatorial optimization problems using arti�cial neural net-
works. We shall concentrate on approaches that use some kind of Hop�eld
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model. Within this class of approaches, often a `penalty method' is applied:
constraints are formulated as cost functions and added to the energy funtion to
be minimized. By giving enough weight to these penalty terms, the system must
favour stable states that correspond to feasible solutions. Unfortunately, these
approaches did not work well: the choice of the various weights appeared to be
highly sensitive, especially in the case of larger problem instances. E.g., for the
Travelling Salesman Problem severe scalability problems are encountered.

A classical approach in the �eld of constrained optimization is Lagrange
method using multipliers. Only a few neural net researchers have explored this
method. Although some successful applications have been reported, the theo-
retical reasons for these successes have, as far as we know, not been explained
to the full. This, together with the feeling that the Lagrange method is a more
natural way to attack combinatorial optimization problems than the penalty
method, motivated our research.

The structure of this article is as follows. In this section the theoretical
starting points are given. We give a description of the continuous Hop�eld
model, the ways in which combinatorial optimization problems are solved and we
introduce the Hop�eld-Lagrange model. In section 2 we present the theoretical
results starting with an explanation of the Hop�eld term. In the di�erential
equation, this term corresponds to what Takefuji calls the `decay term'. In
contrast to his conclusion, we prove that this term is not harmful. After that,
we propose and analyze a Lyapunov function. In the fourth subsection we prove
why some type of frequently used, quadratic constraints guarantee stability. In
general, this goes hand in hand with a `degeneration' of the Hop�eld-Lagrange
model. In the �nal theoretical subsection a `toy problem' is analyzed, which
clari�es a di�culty related to quadratic constraints. In section 3 we report
experimental results. In each case, we have tried to analyze the exact stability
properties using the derived Lyapunov function. The way the constraints are
formulated turns out to be crucial. How this is related to the properties of
convergence of the system is discussed.

1.2 The Hop�eld Model

In 1982 Hop�eld introduced the idea of an `energy function' into neural network
theory using an asynchronous updating rule and binary units [5]. In 1984, he
generalized the stochastic model to a deterministic continuous one [6], which is
essentially a parallel gradient descent method. The corresponding updating rule
equals

dUi
dt

= �
@EHM (~V )

@Vi
=
X
j

wijVj + Ii � Ui; (1)

and the energy function EHM (~V ) equals

�
1

2

X
ij

wijViVj �
X
i

IiVi +
X
i

Z Vi

0

g�1(V )dV; (2)
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where ~V is the state vector (V1; � � � ; Vn) of the neural net and Vi the output
of neuron i, wij is the interconnection strength from neuron j to neuron i,P

j wijVj is the internal input of neuron i, Ii is the (constant) external input,

Ui =
P

j wijVj + Ii is the total input of neuron i, Vi = g(Ui) is the activation
function, usually non-linear, bounded and monotone increasing. We use for g
the sigmoid function

g(U) =
1

1 + e��U
; (3)

where � is a positive constant.
The energy function appears to be a Lyapunov function: Hop�eld showed

that the time derivative of EHM is monotone non-increasing if wij = wji and
g is monotone increasing. Finally, the system reaches an equilibrium point. At
that moment, the system state hopefully corresponds to the (optimal) solution
of the problem.

The term
P

i

R Vi
0 g�1(V )dV , which we shall call the `Hop�eld term' denoted

byEH(~V ), has been explained by Hop�eld mainly in a qualitative way: its global
e�ect is a displacement of solutions towards the interior of the state space, so
�nally 8i : 0 < Vi < 1 will hold and, therefore, the corresponding Ui-values will
be �nite.

1.3 Constrained Combinatorial Optimization

Various researchers have tried to solve combinatorial optimization problems
using arti�cial neural networks. References can be found in [4]. We start with
a general formulation of the problem:

minimize E(~V )

subject to : C�(~V ) = 0; � = 1 � � �m; (4)

where E(~V ) is the energy function to be minimized and the terms C�(~V ) = 0
are the constraints, describing a subspace of the state space [0; 1]n.

There exist di�erent ways in treating the constraints. One approach is ap-
plying a so-called `penalty method'. This method adds extra terms to the energy
function, which penalize violation of constraints [10]. The formulation of the
constraints must be such that

mX
�=1

c�:C�(~V ) has a minimum value ,

~V represents a feasible solution: (5)

Using a Hop�eld type neural network, the general problem (4) is converted into:

minimize EP (~V ) = E(~V ) +

mX
�=1

c�:C�(~V ) + EH(~V ): (6)
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The corresponding update rule is:

dUi
dt

= �
@EP
@Vi

= �
@E

@Vi
�
X
�

c�
@C�
@Vi

� Ui: (7)

The inuence of the Hop�eld term EH(~V ) may be small, as will be shown.
Ignoring this term, the energy function EP is a weighted sum of m + 1 terms
and hence a di�culty arises in determining correct weights c�. The minimum
of EP will be a compromise between ful�lling the constraints and minimizing
the original target function. This explains why the method did not appear to
be very successful, when it was applied to the Travelling Salesman Problem
[7, 13, 2]. The weights had to be determined by trial and error and appeared
to be very sensitive when larger problem instances were tried. On the other
hand, one may expect that for pure combinatorial problems (without a target
function to be minimized) the penalty method can be useful.

In a second approach, the features of the neural net are changed. The
alteration is usually such, that some constraints are automatically ful�lled (see
e.g. [3] and [11]). As an example, observe the following constraint

nX
i

Vi � 1 = 0: (8)

This constraint expresses the requirement that the sum of the n values Vi should
be 1. In solving combinatorial problems, this implies that one value Vi should be
(approximately) one and the value of all the others should be (approximately)
0. A disadvantage of this approach is that the implementation of this type of
`constraint satisfying properties' in the neural net can be di�cult, especially
when there are many mutually dependent constraints.

Another way of changing the features of the neural net was adopted in [8].
Here, two layers are used. The �rst one is based on city adjacency, the second
detects closed subtours in intermediate solutions. However, the implementation
of the second layer is not straightforward.

A third way of treating the constraints has been proposed by Platt and Barr
in 1988 [10]. They used the Lagrange multiplier method to convert constrained
optimization problems into unconstrained extremization ones. A solution of the
general problem (4) is also a critical point of

EPB(~V ;~�) = E(~V ) +

mX
�=1

��:C�(~V ); (9)

where ~� is the vector of multipliers (�1; � � � ; �m). Now, the formulation of the
constraints must be such that

8� : C�(~V ) = 0,

~V represents a feasible solution: (10)
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Platt and Barr used the so-called Basic Di�erential Multiplier Method
(BDMM) to estimate the values of the Lagrange multipliers: a gradient de-
scent applied to (9) was used to �nd the values of the state variables Vi together
with a gradient ascent to estimate the Lagrange multipliers (the reason of this
sleight will be explained in section 2.3):

dVi
dt

= �
@EPB
@Vi

= �
@E

@Vi
�
X
�

��
@C�
@Vi

; (11)

d��
dt

= +
@EPB
@��

= C�(~V ): (12)

Note that in formula (11) gradient descent is applied with di�erentiation of Vi
and not of Ui as is done using the Hop�eld model. Also, in (9) the Hop�eld term

EH(~V ) is lacking. Platt and Barr found an appropriate Lyapunov function:

Ekin + Epot =
X
i

1

2
(
dVi
dt

)2 +
X
�

1

2
C2
�(~V ): (13)

The time derivative of the sum of kinetic and potential energy is monotone
decreasing under some conditions.

In 1989, Wacholder, Han and Mann [12] applied the work of Platt and Barr
to a concrete neural network with continuous units. They added the Hop�eld

term EH(~V ) to the energy function (9), so basicly they used

EHL(~V ;~�) = E(~V ) +
X
�

��:C�(~V ) + EH(~V ) (14)

with corresponding set of di�erential equations

dUi
dt

= �
@EHL
@Vi

= �
@E

@Vi
�
X
�

��
@C�
@Vi

� Ui; (15)

d��
dt

= +
@EHL
@��

= C�(~V ): (16)

In equation (15), the variable Ui has returned. In fact, this formulation is a
generalization of the Hop�eld model because no special assumptions are made
about the form of the cost function E(~V ). Furthermore, it uses Lagrange mul-
tipliers. This explains why we term this model the Hop�eld-Lagrange Model.

Wacholder et al. applied their model to small scaled (Multiple) Travelling
Salesman Problems using a formulation related to the one of Hop�eld and Tank
with quadratic constraints. We repeated their experiments and also obtained
convergence, but the quality of the solutions was poor. We tried to analyze this
fact: we claim that for this case the Hop�eld-Lagrange method behaves like a
penalty method (subsection 2.4 and section 3).
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Figure 1: The term � 1
�
H(Vi) for various values of �

2 Theoretical Results

2.1 The Hop�eld Term

To simplify the discussion, consider an unconstrainedminimization problemwith
total energy

EHL(~V ) = E(~V ) +EH (~V ); (17)

where E(~V ) is the cost function to be minimized. The corresponding updating
rule is:

dUi
dt

= �
@EHL
@Vi

= �
@E

@Vi
� Ui: (18)

We want to understand the inuence of the Hop�eld term EH(~V ) =P
i

R Vi
0 g�1(V )dV . From (3) it follows, that

U = �1

�
ln(

1� V

V
) = g�1(V ): (19)

Using standard calculus, one �nds:Z Vi

0

g�1(V )dV = 1

�
[(1� Vi) ln(1� Vi) + Vi ln Vi]

= � 1

�
H(Vi); (20)

whereH(Vi) equals the well known formula in InformationTheory of the entropy
of a binary source.

We make the following mathematical 1 observations (see also �gure 1):

1A physical explanation using `mean �eld theory' is also possible: introducing stochastic
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� 8i : Vi 2 [0; 1] : EH =
P

i

R Vi
0 g�1(V )dV � 0.

� � 1
�
H(Vi) has its minimum if Vi =

1
2 .

� For � ! 1, EH (~V ) = � 1
�

P
iH(Vi) ! 0, so in the limit the Hop�eld

term does not inuence the extrema of E(~V ), as also Hop�eld concluded.

� For �nite values of �, EH(~V ) has a certain contribution: solutions, which
are situated in a corner of the hypercube and of which @E=@Vi = 0 for
all i, are displaced toward the interior (see �gure 2). This is true for any
�nite value of � because the partial derivative @EH=@Vi for Vi = 0 and
Vi = 1 respectively, equal -1 and +1: the smaller the value of � the
larger the displacement toward the interior. Even if an extremum in a
corner of the hypercube appears to be a boundary extremum, the men-
tioned displacement will take place as long as the corresponding partial
derivatives of E(~V ) are �nite.

This displacement is often a pretty feature of the model. In a combinato-
rial optimization problem, solutions imply Vi-values equal to 0 or 1 with
corresponding U -values �1 and +1. The Hop�eld term is responsible
for changing the values of V to � and 1� �, so the corresponding U -values
then become �nite. For high values of � these U -values will even be close
to zero!

� Because the state space ~V is the entire N -dimensional hypercube [0; 1]N,
it is possible that in the continuous model the minima of E are in the

interior of the hypercube. Mostly, there will also be a displacement of
solutions toward the interior but generally it will be a much smaller one.

There appears to be some confusion about the Hop�eld term EH(~V ). As
we have seen, it relates directly to the Ui-terms in the corresponding updating
rules (1): Ui = @EH=@Vi. Takefuji considers the `decay term' Ui `harmful' [11].
He concludes:

"Hop�eld gives the motion equation of the i-th neuron (Hop�eld and Tank
1985):

dUi
dt

= �
Ui
�
�

@E

@Vi
(21)

(. . . ) . Wilson and Pawley strongly criticised the Hop�eld and Tank neural
network through the Travelling Salesman Problem. Wilson and Pawley did not
know what causes the problem. The use of the decay term (�Ui=� ) increases the
computational energy function E under some conditions instead of decreasing
it." (quote from pp. 6 and 7 in [11]).

binary neurons and interpreting the Vi's as their average values, we may write EHL(~V ) =

E(~V ) � TS, where E(~V ) is the average energy function, T = 1=� and S the entropy. This

means, that the energy EHL(~V ) corresponds to the `free energy' of the stochastic Hop�eld
network.
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So Takefuji suggests (but does not prove) that the problems which Wilson
and Pawley encountered, are caused by the decay term Ui=� (in our formulations
� = 1 holds). We think this suggestion is not correct, for two reasons. First,

Takefuji does not add the Hop�eld term EH (~V ) to the energy function in his
analysis, but he does take up, like some others, the decay-term Ui in equation
(21). Then he concludes, that this decay-term is responsible for incrementing

the cost function E(~V ) under some conditions. This conclusion is correct, but
it is not a `harmful' problem! On the contrary, it appears to correspond to
the phenomenon we have described in this subsection, namely to the (small)
displacement of solutions. We will prove this in the following subsection.

Second, Wilson and Pawley used the penalty method when they analyzed
the Travelling Salesman Problem. We have mentioned the disadvantage of this
method that it searches for a solution which is a compromise between optimality
and feasibility (section 1.2): this should be considered as the main reason for
the poor results of their approach.

2.2 The Decay Term is not Harmful

It is well known, that equation (21) continuously decreases EHL = E(~V ) +

EH(~V ), because the time derivative _E+ _EH � 0. If, moreover, E(~V ) is bounded
below, the system is stable2.

Takefuji argues in the following way that, under some conditions, the cost

function E(~V ) alone may increase: using equation (21) with � = 1, one �nds:

_E =
X
i

@E

@Vi
_Vi =

X
i

(� _Ui � Ui) _Vi

= �
X
i

( _U2
i + Ui _Ui)

dVi
dUi

: (22)

Because dVi
dUi

> 0 (owing to the fact that Vi = g(Ui) is monotone increasing), a

necessary condition for an increase of E(~V ) is: there should be at least one i
such, that

_U2
i + Ui _Ui < 0; (23)

which is equivalent to

�Ui < _Ui < 0 or 0 < _Ui < �Ui: (24)

These two conditions correspond precisely to a displacement of a solution toward
the interior of the state space. We shall prove that the �rst condition results
in a displaced minimum with a lower value of Vi (the second corresponds to a

displacement with a higher value). The left inequality of �Ui < _Ui < 0 implies
that

�Ui � _Ui < 0: (25)

2The �rst proof of this fact relates to the pure Hop�eld model and can be found in [6]
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Figure 2: E, EH and E +EH as function of Vi

Using (21) (with � = 1), one �nds:

@E

@Vi
= �Ui � _Ui < 0; (26)

so E (as function of Vi) is decreasing.

The right inequality of �Ui < _Ui < 0 implies that � _Ui > 0. Again using
(21) and Ui =

@EH
@Vi

, one �nds:

@E

@Vi
+

@EH
@Vi

=
@E

@Vi
+ Ui = � _Ui > 0; (27)

so the sum of E and EH is increasing. The inequalities (26) and (27) together
imply

@EH
@Vi

> 0; (28)

so EH as function of Vi is increasing. Therefore, Vi > 0:5. We have put this
altogether in �gure 2 (for the case that E has a minimum for Vi = 1). As one
can verify, conditions (26) to (28) imply a displacement of the minimum to the
interior, caused by the contribution of EH(Vi).

It is easy to prove, that the converse also holds: a displacement of a solution
to a smaller value of Vi, caused by the Hop�eld term, implies �Ui < _Ui < 0.
This completes the proof.

2.3 A Lyapunov Function

Now, we return to consider constrained optimization using the Hop�eld-
Lagrange model. Consider the energy function (14) with the corresponding
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set of di�erential equations (15) and (16). The question arises under which cir-
cumstances the set of di�erential equations will converge. Like Platt and Barr,
we take physics as a source of inspiration. First, the equations (15) and (16)
are taken together to form one second-order equation:

�Ui = �
X
j

Aij
dVj
dUj

_Uj � _Ui �
X
�

C�
@C�
@Vi

; (29)

where

Aij =
@2E

@Vi@Vj
+
X
�

��
@2C�
@Vi@Vj

: (30)

Equation (29) is the equation for a damped mass system. Now, we can propose
a Lyapunov function consisting of the sum of kinetic and potential energy3:

Eph =
X
i

1

2

�
dUi
dt

�2
+
X
i;�

Z
C�

@C�
@Vi

dUi: (31)

We shall verify by taking the time derivative of Eph that (31) is a Lyapunov
function:

_Eph =
X
i

_Ui �Ui +
X
i

X
�

C�
@C�

@Vi
_Ui

=
X
i

_Ui

 
�

X
j

Aij
dVj

dUj
_Uj � _Ui �

X
�

C�
@C�

@Vi

!

+
X
i

X
�

C�
@C�

@Vi
_Ui

= �

X
i;j

_UiAij
dVj

dUj
_Uj �

X
i

_U2
i

= �

X
i;j

_UiBij _Uj = �
~_U
T

B~_U; (32)

where

Bij = Aij
dVj
dUj

+ �ij: (33)

Here, �ij is the Kronecker delta. The derivation of equation (32) reveals why the
gradient ascent (or sign ip) is needed in (16): only under these circumstances
do the two terms

P
i

P
�C�

@C�
@Vi

_Ui cancel each other.
Now, we are able to determine conditions for which the Hop�eld-Lagrange

model will converge. These conditions depend on the properties of the matrix
B4:

3This Lyapunov function is a generalizationof the one Platt and Barr introduced [10]. They
used the equation (13). Here, this term cannot be used because of the non-linear relationship
V = g(U).

4The matrix A equals the one that Platt and Barr found.
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� If B is a positive de�nite matrix, we may conclude _Eph < 0, if _Ui 6= 0. If,

secondly, Eph is bounded below, the system will converge until 8i : _Ui = 0.
Analysing equation (15), we see that, generally, this will occur when the
values of �� have become constant, so when 8� : _�� = 0. This can only
be true if all constraints have been satis�ed (see equation (16)).

� If A is positive de�nite then B will be positive de�nite too.

In practice it can be a tough job to analyze B, because its elements Bij change
dynamically during the update of the di�erential equations (15) and (16).

Concluding, we notice that monotony of a Lyapunov function provides a
su�cient, not a necessary condition for stability [9]. Therefore, if we are not
able to prove convergence, we can still experiment and hope for the best.

2.4 Degeneration to a Penalty Model

In this subsection we prove that, under some conditions, the multipliers of the
Hop�eld-Lagrange model are not uniquely determined. These conditions ap-
pear to hold for a type of frequently used, quadratic constraints. In case the
constraints have the quadratic form, we shall prove stability of the Hop�eld-
Lagrange model. The stability often coincides with a degeneration to a penalty
model, yielding large and positive multipliers.

Like in the previous subsection, we start considering the general model (equa-
tions (14), (15) and (16)). Suppose, the following condition holds:

8�;8i : C� = 0)
@C�
@Vi

= 0: (34)

Then it follows from (15), that the values of the multipliers are arbitrary, i.e.
not uniquely determined5.

In the literature (e.g. in [3, 4, 11, 12, 13]) and in section 3 of this article,
frequently, quadratic constraints can be found of the following form:

C�(~V ) =
1

2
(
X
i�

Vi� � n�)
2 = 0; � = 1 � � �m; (35)

where every n� equals some constant. Commonly, the constraints relate to only
a subset of all Vi. So, for a constraint C� the index i� passes through some
subset S� of f1; 2; : : : ; ng. Therefore, we note, that

@C�
@Vi

=

� P
i�
Vi� � n� if i 2 S�

0 otherwise.

5In fact, the conditions for the `LagrangeMultiplier Theorem' ([1], p. 85) do not hold: from
(34) it follows, that all m �m submatrices of the Jacobian, associated with the constraints,
are singular. The theorem, which guarantees unique numbers ��, requires the existence of
some non-singular submatrix.
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Now, it follows that in any point of the state space where the quadratic con-
straints (35) are ful�lled, the condition (34) holds. Consequently, multipliers,
associated with quadratic constraints (35), are not uniquely determined in equi-
librium points.

The question arises, how the Hop�eld-Lagrange model deals with this non-
determinacy. To answer that question, we consider the energy function (14)
and the corresponding equations (15) and (16), using the mentioned quadratic
constraints:

EHL = E(~V ) +
X
�

��
2
(
X
i�

Vi� � n�)
2 +EH(~V ); (36)

dUi
dt

= �
@E

@Vi
�
X

�:i2S�

��(
X
i�

Vi� � n�)� Ui; (37)

d��
dt

=
1

2
(
X
i�

Vi� � n�)
2: (38)

In order to prove eventual stability of this model, we make the following, crucial
observations:

First, from equation (38) the important fact follows that, as long as a con-
straint is not ful�lled, the corresponding multiplier increases:

d��
dt

> 0: (39)

Second, if at a certain moment all constraint are ful�lled, the updating
equations (37) and (38) are simply reduced to the following:

dUi
dt

= �
@E

@Vi
� Ui: (40)

Under the general condition about boundedness of E(~V ), this system is stable,
as we pointed out in the beginning of section 2.2. This implies that instability
of the system can only be caused by violation of one or more of the quadratic
constraints (35). Now, consider the total energy EHL (36). Normally, the
system is not in equilibrium in the initial state, so multipliers will start growing
when the updating of (37) and (38) begins. We also suppose the system is not
stable initially (if it would be, the set of di�erential equations would converge
rapidly). As just stated, the instability must be caused by violation of one or
more constraints, so the values of the corresponding multipliers keep increasing
and, if the system still remains unstable, they will become large and positive.
Now, we conclude from equation (36) that the contribution ofX

�

��
2
(
X
i�

Vi� � n�)
2 (41)

to EHL of all, still violated, constraints consists of convex quadratic forms.
These forms correspond to ever deeper `holes' in the `energy landscape' of EHL.
Remembering the discussion of section 1 about the `penalty method', we see,

12



critical point

?

0
5 -10

-5
0

5

V

�

EPB

Figure 3: The energy landscape of V 2 + �(V � 1)

that the quadratic constraints (35), multiplied by the positive Lagrange multi-
pliers, have become `penalty terms'. This is caused by the fact that, in the long
run, they possess property (5) (in addition to property (10))! Eventually, the

contribution (41) to EHL will dominate over that of E(~V ) and the system will
settle down in one of the arisen `energy holes' (whose location, as we know, may
also have been inuenced somewhat by the Hop�eld term EH). This completes
the proof.

2.5 The E�ect of Hard Constraints

To see how the theory of this section works in practice, we analyze the
following toy problem:

minimize f(~V ) = V 2;

subject to : V � 1 = 0: (42)

This simple problem can be solved manually. Applying a Lagrange multiplier,
we �nd that

EPB = V 2 + �(V � 1) (43)

has a critical point for (V; �) = (1;�2). Inspection of �gure 3 shows in a di�erent
way why a gradient ascent of � (or sign ip) is needed (together with a normal
gradient descent of V ) to �nd the critical point.

We also solve the problem using the Hop�eld-Lagrange model: the energy
function becomes

EHL = V 2 + �(V � 1) +
1

�
[(1� V ) ln(1� V ) + V ln V ]

and we are looking for the critical point of EHL, which we should �nd by
resolving

_U = �
@E

@V
= �(2V + �)� U; (44)
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Figure 4: Positions of some critical points of EHL (with a relaxed constraint)
and of EPB of the toy problem

_� = +
@E

@�
= V � 1: (45)

Now, V is bounded to the interval [0; 1]. During updating Eph is non-
increasing because

_Eph = �2 _U2:dV=dU � _U2 � 0: (46)

Consequently, Eph is monotone decreasing until _U = 0 and therefore until _� = 0,
which implies V = 1 and U =1. Inspection of (44) reveals that, in equilibrium,
� should equal �1. So the critical point of EHL appears if (V; �) = (1;�1)
and we have run up against an unexpected di�culty. We have lost the pretty
feature of the continuous Hop�eld model of �nding solutions corresponding to
�nite values of U . The reason is obvious: the `hard' constraint V � 1 restricts
the solution space to V = 1 with corresponding U -value equal to 1. There
exists a simple solution `in the spirit' of the Hop�eld model. If we relax the
constraint to

V � 1 = � (47)

then the new EHL becomes

V 2 + �(V � 1 + �) +
1

�
[(1� V ) ln(1� V ) + V ln V ];

which has a critical point if (V; �) = (1� �;�2 +��), where

�� = 2�+
1

�
ln(

�

1� �
): (48)

We see that the critical point is situated in the neighbourhood of the original
value if the error �� (which is determined by � and �) is small. As in the
Hop�eld model, it can be kept small if we choose large values of �. To determine
the sensitivity of the parameters, we present some results: we may conclude
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� = 0:001 � = 0:01 � = 0:1

� �� � �� � ��

5000 +0:0006 5000 +0:019 5000 +0:199
500 �0:01 500 +0:010 500 +0:196
50 �0:136 50 �0:07 50 +0:156
5 �1:38 5 �0:90 5 �0:239
1 �6:9 1 �4:58 1 �1:997

Table 1: The error �� as a function of � and �

from the calculations, as given in table 1, that su�cient high values of � indeed
guarantee a small error ��.
In �gure 4, some results have been put together. The position (1;�2) of the
constrained minimum is shown, together with some positions of the extrema of
EHL for various values of � and � = 0:01.
The described di�culty does not always take place. E.g., if the constraint has
the form

V1 + V2 � 1 = 0; (49)

then there may exist solutions of the form

V1 = � and V2 = 1� �; (50)

where V1, V2 correspond to �nite values U1, U2.

3 Practical Results

Using the theory of section 1 and 2, we formulate a procedure to use the Hop�eld-
Lagrange model in constrained optimization problems, taking formula (4) as
starting point. First, convert the constrained minimization problem (4) into
the unconstrained extremization one using equations (14) to (16). Second, set
up a Lyapunov function as given by (31), and try to prove convergence. If you
are successful, you are lucky. If not, convergence is still possible, but it requires
experimentation. Third, try to solve the problem using equations (15) and (16).
Special attention is needed for the initialisation of the state variables Vi and ��,
for the choice of parameter values � of the sigmoid function, for � (if it applies)
and for the numerical method (normally the Euler method is used, so you need
to choose �t and the maximum number of iterations).

3.1 Simple Optimization Problems

We started doing some simple experiments. We used various quadratic cost
functions E(~V ) with linear constraints:

E(~V ) =
1

2

nX
i=1

di(Vi � ei)
2; (51)
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subject to : a�i Vi � b�i = 0; � = 1; ::;m; (52)

where di was chosen positive. Every time, we chose the minimization func-
tion with a minimum belonging to the state space [0; 1]n. The corresponding
Lyapunov function is monotone decreasing: because

@2E

@Vi@Vj
= di�ij and

@2C�
@Vi@Vj

= 0; (53)

the time derivative of Eph can be written as

_Eph = �

nX
i=1

(di:dVi=dUi + 1) _U2
i � 0: (54)

Therefore, one may expect convergence for all problem instances. We started
with our 'toy problem' applying equations (44) and (45) and choosing random
initialisations of Vi.
In all cases, the system converged (with E(~V ) monotone increasing). After
107 iterations, when U and � were still growing and shrinking (to 1 and -1
respectively), we cut o� the calculations. Using �t = 0:0001 and � = 50 we
found as '�nal' values V = 0:999959 and � = �2:404412.
Thereupon, we relaxed the constraint to V �1 = �. Resolving the corresponding
set of di�erential equations, choosing � = 0:01 and leaving the other constants
unchanged, we found proper convergence to V = 0:990000 and � = �2:163805:
the �rst value is correct and the second one equals almost the theoretical value
�2:07 (see table 1).
To investigate scalability, we extended the number of neurons and constraints.
In all cases we got proper convergence. An example: minimize

V 2
1 + (V2 � 1)2 + V 2

3 + (V4 � 1)2 + � � �+ (V50 � 1)2;

subject to: 8>>>><
>>>>:

V1 + V2 + � � � + V10 = 5
V6 + V7 + � � � + V15 = 5
V11 + V12 + � � � + V20 = 5
...

...
...

...
...

V41 + V42 + � � � + V50 = 5

After 106 iterations with �t = 0:0001 and � = 50 we found:

8i : i 2 f1; 3; 5; � � � ; 49g : Vi = 0:056360 (55)

8i : i 2 f2; 4; 6; � � � ; 50g : Vi = 0:943640; (56)

so, the constraints have been ful�lled `exactly'. We also observe the expected
e�ect of the Hop�eld term. The values of the 9 multipliers �� all equal 0.000000,
corresponding to the theoretical ones.
We repeated the experiment, now chosing � = 100. We found:

8i : i 2 f1; 3; 5; � � � ; 49g : Vi = 0:033593 (57)

8i : i 2 f2; 4; 6; � � � ; 50g : Vi = 0:966407: (58)

The inuence of the Hop�eld term has diminished.
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Figure 5: A solution of a Weighted Matching Problem for n = 32

3.2 Weighted Matching

Thereupon, we tried to solve combinatorial problems, starting with the Weighted
Matching Problem: given n points with a known `distance' dij between each ij-
pair, the problem is to link the points pairwise, with each point linked to exactly
one other point, so as to minimize the total length of the links (for more details
see [4]).
We experimented with several formulations of the constraints and succeeded
using the following one:

minimize E(~V ) =

n�1X
i=1

nX
j=i+1

dijVij ; (59)

subject to:

C1;i =
1

2
(

i�1X
j=1

Vji +

nX
j=i+1

Vij � 1)2 = 0; (60)

C2;ij =
1

2
Vij(1 � Vij) = 0: (61)

The constraints (61) describe the requirement that every Vij must equal 0 or 1.
As corresponding multipliers we used �ij, where for the indices ij

8i; j : 1 � i < j � n (62)

holds. The quadratic constraints (60) describe, in combination with (61), that
every point should be linked to exactly one other. For these constraints, we
used as multipliers �i.
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The set of di�erential equations is given by

_Uij = �dij � �i(

i�1X
k=1

Vki +

nX
k=i+1

Vik � 1)�

�j(

j�1X
k=1

Vkj +

nX
k=j+1

Vjk � 1)�

�ij(
1

2
� Vij)� Uij ; (63)

_�i =
1

2
(

i�1X
j=1

Vji +

nX
j=i+1

Vij � 1)2; (64)

_�ij =
1

2
Vij(1� Vij): (65)

We tried to analyze matrix B. Since

@2E

@Vij@Vkl
= 0;

@2C1;m

@Vij@Vkl
= (�mi + �mj):(�mk + �ml)

and
@2C2;mn

@Vij@Vkl
= ��mi:�mk:�nj:�nl; (66)

all elements Bijkl are known (Note: 8i; j : 1 � i < j � n and 8k; l : 1 � k <
l � n). To get a �rmer idea about the matrix B, we show it in case of 4 nodes.
Enumerating rows and columns in the order (1,2), (1,3), (1,4), (2,3), (2,4), (3,4),
we found:

BWM = 0
BBBBBBBBBBBBBBBB@

�12 �1�13 �1�14 �2�23 �2�24 0

�1�12 �13 �1�14 �3�23 0 �3�34

�1�12 �1�13 �14 0 �4�24 �4�34

�2�12 �3�13 0 �23 �2�24 �3�34

�2�12 0 �4�14 �2�23 �24 �4�34

0 �3�13 �4�14 �3�23 �4�24 �34

1
CCCCCCCCCCCCCCCCA

where

�ij = 1 + (��ij + �i + �j)
dVij
dUij

(67)

and

�ij =
dVij
dUij

: (68)
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In general, we can not prove convergence because the properties of the matrixB
change dynamically. Initially, we can set all multipliers equal to 0. At the end,
all �ij should be 0. So, at these moments we have a positive de�nite matrix
B. During the updating process the situation is much less clear. Therefore, we
decided to perform an experiment. The results appeared to be very good: in all
cases, with both small and large problem instances, we got proper convergence.
E.g., we got the following result using 32 points (the corresponding system has
1024 di�erential equations and 528 multipliers!). After 40000 iterations with
� = 500 and �t = 0:001 the values of �i lay in the interval [0:14; 0:83], while
those of �ij were mostly of order 10�4 and sometimes of order 10�1. The values
of Vij equalled 0:0000 or lay in the interval [0:997; 1:000], which is interpreted
as equal to 1.
We have repeated the experiment and found a solution of almost the same
quality with 13 (of the 16) links equal to the ones that are shown in �gure 5.
Trying other formulations of the constraints we e.g. modi�ed (60) to a simple
linear one

i�1X
k=1

Vki +

nX
k=i+1

Vik � 1 = 0; (69)

but now we did not �nd convergence. This proves experimentally the power of
quadratic constraints being completely in conformity with the theory of subsec-
tion 2.4. However, we should be aware of the other side of the coin: quadratic
constraints do not yield unique values of the multipliers and owe their success
to their behaviour as penalty terms. So, we need more experimentation before
coming to a de�nite judgement about them.

3.3 Crossbar Switch Scheduling and Travelling Salesman

3.3.1 General Formulation and Analysis

To see whether the Hop�eld-Lagrange model is useful for solving more di�cult
combinatorial problems, we have tried to solve the benchmark Travelling Sales-
man Problem (TSP). The Crossbar Switch Scheduling Problem can sometimes
be regarded as a special case of this problem.
We shall start with a formulation of the TSP which corresponds exactly to the
one Hop�eld and Tank [7] used:

minimize E(~V ) =

nX
i=1

nX
j=1

nX
k=1

VijdikVkj+1; (70)

subject to:

C1 =

nX
i=1

nX
j=1

nX
k>j

VijVik = 0; (71)
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C2 =

nX
j=1

nX
i=1

nX
k>i

VijVkj = 0; (72)

C3 =
1

2
(

nX
i=1

nX
j=1

Vij � n)2 = 0; (73)

where Vij means that city i is visited in the j�th position (indices should be
taken `modulo n') and where dij represents the distance between city i and city
j (dij = dji).
Applying the Hop�eld-Lagrange model to the TSP, we search for the extrema
of

EHL(~V ;~�) = E(~V ) +

3X
�=1

��:C�(~V ) + EH(~V ): (74)

It is not very di�cult to verify, that the used formulation of the constraints for
the TSP have the encountered property of quadratic constraints: using posi-
tive penalty weights c� both condition (5) and condition (10) hold for them.
Therefore, one may expect the Hop�eld-Lagrange model to behave as a penalty
method, provided that all multipliers become positive.
Again, we tried to analyze the stability properties by, as usual, inspecting the
matrix B (this time denoted by BTSP1). Since

@2E

@Vij@Vkl
= (�lj�1 + �lj+1)dik;

@2C1

@Vij@Vkl
= �ik(1 � �jl);

@2C2

@Vij@Vkl
= �jl(1� �ik) and

@2C3

@Vij@Vkl
= 1; (75)

it is known. To get a better idea of this matrix, we show it for n = 2: BTSP1 =0
BBBBBBBB@

1 + �3�11 (�1 + �3)�12 (�2 + �3)�21 (d12 + �3)�22

(�1 + �3)�11 1 + �3�12 (d12 + �3)�21 (�2 + �3)�22

(�2 + �3)�11 (d21 + �3)�12 1 + �3�21 (�1 + �3)�22

(d21 + �3)�11 (�2 + �3)�12 (�1 + �3)�21 1 + �3�22

1
CCCCCCCCA

The expression �ij is already been de�ned in (68).

If 8i : 1 � i; j � n : dij = 0, then E(~V ) = 0 and the TSP becomes a pure
combinatorial one, that coincides with the Crossbar Switch Scheduling Prob-
lem(CSSP). The goal of tra�c-scheduling of an (n � n) Crossbar Switch is to
maximize the throughput of packets. The constraints are the following: at any
time no two inputs may be connected to the same output and also, no input
may be connected to more than one output 6. If Vij represents whether input i
is connected to output j, and, if n connections should be made, the constraints
of the CSSP equal the ones of TSP ((71), (72) and (73)).

6The problem coincides with the n-Queen problem
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3.3.2 The Crossbar Switch Scheduling Problem

Since the Crossbar Switch Scheduling Problem is a purely combinatorial one,
and the formulation of the constraints is such, that condition (5) holds, it is
expected that this problem can be solved using the penalty method (section
1.3). The problem can be stated as:

minimize EP =

3X
�=1

c�:C�(~V ) +EH (~V ): (76)

Using random initialisations of Vi and various values of the c�'s, we found
convergence, provided that �t was chosen small enough. E.g., for n = 25,
� = 500, �t = 0:0001 and all penalty weights c� = 1, we found convergence to
1 of the approximately 1:55� 1025 solutions.
Thereupon, we applied the Hop�eld-Lagrange model to the CSSP. Now, it is
desired to �nd a critical point of

EHL =

3X
�=1

��:C�(~V ) +EH(~V ): (77)

Again, we found convergence. E.g., for n = 25, � = 500 and �t = 0:0001
we found, after 2000 iterations, �1 = 0:655935, �2 = 0:649828, a still growing
multiplier �3 = 0:690099 and an almost feasible solution. The increase of �3 can
easily be explained by the theory of section 2.5. Note, that all multipliers have
become positive, making the contribution

P
�
��:C� behave as a sum of penalty

terms. It is di�cult to analyze general stability using the matrixBTSP1 , because
once again the values of the matrix elements change dynamically. However, in
any point of the state space for which the constraints are satis�ed, stability can
easily be proven.

3.3.3 The Travelling Salesman Problem (1)

Using the Hop�eld-Lagrange model, the TSP can be attacked by searching the
extrema of (74). The corresponding set of di�erential equations equals

_Uij = �dij
X
k

(Vkj+1 + Vkj�1)� �1

nX
k=1;k 6=i

Vik �

�2

nX
k=1;k 6=j

Vkj � �3(

nX
i=1

nX
j=1

Vij � n)� Uij ;

_�1 =

nX
i=1

nX
j=1

nX
k>j

VijVik ;

_�2 =

nX
j=1

nX
i=1

nX
k>i

VijVkj ;

21



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

HH

�
�
��
@@

r

r

rr r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r r

Figure 6: A solution of a TSP (1) for n = 32

_�3 =
1

2
(

nX
i=1

nX
j=1

Vij � n)2: (78)

We experimented with this set and, just as in [12], we found proper convergence
to nearly feasible solutions. Unfortunately, the quality of the solutions was very
poor. Even problem instances of 4 cities did not yield optimal solutions every
time. Trying instances with 32 cities yielded solutions like the one shown in
�gure 6, i.e., solutions far from optimal.

3.3.4 The Travelling Salesman Problem (2)

Inspired by the success with Weighted Matching Problem, we tried to solve the
TSP using a similar type of constraints, that is, we tried quadratic constraints
with one multiplier for every single constraint. We expected to �nd better so-
lutions, because in this approach many more multipliers are used, which should

make the system more `exible'. We search an extremum of EHL(~V ;~�) =

nX
i=1

nX
j=1

nX
k=1

VijdikVkj+1 +

nX
i=1

�i
2
(

nX
k=1

Vik � 1)2 +

nX
j=1

�j
2
(

nX
k=1

Vkj � 1)2 +

nX
i=1

nX
j=1

�ij
2
Vij(1� Vij); (79)

The corresponding di�erential equations can be easily derived by di�erentiation.
Again, the experiments showed proper convergence. For very small problem
instances we found optimal solutions. Large problem instances also yielded
feasible, but unfortunately, not optimal solutions. An example of a solution is
given in �gure 7, where 32 cities were used, �t = 0:001 and the applied number
of iterations was 100000. The encountered values of Vij were either 0.0000 or lay

22



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

rr

r

r

r

rr

rr

r

r

rr

r

r

r

r

Figure 7: A solution of a TSP (2) for n = 32

in the interval [0.9988;1.0000]. The 1088 multipliers were still growing (although
very slowly) in order to realize exact ful�lment of the constraints. The quality of
the solution is certainly better than the one we found in the previous subsection,
although still far from optimal.

4 Conclusions and Outlook

In this report, the Hop�eld-Lagrange model has been analyzed. The model is
de�ned by the energy function (14) and the corresponding set of di�erential
equations (15) and (16).
In section 2, the theoretical framework of the model has been shown. We suc-
ceeded in giving a simple mathematical explanation of the Hop�eld term EH
as well as in explaining why the corresponding decay term Ui is not harmful.
The proposed Lyapunov function yields, at least in theory, a strong tool to ana-
lyze the properties of convergence of the system. Some type of frequently used,
quadratic constraints appear to guarantee stability of the Hop�eld-Lagrange
model. However, this goes hand in hand with a degeneration to a penalty model
with, eventually, positive values for the multipliers (penalty weights). In con-
trast to the traditional penalty method these values are calculated by the model
itself, which is an advantage. It has also been shown, that hard constraints may
imply in�nite values of multipliers. Sometimes, this can be resolved by relaxing
the constraints.
The experimental results do not falsify the theoretical ones, although the quality
of the solutions is not always very good. The investigated quadratic optimization

problems, subject to linear constraints, yielded the correct solutions with the
minima somewhat displaced by the Hop�eld term, as the theory predicted. Also,
the correct values of the multipliers were found. Scalability did not occur.
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Purely combinatorial problems, like the Crossbar Switch Scheduling Problem,
can also be solved using the Hop�eld-Lagrange model. We applied quadratic
constraints like many researchers and always got almost correct solutions, corre-
sponding to the theory about hard constraints. Equally, no scalability di�culties
were found.
For combinatorial optimization problems the situation is more complicated. Of-
ten, the concrete, corresponding Lyapunov function can not be analyzed su�-
ciently with mathematical tools. A guarantee for stability could only be given
in case of quadratic constraints. Therefore, we were forced to rely mainly on
experiments. Until now, we only found feasible solutions when a quadratic
formulation of the constraints was used. For relatively simple combinatorial op-
timization problems (like the Weighted Matching Problem) and for small scaled
di�cult ones (like the Travelling Salesman Problem), the approach yielded so-
lutions of high (sometimes optimal) quality, provided that a lot of constraints
(one multiplier for every single constraint) were used. Unfortunately, di�cult
combinatorial optimization problems again demonstrated the scalability di�-
culty: large scaled instances gave solutions far from optimal. Still, the models
using a lot of multipliers did much better than the ones using only a few.
Further research is necessary to explain why the used linear constraints did not
work for these problems. Also, it is interesting to investigate other mappings
trying to �nd feasible solutions of better quality. In all research about stability,
the theory about the derived Lyapunov function can be useful, but it demands a
thorough analysis of the properties of matrixB (section 2.3). In this context, an
analysis of the (deformation of the) energy landscapes is appropriate too, which
may be related to the theory of statistical physics. Still another way to get more
insight in the behaviour of the model may be to take up other combinatorial
optimization problems. Only after having completed this type of research can
a de�nite judgement about the Hop�eld-Lagrange model be given.
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